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ABSTRACT

Change-point detection problems can be solved either by vari-

ational approaches based on total variation or by Bayesian

procedures. The former class leads to small computational

time but requires the choice of a regularization parameter that

significantly impacts the achieved solution and whose auto-

mated selection remains a challenging problem. Bayesian

strategies avoid this regularization parameter selection, at the

price of high computational costs. In this contribution, we

propose a hybrid Bayesian variational procedure that relies on

the use of a hierarchical Bayesian model while preserving the

computational efficiency of total variation optimization pro-

cedures. Behavior and performance of the proposed method

compare favorably against those of a fully Bayesian approach,

both in terms of accuracy and of computational time. Addi-

tionally, estimation performance are compared to the Stein

unbiased risk estimate, for which the knowledge of the noise

variance is needed.

Index Terms— Parameter selection, total variation, con-

vex optimization, hierarchical Bayesian model.

1. INTRODUCTION

Change-point detection problems are of considerable po-

tential interest in many different applications ranging e.g,

from econometrics to signal processing (see [1, 2], for an

overview). Formally, a change-point detection problem con-

sists in estimating a piecewise constant signal x ∈ R
N from

noisy observations y = x + ǫ, where ǫ denotes an additive

degradation.

To solve this problem, variational methods based on to-

tal variation have received considerable interest and research

efforts over the past years (see, e.g., [3] for genomic data pro-

cessing). They aim at providing an estimate for x by mini-

mizing the following non-smooth convex criterion by iterative

strategies [4–7] or straightforward computations [8, 9]:

x∗
λ = arg min

u∈RN

1

2
‖u− y‖22 + λ

N−1∑

i=1

|ui+1 − ui| (1)

This work was supported by the CNRS GdR ISIS under the junior re-

search project GALILEO.

where u =
(
ui

)
1≤i≤N

and λ is a (positive) regularization

parameter that controls the trade-off between the fit to the ob-

servations y and the amount of regularization. The selection

of λ is critical for the performance of (1) because the solu-

tion x∗
λ strongly depends on its value. Indeed, for λ → 0,

the first term in (1) dominates and x∗
λ consists of many con-

stant segments. To the contrary, when λ → +∞, the regular-

ization term is dominant and (1) yields a solution with very

few constant segments. Currently existing methods for se-

lecting a value for λ rely on the Stein unbiased risk estimate

(SURE) [10, 11], which minimizes the unbiased estimator of

the mean squared error between x and x∗
λ. While this ap-

proach is effective, it requires the knowledge of the variance

of ǫ, which is often unavailable. Another alternative consists

in resorting to a Bayesian framework, by formulating (1) as

a statistical inference problem. Indeed, in the right-hand side

of (1), the first term is related to a likelihood under an addi-

tive white Gaussian noise assumption, while the second term

refers to a prior distribution parametrized by an hyperparame-

ter λ. By adopting a hierarchical strategy, this hyperparameter

could be included within the Bayesian model and estimated

jointly with x. Unfortunately, in the specific case of (1), the

partition function, which depends on λ, cannot be expressed

analytically. As a consequence, estimating λ within a hier-

archical Bayesian framework would require computationally

intensive sampling methods similar to [12].

A second important class of methods for the estimation of

a piecewise constant signal x relies on the estimation of un-

known parameters related to x such as the number of change

points or the value of the signal on each segment, and of a

model for the noise ǫ. Estimation of the unknown parame-

ters is then performed on the basis of their posterior distri-

bution. By adopting a hierarchical strategy with additional

hyperparameters, no tuning of the parameters of the prior and

noise distributions is needed, see, e.g., [13, 14]. However,

Bayesian methods still suffer from a high computational cost

which stems from the fact that the posterior distribution can-

not, in most cases, be expressed analytically and needs to

be approximated numerically by sampling methods such as

Markov chain Monte Carlo (MCMC) to construct estimators

for the unknown parameters.

In the present contribution, we propose a hybrid Bayesian

variational (HBV) method that combines the advantages of



both worlds, i.e., no parameter to tune by hand with lower

computational cost than usual Bayesian strategies. To achieve

this goal, we propose to revisit [14] by restricting the search-

ing space to the change-point locations resulting from (1).

The performance of the proposed hybrid procedure com-

pares favorably against those of a fully Bayesian approach,

both in terms of estimation accuracy and computational cost.

It is also compared against the benchmark SURE that assumes

the a priori knowledge of the noise variance.

The remainder of this contribution is organized as follows.

In Section 2, we describe the proposed HBV denoising algo-

rithm. Numerical experiments validating and illustrating the

proposed method are conducted in Section 3. Conclusions are

drawn in Section 4.

2. HYBRID BAYESIAN VARIATIONAL DENOISING

2.1. Parametric model

To formalize the change point detection problem, we explic-

itly model the piecewise constant signal x ∈ R
N as a sig-

nal constituted of K segments, with corresponding constant

values µk, k = 1, . . . ,K, referred to as the vector µ =
(µk)1≤k≤K . Use is also made of the change-point indicator

vector r =
(
ri
)
1≤i≤N

,

ri =

{
1, if there is a change-point at time instant i,
0, otherwise.

(2)

Convention rN = 1 ensures that the number K of segments

is equal to the number of change-points, i.e., K =
∑N

i=1 ri.
By definition, ri = 1 indicates that xi is the last sample be-

longing to the current segment, and thus that xi+1 belongs to

next segment. Equivalently, we can deduced from r the set

of time indices Ik ⊂ {1, . . . , N} corresponding to the k-th

segment for k = 1, . . . ,K, such that Ik ∩ Ik′ = {∅} for

k 6= k′ and ∪K
k=1Ik = {1, · · · , N}. Following [14], we also

introduce the point-wise change occurrence probability p. In

addition, the noise ǫ is assumed to be zero-mean and with

constant variance σ2. Therefore, observations y depend upon

the vector parameter Θ = {r,µ, σ2, p}.

2.2. Regularization parameter selection

The strategy of the proposed HBV denoising algorithm can

now be summarized in the following steps. First, a TV de-

noising algorithm is used to solve (1) for a large number of

candidate values λ ∈ Λ. Then, from each recovered piece-

wise constant solution x∗
λ, we derive an estimate Θ̂λ of Θ.

Finally, the optimal value λHBV of λ is chosen as the value λ
for which Θ̂λ maximizes the posterior, i.e.,

λHBV ∈ Argmax
λ∈Λ

f(Θ̂λ|y) (3)

where the notation ∈ Argmax indicates that the solution is

not necessarily unique. To model the posterior distribution

f(Θ̂λ|y), we have recourse to a hierarchical Bayesian model,

detailed in next section.

2.3. Hierarchical Bayesian model

We assume that the ǫi, for i = {1, . . . , N}, are i.i.d. zero

mean Gaussian variables with constant (but unknown) vari-

ance σ2: N
(
0, σ2

)
. The joint likelihood function of the ob-

servations y, depending on the piecewise constant model and

noise parameters {r,µ, σ2}, then reads:

f
(
y|r,µ, σ2

)
=

K∏

k=1

∏

i∈Ik

1√
2πσ2

exp
(
−
(
yi − µk

)2

2σ2

)
. (4)

To model the posterior distribution, further assumptions

are needed. Following [13], it is first assumed that r are a pri-

ori independent and distributed according to a Bernoulli dis-

tribution with parameter p, quantifying the prior probability

of having a change-point at a given location:

f(r|p) =
N∏

i=1

pri(1− p)1−ri . (5)

Furthermore, a Beta(α0, α1) distribution is assigned to p:

f (p|α0, α1) =
Γ (α0, α1)

Γ (α0) Γ (α1)
pα1−1(1− p)α0−1. (6)

Segment values µk, for k = {1, . . . ,K}, are also assumed

to be i.i.d., distributed according to a common Gaussian dis-

tribution N (µ0, σ
2
0):

f
(
µ|µ0, σ

2
0

)
=

K∏

k=1

1√
2πσ2

0

exp

(
− (µk − µ0)

2

2σ2
0

)
. (7)

Finally, a non-informative Jeffreys prior is assigned to the

noise variance σ2:

f
(
σ2

)
∝ 1

σ2
. (8)

With these assumptions, the posterior distribution reads:

f(Θ|y) = 1

f(y)
f
(
y|r,µ, σ2

)
f (r|p) f (p|α0, α1)

× f
(
µ|µ0, σ

2
0

)
f
(
σ2

)
(9)

where f
(
y|r,µ, σ2

)
, f (r|p), f (p|α0, α1), f

(
µ|µ0, σ

2
0

)
,

and f
(
σ2

)
have been defined in (4), (5), (6), (7), and (8),

respectively.

2.4. Proposed algorithm

The proposed HBV algorithm consists in repeating for a large

number of candidates λ ∈ Λ the following procedure.



Step 1 consists in computing x∗
λ ∈ R

N , the solution

of (1), using a variational strategy, based on our own imple-

mentation of Condat 1D-TV algorithm [8].

Step 2 relies on the fact that, by nature, the solution x∗
λ is

piecewise constant with K̂λ segments. Therefore, from each

solution x∗
λ, an estimate, denoted Θ̂λ =

{
r̂λ, µ̂λ, σ̂

2
λ, p̂λ

}
, of

the parameter vector Θ involved in the hierarchical Bayesian

model, can be obtained: Estimates r̂λ of the change-point lo-

cations (or, equivalently, of the sets (Îλ,k)1≤k≤K̂λ
) can be

easily computed and empirical estimates of the remaining pa-

rameters can be derived as follows:

µ̂λ = (µ̂λ,k)1≤k≤K̂λ
where µ̂λ,k =

1

|Îλ,k|
∑

i∈Îλ,k

yi, (10)

σ̂2
λ =

1

N

K̂λ∑

k=1

∑

i∈Îλ,k

(yi − µ̂λ,k)
2, (11)

p̂λ = K̂λ/N. (12)

We denote x̂λ = (x̂λ,i)1≤i≤N , the estimate of x such that:

(∀k ∈ {1, . . . K̂λ})(∀i ∈ Îλ,k), x̂λ,i = µ̂λ,k. (13)

Note that x̂λ is different from x∗
λ but both estimates share the

same change-point locations.

Step 3 computes the posterior distribution f(Θ̂λ|y) based

on the hierarchical Bayesian model (9).

Finally, the optimal regularization parameter λHBV is se-

lected as the one that maximizes the posterior distribution (9)

according to (3). Consequently we denote x̂λHBV
the estimate

x̂λ when λ = λHBV. The HBV procedure is sketched in Al-

gorithm 1.

Algorithm 1 HBV algorithm

Input: Observed signal y ∈ R
N .

Predefined set of regularization parameters Λ.

Prior parameters Φ =
{
α0, α1, µ0, σ

2
0

}
.

Iterations:

1: for λ ∈ Λ do

2: Estimate x∗
λ with Condat 1D-TV algorithm.

3: Estimate Θ̂λ =
{
r̂λ, µ̂λ

, σ̂2
λ, p̂λ

}
from x∗

λ.

4: Compute f(Θ̂λ|y) with (9) and compute x̂λ.

5: end for

Output: λHBV ∈ Argmax
λ∈Λ f(Θ̂λ|y);

Solution x̂λHBV
.

3. PERFORMANCE ASSESSMENT

3.1. Experimental settings

Non informative prior parameters are used for the Bayesian

hierarchical model (α0 = α1 = 1, from which it follows

that p has an a priori uniform distribution on [0, 1]; µ0 =
1
N

∑N

i=1 yi and σ2
0 = 1

10 V̂ar(y), where V̂ar stands for the
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Fig. 1: Illustration of HBV procedure. Top row: true signal

x (solid black), single realization of observations y (gray, SNR

= 1.8 dB), solution x̂λHBV
(solid red), non-optimal solutions x̂λ,

with λ1 = 4 (dashed orange) and λ2 = 23 (mixed magenta);

log f(Θ̂λ|y) evaluated for the set Λ (second row). Ensemble aver-

age of log f(Θ̂λ|y) (third row) and empirical distribution of λHBV

(bottom row).

variance).

First example – To illustrate and quantify the performance

of the proposed HBV denoising procedure, we consider the

piecewise constant signal x ∈ R
N with N = 120 samples

plotted in black in Fig.1 (top) together with the resulting data

y (gray) for one realization of an additive Gaussian noise with

signal-to-noise ratio (SNR) of 1.8 dB.

Second example – Complementary results arise from the

study of another example, where x is made of N = 240
samples whose segments are 40 samples long with differ-

ent amplitudes µk, and whose interest will be shown in the

following.

3.2. Illustration of regularization parameter selection

In Fig. 1 (top), x̂λHBV
(solid red) is compared against two

non-optimal solutions x̂λ obtained with λ1 = 4 (dashed or-

ange) and λ2 = 23 (mixed magenta), respectively, for one

single realization. While the non-optimal solutions clearly

fail to reproduce the true signal x, x̂λHBV
obtained with the

proposed procedure provides a visually good estimate for x.

In Fig.1 (second row), the corresponding log posterior distri-

bution log f(Θ̂λ|y) is plotted as a function of λ. Its piecewise

behavior stems from the fact that the x∗
λ have the same dis-

continuities and are identical for ranges of λ. We denote by

ΛHBV the range of values of λ for which the posterior is max-

imal and define, by convention, λHBV as the smallest value in

ΛHBV. We note that the log posterior distribution for a sin-

gle realization provides a relevant approximation for the en-

semble average of the posterior distribution, plotted in Fig. 1

(third row) for 100 realizations. The empirical distribution
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Fig. 2: Estimation for single realizations (Top) and MSE over 50 realizations (Bottom) for different SNR. From left to right SNR =

-1.5dB, 0.4dB and 1.8dB. True signal x (solid black), observations y (solid gray), x̂λHBV
(solid red), x̂MAP (dashed blue), x̂MMSE (dashed

cyan) and x∗
λSURE

(mixed green).

SNR (dB) -1.5 0.4 1.8

GSURE MAP MMSE HBV GSURE MAP MMSE HBV GSURE MAP MMSE HBV

MAD 1.8 2.4 2.4 2.6 1.2 1.2 1.3 1.8 0.9 0.6 0.8 0.6

MSE 5.6 7.8 12.1 8.4 2.5 3.0 3.4 5.0 1.4 1.2 1.6 1.2

time (s) 37.2 31.6 31.6 0.015 37.5 29.6 29.6 0.016 37.4 29.5 29.5 0.015

Table 1: Estimation performance vs. SNR (first example).

of λ ∈ ΛHBV is reported in Fig. 1 (bottom). Its mean (re-

spectively median) equals 13.2 (respectively 13.4), which is

consistent with the position of the maximum of the ensemble

average of the log posterior distribution at λ ≃ 13.

3.3. Estimation performance

Comparisons with state-of-the-art methods – We proceed

with comparing against a fully Bayesian (FB) procedure in

which one may naturally compute the Bayesian estimators

associated with the posterior distribution f(Θ|y) in (9). De-

riving the closed-form expression of the maximum a poste-

riori (MAP) or minimum mean squared error (MMSE) esti-

mators associated with f(Θ|y) is not straightforward. Al-

ternatively, these estimators can be approximated by using

MCMC procedures that essentially rely on a partially col-

lapsed Gibbs sampler [15] similar to the algorithm derived

in [14]. It consists in iteratively drawing samples (denoted

·(t)) according to conditional posterior distributions that are

associated with the joint posterior (9). The resulting pro-

cedure, detailed in Algorithm 2, provides a set of samples

ϑ =
{
r(t),µ(t), σ2(t), p(t)

}T

t=1
that are asymptotically dis-

tributed according to (9). These samples can be used to ap-

proximate the MAP and MMSE estimators of the parameters

of interest [16]. The corresponding solutions are referred to

as x̂MAP and x̂MMSE.

In addition, x̂λHBV
is also compared against x∗

λ for

λ = λSURE that minimizes the Stein unbiased risk esti-

mate (SURE). It is used as a benchmark solution since it

requires the a priori knowledge of the noise variance σ2.

To do so, we have replaced steps 3 and 4 in Algorithm 1

with the computation of the Generalized SURE estimator

proposed in [11], which requires to deal with an expecta-

tion that we approximate by an empirical mean computed

over 104 realizations. Moreover, the output x∗
λ, which

Algorithm 2 FB Algorithm

Input: Observed signal y ∈ R
N .

Prior parameters Φ =
{
α0, α1, µ0, σ

2
0

}
.

Iterations:

1: for t = 1, . . . , T do

2: for i = 1, . . . , N − 1 do

3: Draw r
(t)
i

∼ P
[
ri|y, r\i, p, σ

2, µ0, σ
2
0

]

4: end for

5: for k = 1, . . . ,
∑

N

i=1 r
(t)
i

do

6: Draw µ
(t)
k

∼ f
(
µk|y, r, σ

2, µ0, σ
2
0

)

7: end for

8: Draw σ2(t) ∼ f
(
σ2|y, r,µ

)

9: Draw p(t) ∼ f (p|r, α0, α1)
10: end for

Output: ϑ =
{
r(t),µ(t), σ2(t), p(t)

}T

t=1
.

minimizes the risk between x∗
λ and x, is obtained with

λ = λSURE ∈ Argminλ∈ΛGSURE(y,x∗
λ, σ

2).
The results for a single realization are plotted in Fig. 2

(top) for different SNR values. The usual measure of per-

formance for an estimator of a piecewise constant signal is

the mean squared error MSE(x̂) = Ê[ 1
N
‖x̂ − x‖22] (where Ê

stands for the empirical mean estimator computed over 50 re-

alizations) reported in Table 1 along with the mean absolute

deviations MAD(x̂) = Ê[ 1
N
‖x̂ − x‖1] and average execu-

tion times. Fig. 2 (bottom) provides a performance analysis

in terms of MSE at each location i ∈ {1, . . . , N}.

Overall, the proposed HBV method yields estimates that

are comparable with FB (i.e., MAP and MMSE) results in

terms of MSE and MAD, while its computation time is re-

duced by a factor of 2000 with respect to the FB approach.

For high SNR values, HBV clearly outperforms FB, the latter

having wider MSE peaks at the change point locations, indi-
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Fig. 3: Estimation performance vs. SNR (second example). MSE

(left) and average computation time (right) associated to x̂λHBV

(|Λ| = 10 dashed orange, |Λ| = 100 solid red), x̂MAP (mixed blue),

x̂MMSE (mixed cyan) and x∗
λSURE

(|Λ| = 10 dashed light green,

|Λ| = 100 solid dark green).

cating less precision. Performance are consistent with those

obtained with the second example and reported in Fig. 3 (left:

MSE, right: average computation time) for different SNR val-

ues and two different search grids Λ. It shows that HBV is less

sensitive to |Λ| than GSURE. In addition, the computational

time associated with HBV is reduced by a larger factor as the

sample size N grows.

The comparisons with GSURE illustrate that, at high

SNR, the estimation performance of the proposed approach

are close to those of the GSURE oracle (which requires the

a priori knowledge of the noise variance) while the computa-

tion cost for the proposed approach is 3 orders of magnitude

smaller. Note that x̂λHBV
is estimated a posteriori, cf., (13),

while x∗
λSURE

is a direct solution of (1), resulting in a slightly

lower MSE for high SNR values.

3.4. Behavior comparisons

In addition, Fig. 2 shows that when increasing noise variance

HBV tends to detect less change points and eventually no

change point, while MAP, MMSE and GSURE yield a larger

number of change point detection, with highly variable loca-

tions. Visually, no clear preference can be given to any of

the methods, yet HBV has a lower MSE than FB at very low

SNR. These pronouncedly different behaviors at low SNR are

further illustrated in Fig. 4 where segment size empirical dis-

tributions are plotted as functions of SNR.

4. CONCLUSIONS

We developed a hybrid Bayesian variational method for the

change point detection problem. The originality and advan-

tage of the proposed procedure reside in combining the com-

putational efficiency of variational methods with the statisti-

cal flexibility of a hierarchical Bayesian model, that thus per-

mit to efficiently handle the automated regularization param-

eter selection. The proposed procedure compares favorably

against a fully Bayesian approach in terms of estimation per-

formance, while reducing computational cost by more than 2

orders of magnitude, and achieves, at large SNR, performance

that are similar to those obtained with the GSURE “oracle”
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Fig. 4: Size empirical distributions of estimated segment vs.

SNR. Second example where x consists of six segments which are

40 samples long (dashed red).

procedure, which requires the a priori knowledge of the noise

variance. Extensions to image denoising and segmentation

are under current investigation.
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