
HAL Id: hal-04080843
https://hal.science/hal-04080843

Submitted on 25 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Identifying Relevant Parameters to Improve WCET
Analysis

Jakob Zwirchmayr, Pascal Sotin, Armelle Bonenfant, Denis Claraz, Philippe
Cuenot

To cite this version:
Jakob Zwirchmayr, Pascal Sotin, Armelle Bonenfant, Denis Claraz, Philippe Cuenot. Identifying Rel-
evant Parameters to Improve WCET Analysis. 14th International Workshop on Worst-Case Execution
Time Analysis (WCET 2014), Jul 2014, Madrid, Spain. pp.93-102. �hal-04080843�

https://hal.science/hal-04080843
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13102

To link to this article : DOI :10.4230/OASIcs.WCET.2014.93
URL : http://dx.doi.org/10.4230/OASIcs.WCET.2014.93

To cite this version : Zwirchmayr, Jakob and Sotin, Pascal and
Bonenfant, Armelle and Claraz, Denis and Cuenot, Philippe Identifying
Relevant Parameters to Improve WCET Analysis. (2014) In: 14th
International Workshop on Worst-Case Execution Time Analysis -
WCET 2014, 8 July 2014 - 8 July 2014 (Madrid, Spain).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/13102/
http://oatao.univ-toulouse.fr/13102/
http://dx.doi.org/10.4230/OASIcs.WCET.2014.93
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Identifying Relevant Parameters to Improve

WCET Analysis∗

Jakob Zwirchmayr1, Pascal Sotin1, Armelle Bonenfant1,

Denis Claraz2, and Philippe Cuenot2

1 Université de Toulouse, IRIT, France

2 Continental Automotive France SAS, Toulouse, France

Abstract

Highly-configurable systems usually depend on a large number of parameters imposed by both

hardware and software configuration. Due to the pessimistic assumptions of WCET analysis, if

left unspecified, they deteriorate the quality of WCET analysis. In such a case, supplying the

WCET analyzer with additional information about parameters (a scenario), e.g. possible variable

ranges or values, allows reducing WCET over-estimation, either by improving the estimate, or

by validating the initial estimate for a specific configuration or mode of execution. Nevertheless,

exhaustively specifying constraints on all parameters is usually infeasible and identifying relevant

ones (i.e. those impacting the WCET) is difficult. To address this issue, we propose the branching

statement analysis, which uses a source-based heuristic to compute branch weights and that aims

at listing unbalanced conditionals that correspond to system parameters. The goal is to help

system-experts identify and formulate concise scenarios about modes or configurations that have

a positive impact on the quality of the WCET analysis.

Keywords and phrases WCET Accuracy, Modes and Configuration, Flow Facts, Scenario Spe-

cification

Introduction

At Continental Automotive France SAS and in the automotive industry in general, the reuse

of software is a major source of quality improvement and development cost reduction. Such

reuse is enabled by product-platform approaches, for example by offering a clear decoupling

between generic function development and application project integration. Therefore, the

corresponding software modules are firstly developed in a platform context which makes

them applicable in a large diversity of contexts, such as engine cylinder number, combustion

type or fuel type. Abstraction of the system configuration and the hardware platform results

in a configurable software module solution, for which the worst-case execution time (WCET)

depends on a series of parameters. Additionally, software functions must be frequently

adapted to changes of the configuration or enhanced by new features. Besides scheduling

analysis and timing constraint verification, WCET analysis is applied in various phases of the

development cycle of such an industrial project. In the design phase, it is used to estimate

the computation power required by a brand new functionality in order to properly size the

∗ This work is supported by ANR W-SEPT.

Jakob Zwirchmayr, Pascal Sotin, Armelle Bonenfant, Denis Claraz, and Philippe Cuenot;

licensed under Creative Commons License CC-BY

hardware configuration. During module development, WCET analysis is applied to verify

the compliance to certain platform rules, like, e.g., the maximum interrupt blocking time.

Due to a huge amount of unspecified settings in such a configurable environment the

pessimistic assumptions of WCET analysis usually leads to a high over-estimation of the

WCET, especially when it is applied in an early development phase.

Supplying precise information about possible values of relevant parameters can thus

improve the quality of the WCET estimate or establish that the WCET estimate for the

particular configuration coincides with the reported unconstrained WCET estimate. Manually

identifying and specifying constraints on all relevant parameters is a tedious task. In order

to assist such a task we propose an approach, branching statement analysis, that focuses on

identifying crucial branching choices at control flow level. To this end, we identify parameters

by analyzing and listing conditionals that are deemed WCET-relevant by our analysis. Then,

a system-expert provides additional information about the particular configuration in form

of input constraints (scenario). WCET analysis of the system under the supplied scenario

either leads to an improvement of the WCET estimate for the analyzed mode, or validates

the accuracy of the (global) analysis for this particular configuration.

The contribution of this work is an approach that makes the task of identifying relevant

parameters in a configurable system less tedious, while gaining on the precision of the WCET

estimate reported for the configuration. Our method relies on a static analysis tool to

compute loop bounds and infeasible path information and can be applied iteratively to

incorporate and refine value specifications of parameters. By relying on a source based timing

heuristic, we identify unbalanced conditionals and guide the system-expert when constructing

and/or refining short and precise scenario specifications about relevant parameters.

The rest of the paper is structured as follows. An overview of the approach is presented

in Sect. 2, followed by an industrial point of view on WCET analysis in Sect. 3. A detailed

description of our method is presented in Sect. 4, while Sect. 5 overviews effects of scenarios

on the WCET analysis precision. We report on experiments in Sect. 6 followed by an overview

of related work, Sect. 7, and we conclude in Sect. 8.

Motivating Example

The diagram shown in Figure 1 outlines the setup of our approach. Traditionally, to

compute a WCET estimate, a (possibly empty) scenario and the program source code are

supplied to a control flow analyzer (oRange [7]) that computes flow facts about the program

(FFX [10]). The program binary and the flow facts are supplied as input to the low-level

analyzer (OTAWA [1]) that computes a WCET estimate for the program. We extended the flow

fact computation step by a ∆-computation step. The goal is to find unbalanced conditionals

(in terms of weight, currently a syntactical measure) related to parameter values, such that a

system-expert can focus on specifying parameters that are deemed relevant by the branching

statement analysis. Specifying data constraints for those parameters yields a refined scenario

that can again be supplied to the WCET computation step. The analysis can be re-run

iteratively using the refined scenario.

As stated in Section 1, the WCET estimate usually depends upon a large number of

parameters imposed by outside constraints. Therefore, one often is interested in estimating

the WCET of the program in a specific mode of execution or configuration.

In this paper, we denote as the configuration of the system the hardware and software

environment of a component. A mode of execution describes running the program under

certain assumptions about the environment. Parameters then denote variables that reflect

scenario C program

oRange

∆ list

binary

FFX

OTAWA
WCET

estimate

refined

scenario

expert

oRange

new

∆ list

new

FFX

OTAWA

new

WCET

estimate

expert

Figure 1 Introducing ∆-values to support scenario specification and refinement.

include " missing .h"

int expensive () { /* ... */ }

int cheap () { /* ... */ }

int main () {

for (int i = 0; i < 100; i++)

if (max_speed > 250)

expensive ();

else cheap ();

}

Figure 2 A simple example.

Computing the balance information for the main function

Estimated cost of the function : 70804

1 accessible conditional statements

Delta 65000 at rex.c:22 in main (total count =100):

then =704; else =54; // max_speed > 250

Figure 3 Analysis output: ∆-conditions for the example.

the configuration and/or the mode of the system, and by a scenario we denote a set of

constraints on these parameters.

As an example, consider Figure 2 and suppose that max_speed is a variable among many

parameters. Thus, the unbalanced conditional depends on variable values (parameters,

configuration) that are not specified in the analyzed code. A system-expert knows that in a

particular mode of execution or configuration (critical mode, model of vehicle, calibration)

max_speed is less than 250. Restricting possible executions of the program by providing

information about max_speed can therefore improve the WCET estimate for the configuration.

Nevertheless, such a parameter first needs to be identified as relevant.

Figure 3 lists the ∆-conditions for the example, with a weight of 704 for the then-

branch (∆-weight of expensive) and a weight of 54 for the else-branch (∆-weight of cheap).

The conditional branches are executed within a loop, thus their weight needs to be scaled

accordingly, resulting in a ∆-value of 65,000 over all loop iterations. As there is only a

single if-statement present in the source the number of ∆-conditions is 1. The high ∆-value

indicates that supplying additional annotations about variables involved in the condition have

a high impact on the WCET estimate computed for the function. Therefore, our approach

proposes this variable as a relevant parameter.

Supplying input annotations for those parameters helps determine the program paths

that are valid in the current scenario. For example, assuming a system where max_speed is

known to be < 200 reduces the WCET estimate from 250,033 to 29,933 cycles.

The Need for Concise Scenario Specifications

WCET analysis in an industrial context is applied with different aims in a number of

development phases. A regular WCET estimate is often not enough, especially when the

lack of context makes it highly imprecise. We overview these phases to illustrate where

the precision of WCET analysis can be improved by incorporating system-expert supplied

scenarios.

First, the WCET of a piece of code (e.g. a module or a function) is estimated in isolation

of any influence from other modules, be it effects from input or output channels, relations

with other modules, variable interdependencies, interrupts or the system configuration. These

estimations happen soon in the development cycle, by the function developer. Second, in a

module aggregation phase the focus shifts to the aggregation of a number of modules (10 to

40) to form a package suited to be reused in application projects. In this phase, the code is

an assembly of modules and sequences and no more modified.

The tuning of these settings results in exclusive behaviours and can be expressed as

limitations on valid program paths. Therefore, in this phase, information about top level

system integration and other high level system information can be supplied to a WCET

analyzer in order to gain a more realistic view on the WCET on the package level. Finally,

an application project view point on the integration phase that combines a number of, e.g.

70 to 100, aggregates leads to a WCET estimate used for scheduling analysis, as well for

a proper configuration of the task set. At this point, the top level system configuration

is set-up, and execution modes can be defined (including assumptions about engine speed,

coolant temperature, etc.). Specifying such assumptions about a mode in a scenario allows

to infer a tight contextual WCET estimate for the particular mode and configuration.

In a complete automotive system there are up to 40,000 variables, some of them tightly

coupled due to system state inter-dependency and closed loop effect. Scenarios are necessary

in order to model influences on the system. The tool we propose helps the system-expert

identify parameters that are likely to impact the WCET estimate and should thus be specified

in the scenario. This way, the WCET analysis of a module during the aggregation phase, or

of an aggregate during the project integration phase can be provide a value closer to the

WCET in real setting, while only specifying a low number of parameters. Scenarios therefore

include information on parameters such as:

input and internal variables, corresponding to system states, values of acquisitions,

information coming from the network or diagnosis data. For example, the set of active

functions is influenced by the state of the engine system (full load, idle speed).

configuration parameters, influencing arrays sizes, loop bounds, and (de)activate code

branches in runnables, runnables, or even full aggregates. They can be

configured statically, and must be assumed during validation. Those are usually

concerned with “high-level” configuration such as the number of cylinders, cylinder

banks, the type of sensors or the type of combustion.

configured dynamically (calibration parameters) that can be modified later by tuning

engineers and influence computations, like e.g. interpolation- and index-tables.

Branching Statements Analysis

The list of conditional statements shown in Figure 3 is computed by our branching statement

analysis. For each conditional statements of a C program the analysis computes a ∆-value,

i.e. an indicator of how unbalanced its branches are in terms of weights, (currently) a source

based heuristic. Thus, the analysis requires no binary program nor architecture information.

We implemented this analysis on top of the control flow analyser oRange.

Analysis Input. The analysis takes as input a C program, consisting of C source and header

files, together with an entry point and optional input-annotations. User-supplied annotations

may contain information about the program data and the program control flow, that might

not be inferable from the program code.

Analysis Output. The analysis outputs a list of branching statements of the program. Each

branching statement is accompanied by:

information to localize it in the source code;

an upper bound on the number of executions, N ;

a list of its valid branches, together with their branch-weights, wi;

its ∆-value = N ×maxi,j(wi −wj); the formula reduces to N ×|wthen −welse|, respectively

N × wthen, for if-then-else, respectively if-then, statements.

The list is sorted by ∆-values in decreasing order and outputs the weight of the program.

Control Flow Pre-Analysis. We assume that the branching statements analysis is preceded

by a control flow analysis that computes the following information:

Loop bounds for each loop of the program

Branch validity for each branching statement (if, switch)

This information is deduced from the code and/or supplied in the form of input-annotations

and is used in the weight computation.

Abstract Syntax Trees. The C program is represented as a collection of functions, each

defined by a name and an Abstract Syntax Tree (AST). An AST is composed of statements,

structuring sub-statements and expressions, and expressions composing sub-expressions and

function calls. Figure 4 depicts an example of an AST.

In absence of recursion, linking the function names to their corresponding AST yields a

directed acyclic graph (DAG) which root is the entry point.

Branching Statement Analysis. Attaches the following information to each node:

its weight, which is a pessimistic numerical indicator of the execution time of the function,

statement or expression

a set of conditional statements possibly evaluated during its execution, together with

upper bounds on the number of times they are evaluated.

The information attached to a node is computed from the information carried by its

children. In the example shown in Figure 4, assuming that the control flow analysis infers that

both branches are valid, the weight of the IF statement is defined by (1) we + max(wS1, wS2).

The execution count of conditional statements in e, S1 or S2 are combined applying formula

(1). An entry in the list of ∆-conditions is added for each conditional statement. Additionally,

it lists the execution count and branches S1 and S2 together with their respective weight.

main()

IF

e

f()

S1 S2

Figure 4 Example of
Abstract Syntax Tree.

Information is computed in a bottom-up manner from (valid)

leaves to the root. We rely on a heuristic assigning integer weights

to nodes representing elementary program operations, e.g. nu-

merical operations or memory accesses. Weights and counts are

updated taking into account inferred or supplied loop bounds,

while branches marked as invalid do not appear in the output.

Branching statement with only one branch are not added to the

list.

Finally, the root node carries the weight of the whole program

and is output together with the set of ∆-conditions of the program.

Limitations. The significance of the ∆-values depends on the constants and formulas used

in the weight computation. Currently, and in our experiments, we use integer constants for

different kinds of AST nodes. Nevertheless, a more complex scheme or using values computed

by a static WCET analyzer is feasible. Statements which break the regular control flow do

not receive a special treatment. As a consequence, a branch like if (x) break; inherently

carries a low ∆-value.

Exploiting Scenario Specifications

An expert-supplied scenario, constructed by choosing and specifying values for suggested

parameters, is likely to influence the computed WCET estimate. The control flow analyzer

deduces path infeasibility, i.e. invalid execution under the current assumptions, from the

additional annotations. Effects propagate to the low-level analyzer, as illustrated by the

following example (Figure 5), as well.

In the following, we apply a simple cost heuristic for terminal nodes (cost 0 for numeric

constants and field accesses and 1 for all other nodes) to identify scenarios and then use

oRange and OTAWA to infer execution time estimates for the scenario.

Initially, the example is analyzed without scenario, finding all paths “valid”. A follow-up

low-level analysis computes possible addresses for the pointer access, resulting in ⊤ (no

information) after the analysis of the if-statement. The assignment to *p results in a cache

miss assumed by the low-level analysis.

Supplying value information (Figure 6) infers the branch invalid in the scenario and

therefore marks the corresponding edge as not-executed. The low-level analyzer can thus

ignore one of the branch for its analyses and infers an address for the access of *p, decreasing

the original estimate, 95 cycles, to 83 cycles.

Before reporting on our experiments, let us summarize possible effects of utilizing ∆-

conditions to specify concise but relevant scenarios:

The WCET path and estimate change when eliminating a branch on the WCET path. If a

light branch was eliminated, the change is due to increased analysis precision of the following

analyses. For example, when improved cache analysis results allow to infer block execution

times (for previously selected blocks) that are below the execution time of alternative blocks

(that were previously not selected).

The path is unchanged but the estimate is improved when a light branch is eliminated

and the improvement of later analyses does not reduce block execution times of selected

blocks below the execution time of their alternative blocks.

The WCET path changes while the estimate does not improve, in cases when a branch is

eliminated but there exists another execution exhibiting a similar WCET estimate.

include " missing .h"

int main ()

{

int a, b;

int *p;

if (ext > 0)

p = &a;

else

p = &b;

*p = i;

}

Figure 5 Cache analysis fails to infer the

address of *p.

// missing .h:

// no scenario , no value value

→֒information

int ext;

(a)

// missing .h:

// scenario , additional value

→֒information

int ext = 0;

(b)

Figure 6 “Invalidating” a path under a scenario
arrows to infer the address of *p.

Finally, both the WCET path and the estimate are unchanged when eliminating a light

branch and the improvement of following analyses does not propagate to blocks on the

WCET path.

Experiments

Industrial Use-Case. The use-case is a 700 line C module provided by Continental Auto-

motive France SAS. A system-expert manually identified and provided a list of 85 parameters

and a scenario specification consisting of 30 parameter initializations. Branching statement

analysis on the module reports 54 ∆-conditions, with ∆-values from 0 to 2034.

20 of the 30 parameters initialized in the provided scenario appear in the list of ∆-

conditions, 18 of them exhibiting the highest 10 ∆-values of the list. 19 of the 54 ∆-conditions

have low ∆-values (218 and less than 11) and no correspondence to the parameters in the

scenario. As we rely on the parameter names to appear as operands in the ∆-conditions, a

parameter may be linked to several ∆-conditions and vice versa.

Table 1 shows the result of WCET analysis of the module: column 1 lists the provided

scenario, column 2 lists the number of specified parameters in the scenario and column 3 to

6 list the WCET estimate and improvement compared to the global WCET for an ARM7

lpc2138 platform, without and with a 1KB direct mapped data cache.

WCET analysis of the module without scenario, (1) global, reports 2553 (6883) as WCET

estimate. WCET analysis of the expert-provided scenario, specifying 30 parameters, (2)

full scenario, yields an improvement of 5%. Rows, (3)-(6), list the estimate and gain when

specifying only those parameters involved in the i highest valued ∆-conditions.

To investigate the correspondence between high ∆-values and gain in the WCET estimate

we inverted the scenario that initializes 3 parameters, row (3), thus forcing execution of the

light branches of the corresponding conditionals, in row (7). To validate that specifications

for parameters not contained in the list of ∆-conditions have little impact on the estimate,

we supply the 10 parameter initializations that do not appear in any ∆-conditions, row (8).

Summarizing, branching statement analysis identified 20 of 80 parameters as important

due to their high ∆-values in the list and they coincide with specified values in the expert-

provided scenario. 10 parameters specified in the expert-provided scenario do not appear in

the ∆-condition list and have almost no impact on the WCET estimate, while specifying

only parameters identified in the 10 highest ∆-conditions still improves the estimate.

The experiment shows that our branching statement analysis can help system-experts

focus on the relevant parameters from the vast number of possible parameters.

Table 1 WCET computation depending on parameters provided in scenarios

scenario # parameters no cache cache

(1) global, no scenario 0 2553 gain 6883 gain

(2) full scenario 30 2426 5% 6486 5.7%

(3) 3 highest ∆ 3 2553 0% 6833 0%

(4) 8 highest ∆ 10 2479 3% 6679 3%

(5) 9 highest ∆ 14 2463 3.5% 6623 3.8%

(6) 10 highest ∆ 18 2448 4% 6568 4.6%

(7) inverted 3 highest ∆ 3 (inverted) 2055 19% 5795 15.8%

(8) none of ∆ 10 2551 0.08% 6831 0.03%

Table 2 Potential for WCET improvement for Mälardalen benchmarks.

program # ∆ highest ∆ overall weight ratio

sqrt 4 4458 4540 98.19

expint 3 35800 38026 94.14

prime 4 12,773,225 86,858,003 14.70

crc 5 6144 49223 10.45

ndes 5 384 43930 0.8

st 4 743 114,137 0.65

fir 2 30 204,371,956 0.00001

Branching Statements Analysis of Mälardalen. Even though our approach is motivated

by industrial need, branching statement analysis provides relevant results when applied to

the Mälardalen benchmark suite [6]. The benchmarks lack scenarios, therefore we target

identifying interesting variables and program points instead of system parameters.

Column # ∆ in Table 2 states the number of unbalanced conditionals found in the

program. Highest ∆ lists the highest ∆-value reported. The last two columns list the weight

of the program and its ratio to the highest ∆-value. The ratio is an indication of potential

improvement when supplying additional information for the conditional is feasible.

In programs like expint or sqrt, the highest ∆-value weighs over 94% of the total weight,

which hints at a relevant program point1. There is potential for improvement in programs

crc and prime, yet they lack the opportunity to specify annotations. The low ∆-values of

the rest of the programs suggest a low potential for improvements.

As expected, the nature of the benchmarks, lacking system parameters, prohibits scenario

specification, but interesting program points can still be identified by the analysis.

Related Work

There is a body of work that is related to branching statement analysis.

The weight computation and propagation in the AST is comparable to tree-based WCET

computation, whereas identifying relevant conditionals is related to (static) profiling. In con-

trast to the other approaches, it aims at helping system-experts identify relevant parameters

1 In expint the high weight of the conditional is due to an inner loop with a high execution count, while
it is run only once. In sqrt the condition guards a light special case of the computation.

by identifying unbalanced conditionals on source level using a simple heuristic for weights.

Tree-based WCET computation can be applied as alternative to IPET [3]. Estimates

are computed by a bottom-up traversal of the parse tree of a program. Leaves represent

basic blocks and are annotated with timing information. The program is traversed and for

each node timing information is computed from the timing information of its child nodes. In

contrast to tree-based WCET computation, branching statement analysis does not rely on

timing information of basic blocks but uses a heuristic to compute timing information from

the syntactic expressions.

In [2] the authors present the criticality metric to express for each statement how important

it is for the global WCET. This allows finding out, for a piece of code, how close the WCET of

paths passing through the piece of code is to the global WCET. The ratio between ∆-values

and the weight of the function indicates a potential for improving the WCET estimate by

supplying a scenario.

Dynamic program profiling usually executes an instrumented program in order to explore

the performance and/or flow [5]. Static approaches generate static profiles, e.g. by computing

probabilities for decisions at branching points [9]. A major problem in profiling is to find

input values that capture the performance profile of the application. Our analysis does not

execute or instrument the program and helps to identify relevant parameters.

The author of [8] sketches the ingredients for a static profiler. The output is an unfolded

inter-procedural control flow graph computed from the results of multiple static analyzers

that identify feasible paths and compute loop bounds. The graph is guaranteed to include the

worst-case behaviour of the program. Static analysis results are used similarly in branching

statement analysis but instead of execution frequencies it computes weights.

Most closely related is a work on scenario detection [4], following a comparable approach,

with a slightly different goal. The influence coefficient is computed for parameter variables,

which are identified as variables or fields that are assigned once and do not change over the

program execution. Scenarios are constructed such that they split and cover the domain of

the parameters, allowing to WCET analyze each scenario. The maximum execution time

among the scenarios is then considered as the WCET of the application. In contrast to [4],

our notion of parameters allows for changes in value, and they might not be assigned in the

code at all. Instead of discovering variables, we match conditions with high ∆-values to a

number of pre-selected parameters. Furthermore, our weight heuristic should be independent

of both the underlying architecture and WCET analysis, in order to be able to apply it in

different phases of development.

Conclusion and Outlook

We presented branching statement analysis, an approach to guide system-experts in generating

concise, but relevant, scenarios for the WCET analysis of systems. Such systems are usually

composed of a number of components, influenced and controlled by a vast number of

parameters. The high number of parameters usually results in an overly pessimistic WCET

estimate and prohibits exhaustive specification of scenarios that allow to obtain a more

realistic estimate. Branching statement analysis allows to find unbalanced conditions that

depend on parameters. Additional information about a low number of identified parameters

can already significantly improve the WCET estimate or validate the estimate for the

scenario. To this end, we see branching statement analysis as an important step towards a

more functionally representative (or plausible) WCET, instead of a purely structural one.

We are currently applying part of our approach manually, i.e. we rely on scenarios specified

by system-experts. To further improve trust, such scenarios could be verified, whenever

possible, by automated tools.

We plan to integrate our approach in a fully automatic setting, where additional informa-

tion is inferred using static analysis. Branching statement analysis could be used to select

program points where counter instrumentation and analysis is applied to infer constraints

between instrumented basic blocks.

Additional effort will be put into a richer set of supported input-annotations in the

scenario, currently restricted to information about variable values and boolean information

about the execution of conditional branches. The system-expert might have at its disposal

information like limits on the number of execution of a statement or contexts in which a

statement must or must not be executed.

References

1 Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. OTAWA: an

Open Toolbox for Adaptive WCET Analysis. In Proc. of IFIP Workshop on Software

Technologies for Future Embedded and Ubiquitous Systems (SEUS), 2010.

2 Florian Brandner, Stefan Hepp, and Alexander Jordan. Static Profiling of the Worst-case

in Real-time Programs. In Proc. of RTNS, pages 101–110, 2012.

3 Matthew Emerson, Sandeep Neema, and Janos Sztipanovits. Handbook of Real-Time and

Embedded Systems, chapter 6. CRC Press, 2006. ISBN: 1584886781.

4 Stefan Valentin Gheorghita, Sander Stuijk, Twan Basten, and Henk Corporaal. Automatic

Scenario Detection for Improved WCET Estimation. In Proc. of DAC, pages 101–104, 2005.

5 Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A call graph

execution profiler. In Proc. of SIGPLAN Symposium on Compiler Construction, pages

120–126, 1982.

6 Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen WCET

Benchmarks: Past, Present And Future. In Proc. of WCET, pages 136–146, 2010.

7 Marianne De Michiel, Armelle Bonenfant, Hugues Cassé, and Pascal Sainrat. Static Loop

Bound Analysis of C Programs Based on Flow Analysis and Abstract Interpretation. In

Proc. of RTCSA, Taiwan, 2008.

8 Adrian Prantl. Towards a Static Profiler. Technical report, Vienna University of Technology,

2009.

9 Youfeng Wu and James R. Larus. Static Branch Frequency and Program Profile Analysis.

In Proc. of MICRO, pages 1–11, 1994.

10 Jakob Zwirchmayr, Armelle Bonenfant, Marianne de Michiel, Hugues Cassé, Laura Kovacs,

and Jens Knoop. FFX: A Portable WCET Annotation Language. In Proc. of RTNS, pages

91–100, 2012.

