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Abstract8

The edit distance between parameterized words is a generalization of the classical edit distance where9

it is allowed to map particular letters of the first word, called parameters, to parameters of the second10

word before computing the distance. This problem has been introduced in particular for detection11

of code duplication, and the notion of words with parameters has also been used with different12

semantics in other fields. The complexity of several variants of edit distances between parameterized13

words has been studied, however, the complexity of the most natural one, the Levenshtein distance,14

remained open.15

In this paper, we solve this open question and close the exhaustive analysis of all cases of16

parameterized word matching and function matching, showing that these problems are np-complete.17

To this aim, we also provide a comparison of the different problems, exhibiting several equivalences18

between them. We also provide and implement a MaxSAT encoding of the problem, as well as a19

simple FPT algorithm in the alphabet size, and study their efficiency on real data in the context of20

theater play structure comparison.21
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16:2 On Distances between Words with Parameters

1 Introduction26

Measuring the similarity between text strings is a fundamental problem in computer27

science, and has applications in bioinformatics [23], databases [1, 16] and natural language28

processing [27]. Among the measures of similarities between strings, the Levenshtein29

distance [28] is the most commonly used, both for its practicality and its ease of computation.30

This distance quantifies the minimum number of operations of insertion, deletion, and31

substitution needed to transform a string into another one. It has a wide range of applications,32

ranging from biological sequence alignment [33] to dialect pronunciation differences [25] or33

signature authentication [34]. Computing the edit distance between two strings of length34

n and m can be achieved in time O(nm), by computing the distance between all their35

prefixes, and storing the results in a dynamic programming fashion [37]. The success of the36

Levenshtein distance generated many extensions and generalization on more complex models,37

such as trees [38] or automata [32].38

However, a limitation of the Levenshtein distance is that it only captures proximity39

between strings (or objects) written on the same alphabet. Evaluating the proximity of40

strings written on different alphabets is a problem that arises in various applications, such as41

bioinformatics [35], image processing [17] and code duplication [6, 7]. In all those contexts,42

the technique used is the one of parameterized matching [6, 7]. Instead of using classical43

strings, parameterized matching uses “parameterized words” written using both constant44

parts, which are expensive to rename, and parameters, which are meant to be renamed freely.45

Formally, two equal-length strings u and v over an alphabet Π are said to be parameterized46

matching if there exists a 1-to-1 function f : Π → Π such that f(u) = v, where f(u) is47

defined as f(u1) . . . f(u|u|).48

Words with parameters also occur in other frameworks, and are often used in slightly49

different ways. The first of those frameworks was initially introduced in the context of50

Ramsey theory in the 80s [36], and is called “parameter words”. In this context, parameters51

are labelled according to their order of first occurrence. Parameter words are also equipped52

with a composition operation, where parameters of the first word can be instantiated by53

characters or parameters of the second word. Parameter words can also be seen as equivalence54

classes of parameterized words, which are the main focus of this article.55

A second framework using parameters is the one of parameterized regular expressions56

introduced in [10], where parameters can only be instantiated by constants, and not by other57

parameters. The focus in this context is therefore made on the set of all possible valuations58

of the parameters. Then, when defining algorithmic problems on such objects, two distinct59

semantics can be studied: either the “certainty semantics”, where all valuations need to60

have some property, or the “possibility semantics”, where at least one valuation needs to61

have this property. To make a difference with the parameterized word framework mentioned62

below, we choose to call these words “instantiable words”. Finally, this notion of words with63

parameters can also be seen as a refined version of partial words (words containing a wildcard64

character) [15]. The notion of partial words is also important in the context of databases65

where paths of incomplete graphs can be interpreted as instantiable words [9].66

This article aims at studying similarity by using edit distances in the framework of words67

with parameters. In this framework, the pattern matching problem, which consists in looking68

for the first string as a subword of the second string, has been extensively studied, either69

looking for exact occurrences, with efficient algorithms [4, 19, 30] or approximate ones, which70

is often NP-hard [21, 22]. In the case where we compare the two input strings in their71

entirety, various exact parameterized matching problems have been studied for parameterized72
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d ∅ D I DI
∅ P [8] np-complete (Th. 12) np-complete (Cor. 14) np-complete [26]
S P [24] np-complete (Cor. 14) np-complete (Cor. 14) np-complete (Th. 13)

Figure 1 Complexity of the variants of parameterized matching P Md, depending on the kind of
operations (D: deletion, I: insertion, S: substitution) allowed in the edit distance d.

pattern matching, namely string parameterized matching [7], single pattern parameterized73

matching [7, 3], multiple pattern parameterized matching, or 2-dimensional parameterized74

matching, many of those works being compiled in [29] and [31]. Different approximate variants75

of parameterized matching using edit distance have already been studied, but the problem76

has not been completely solved: the first work on the topic is [8], in which Baker introduces77

a form of approximate parameterized pattern matching in which the replacement of any78

substring by another one that is in parameterized matching with it is considered as a base79

edit operation. Parameterized matching under the Hamming distance, i.e., with a distance80

allowing only substitutions, has been covered in [24], where the authors prove that the string81

matching problem with at most k mismatches can be solved in time O(m + k1.5). The LCPS82

(Longest Common Parameterized Subsequence) problem, equivalent to the parameterized83

pattern matching problem with insertions and deletions, is shown to be np-hard in [26],84

which also provides an approximation algorithm. Those two different complexity classes for85

these problems raise the question of the complexity of the problem under the Levenshtein86

distance. This problem was left as an open question in the conclusion of [24].87

Our paper establishes that this problem is np-complete. Moreover, the result also extends88

to any possible edit distances obtained from deletion, insertion, and substitution as soon89

as substitution is not the only operation allowed, as summarized in Figure 1. Our main90

proof also implies the main theorem of [26] with a different np-completeness reduction.91

This contrasts with the problems of exact parameterized pattern matching which are all92

polynomial-time solvable, as well as all variants of the string matching problem with deletions,93

insertions or substitutions.94

We also extend these results to function matching, which is the problem obtained by95

relaxing the 1-to-1 restriction in parameterized matching, as defined in [2]. This generalization,96

by breaking the symmetry of parameterized matching, actually gives rise to two close but97

different problems, depending of the order of operations that are considered. We study the98

links between all these problems and their computational complexity, and study two practical99

ways to solve them, parameterized complexity and the use of maxSAT solvers.100

We also make a direct connection with the framework of instantiable words, more precisely101

with a natural problem of distance between languages. We show how instantiable word102

problems can be reduced to parameterized matching ones, under the right assumptions. This103

allows us to open new perspectives on the complexity of several language repair problems.104

In Section 2, we give basic definitions and notations, and recall the existing formalism105

of parameterized matching and instantiable words. In Section 3 we discuss approximate106

parameterized matching and its various generalizations. We also link it to instantiable107

words. In Section 4, we first prove a collection of technical results that build up to the108

np-completeness proofs for parameterized matching and function matching problems defined109

above. In Section 5, we study two approaches to solve one of the variants of parameterized110

matching in practice, a simple FPT algorithm parameterized by the alphabet size and a111

MaxSAT encoding. We show in Section 6 that these implementations can solve real instances112

of the problem, motivated by structure comparison of theater plays.113

CPM 2023



16:4 On Distances between Words with Parameters

Finally, in Section 7, we conclude the paper and give a few perspectives on the notion of114

distance between parameterized languages.115

2 Notations and Definitions116

2.1 Basic Notations on Words and Editions117

Words118

An alphabet is a set of letters. A word on an alphabet A is a finite sequence of letters from119

A, indexed starting from 1. Let u be a word on A. Unless defined differently, we note ui the120

i-th letter of u, and |u| is the length of u. If i /∈ [1, |u|], ui is defined as the empty word ε. If x121

is a letter from A, |u|x is the number of times x appears in u. Similarly, if X is a set of letters,122

|u|X =
∑

x∈X

|u|x is the number of occurrences of letters of X in u. If f is a function defined123

on an alphabet A, we extend it to A∗ in the usual way, so that f(u) = f(u1) . . . f(u|u|).124

If f is a function, we denote by D(f) the domain of f . Two functions f and g are said125

to be compatible if f |D(g)∩D(f) = g|D(g)∩D(f). The identity function on D is defined as126

IdD(x) = x for all x in D.127

Edit Operations128

In this paper, we consider the three classical edit operations which are deletion, substitution129

and insertion. Let u = u1 . . . un be a word of size n. Let i be an integer between 0 and n and130

x be a letter of the alphabet, the insertion at position i is the operation that transforms u131

to u1 . . . uixui+1 . . . un Let j be an integer between 1 and n, the deletion at position j is132

the operation that transforms u into u1 . . . uj−1uj+1 . . . un. Let y be a letter of the alphabet133

and y ̸= uj , the substitution to y at position j is the operation that transforms u into134

u1 . . . uj−1yuj+1 . . . un. A sequence of operations or rewriting sequence ρ is a sequence135

of edit operations. We denote by ρ(u) the word obtained by applying the edit operations of136

ρ one after another, in the order defined by ρ, to u.137

Distances138

Given a set of edit operations E and two words u and v, the edit distance between u and139

v is defined as the length of a shortest sequence of operations of E changing u into v. We140

denote by D the distance obtained on words by allowing only deletion operations: that is to141

say D(u, v) = k iff v can be obtained by deleting k letters from u. Similarly, we note I and S142

the distances obtained by allowing only insertions and substitutions respectively (note that143

S is the Hamming distance). We also combine these notations to define DI as the distance144

with insertions and deletions, and so on. We also denote the Levenshtein distance DIS by L.145

Note that some of these edit distances are not metrics, because they are not symmetrical.146

We emphasize this by calling symmetric edit distances the distances DI, S, and L.147

2.2 Comparing Words with Parameters148

Conceptually, a word with parameters is a word in which some letters are not yet determined.149

In order to distinguish the parameters from the constants, we split the alphabet into Σ,150

the alphabet of the constants and Π, the alphabet of the parameters. By definition, these151

alphabets are finite. A word with parameters can either be seen as representing a “word152

template” (i.e., a word with variable parts), or a set of words (determined by all possible153
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affectations of its parameters). Depending on the definition chosen, comparing two words154

w1 and w2 is done in two different ways. In the first setting [6, 7, 8, 31, 2, 5, 24, 29, 26, 17],155

parameters of w1 are renamed through a function f that maps the set of parameters to itself,156

and acts as identity on the set of constants. It is then possible to compare f(w1) and w2,157

which are written on the same alphabet. In the second setting, constants are seen as the158

concrete values parameters can take [11]. Parameters are instantiated through two functions159

f1 and f2 that map constants to themselves, but also map parameters to constants. The160

words f1(w1) and f2(w2) are then made only of constants, and can be compared. Formally,161

this gives rise to the two following different definitions:162

On the one hand, a parameterized word is a word on an alphabet Σ ∪Π. In all that163

follows, Σ and Π are two disjoint alphabets, respectively called the alphabet of constants164

and the alphabet of parameters. Alphabets Σ and Π are considered to be finite, unless165

specified otherwise.166

Two parameterized words u and v are said to be in function matching if there exist167

fΠ : Π → Π and f : Π ∪ Σ → Π ∪ Σ such that f |Π = fΠ, f |Σ = IdΣ, and f(u) = v. In168

the classical setting [6], f is also constrained to be 1-to-1, and this relationship is called169

parameterized matching. Note that parameterized matching is an equivalence relation on170

parameterized words. Testing if two words are parameterized matching can be achieved in171

linear time [7].172

On the other hand, an instantiable word is a word on the alphabet Σ ∪ Π. Given173

f : Π→ Σ, we extend it to constants by setting f(x) = x for all x ∈ Σ, and we then define174

the language of an instantiable word u to be L(u) = {w ∈ Σ∗ | ∃f : Π→ Σ, f(u) = w}.175

This definition is akin to the L⋄ semantic of a parameterized regular expression defined176

in [11], but restricted here to a single instantiable word. Two instantiable words w1 and w2177

describe the same elements if their languages are equal, i.e. L(w1) = L(w2).178

3 Different Definitions for Different Semantics and Problems179

In this section, we introduce various new approximate variants of parameterized matching,180

and compare them, highlighting their differences on examples.181

3.1 Variants of Parameterized Matching182

In parameterized matching, the function f renaming parameters is generally considered to183

be 1-to-1. In this paper, we also consider the function matching problem, which is the184

case where f is not constrained to be injective anymore, as defined in [2]. We also introduce185

multiple approximate variants of the parameterized matching problems, depending on several186

edit distances obtained by combining insertion, deletion and substitution operations.187

3.1.1 Edit distances for parameterized matching between two strings:188

PMd
189

▶ Definition 1. If d is an edit distance, we denote by PMd the parameterized matchingproblem190

under d, which is the following:191

Input: two parameterized words u, v, a parameter alphabet Π , an alphabet Σ of constants,192

and a natural number k.193

Problem: Does there exist u′ such that d(u, u′) ≤ k and u′ and v are parameterized194

matching, i.e. there exists a 1-to-1 function f : Π ∪ Σ → Π ∪ Σ such that f |Σ = IdΣ,195

f(Π) = Π, and f(u′) = v ?196

CPM 2023



16:6 On Distances between Words with Parameters

P MDIS F MDIS
1 F MDIS

2

u = aabba u = aabba u = aabbay L : (u1 → b, u2 → b)
y L : (u1 → b, u2 → b)

y f : [a → a, b → a]

u′ = bbbba u′ = bbbba v′ = aaaaay f : [b → a, a → b]
y f : [b → a, a → b]

x L : (v5 → a)

v = aaaab v = aaaab v = aaaab

Figure 2 Side-by-side comparison of P MDIS , F MDIS
1 and F MDIS

2

In that case, we say that u′ and f realize the matching between u and v. We sometimes197

write that only f or u′ realize the matching if the other one is not relevant to a proof.198

In cases where Σ and Π are already defined, we omit them and simply call PMd(u, v, k)199

the result of the decision problem. Furthermore, PMd(u, v) denotes the minimum integer k200

(potentially infinite) such that PMd(u, v, k) is true.201

We can note that this problem can be solved in polynomial time adapting the classical202

dynamic programming algorithm [33, 37] when the alphabet sizes are fixed.203

3.1.2 Edit distances for function matching between 2 strings: FMd
i204

To denote function matching problems, we use FM instead of PM : FMD denotes the205

function matching problems with deletions.206

Furthermore, if P is one of the problems defined above, we note P1 the problem where207

edit operations are only applied to the first argument, and P2 the one where they are only208

applied to the second argument.209

▶ Definition 2. The FMd
1 and FMd

2 problems are defined as follows. For both problems,210

the input is the following:211

Input: two parameterized words u, v, a parameter alphabet Π, a constant alphabet Σ,212

and a natural number k.213

The problems are then:214

Problem FMd
1 : ∃u′ such that d(u, u′) ≤ k and u′ and v are function matching?215

Problem FMd
2 : ∃v′ such that d(v, v′) ≤ k and u and v′ are in function matching?216

Note that the renaming function f is always applied to one input only. These definitions are217

illustrated on an example in Figure 2.218

3.2 Comparing Variants of PM219

In this subsection, we compare the different variants of our problem.220

Regarding the one-to-one parameterized matching PM , note that the definition we221

give above is designed to be easily extended to the different variants when we drop the222

one-to-one restriction. In [24], the authors consider that the “correct way for defining the223

edit distance problem” is “to allow the operations and then apply the edit distance”. By224

extending the definition of FMd
1 and FMd

2 to define PMd
1 and PMd

2 in the case of one-to-one225

matching, we see that it is actually possible to switch the order of operations, and to reverse226

them (deletions then become insertions and vice versa, and the renaming function f−1 is227

well-defined), in this case. This makes our definition consistent with the quote from [24]228
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above. Formally, this gives the following equalities, for all parameterized words u and v:229

PM I
1 (u, v) = PMD

1 (v, u) = PMD
2 (u, v) = PM I

2 (v, u).230

More generally, it holds that for every edit distance d, PMd
1 (u, v) = PMd−1

1 (v, u) =231

PMd−1

2 (u, v) = PMd
2 (v, u), where d−1 denotes the converse distance of d, i.e. d−1 contains232

deletions if d contains insertions, insertions if d contains deletions, and substitutions if d233

contains substitutions.234

However, for function matching, we only have the following equalities: FM I
1 (u, v) =235

FMD
2 (u, v) and FMD

1 (u, v) = FM I
2 (u, v).236

By taking u = ab and v = cc, we can notice that FM I
1 (u, v) = 0 and FMD

1 (v, u) =∞,237

so the equality FM I
1 (u, v) = FMD

1 (v, u) does not hold.238

Finally, note the following inequalities:239

▶ Proposition 3. Let u and v be parameterized words over Σ ∪Π. Then:240

1. FMd
1 (u, v) ≤ PMd(u, v);241

2. If d is a symmetric edit distance, FMd
2 (u, v) ≤ FMd

1 (u, v).242

Proof. The first point comes from the fact that any solution to PMd is also a solution to243

FMd
1 . For the second point, let k = FMd

1 (u, v), and let u′ and f realize FMd
1 (u, v). We244

construct a word v′, obtained by applying to v the same operations applied to u to obtain245

u′, but "mirrored". That is to say, for every operation used in u, we apply an operation in v,246

in the following way:247

If a letter a is inserted in u, there exists a position i in u′ such that u′
i = a, and f(u′

i) = vi.248

Hence, we delete vi in v.249

Similarly, if a letter is substituted for another letter a′ in u, there exists i such that250

u′
i = a, and we substitute vi to f(a).251

If a letter a is deleted in u at position i, we insert f(a) in v at position i instead.252

It then holds that f(u) = v′, and hence PMd
2 (u, v) ≤ k. ◀253

Note that the above proof does not work to prove the converse inequality between FMd
1254

and FMd
2 , as it would require to consider an element of f−1(a), which might be empty. This255

is illustrated in the following example, on the alphabet Π = {a, b}:256

▶ Example 4. Let N ∈ N and consider u = aN bN b and v = aN aN b. u and v are not in257

parameterized matching, hence FMDIS
1 (u, v) > 0 and FMDIS

2 (u, v) > 0. By substituting258

the last b in v for a a, and picking a function f such that f(a) = f(b) = a, we get259

FMDIS
2 (u, v) = 1 (see Figure 2 for an example with N = 2). For FMDIS

1 , since b appears260

in v, it holds that for any function f realizing FMDIS
1 , f(a) = b or f(b) = b. Hence, at least261

N occurrences of b appear in f(u). Since there is only one occurrence of b in v, it is clear262

that FMDIS
1 (u, v) ≥ N − 1.263

The difference between FMd
1 and FMd

2 comes from the fact that Π is fixed in the input.264

In the case where Π could be extended, both problems can be shown equivalent (for example265

if we allow a new letter c in the example of Figure 2, we also get FMDIS
1 (u, v) = 1 by setting266

u5 → c and f : [a→ a, b→ a, c→ b]), by using the same proof as Proposition 3.267

3.3 Instantiable Words versus Parameterized Words268

The parameterized word formalism and the instantiable word formalism give rise to two269

different definitions of distances between words. Given an edit distance d on words, there are270

two ways to extend it to words with parameters. Let w1 and w2 be two words over Σ ∪Π.271

The two possible extensions are the following:272

CPM 2023



16:8 On Distances between Words with Parameters

The distance between w1 and w2 is defined as d(w1, w2) = PMd(w1, w2). Alternatively,273

the function distance between w1 and w2 is defined as FMd
1 (w1, w2).274

The distance between w1 and w2 is the distance between their respective languages275

seen as sets, that is to say d(w1, w2) = d(L(w1), L(w2)) = supu∈L(w1) infv∈L(w2) d(u, v).276

Equivalently, d(w1, w2) ≤ k if and only if for all f1 : Π→ Σ, there exists f2 : Π→ Σ such277

that d(f1(w1), f2(w2)) ≤ k.278

This second definition stems from the definition of distance between languages, as defined279

and studied in [12, 13, 14].280

▶ Example 5. Consider the words u = axyb and v = xbby, on the alphabets Σ = {a, b}281

and Π = {x, y}, and consider the distance S. On the one hand, FMS
1 (u, v) = 4, because282

regardless of the matching chosen, every letter of f(u) has to be substituted. On the other283

hand, for any function f1 : Π→ Σ, choosing f2 such that f2(x) = a and f2(y) = b yields a284

distance d(f1(u), f2(v)) of at most 2, by substituting the 2 middle letters.285

Given a big enough alphabet, those two definitions can in fact be shown equivalent:286

▶ Proposition 6. Let w1 and w2 be words over Σ∪Π, and let d be a symmetric edit distance287

on Σ ∪ Π. Suppose |Σ| ≥ |w1| + |w2|, and let k be an integer. Then, the following are288

equivalent:289

1. FMd
1 (w2, w1) ≤ k290

2. d(L(w1), L(w2)) ≤ k291

Notice how w1 and w2 change position between the two distances. This is not benign, as292

FMd
1 is not symmetric.293

Proof. Suppose FMd
1 (w2, w1) ≤ k. There exists f : Π→ Π such that d(f(w2), w1) ≤ k. For294

this proof, we will use the characterization of the distance betweeen languages with f1 and f2.295

Let f1 : Π→ Σ. Define f2 = f1◦f . Since d(w1, f(w2)) ≤ k, we have d(f1(w1), f1◦f(w2)) ≤ k,296

by following the same edit operations. Hence d(f1(w1), f2(w2)) ≤ k.297

Suppose now d(L(w1), L(w2)) ≤ k. Let f1 : Π → Σ be a 1-to-1 function such that for298

all parameters x in w1, f(x) does not appear in w1 or w2. This is possible since Σ is large299

enough. There exists f2 : Π→ Σ such that d(f1(w1), f2(w2)) ≤ k. Let h : Σ→ Π∪Σ be such300

that if x ∈ Π, h(f1(x)) = x, and if x /∈ f1(Π), h(x) = x. We then have h ◦ f1 = Id. What301

is more, since h is injective, d(f1(w1), f2(w2)) = d(h(f1(w1)), h(f2(w2)) = d(h(f2(w2)), w1).302

Hence, FMd
1 (w2, w1) ≤ k. ◀303

4 Hardness Results for Approximate Parameterized Matching304

In this section, we study the complexity of the various parameterized matching problems.305

We show the np-completeness of the simplest problems using only deletions, which will be306

sufficient to show the np-completeness of all the other problems. We start by proving some307

practical lemmas, and then proceed to the reductions.308

4.1 “Block by block” Lemmas309

In this section, we regroup a few useful technical lemmas. We start of by stating two simple310

results on distance and words, for which the proofs can be found in Appendix A. We then311

turn to block lemmas, which will later be useful in the proofs of Theorems 12,17 and 15, to312

combine the various gadgets defined during the reduction.313

This lemma simply states a commutativity result between the application of a matching314

f and the rewriting steps.315
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▶ Lemma 7. Let d be a distance, k an integer and u, v two parameterized words such that316

PMd(u, v) ≤ k, and let f realize this parameterized match. Then: d(f(u), v) ≤ k. The same317

result holds for FMd
1 (u, v).318

Proof idea: The proof is done by induction on k. We discuss whether the (k + 1)-th319

operation is an insertion, a deletion, or a substitution, and show that a corresponding320

operation can be used in f(u).321

▶ Lemma 8. Let z, u and v be (parameterized) words, and let d be a distance. Then322

d(zu, zv) = d(u, v).323

Proof Idea: We show that we can consider every rewriting operation to be applied in u only:324

if z is modified during an optimal rewriting sequence, the words have some redundancy, and325

the same operations could have been carried in u instead. We proceed again by induction,326

and focus on the base case by studying the 3 possible cases, one for each type of operation.327

Next, we turn to prove “block by block” matching lemmas. Those results state that it is328

possible to encode multiple parameterized matching instances into a single one. They hold329

for every type of problems considered here, but their proofs vary slightly; we present them330

in order of increasing complexity. Note that all the constructions given can be achieved in331

polynomial time.332

▶ Lemma 9. Let u1, . . . un and v1, . . . vn be parameterized words over Σ ∪Π such that for333

1 ≤ i ≤ n, ki = |ui| − |vi| ≥ 0, and k =
n∑

i=1
ki. There exist u and v two parameterized words334

over {#} ∪ Σ ∪Π, where # is a fresh variable, such that the following are equivalent:335

1. PMD(u, v) = k336

2. For all 1 ≤ i ≤ n, PMD(ui, vi) = ki and the applications fi realizing those matchings are337

all compatible.338

Proof. The idea behind this proof and all the following ones is that we can introduce a339

separator # to concatenate all the words, and that this separator will never be touched by340

any deletions or applications of f .341

Let # be a fresh constant. We define u = u1#u2# . . . #un, and v = v1#v2# . . . #vn.342

2. =⇒ 1.: For every 1 ≤ i ≤ n, take u′
i and fi to realize the matchings. We can obtain343

u′ = u′
1#u′

2 . . . #u′
n from u by applying the same deletions. Taking f to be the smallest344

function extending all the fi, we get PMD(u, v) ≤ k.345

1. =⇒ 2.: Assume PMD(u, v) ≤ k. Let u′ and f realize this parameterized match.346

Since the # symbols are constants, we have f(#) = #. Since u′ is obtained from u by347

deletions, we have |u′|# ≤ |u|#. Since f is injective and f(#) = #, |f(u′)|# ≤ |f(u)|#.348

Hence, it holds that |v|# = |f(u′)|# ≤ |f(u)|# = |u|#. Since |u|# = |v|#, this is an equality,349

and |f(u′)|# = |f(u)|#. Hence |u′|# = |u|#, and no # character is deleted. The word u′
350

is then of the form u′
1#u′

2# . . . #u′
n, where |u′

i|# = 0 and D(ui, u′
i) = ki for all i. Thus,351

f(u′) = f(u′
1)#f(u′

2)# . . . #f(u′
n) = v1#v2# . . .# vn. Since no other # letter appear in any352

f(u′
i) and vi, we can deduce that f(u′

i) = vi for all i. Finally, this yields PMD(ui, vi) = k,353

and taking all the fi = f gives all compatible functions, which concludes the proof. ◀354

In this proof, we used a constant #. However, it can also be conducted without using355

a constant alphabet; indeed, constants can be encoded with parameters, as shown in356

Appendix B.357

Lemma 9 is still valid if PMD is replaced by FMD
2 . This time, we conduct this proof358

without resorting to the use of constants. This result will be used twice : once for the proof359
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of theorem 17, and again to show that we can once more encode constants into Π using360

Lemma 25 in Appendix B.361

▶ Lemma 10. Let u1, . . . un and v1, . . . vn be parameterized words over Π such that ki =362

|vi| − |ui| ≥ 0, and k =
n∑

i=1
ki. Then there exist u and v, two parameterized words over363

Π ∪ {#}, where # is a fresh variable, such that the following are equivalent:364

1. FMD
2 (u, v) ≤ k365

2. For all 1 ≤ i ≤ n, FMD
2 (ui, vi) ≤ ki, and the applications fi realizing those matchings366

are all compatible.367

Proof idea: The same technique as Lemma 9 is used but u and v are defined as u =368

#k+1u1#u2# . . . #un and v = #k+1v1#v2# . . . #vn where #k+1 denotes k + 1 repetitions369

of the character #. The full proof can be found in Appendix A.370

Finally, the same block result holds for FMD
1 , and will be used in the proof of theorem 15371

▶ Lemma 11. Let u1, . . . un and v1, . . . vn be parameterized words over Π such that for every372

1 ≤ i ≤ n, ki = |ui| − |vi| ≥ 0, and k =
n∑

i=1
ki. Then there exist u and v two parameterized373

words over Π ∪ {#}, where # is a fresh variable, such that the following are equivalent:374

1. FMD
1 (u, v) ≤ k375

2. For all 1 ≤ i ≤ n, FMD
1 (ui, vi) ≤ ki, and the applications fi realizing those matchings376

are all compatible.377

Proof idea: The difference with Lemma 10 is that some # symbols might be deleted,378

while some base letters could be mapped to #. To ensure this does not happen, we define379

u = #N u1#N u2 . . . #N un#N and v = #N v1#N v2 . . . #N vn#N . The full proof can be found380

in Appendix A.381

The technique of block-by-block matching will be used in all the reductions, to encode382

multiple constraints in a single PM or FM instance.383

4.2 1-to-1 Parameterized Matching PM384

We now focus on the complexity of the PMd problems. These problems, as well as function385

matching problems, are all clearly in np: given the list of deletion, insertion or substitution386

operations to do and the matching to apply, it is easy to check that the solution is correct.387

For the reductions in this paper, we always assume that words are written without388

constants, that is to say Σ = ∅, since this is sufficient for np-completeness results. This389

choice is also motivated by the results of Appendix B, which show that Σ can in most cases390

be coded into Π.391

▶ Theorem 12. The 1-to-1 Parameterized Matching with deletions PMD is np-complete.392

The proof is a reduction from the np-complete problem 3-coloring[20]. Given an instance393

G of 3-coloring, we will construct two words u and v. The word v will represent the list of394

vertices and edges of G, while the word u will list the color of each vertex, and the possible395

coloring of each pair of vertices joined by an edge. By deleting characters from u, we make a396

choice for the coloring of each vertex, and thus each edge. The function f answering the397

parameterized matching problem will assign a choice of color to each vertex. The instance398

that we define should be positive iff G is 3-colorable. More formally:399

Proof. The 3-Coloring problem is defined as follows :400
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Input: G = (V, E) a graph with vertices V and edges E401

Output: A coloring c : V → {c1, c2, c3} such that for all {u, v} ∈ E, c(u) ̸= c(v)402

Let G = (V, E) be an instance of 3-Coloring, and let V = {x1, . . . , xn} be the set of its403

n vertices, and E = {e1, . . . , em} be the set of its edges. The parameter alphabet Π, of404

polynomial size in O(|G|) will contain:405

x1, . . . xn, corresponding to the vertices of G;406

n copies of the parameters corresponding to the colors c1, c2 and c3: ci
1, ci

2, ci
3 for 1 ≤ i ≤ n;407

for every edge e, the delimiters Y e and □e
1, . . .□e

6;408

2n bottom symbols, ⊥i
1, ⊥i

2 for 1 ≤ i ≤ n, which will be used to fix the image of some409

parameters.410

First, we define words that will encode the constraint that each vertex is colored, and411

we make sure that the unused color variables cannot be assigned elsewhere. For 1 ≤ i ≤ n,412

ui
1 = ui

⊥ = ci
1ci

2ci
3, vi

1 = xi and vi
⊥ = ⊥i

1⊥i
2. We then define words that include all413

possible colorings of each edge, and we make sure to use enough brackets. For every edge414

e = {xi, xj}, we define ue
2 = □e

1ci
1cj

2□
e
1 □e

2ci
1cj

3□
e
2 □e

3ci
2cj

1□
e
3 □e

4ci
2cj

3□
e
4 □e

5ci
3cj

1□
e
5 □e

6ci
3cj

2□
e
6415

and ve
2 = Y exixjY e.416

Applying Lemma 9 to u1
1, . . . un

1 , u1
⊥, . . . un

⊥, ue1
2 , . . . uem

2 and v1
1 . . . vn

1 , v1
⊥, . . . vn

⊥, ve1
2 , . . . vem

2 ,417

we obtain u and v. Let k = |u| − |v| = 3n + 20m. We now show that G is 3-colorable ⇔418

PMD(u, v) ≤ k.419

⇒: Suppose G is 3-colorable. Let c : V → {c1, c2, c3} be a 3-coloring of G. We define f420

in the following way, for 1 ≤ y ≤ 3:421

f(ci
y) =


xi if c(xi) = cy,

⊥i
1 if y is the smallest integer in {1, 2, 3} such that c(xi) ̸= cy,

⊥i
2 otherwise.

422

For every edge e = {xi, xj} ∈ E, since c is a valid coloring, and since every allowed423

arrangements of the colors is in ue
2, there exists a unique factor of the form □e

yf−1(xi)f−1(xj)□e
y424

in ue
2, for some 1 ≤ y ≤ n. Hence, we define f(□e

y) = Y e. The function f can then be425

extended in any way to be 1-to-1 (the remaining characters whose image under f are not yet426

defined will all be deleted in what follows, so their image doesn’t matter).427

By using f defined in this way:428

For 1 ≤ i ≤ n, PMD(ui
1, vi

1) ≤ 2, by deleting the 2 colors not matching the color of xi;429

For 1 ≤ i ≤ n, PMD(ui
⊥, vi

⊥) ≤ 1;430

For every edge e ∈ E, PMD(ue
2, ve

2) ≤ 20, by keeping only the factor delimited by the431

□e
y symbols defined above.432

Thus Lemma 9 yields PMD(u, v) ≤ k.433

⇐: We now suppose u and v are a parameterized match with k deletions. The following434

can then be derived about f :435

1. Since the ui
1 and vi

1 are matching for 1 ≤ i ≤ n, there exists an element c ∈ {ci
1, ci

2, ci
3}436

such that f(c) = xi. Each of these matchings is done with exactly 2 deletions, for a total437

of 2n.438

2. Since the ui
⊥ and vi

⊥ are in matching, the two other colors that are not sent to xi are sent439

to ⊥i
1 and ⊥i

2. Each of these matchings is done with exactly one deletion, for a total of n.440

3. For every edge e ∈ E, ue
2 and ve

2 are in matching. Let ue′
2 realize this matching. For every441

1 ≤ i ≤ n and 1 ≤ i′ ≤ 3 the colors ci
i′ have images that are different from Y e, so there442

necessarily exists 1 ≤ y ≤ 6 such that f(□e
y) = Y e. Furthermore, since f is injective,443

|ve
2|Y e = |ue′

2 |□e
y
. Since |ve

2|Y e = |ue
2|□e

y
= 2, no □e

y is deleted from u. Since there are two444
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characters between the Y e in ve
2 and none outside, ue′

2 has the same structure, and all445

other □e
y′ for y′ ̸= y and all other colors are deleted from ue

2.446

Finally, ue′
2 is of the form □e

yctct′□e
y, where t ̸= t′ are elements of {1, 2, 3}. Each of these447

matchings is done with exactly 20 deletions, for a total of 20m.448

The function f then implies a coloring of G. Formally, we define col(ci
y) = cy for 1 ≤ i ≤ n449

and 1 ≤ y ≤ 3. We can then define c : V → {c1, c2, c3} such that c(xi) = col(f−1(xi)).450

Point 1 above ensures that this function definition is correct. Furthermore, for every edge451

e = {xi, xj}, point 3 ensures that c(xi) ̸= c(xj), and thus c is a valid coloring of G. ◀452

This first np-completeness results yields a few immediate corollary results, and in453

particular, the np-completeness of the problem under the Levenshtein distance:454

▶ Theorem 13. The problem PMDIS of parameterized matching under the Levenshtein455

distance is np-complete.456

Proof. We do a simple reduction from PMD. Let u, v, k be an instance of PMD. If the457

instance is trivially false (that is to say, k ̸= |u| − |v|), answer negatively. Else, consider458

u, v, k as an instance of PMDIS . If this is a negative instance for PMDIS , it is also negative459

for PMD. Furthermore, if it is a positive instance for PMDIS , exactly k deletions should be460

applied, and so no substitution or insertion are used in that solution. Hence, that solution is461

also a solution to PMD, and the reduction holds. ◀462

The same result in fact holds for all other distances, and in particular the longest common463

sub-word distance ID. This proves once again the result shown in [26]:464

▶ Corollary 14. The problems PM I , PMDI , PM IS, PMDS are all np-complete.465

Proof. From Section 3.2, PM I and PMD are equivalent in the 1-to-1 case. For the other466

problem, we do an immediate reduction from PM I or PMD analog to the proof of Theorem 13.467

◀468

We now turn to proofs of np-completeness without the restriction asking f to be injective.469

4.3 Function Matching FMd
1470

The problem considered in this section is the one where both deletions and f are applied to471

the first word. A reduction very similar to the one given for PMD is used.472

▶ Theorem 15. FMD
1 is np-complete.473

Proof idea: The reduction follows the same idea as in Theorem 12. Since the function f474

realizing the matchings is not injective in this version, it will be used to send every vertex to475

its color. Moreover, we add more “sink” ⊥ letters to force the image of every unused letter.476

The full proof can be found in Appendix A.477

This again ensures the np-completeness of the problem for all edit distances, using the478

same proof as for Theorem 13.479

▶ Corollary 16. The problem FMDIS
1 of function matching under the Levenshtein distance480

is np-complete. The problems FM I
1 , FM ID

1 , FM IS
1 , FMDS

1 are all np-complete too.481

We can notice that the problem FMS
1 , where substitution is the only operation allowed,482

is polynomial-time solvable. Intuitively, for each parameter, consider the possible parameters483

that it could be mapped to, and their respective number of occurrences. Then, choose the484

letter with the highest number of occurrences for the mapping. The remaining letters are485

then substituted.486
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4.4 Function Matching FMd
2487

The problem considered in this section is the one where deletions are applied to the second488

word, while f is applied to the first word.489

▶ Theorem 17. FMD
2 is np-complete.490

Proof Idea: The proof is very similar to the previous case, but the bracketing has to be491

adapted. Separators Y e are duplicated enough times to ensure that no vertex variable is492

mapped to them. The full proof can be found in Appendix A.493

▶ Corollary 18. FM I
1 , FMDI

2 , and FML
2 are all np-complete.494

Proof. FM I
1 is equivalent to FMD

2 . For the two other problems, we use a reduction from495

FMD
2 exactly like in Corollary 14. ◀496

This last result completes the picture of np-completeness proofs, and indicates that497

computing the distances between parameterized words defined in Section 3.3 is in general an498

np-complete problem.499

Similarly to FMS
1 , FMS

2 is also polynomial-time solvable.500

5 Approaches to Solve Parameterized Matching501

In this section, we discuss two ways to get around the difficulty of the parameterized matching502

problems. The first one is to design an FPT algorithm in the alphabet size, and the second503

one is to translate the problem into a SAT formalism, with the intent of using a SAT-solver.504

5.1 An FPT Algorithm in the Alphabet Size505

The fact that Σ and Π are part of the input is what makes the various parameterized matching506

problems NP-hard. When the alphabet size is considered fixed, a simple polynomial algorithm507

can be used, which generalizes the “naïve” brute force algorithm of Theorem 1 of [26]:508

Algorithm 1 Simple FPT algorithm for F Md

m← 0
for all functions f : Π→ Π do

dist← d(f(u), v)
if dist ≤ m then

m← dist

end if
end for

▶ Theorem 19. Let d be a distance. Algorithm 1 computes FMd(u, v) in time O(|Π||Π||u||v|)509

Proof. Algorithm 1 uses an exhaustive search and finds min
f :Π→Π

d(f(u), v), which is the510

definition of FMd(u, v). Furthermore, there are |Π||Π| functions from Π to Π, and computing511

d(f(u), v) is done in time O(|f(u)||v|) = O(|u||v|), hence a total running time in O(|Π||Π||u||v|).512

◀513

Note that this also leads to a similar algorithm for PMd by iterating over injective514

functions rather than all functions from Π to Π.515
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5.2 A MaxSat Formulation of Parameterized Matching516

In this section, we encode PMd problems into SAT problems, with the intent of solving them517

with a SAT solver. More precisely, we will use the weighted max-SAT variant of SAT, which518

is defined in the following way :519

Input: a set V of literals, a formula φ =
n∧

i=1
φi on V in conjunctive normal form (CNF),520

a weight function w : J1, nK→ N.521

Output : a valuation ν : V → {0, 1} such that
∑

ν⊨φi

w(i) is maximal.522

Moreover, we will sometimes use a partially weighted variant of Max-SAT, which is523

defined in the following way :524

Input: a set V of literals, a satisfiable formula φc on V in CNF, a formula φw =
n∧

i=1
φi525

on V in CNF and a weight function w : J1, nK→ N.526

Output : a valuation ν : V → {0, 1} such that ν ⊨ φc and
∑

ν⊨φi

w(i) is maximal.527

In that case, clauses of φc are called “hard” clauses while clauses of φw are called “soft528

clauses”. We give a proof of the equivalence in Proposition 26 of Appendix C.529

We will define an encoding of an instance (u, v) of PMd such that an assignment of the530

variables of V will define an alignment between u and v. First, we make a link between the531

ID edit distance and the length of the optimal alignment between two strings.532

▶ Definition 20. Let u and v be two words on Π, such that p = |u| and p′ = |v|. A set533

A ⊂ J1, |u|K× J1, |v|K is an alignment between u and v iff the following are true:534

1. Each position of u appears at most once : For all 1 ≤ i ≤ p and 1 ≤ j, j′ ≤ p′, if (i, j) ∈ A535

and (i, j′) ∈ A, then j = j′.536

2. Each position of v appears at most once : For all 1 ≤ j ≤ p′ and 1 ≤ i, i′ ≤ p, if (i, j) ∈ A537

and (i′, j) ∈ A, then i = i′.538

3. There are no crossings : if (i, j) ∈ A, (i′, j′) ∈ A, and i′ > i, then j′ > j.539

4. Aligned positions match in u and v : if (i, j) ∈ A, then ui = vj540

An alignment relates to the insertion/deletion distance ID in the following way :541

▶ Theorem 21. Let u, v be words on Π and k ≤ |u|+ |v| be an integer. The following are542

equivalent :543

1. There exists an alignment A such that 2|A| = |u|+ |v| − k544

2. ID(u, v) ≤ k.545

Proof. The proof, which works by induction, can be found in Appendix C. ◀546

We now turn to the max-SAT encoding of our problem.547

▶ Theorem 22. Let u and v be two words over Π. There exists a formula φu,v = φc ∧ φw548

and a weight function w, instance of the partially weighted Max-SAT problem such that the549

following are equivalent:550

ν is a solution to this partially weighted Max-SAT instance and satisfies k clauses of φw551

There exists a function f : Π→ Π and an alignment between f(u) and v of size k.552

The formula φ uses |m||p|+ |Π|2 variables and is of size O(m2p2) , where m = |u| and553

p = |v|. Moreover, there exists φinj of size O(|Π|3) such that the above result is true for f554

injective by replacing φc with φ′
c = φc ∧ φinj.555
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In particular, finding the valuation maximizing k gives a maximal alignment between u556

and v, and with Theorem 21, the distance ID(u, v).557

Proof. For this proof, we fix an ordering on the alphabet Π = {a1, . . . , an}.558

We define the set of literals V as V = {xi,j | 1 ≤ i ≤ |u|, 1 ≤ j ≤ |v|} ∪ {ya,b | a ∈ Π, b ∈ Π}.559

Intuitively, xi,j represents a match between position i and j in the alignment, and ya,b will560

represent the fact that f(a) = b. We define the following sets of formulas, where all indices i561

are taken between 1 and m and all j between 1 and p, and a and b are taken in Π :562

∀i ∀j′ ̸= j, φA1
i,j,j′ ≡ xi,j =⇒ ¬xi,j′ (NoDouble i)563

∀j ∀i′ ̸= i, φA2
i,i′,j ≡ xi,j =⇒ ¬xi′,j (NoDouble j)564

∀i′ > i ∀j′ < j, φC
i′,i,j,j′ ≡ xi,j =⇒ ¬xi′,j′ (NoCrossing)565

∀a∀b ̸= b′, φf
a,b,b′ ≡ ya,b =⇒ ¬ya,b′ (Function)566

∀a ̸= a′∀ ≠ b, φinj
a,a′,b ≡ ya,b =⇒ ¬ya′,b (Injectivity)567

∀i∀j, φM
i,j ≡ xi,j =⇒ yui,vj (Match)568

∀i, φ∃
i ≡

∨
1≤j≤p

xi,j (ExistsMatch)569

570

We then define φc as the conjunction of all the formulas (NoDouble i), (NoDouble j),571

(NoCrossing), (Function), and (Match). Furthermore, we define φinj as the conjunction of572

all the (Injectivity) formulas. Lastly, we define φw =
∧

1≤i≤m

φ∃
i , and set w(C) = 1 for every573

clause C of φw.574

There are m
(

p
2
)

(NoDouble i) formulas, p
(

m
2
)

(NoDouble j),
(

m
2
)(

p
2
)

(NoCrossing), n
(

n
2
)

575

(Function) and (Injectivity) formulas, pm (Match) formulas and n (ExistsMatch) formulas.576

We now prove both implications of the theorem. Suppose ν is a valuation satisfying φc577

and k clauses of φw. We define, for all a, b ∈ Pi, f(a) = b if and only if ν(ya,b) = ⊤. Since ν578

satisfies all the (Function) formulas, this is a correct definition of a (partial) function. We579

define A = {(i, j) | ν(xi,j)=⊤}. A is an alignment between f(u) and v. Indeed : (NoDouble580

i) and (NoDouble j) ensures point 1. and 2. of Definition 20, (NoCrossing) ensures point 3.,581

and Match ensures point 4. The size of A is the number of xi,j instantiated to ⊤, which is582

exactly the number of clauses of φc satisfied, i.e., k.583

Suppose now that there exists a function Π → Π and an alignment A between f(u) and584

v. Similarly, we define ν(ya,b) = ⊤ if and only if f(a) = b, and ν(xi,j) = ⊤ if and only if585

(i, j) ∈ A. Since A is an alignment, ν satisfies (NoDouble i),(NoDouble j), and (NoCrossing).586

Since f is a function, (Function) is satisfied. Finally, if ν(xi,j) = ⊤, then (i, j) ∈ A, and587

since A is a matching, f(u)i = f(ui) = vj and ν(yui,vj
) = ⊤.588

The proof for φb is the same, and (Injectivity) ensures the injectivity of f . ◀589

What is more, this proof can be adapted to change the ID distance to the Levenshtein590

distance, simply by choosing to consider all the (Match) formulas as soft clauses.591

6 Experiments592

The two approaches presented in Section 5 were implemented in Python to solve PM ID.593

They are available under the GPL license at https://github.com/AaronFive/paramatch.594

The FPT algorithm of Section 5.1 is implemented in the function parameterizedAlignment595
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of file fpt_alphabet_size.py. The MaxSAT-reduction of Section 5.2 is implemented in the596

function make_sat_instance of file sat_instance.py. The MaxHS solver [18] available at597

http://www.maxhs.org is used by our script to solve the MaxSAT instances derived from598

the PM ID instances.599

Our initial motivation to introduce parameterized matching under various distances600

is theater play comparison. To represent the structure of a theater play, we represent601

each character by a letter of the alphabet, and create the parameterized word obtained by602

considering the succession of all consecutive speakers. To check their adequacy with real data,603

we use a corpus of theater plays in which each character is represented by one letter of the604

alphabet, and each act of the play is represented by a string corresponding to the sequence of605

speaking characters. A letter may be duplicated in this string if the corresponding characters606

has lines in the end of a scene and in the beginning of the next one. Therefore, the edit607

distance between two parameter words representing acts will be small if both acts have a608

similar structure in terms of succession of speaking characters. We selected a corpus of 10609

pairs of plays where one inspired the other, and performed 47 comparisons between pairs610

of acts. Among those comparisons, 26 were solved by the maxSAT algorithm and all by611

the FPT algorithm (detailed results are presented in the supplementary material available612

at https://github.com/AaronFive/paramatch/tree/main/corpus10pairs), with a 800613

second timeout. The computation times are obtained on a XMG laptop running on Windows,614

with a 2.60 Ghz processor and 16 Gb RAM. Only the running time of MaxHS is provided,615

the encoding into a MaxSAT formula usually runs in approximately 1 second. Note that616

all instances are solved faster by the FPT algorithm than by the MaxSAT approach. The617

analysis of running times depending on the product of the lengths of the input strings (see618

supplementary material) shows that the MaxSAT approach may be relevant for strings with619

more than 10 distinct characters, but where the product of the length of input strings may620

not exceed 2000.621

7 Conclusion622

In this paper, we studied the complexity of several variants of the edit distance problem623

between parameterized words. We proved the np-completeness of all previously unsolved cases,624

including the Levenshtein distance left open in [24], and provided practical approaches to625

solve real instances of those problems. We also studied similar problems for various definitions626

of words with parameters, namely parameter words and parameterized expressions, proving627

some relationships with parameterized word problems.628

As future work, we will study the restrictions introduced in [21, 22] for a pattern matching629

problem with patterns in the parameter, in order to obtain polynomial time algorithms for630

the edit distance between parameterized words. Moreover, we will explore the question of631

distance between sets of words, in particular when they are defined through generalizations of632

automata. These problems are variants of the notion of distance between regular languages633

as defined in [12]. In this context, we can notice that different notions of automata can be634

considered: either automata generating parameterized words, or automata using parameters635

to define languages over classical words, with two different semantics as defined in [11].636
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A Details of the proofs747

Proof of Lemma 7. We proceed by induction on k. If k = 0, then u and v are parameterized748

matching, and f(u) = v, thus d(f(u), v) = 0. Suppose the result holds until a fixed k. Suppose749

PMd(u, v) = k + 1. There exist f , u′′ and u′ such that d(u, u′′) = 1, d(u′′, u′) = k, and750

f(u′) = v. Hence PMd(u′′, v) ≤ k, and by induction hypothesis d(f(u′′), v) ≤ k. Moreover,751

since d(u, u′′) = 1, we get u′′ from u by applying only one operation. We prove that regardless752

of this operation, d(f(u), f(u′′)) = 1, and thus d(f(u), v) ≤ d(f(u), f(u′′))+d(f(u′′), v) ≤ k+1753

which will conclude the proof. There are 3 cases to consider:754

If the operation is a deletion, u = v1xv2 and u′′ = v1v2 for some words v1 and v2 and755

some letter x. Then f(u) = f(v1)f(x)f(v2) and we can obtain f(v1)f(v2) = f(u′′) by756

deleting f(x).757

If it is an insertion, u = v1v2 and u′′ = v1xv2, and we can similarly go from f(u) to f(u′′)758

by inserting f(x).759

If it is a substitution, u = v1xv2 and u′′ = v1yv2, and we can go from f(u) to f(u′′) by760

replacing f(x) with f(y).761

Hence d(f(u), f(u′′)) = 1, which concludes the proof for PMd.762

Since this proof does not use the fact that f is 1-to-1, it also stands for FMd
1 . ◀763

Proof of Lemma 8. It is obvious that d(zu, zv) ≤ d(u, v), so we only prove d(u, v) ≤764

d(zu, zv). We prove that any rewriting sequence from zu to zv can be modified such that no765

edit operation is applied in z. This will be enough to prove the result, as the edit sequence766

obtained can be seen as an edit sequence between u and v. We proceed by induction on767

the size of z. Suppose |z| = 1. Then z = a ∈ Σ ∪Π. We can consider that no character is768

modified twice in an edit sequence (i.e. no character is inserted and then deleted, or inserted769

and then substituted etc.), as that is always sub-optimal. Suppose z is modified. There are 3770

possible cases:771

1. There is an insertion in z, hence a word w ends up being inserted before a. Since zv = av772

starts with a, w must start with an a, hence w = aw′. We insert w′a to the right of z773

instead with the same operations. If z should be deleted or substituted, we apply the774

same operation to the new a instead. These operations yield the same result, and do not775

modify z.776

2. There is a deletion in z, and hence a is deleted. Since this an optimal rewriting sequence,777

no a is created at that position through insertion or substitution afterwards. Since av778

starts with an a, u must be of the form u = sau′, where all the characters in s are deleted,779

and a isn’t. Deleting sa instead of as yields the same result, and doesn’t modify z.780

3. There is a substitution in z, hence a is modified into a character b ̸= a, that will not be781

further modified. Since av starts with a, an a has to be inserted in z, which is handled in782

case 1.783

Hence, we can consider that every edit operations is done in u, and d(au, av) = d(u, v).784

Suppose now that the result is proven for |z| = k, and let z = az′, with |z′| = k. Using the785

base case and the case for |z| = k, we have d(zu, zv) = d(azu, azv) = d(zu, zv) = d(u, v),786

which concludes the proof. ◀787

Proof of Lemma 10 . Let # be a fresh parameterized letter. Let then u = #k+1u1#u2# . . .788

#un and v = #k+1v1#v2# . . . #vn, where #k+1 denotes k + 1 repetitions of the character #.789

The proof of the reverse direction is the same as in Lemma 9, so we only prove the other one.790

Assume FMD
2 (u, v) ≤ k. Let v′ and f realize this parameterized match.791
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We prove that f(#) = #, and that no other character is sent to # by f . Indeed,792

v starts with k + 1 symbols #, which ensure that v′ starts with the letter #. Since u793

starts with # and f(u) = v′, f(#) = #. Furthermore, this implies that since |u|# = k + n,794

|f(u)|# = |v′|# ≥ k+n. Since v′ is obtained from v by deletions, we have |v′|# ≤ |v|# = k+n.795

Hence |v′|# = k + n and all those inequalities are equalities, which is only the case when no796

# symbols is deleted from v, and that for all x ̸= #, f(x) ̸= #.797

Since all the # symbols are left untouched, the rest of the proof is the same as in Lemma 9,798

and all of the factors ui and vi are parameterized matching. ◀799

Proof of Lemma 11. Let # be a fresh parameterized letter, and N = k + 2.800

Let then u = #N u1#N u2 . . . #N un#N and v = #N v1#N v2 . . . #N vn#N . Once again,801

we only prove the non-trivial implication.802

Suppose FMD
1 (u, v) ≤ k, and let f and u′ realize this matching. Since u starts with k + 1803

copies of #, u′ starts with #. Since v starts with # too, f(#) = #.804

We now prove that we can consider that for all x ̸= #, f(x) ̸= #. This will also imply that805

no # symbol is deleted from u. Let S = {a ∈ Π | f(a) = #} be the set of symbols (different806

from #) sent to #. Since |u|# = |v|#, the number of deleted # symbols from u is exactly807

|u|S , hence |u|S ≤ k. Let us now consider the leftmost occurrence of an element of S in u′,808

that we denote by a. The letter a appears in u in a factor of the form #N w1aw2#N . Since809

all # in v appear in blocks of size N , a must contribute to such a block, after deletions and810

application of f . We distinguish two cases:811

1. The entirety of the word w1 is deleted. In this case, at least one symbol # from the812

left #N block is deleted; otherwise f(#N )f(a) = #N+1 would be a factor of v, which is813

impossible. Thus, choosing not to delete # and to delete a instead yields the same result.814

2. w1 is not deleted. Since no character from S appears to the left of a, f(a) is the start of815

a #N block. Furthermore, since |u|S ≤ k, it is not possible to form #N with only a and816

w2, and characters from the right #N contribute to it. Hence, at least one # symbol817

from this right block is deleted. Like before, the same result can be obtained by not818

deleting it, and deleting a instead.819

Either way, we can repeat this process to eliminate all occurrences of characters of S and of820

deletions of #, which proves that we can consider that for all x ̸= #, f(x) ̸= #. Once again,821

we are taken back to the conditions of Lemma 9, and the rest of the proof follows. ◀822

Proof of Theorem 15. We define Π like in Theorem 12, and we add the letters ⊥1,⊥2,⊥3,⊥4
and ⊥5. Similarly, we define ui

1, vi
1, ui

⊥, vi
⊥, ue

2, and ve
2 just like in Theorem 12. Additionally,

we define for every edge e,

ue
⊥ = □e

1□
e
2□

e
3□

e
4□

e
5□

e
6 and ve

⊥ = ⊥1⊥2⊥3⊥4⊥5.

We then apply Lemma 11 with

u1
1, . . . un

1 , u1
⊥, . . . un

⊥, ue1
2 . . . uem

2 , ue1
⊥ , . . . uem

⊥

and
v1

1 , . . . vn
1 , u1

⊥, . . . vn
⊥, ve1

2 . . . vem
2 , ve1

⊥ , . . . vem

⊥

to obtain u, v, and k. We show that G is 3-colorable ⇔ FMD
1 (u, v) ≤ k.823

⇒ Suppose G is 3 colorable. Define f like in Theorem 12 on the ci
y and □e

y. Let e be an824

edge and ke ∈ [1, 6] be the integer such that f(□e
ke

) is defined. We map every remaining □e
y825
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in the following way:826

f(□e
i ) =


⊥i if i < ke,
Y e if i = ke,
⊥i−1 if i > ke.

(1)827

It is then easy to check that d(f(u), v) = k, and thus FMD
1 (u, v) ≤ k.828

⇐ Suppose FMD
1 (u, v) ≤ k, and let f and u′ realize it. We define a coloring of G based829

on f . We note, for 1 ≤ i ≤ n and 1 ≤ t ≤ 3, col(ci
t) = ct. If xi is a vertex of G, define c(xi)830

to be col(ci
k), where ci

k is the only element such that f(ci
k) = xi. We show in what follows831

that (1) this function definition is correct and (2) it is a valid coloring, i.e. if e = {xi, xj} is832

an edge, c(xi) ̸= c(xj).833

(1): The same points 1. and 2. from the proof of Theorem 12 apply, hence for every834

1 ≤ i ≤ n, exactly one element from {ci
1, ci

2, ci
3} is sent to xi, while the two others are sent to835

⊥i
1 and ⊥i

2, hence the result.836

(2): Let e be an edge. The words ue
⊥ and ve

⊥ are in matching, which is done with exactly837

one deletion. Hence, there exists ke such that838

f(□e
i ) =

{
⊥i if i < ke,
⊥i−1 if i > ke.

(2)839

Moreover, ue
2 and ve

2 are in matching. Since Y e appears in ve
2 and all the characters in ue

2840

apart from □e
ke

have an image different from Y e, f(□e
ke

) = Y e. Hence, the only characters841

that are not suppressed from ue
2 are the two characters between the □e

ke
. Denoting them by842

c and c′, the construction of the word ensures that col(c) ̸= col(c′). Hence, if e = {xi, xj},843

we have proven c(xi) ̸= c(xj), which is (2).844

The coloring c is therefore valid, which concludes the proof. ◀845

Proof of Theorem 17. Let G = (V, E), with V = {x1, . . . , xn} and {e1, . . . , em}. Like in846

the 1-to-1 case, we construct factors ui and vi to encode vertex coloring. The parameter847

alphabet contains:848

x1, . . . xn, corresponding to V ,849

the colors c1, c2, c3,850

for every e ∈ E, the delimiters Y e,851

for every e ∈ E and every 1 ≤ i, j ≤ 3, i ̸= j, the delimiters Y e
i,j .852

We define for 1 ≤ i ≤ n, ui
1 = xi and vi

1 = c1c2c3. If e is an edge and ci and cj are two colors,853

we denote we(ci, cj) = Y e
i,jY e

i,jY e
i,j cicj Y e

i,jY e
i,jY e

i,j For every edge e = {xi, xj}, we now define854

ue
2 = Y eY eY e xixj Y eY eY e and ve

2 = we(c1, c2)we(c1, c3)we(c2, c1)we(c2, c3)we(c3, c1)we(c3,855

c2).856

We now apply Lemma 10 with u1
1, . . . un

1 , ue1
2 . . . uem

2 , v1
1 , . . . vn

1 , ve1
2 . . . vem

2 , to obtain u and v.857

⇒ Suppose G is 3-colorable, and let c : V → {c1, c2, c3} be a valid coloring. Define858

f |V = c. For every edge e = {xi, xj}, let s and t be such that c(xi) = cs and c(xj) = ct.859

We then define f(Y e) = Y e
s,t. It is easy to check now that d(f(u), v) = k, and hence860

FMD
2 (u, v) ≤ k.861

⇐ Suppose now that FMD
2 (u, v) ≤ k. We will show that f |V defines a 3-coloring of G,862

by showing that (1) for all x ∈ V , f(x) ∈ {c1, c2, c3} and (2) If {x, y} ∈ E, then f(x) ̸= f(y).863

Lemma 10 ensures that the words ui and vi are in matching, which proves (1).864

Lemma 10 also ensures that the words ue and ve are in matching. Let e ∈ E, with865

e = xs, xt. We have |ue
2|Y e = 6, hence |f(ue

2)|f(Y e) ≥ 6. Since c1, c2 and c3 each occur866
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exactly 4 times in ve
2, they cannot occur 6 times after deletions, and f(Ye) /∈ {c1, c2, c3}.867

Hence, there exist i ̸= j with 1 ≤ i, j ≤ 3 such that f(Y e) = Y e
i,j . This implies that all868

but one of the we factors from ve
2 are suppressed, and that the remaining one is we(ci, cj).869

Hence f(xs) = ci and f(xt) = cj , which proves (2).870

◀871

B Encoding Constant Alphabet Σ in Π872

We show why it is always possible to consider that Σ = ∅ for certain problems. These results873

use the lemmas proved in Section 4.1.874

▶ Lemma 23. Let d be a distance, k an integer and u and v be two parameterized words875

over the alphabet of constants Σ and the alphabet of parameters Π. There exist words ũ and876

ṽ over the alphabet of constants ∅ and the alphabet of parameters Π′ = Π ⊎ Σ such that the877

following are equivalent:878

PMd(u, v, k) is realized by f ;879

PMd(ũ, ṽ, k) is realized by f .880

In particular, this implies that if PMd(ũ, ṽ) ≤ k, all functions f realizing this matching881

verify that for all x ∈ Σ, f(x) = x, and for all x ∈ Π, f(x) ∈ Π.882

Proof. Let N = k + 1. If Σ = {a1, . . . , an}, we define z to be aN
1 aN

2 . . . aN
n u and ũ = zu,883

ṽ = zv. It is clear that if PMd(u, v) ≤ k then PMd(ũ, ṽ) ≤ k, by following the same884

operations, and applying the same renaming function.885

Suppose now that PMd(ũ, ṽ) ≤ k, and let f and u′ realize it. Let i ∈ [1, n]. All the letters886

of u between position Ni and N(i + 1) are ai. At most k of these positions can be modified887

with an edit operation. Since N > k, at least one of these positions is not modified, and thus888

there exists j ∈ [Ni, N(i + 1)] such that u′
j = ai. Since all letters in v between position Ni889

and N(i + 1) are ai, in particular vj = ai, and hence f(ai) = ai. This proves that for all890

x ∈ Σ, f(x) = x, and thus f(z) = z. Since f is 1-to-1, this entails f(Π) ⊆ Π. By Lemma 7,891

d(f(ũ), ṽ) ≤ k. Hence d(f(zu), zv) = d(zf(u), zv) ≤ k and by Lemma 8, d(f(u), v) ≤ k.892

Hence PMd(u, v) ≤ k. ◀893

▶ Remark 24. Note that the words ũ and ṽ have a size increased by NΣ. If less operations894

are considered, it is possible to reduce this overhead. For example, in the case of PMD, we895

can take z to be of the form a1 . . . anzN , to reduce the overhead to N + Σ.896

Similarly, constants can be encoded in Π in some FM problems. We prove this result for897

FMD
2 , with the help of the block decomposition allowed by Lemma 10.898

▶ Lemma 25. Let u and v be two parameterized words over the alphabet of constants Σ and899

the alphabet of parameters Π. There exist words ũ and ṽ over the alphabet of constants ∅900

and the alphabet of parameters Π′ = Π ⊎ Σ such that the following are equivalent:901

FMD
2 (u, v, |v| − |u|) is realized by f ;902

FMD
2 (ũ, ṽ, |ṽ| − |ũ|) is realized by f .903

Proof. We write Σ = {a1, . . . an} and Π = {b1, . . . , bm}. We define zΣ = a1 . . . an, and zΠ =904

b1 . . . bm. Let ũ and ṽ be the words obtained by applying Lemma 10 to zΣ, b1, b2, . . . , bm, u and905

zΣ, zΠ, zΠ, . . . , zΠ, v. If FMD
2 (u, v, k) is realized by a function f , it realizes FMD

2 (ũ, ṽ, |ṽ|−|ũ|)906

too. Indeed, it is enough to apply the same operations in v, and to delete all the characters907

but f(bi) in the i-th copy of zΠ.908

Suppose now that FMD
2 (ũ, ṽ) ≤ k, and let f realize it. Then, by Lemma 10, we have:909
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D(z, f(z)) = 0, and hence f(z) = z, which implies that for all x ∈ Σ, f(x) = x.910

For every 1 ≤ i ≤ m, D(zΠ, f(bi)) = |Π| − 1. Hence f(bi) is a character of zΠ, which is911

some character bj ∈ Π.912

D(v, f(u)) ≤ k.913

Hence f verifies D(f(v), u) ≤ k and respects the conditions on Π and Σ, which implies that914

is also realizes FMD
2 (u, v, k). ◀915

The overhead to pay for this transformation is O(|Σ|+ |Π|2 + k), where the term in k916

comes from the proof of Lemma 10.917

Transposing the technique used for Lemma 25 is not sufficient to get a similar result for918

FMD
1 . The question thus remains open in this context.919

C Proofs Regarding the Max-SAT Encoding920

Proof of theorem 21. We proceed by induction on |u|+ |v|. If |u|+ |v| = 0, both u and v921

are the empty string, and the equivalence is trivial. Fix n ∈ N and suppose now that the922

result holds up for all words u, v such that |u|+ |v| ≤ n− 1. Let u and v be two words such923

that |u|+ |v| ≤ n. Without loss of generality, consider |u| ≥ |v|.924

Suppose ID(u, v) ≤ k. Let ρ be a rewriting sequence between u and v of length k. If there925

is no deletion in u in ρ, there are only insertions in v, and v is a sub-word of u, and there926

exists another rewriting sequence ρ′ only deleting letters from u. Hence, we can consider927

that there is at least a deletion in u in ρ. Let p be a position at which such a deletion occur,928

and let a = up. The word u can be written as u = u′au′′ for some words u′ and u′′. Define929

w = u′u′′. It holds that d(w, v) ≤ k − 1 and |w| = |u| − 1. By induction, there exists an930

alignment A between w and v such that 2|A| = |w|+ |v| − (k − 1) = |u|+ |v| − k. We define931

r(i) =
{

i if i < p

i− 1 if i > p
, and B = {(r(i), j) | (i, j) ∈ A}. Since A is an alignment, so is B: it932

satisfies conditions 1 to 3 of Definition 20, and since wr(i) = ui, it also satisfies condition 4.933

Finally, |B| = |A|, hence 2|B| = |u|+ |v| − k, hence the result.934

Suppose now that there exists an alignment A such that 2|A| = |u|+ |v| − k. Similarly,935

consider p, a position in u such that there does not exist a j with (p, j) ∈ A. If no such position936

exist, since |u| ≥ |v|, u = v and the result is proven. Consider w the word obtained by deleting937

up from u. It then holds that |w| = |u| − 1 and that 2|A| = |u|+ |v| − k = |w|+ |v| − (k− 1).938

Defining B in the same way as above yields an alignment between w and v of the same size,939

and thus by induction, d(w, v) ≤ k − 1, and since d(u, w) = 1, d(u, v) ≤ k. ◀940

▶ Proposition 26. Weighted Max-SAT and partial weighted Max-SAT are equivalent.941

Proof. Encoding a weighted Max-SAT instance as a partially weighted Max-SAT instance is942

straightforward, as we just have to choose φc to be empty.943

Conversely, given a satisfiable CNF formula φc, a CNF formula φw, and a weight function w944

on the clauses of φw, we can define a weighted Max-Sat instance in the following way :945

We define φ = φc ∧ φw946

We set W = 1 +
∑

Ciclause ofφc

w(Ci), and extend w to clauses of φc such that w(Cj) = W947

for all clauses Cj of φc948

If ν is a valuation, we denote by w(ν) the sum of the weights of all clauses it satisfies
∑

ν⊨Ci

w(Ci).949

Since φc is satisfiable, there exists a valuation νc such that νc ⊨ φc, and w(νc) ≥ |φc|W . Let950

now ν be a valuation no satisfying a clause of φc. Then w(νc) ≤ (|φc|−1)W +(W−1) < w(νc),951

hence nuc is not maximal and cannot be a solution to the weighted Max-SAT instance. ◀952
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