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The edit distance between parameterized words is a generalization of the classical edit distance where it is allowed to map particular letters of the first word, called parameters, to parameters of the second word before computing the distance. This problem has been introduced in particular for detection of code duplication, and the notion of words with parameters has also been used with different semantics in other fields. The complexity of several variants of edit distances between parameterized words has been studied, however, the complexity of the most natural one, the Levenshtein distance, remained open.

In this paper, we solve this open question and close the exhaustive analysis of all cases of parameterized word matching and function matching, showing that these problems are np-complete.

To this aim, we also provide a comparison of the different problems, exhibiting several equivalences between them. We also provide and implement a MaxSAT encoding of the problem, as well as a simple FPT algorithm in the alphabet size, and study their efficiency on real data in the context of theater play structure comparison.

Introduction

Measuring the similarity between text strings is a fundamental problem in computer science, and has applications in bioinformatics [START_REF] Gusfield | Algorithms on Strings, Trees, and Sequences -Computer Science and Computational Biology[END_REF], databases [START_REF] Agrawal | Efficient similarity search in sequence databases[END_REF][START_REF] Cohen | Integration of heterogeneous databases without common domains using queries based on textual similarity[END_REF] and natural language processing [START_REF] Jane | Similarity-based approaches to natural language processing[END_REF]. Among the measures of similarities between strings, the Levenshtein distance [START_REF] Vladimir I Levenshtein | Binary codes capable of correcting deletions, insertions, and reversals[END_REF] is the most commonly used, both for its practicality and its ease of computation.

This distance quantifies the minimum number of operations of insertion, deletion, and substitution needed to transform a string into another one. It has a wide range of applications, ranging from biological sequence alignment [START_REF] Saul | A general method applicable to the search for similarities in the amino acid sequence of two proteins[END_REF] to dialect pronunciation differences [START_REF] Wilbert | Measuring dialect pronunciation differences using Levenshtein distance[END_REF] or signature authentication [START_REF] Schimke | Using adapted levenshtein distance for on-line signature authentication[END_REF]. Computing the edit distance between two strings of length n and m can be achieved in time O(nm), by computing the distance between all their prefixes, and storing the results in a dynamic programming fashion [START_REF] Wagner | The string-to-string correction problem[END_REF]. The success of the Levenshtein distance generated many extensions and generalization on more complex models, such as trees [38] or automata [START_REF] Mohri | Edit-distance of weighted automata: General definitions and algorithms[END_REF].

However, a limitation of the Levenshtein distance is that it only captures proximity between strings (or objects) written on the same alphabet. Evaluating the proximity of strings written on different alphabets is a problem that arises in various applications, such as bioinformatics [START_REF] Shibuya | Generalization of a suffix tree for RNA structural pattern matching[END_REF], image processing [START_REF] Cole | Two-dimensional parameterized matching[END_REF] and code duplication [START_REF] Baker | A theory of parameterized pattern matching: Algorithms and applications[END_REF][START_REF] Baker | Parameterized duplication in strings: Algorithms and an application to software maintenance[END_REF]. In all those contexts, the technique used is the one of parameterized matching [START_REF] Baker | A theory of parameterized pattern matching: Algorithms and applications[END_REF][START_REF] Baker | Parameterized duplication in strings: Algorithms and an application to software maintenance[END_REF]. Instead of using classical strings, parameterized matching uses "parameterized words" written using both constant parts, which are expensive to rename, and parameters, which are meant to be renamed freely.

Formally, two equal-length strings u and v over an alphabet Π are said to be parameterized matching if there exists a 1-to-1 function f : Π → Π such that f (u) = v, where f (u) is defined as f (u 1 ) . . . f (u |u| ).

Words with parameters also occur in other frameworks, and are often used in slightly different ways. The first of those frameworks was initially introduced in the context of Ramsey theory in the 80s [START_REF] Voigt | The partition problem for finite abelian groups[END_REF], and is called "parameter words". In this context, parameters are labelled according to their order of first occurrence. Parameter words are also equipped with a composition operation, where parameters of the first word can be instantiated by characters or parameters of the second word. Parameter words can also be seen as equivalence classes of parameterized words, which are the main focus of this article.

A second framework using parameters is the one of parameterized regular expressions introduced in [START_REF] Barceló | Parameterized regular expressions and their languages[END_REF], where parameters can only be instantiated by constants, and not by other parameters. The focus in this context is therefore made on the set of all possible valuations of the parameters. Then, when defining algorithmic problems on such objects, two distinct semantics can be studied: either the "certainty semantics", where all valuations need to have some property, or the "possibility semantics", where at least one valuation needs to have this property. To make a difference with the parameterized word framework mentioned below, we choose to call these words "instantiable words". Finally, this notion of words with parameters can also be seen as a refined version of partial words (words containing a wildcard character) [START_REF] Blanchet-Sadri | Algorithmic Combinatorics on Partial Words[END_REF]. The notion of partial words is also important in the context of databases where paths of incomplete graphs can be interpreted as instantiable words [START_REF] Barceló | Querying graph patterns[END_REF].

This article aims at studying similarity by using edit distances in the framework of words with parameters. In this framework, the pattern matching problem, which consists in looking for the first string as a subword of the second string, has been extensively studied, either looking for exact occurrences, with efficient algorithms [START_REF] Angluin | Finding patterns common to a set of strings[END_REF][START_REF] Ganguly | Pbwt: Achieving succinct data structures for parameterized pattern matching and related problems[END_REF][START_REF] Manea | Matching patterns with variables[END_REF] or approximate ones, which is often NP-hard [START_REF] Gawrychowski | Matching patterns with variables under hamming distance[END_REF][START_REF] Gawrychowski | Matching patterns with variables under edit distance[END_REF]. In the case where we compare the two input strings in their entirety, various exact parameterized matching problems have been studied for parameterized pattern matching, namely string parameterized matching [START_REF] Baker | Parameterized duplication in strings: Algorithms and an application to software maintenance[END_REF], single pattern parameterized matching [START_REF] Baker | Parameterized duplication in strings: Algorithms and an application to software maintenance[END_REF][START_REF] Amir | Alphabet dependence in parameterized matching[END_REF], multiple pattern parameterized matching, or 2-dimensional parameterized matching, many of those works being compiled in [START_REF] Lewenstein | Parameterized Matching[END_REF] and [START_REF] Mendivelso | A brief history of parameterized matching problems[END_REF]. Different approximate variants of parameterized matching using edit distance have already been studied, but the problem has not been completely solved: the first work on the topic is [START_REF] Baker | Parameterized diff[END_REF], in which Baker introduces a form of approximate parameterized pattern matching in which the replacement of any substring by another one that is in parameterized matching with it is considered as a base edit operation. Parameterized matching under the Hamming distance, i.e., with a distance allowing only substitutions, has been covered in [START_REF] Hazay | Approximate parameterized matching[END_REF], where the authors prove that the string matching problem with at most k mismatches can be solved in time O(m + k 1.5 ). The LCPS (Longest Common Parameterized Subsequence) problem, equivalent to the parameterized pattern matching problem with insertions and deletions, is shown to be np-hard in [START_REF] Keller | On the longest common parameterized subsequence[END_REF],

which also provides an approximation algorithm. Those two different complexity classes for these problems raise the question of the complexity of the problem under the Levenshtein distance. This problem was left as an open question in the conclusion of [START_REF] Hazay | Approximate parameterized matching[END_REF].

Our paper establishes that this problem is np-complete. Moreover, the result also extends to any possible edit distances obtained from deletion, insertion, and substitution as soon as substitution is not the only operation allowed, as summarized in Figure 1. Our main proof also implies the main theorem of [START_REF] Keller | On the longest common parameterized subsequence[END_REF] with a different np-completeness reduction.

This contrasts with the problems of exact parameterized pattern matching which are all polynomial-time solvable, as well as all variants of the string matching problem with deletions, insertions or substitutions.

We also extend these results to function matching, which is the problem obtained by relaxing the 1-to-1 restriction in parameterized matching, as defined in [START_REF] Amir | Function matching: Algorithms, applications, and a lower bound[END_REF]. This generalization, by breaking the symmetry of parameterized matching, actually gives rise to two close but different problems, depending of the order of operations that are considered. We study the links between all these problems and their computational complexity, and study two practical ways to solve them, parameterized complexity and the use of maxSAT solvers.

We also make a direct connection with the framework of instantiable words, more precisely with a natural problem of distance between languages. We show how instantiable word problems can be reduced to parameterized matching ones, under the right assumptions. This allows us to open new perspectives on the complexity of several language repair problems.

In Section 2, we give basic definitions and notations, and recall the existing formalism of parameterized matching and instantiable words. In Section 3 we discuss approximate parameterized matching and its various generalizations. We also link it to instantiable words. In Section 4, we first prove a collection of technical results that build up to the np-completeness proofs for parameterized matching and function matching problems defined above. In Section 5, we study two approaches to solve one of the variants of parameterized matching in practice, a simple FPT algorithm parameterized by the alphabet size and a MaxSAT encoding. We show in Section 6 that these implementations can solve real instances of the problem, motivated by structure comparison of theater plays. 

(u) = f (u 1 ) . . . f (u |u| ).
If f is a function, we denote by D(f ) the domain of f . Two functions f and g are said

to be compatible if f | D(g)∩D(f ) = g| D(g)∩D(f ) .
The identity function on D is defined as

Id D (x) = x for all x in D.

Edit Operations

In this paper, we consider the three classical edit operations which are deletion, substitution and insertion. Let u = u 1 . . . u n be a word of size n. Let i be an integer between 0 and n and

x be a letter of the alphabet, the insertion at position i is the operation that transforms u to u 1 . . . u i xu i+1 . . . u n Let j be an integer between 1 and n, the deletion at position j is the operation that transforms u into u 1 . . . u j-1 u j+1 . . . u n . Let y be a letter of the alphabet and y ̸ = u j , the substitution to y at position j is the operation that transforms u into u 1 . . . u j-1 yu j+1 . . . u n . A sequence of operations or rewriting sequence ρ is a sequence of edit operations. We denote by ρ(u) the word obtained by applying the edit operations of ρ one after another, in the order defined by ρ, to u.

Distances

Given a set of edit operations E and two words u and v, the edit distance between u and v is defined as the length of a shortest sequence of operations of E changing u into v. We denote by D the distance obtained on words by allowing only deletion operations: that is to say D(u, v) = k iff v can be obtained by deleting k letters from u. Similarly, we note I and S the distances obtained by allowing only insertions and substitutions respectively (note that S is the Hamming distance). We also combine these notations to define DI as the distance with insertions and deletions, and so on. We also denote the Levenshtein distance DIS by L.

Note that some of these edit distances are not metrics, because they are not symmetrical.

We emphasize this by calling symmetric edit distances the distances DI, S, and L.

Comparing Words with Parameters

Conceptually, a word with parameters is a word in which some letters are not yet determined.

In order to distinguish the parameters from the constants, we split the alphabet into Σ, the alphabet of the constants and Π, the alphabet of the parameters. By definition, these alphabets are finite. A word with parameters can either be seen as representing a "word template" (i.e., a word with variable parts), or a set of words (determined by all possible affectations of its parameters). Depending on the definition chosen, comparing two words w 1 and w 2 is done in two different ways. In the first setting [START_REF] Baker | A theory of parameterized pattern matching: Algorithms and applications[END_REF][START_REF] Baker | Parameterized duplication in strings: Algorithms and an application to software maintenance[END_REF][START_REF] Baker | Parameterized diff[END_REF][START_REF] Mendivelso | A brief history of parameterized matching problems[END_REF][START_REF] Amir | Function matching: Algorithms, applications, and a lower bound[END_REF][START_REF] Apostolico | Parameterized matching with mismatches[END_REF][START_REF] Hazay | Approximate parameterized matching[END_REF][START_REF] Lewenstein | Parameterized Matching[END_REF][START_REF] Keller | On the longest common parameterized subsequence[END_REF][START_REF] Cole | Two-dimensional parameterized matching[END_REF],

parameters of w 1 are renamed through a function f that maps the set of parameters to itself, and acts as identity on the set of constants. It is then possible to compare f (w 1 ) and w 2 , which are written on the same alphabet. In the second setting, constants are seen as the concrete values parameters can take [START_REF] Barceló | Parameterized regular expressions and their languages[END_REF]. Parameters are instantiated through two functions f 1 and f 2 that map constants to themselves, but also map parameters to constants. The words f 1 (w 1 ) and f 2 (w 2 ) are then made only of constants, and can be compared. Formally, this gives rise to the two following different definitions:

On the one hand, a parameterized word is a word on an alphabet Σ ∪ Π. In all that follows, Σ and Π are two disjoint alphabets, respectively called the alphabet of constants and the alphabet of parameters. Alphabets Σ and Π are considered to be finite, unless specified otherwise.

Two parameterized words u and v are said to be in function matching if there exist

f Π : Π → Π and f : Π ∪ Σ → Π ∪ Σ such that f | Π = f Π , f | Σ = Id Σ , and f (u) = v.
In the classical setting [START_REF] Baker | A theory of parameterized pattern matching: Algorithms and applications[END_REF], f is also constrained to be 1-to-1, and this relationship is called parameterized matching. Note that parameterized matching is an equivalence relation on parameterized words. Testing if two words are parameterized matching can be achieved in linear time [START_REF] Baker | Parameterized duplication in strings: Algorithms and an application to software maintenance[END_REF].

On the other hand, an instantiable word is a word on the alphabet Σ ∪ Π. Given f : Π → Σ, we extend it to constants by setting f (x) = x for all x ∈ Σ, and we then define the language of an instantiable word u to be

L(u) = {w ∈ Σ * | ∃f : Π → Σ, f (u) = w}.
This definition is akin to the L ⋄ semantic of a parameterized regular expression defined in [START_REF] Barceló | Parameterized regular expressions and their languages[END_REF], but restricted here to a single instantiable word. Two instantiable words w 1 and w 2 describe the same elements if their languages are equal, i.e. L(w 1 ) = L(w 2 ).

Different Definitions for Different Semantics and Problems

In this section, we introduce various new approximate variants of parameterized matching, and compare them, highlighting their differences on examples.

Variants of Parameterized Matching

In parameterized matching, the function f renaming parameters is generally considered to be 1-to-1. In this paper, we also consider the function matching problem, which is the case where f is not constrained to be injective anymore, as defined in [START_REF] Amir | Function matching: Algorithms, applications, and a lower bound[END_REF]. We also introduce multiple approximate variants of the parameterized matching problems, depending on several edit distances obtained by combining insertion, deletion and substitution operations. In that case, we say that u ′ and f realize the matching between u and v. We sometimes write that only f or u ′ realize the matching if the other one is not relevant to a proof.

Edit distances for parameterized matching between two strings:

P M d ▶ Definition 1. If d is an edit distance,
P M DIS F M DIS 1 F M DIS 2 u = aabba u = aabba u = aabba    L : (u1 → b, u2 → b)    L : (u1 → b, u2 → b)    f : [a → a, b → a] u ′ = bbbba u ′ = bbbba v ′ = aaaaa    f : [b → a, a → b]    f : [b → a, a → b]    L : (v5 → a) v = aaaab v = aaaab v = aaaab
In cases where Σ and Π are already defined, we omit them and simply call

P M d (u, v, k)
the result of the decision problem. Furthermore, P M d (u, v) denotes the minimum integer k

(potentially infinite) such that P M d (u, v, k) is true.
We can note that this problem can be solved in polynomial time adapting the classical dynamic programming algorithm [START_REF] Saul | A general method applicable to the search for similarities in the amino acid sequence of two proteins[END_REF][START_REF] Wagner | The string-to-string correction problem[END_REF] when the alphabet sizes are fixed.

Edit distances for function matching between 2 strings: F M d i

To denote function matching problems, we use F M instead of P M : F M D denotes the function matching problems with deletions.

Furthermore, if P is one of the problems defined above, we note P 1 the problem where edit operations are only applied to the first argument, and P 2 the one where they are only applied to the second argument.

▶ Definition 2. The F M d 1 and F M d 2 problems are defined as follows. For both problems, the input is the following:

Input: two parameterized words u, v, a parameter alphabet Π, a constant alphabet Σ, and a natural number k.

The problems are then:

Problem F M d 1 : ∃u ′ such that d(u, u ′ )
≤ k and u ′ and v are function matching?

Problem F M d 2 : ∃v ′ such that d(v, v ′ )
≤ k and u and v ′ are in function matching?

Note that the renaming function f is always applied to one input only. These definitions are illustrated on an example in Figure 2.

Comparing Variants of P M

In this subsection, we compare the different variants of our problem.

Regarding the one-to-one parameterized matching P M , note that the definition we give above is designed to be easily extended to the different variants when we drop the one-to-one restriction. In [START_REF] Hazay | Approximate parameterized matching[END_REF], the authors consider that the "correct way for defining the edit distance problem" is "to allow the operations and then apply the edit distance". By extending the definition of F M d 1 and F M d 2 to define P M d 1 and P M d 2 in the case of one-to-one matching, we see that it is actually possible to switch the order of operations, and to reverse them (deletions then become insertions and vice versa, and the renaming function f -1 is well-defined), in this case. This makes our definition consistent with the quote from [START_REF] Hazay | Approximate parameterized matching[END_REF] above. Formally, this gives the following equalities, for all parameterized words u and v:

P M I 1 (u, v) = P M D 1 (v, u) = P M D 2 (u, v) = P M I 2 (v, u).
More generally, it holds that for every edit distance However, for function matching, we only have the following equalities:

d, P M d 1 (u, v) = P M d -1 1 (v, u) = P M d -1 2 (u, v) = P M d 2 (v,
F M I 1 (u, v) = F M D 2 (u, v) and F M D 1 (u, v) = F M I 2 (u, v).
By taking u = ab and v = cc, we can notice that

F M I 1 (u, v) = 0 and F M D 1 (v, u) = ∞, so the equality F M I 1 (u, v) = F M D 1 (v, u) does not hold.
Finally, note the following inequalities:

▶ Proposition 3. Let u and v be parameterized words over Σ ∪ Π. Then:

1. F M d 1 (u, v) ≤ P M d (u, v); 2. If d is a symmetric edit distance, F M d 2 (u, v) ≤ F M d 1 (u, v).
Proof. The first point comes from the fact that any solution to P M d is also a solution to

F M d 1 .
For the second point, let k = F M d 1 (u, v), and let u ′ and f realize F M d 1 (u, v). We construct a word v ′ , obtained by applying to v the same operations applied to u to obtain u ′ , but "mirrored". That is to say, for every operation used in u, we apply an operation in v, in the following way:

If a letter a is inserted in u, there exists a position i in u ′ such that u ′ i = a, and f (u

′ i ) = v i . Hence, we delete v i in v.
Similarly, if a letter is substituted for another letter a ′ in u, there exists i such that 

u ′ i = a,
that F M DIS 1 (u, v) ≥ N -1.
The difference between F M d 1 and F M d 2 comes from the fact that Π is fixed in the input.

In the case where Π could be extended, both problems can be shown equivalent (for example if we allow a new letter c in the example of Figure 2, we also get

F M DIS 1 (u, v) = 1 by setting u 5 → c and f : [a → a, b → a, c → b]
), by using the same proof as Proposition 3.

Instantiable Words versus Parameterized Words

The parameterized word formalism and the instantiable word formalism give rise to two different definitions of distances between words. Given an edit distance d on words, there are two ways to extend it to words with parameters. Let w 1 and w 2 be two words over Σ ∪ Π.

The two possible extensions are the following:

C P M 2 0 2 3
16:8

On Distances between Words with Parameters

The distance between w 1 and w 2 is defined as d(w 1 , w 2 ) = P M d (w 1 , w 2 ). Alternatively, the function distance between w 1 and w 2 is defined as

F M d 1 (w 1 , w 2 ).
The distance between w 1 and w 2 is the distance between their respective languages seen as sets, that is to say

d(w 1 , w 2 ) = d(L(w 1 ), L(w 2 )) = sup u∈L(w1) inf v∈L(w2) d(u, v).
Equivalently, d(w 1 , w 2 ) ≤ k if and only if for all f 1 : Π → Σ, there exists

f 2 : Π → Σ such that d(f 1 (w 1 ), f 2 (w 2 )) ≤ k.
This second definition stems from the definition of distance between languages, as defined and studied in [START_REF] Benedikt | The cost of traveling between languages[END_REF][START_REF] Benedikt | Regular repair of specifications[END_REF][START_REF] Benedikt | Bounded repairability of word languages[END_REF]. 

▶
1. F M d 1 (w 2 , w 1 ) ≤ k 2. d(L(w 1 ), L(w 2 )) ≤ k
Notice how w 1 and w 2 change position between the two distances. This is not benign, as

F M d 1 is not symmetric. Proof. Suppose F M d 1 (w 2 , w 1 ) ≤ k. There exists f : Π → Π such that d(f (w 2 ), w 1 ) ≤ k. For
this proof, we will use the characterization of the distance betweeen languages with f 1 and f 2 .

Let

f 1 : Π → Σ. Define f 2 = f 1 •f . Since d(w 1 , f (w 2 )) ≤ k, we have d(f 1 (w 1 ), f 1 •f (w 2 )) ≤ k,
by following the same edit operations. Hence d(f 1 (w 1 ), f 2 (w 2 )) ≤ k.

Suppose now d(L(w 1 ), L(w 2 )) ≤ k. Let f 1 : Π → Σ be a 1-to-1 function such that for all parameters x in w 1 , f (x) does not appear in w 1 or w 2 . This is possible since Σ is large enough. There exists

f 2 : Π → Σ such that d(f 1 (w 1 ), f 2 (w 2 )) ≤ k. Let h : Σ → Π ∪ Σ be such that if x ∈ Π, h(f 1 (x)) = x, and if x / ∈ f 1 (Π), h(x) = x. We then have h • f 1 = Id. What is more, since h is injective, d(f 1 (w 1 ), f 2 (w 2 )) = d(h(f 1 (w 1 )), h(f 2 (w 2 )) = d(h(f 2 (w 2 )), w 1 ).
Hence, F M d 1 (w 2 , w 1 ) ≤ k. ◀

Hardness Results for Approximate Parameterized Matching

In this section, we study the complexity of the various parameterized matching problems.

We show the np-completeness of the simplest problems using only deletions, which will be sufficient to show the np-completeness of all the other problems. We start by proving some practical lemmas, and then proceed to the reductions.

"Block by block" Lemmas

In this section, we regroup a few useful technical lemmas. We start of by stating two simple results on distance and words, for which the proofs can be found in Appendix A. We then turn to block lemmas, which will later be useful in the proofs of Theorems 12,17 and 15, to combine the various gadgets defined during the reduction.

This lemma simply states a commutativity result between the application of a matching f and the rewriting steps. Proof idea: The proof is done by induction on k. We discuss whether the (k + 1)-th operation is an insertion, a deletion, or a substitution, and show that a corresponding operation can be used in f (u).

▶ Lemma 8. Let z, u and v be (parameterized) words, and let d be a distance. Then

d(zu, zv) = d(u, v).
Proof Idea: We show that we can consider every rewriting operation to be applied in u only:

if z is modified during an optimal rewriting sequence, the words have some redundancy, and the same operations could have been carried in u instead. We proceed again by induction, and focus on the base case by studying the 3 possible cases, one for each type of operation.

Next, we turn to prove "block by block" matching lemmas. Those results state that it is possible to encode multiple parameterized matching instances into a single one. They hold for every type of problems considered here, but their proofs vary slightly; we present them in order of increasing complexity. Note that all the constructions given can be achieved in polynomial time.

▶ Lemma 9. Let u 1 , . . . u n and v 1 , . . . v n be parameterized words over Σ ∪ Π such that for

1 ≤ i ≤ n, k i = |u i | -|v i | ≥ 0, and k = n i=1 k i .
There exist u and v two parameterized words over {#} ∪ Σ ∪ Π, where # is a fresh variable, such that the following are equivalent: Proof. The idea behind this proof and all the following ones is that we can introduce a separator # to concatenate all the words, and that this separator will never be touched by any deletions or applications of f .

1. P M D (u, v) = k 2. For all 1 ≤ i ≤ n, P M D (u i , v i ) = k i
Let # be a fresh constant. We define u = u 1 #u 2 # . . . #u n , and

v = v 1 #v 2 # . . . #v n .
2. =⇒ 1.: For every 1 ≤ i ≤ n, take u ′ i and f i to realize the matchings. We can obtain

u ′ = u ′ 1 #u ′ 2 .
. . #u ′ n from u by applying the same deletions. Taking f to be the smallest function extending all the f i , we get P M D (u, v) ≤ k.

1. =⇒ 2.: Assume P M D (u, v) ≤ k. Let u ′ and f realize this parameterized match.

Since the # symbols are constants, we have f (#) = #. Since u ′ is obtained from u by deletions, we have

|u ′ | # ≤ |u| # . Since f is injective and f (#) = #, |f (u ′ )| # ≤ |f (u)| # .
Hence, it holds that

|v| # = |f (u ′ )| # ≤ |f (u)| # = |u| # . Since |u| # = |v| # , this is an equality, and |f (u ′ )| # = |f (u)| # . Hence |u ′ | # = |u| # , and no # character is deleted. The word u ′ is then of the form u ′ 1 #u ′ 2 # . . . #u ′ n , where |u ′ i | # = 0 and D(u i , u ′ i ) = k i for all i. Thus, f (u ′ ) = f (u ′ 1 )#f (u ′ 2 )# . . . #f (u ′ n ) = v 1 #v 2 # . . . # v n .
Since no other # letter appear in any

f (u ′ i ) and v i , we can deduce that f (u ′ i ) = v i for all i. Finally, this yields P M D (u i , v i ) = k,
and taking all the f i = f gives all compatible functions, which concludes the proof. ◀

In this proof, we used a constant #. However, it can also be conducted without using 

Π ∪ {#},
where # is a fresh variable, such that the following are equivalent: Proof idea: The same technique as Lemma 9 is used but u and v are defined as u =

1. F M D 2 (u, v) ≤ k 2. For all 1 ≤ i ≤ n, F M D 2 (u i , v i ) ≤ k i ,
# k+1 u 1 #u 2 # . . . #u n and v = # k+1 v 1 #v 2 # . . . #v n where # k+1 denotes k + 1 repetitions
of the character #. The full proof can be found in Appendix A.

Finally, the same block result holds for F M D 1 , and will be used in the proof of theorem 15

▶ Lemma 11. Let u 1 , . . . u n and v 1 , . . . v n be parameterized words over Π such that for every

1 ≤ i ≤ n, k i = |u i | -|v i | ≥ 0, and k = n i=1 k i .
Then there exist u and v two parameterized words over Π ∪ {#}, where # is a fresh variable, such that the following are equivalent: Proof idea: The difference with Lemma 10 is that some # symbols might be deleted, while some base letters could be mapped to #. To ensure this does not happen, we define

1. F M D 1 (u, v) ≤ k 2. For all 1 ≤ i ≤ n, F M D 1 (u i , v i ) ≤ k i ,
u = # N u 1 # N u 2 . . . # N u n # N and v = # N v 1 # N v 2 . . . # N v n # N .
The full proof can be found in Appendix A.

The technique of block-by-block matching will be used in all the reductions, to encode multiple constraints in a single P M or F M instance.

1-to-1 Parameterized Matching P M

We now focus on the complexity of the P M d problems. These problems, as well as function matching problems, are all clearly in np: given the list of deletion, insertion or substitution operations to do and the matching to apply, it is easy to check that the solution is correct.

For the reductions in this paper, we always assume that words are written without constants, that is to say Σ = ∅, since this is sufficient for np-completeness results. This choice is also motivated by the results of Appendix B, which show that Σ can in most cases be coded into Π.

▶ Theorem 12. The 1-to-1 Parameterized Matching with deletions

P M D is np-complete.
The proof is a reduction from the np-complete problem 3-coloring [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. Given an instance G of 3-coloring, we will construct two words u and v. The word v will represent the list of vertices and edges of G, while the word u will list the color of each vertex, and the possible coloring of each pair of vertices joined by an edge. By deleting characters from u, we make a choice for the coloring of each vertex, and thus each edge. The function f answering the parameterized matching problem will assign a choice of color to each vertex. The instance that we define should be positive iff G is 3-colorable. More formally:

Proof. The 3-Coloring problem is defined as follows :

Function Matching F M d 2

The problem considered in this section is the one where deletions are applied to the second word, while f is applied to the first word.

▶ Theorem 17. F M D 2 is np-complete.
Proof Idea: The proof is very similar to the previous case, but the bracketing has to be adapted. Separators Y e are duplicated enough times to ensure that no vertex variable is mapped to them. The full proof can be found in Appendix A.

▶ Corollary 18. F M I 1 , F M DI 2 , and F M L 2 are all np-complete. Proof. F M I 1 is equivalent to F M D 2 .
For the two other problems, we use a reduction from F M D 2 exactly like in Corollary 14. ◀

This last result completes the picture of np-completeness proofs, and indicates that computing the distances between parameterized words defined in Section 3.3 is in general an np-complete problem.

Similarly to F M S 1 , F M S 2 is also polynomial-time solvable.

Approaches to Solve Parameterized Matching

In this section, we discuss two ways to get around the difficulty of the parameterized matching problems. The first one is to design an FPT algorithm in the alphabet size, and the second one is to translate the problem into a SAT formalism, with the intent of using a SAT-solver.

An FPT Algorithm in the Alphabet Size

The fact that Σ and Π are part of the input is what makes the various parameterized matching problems NP-hard. When the alphabet size is considered fixed, a simple polynomial algorithm can be used, which generalizes the "naïve" brute force algorithm of Theorem 1 of [START_REF] Keller | On the longest common parameterized subsequence[END_REF]: 

Algorithm 1 Simple FPT algorithm for F M d m ← 0 for all functions f : Π → Π do dist ← d(f (u), v) if dist ≤ m then m ← dist end if end for ▶ Theorem 19. Let d be a distance. Algorithm 1 computes F M d (u, v

A MaxSat Formulation of Parameterized Matching

In this section, we encode P M d problems into SAT problems, with the intent of solving them with a SAT solver. More precisely, we will use the weighted max-SAT variant of SAT, which is defined in the following way : In that case, clauses of φ c are called "hard" clauses while clauses of φ w are called "soft clauses". We give a proof of the equivalence in Proposition 26 of Appendix C.

Input: a set V of
We will define an encoding of an instance (u, v) of P M d such that an assignment of the variables of V will define an alignment between u and v. First, we make a link between the ID edit distance and the length of the optimal alignment between two strings. ▶ Definition 20. Let u and v be two words on Π, such that p = |u| and p ′ = |v|. A set A ⊂ 1, |u| × 1, |v| is an alignment between u and v iff the following are true:

1. Each position of u appears at most once : For all 1 ≤ i ≤ p and 1 ≤ j, j ′ ≤ p ′ , if (i, j) ∈ A and (i, j ′ ) ∈ A, then j = j ′ .

Each position of v appears at most once :

For all 1 ≤ j ≤ p ′ and 1 ≤ i, i ′ ≤ p, if (i, j) ∈ A and (i ′ , j) ∈ A, then i = i ′ .

3.

There are no crossings : if (i, j) ∈ A, (i ′ , j ′ ) ∈ A, and i ′ > i, then j ′ > j. In particular, finding the valuation maximizing k gives a maximal alignment between u and v, and with Theorem 21, the distance ID(u, v).

Proof. For this proof, we fix an ordering on the alphabet Π = {a 1 , . . . , a n }.

We define the set of literals V as

V = {x i,j | 1 ≤ i ≤ |u|, 1 ≤ j ≤ |v|} ∪ {y a,b | a ∈ Π, b ∈ Π}.
Intuitively, x i,j represents a match between position i and j in the alignment, and y a,b will represent the fact that f (a) = b. We define the following sets of formulas, where all indices i are taken between 1 and m and all j between 1 and p, and a and b are taken in Π :

∀i ∀j ′ ̸ = j, φ A1 i,j,j ′ ≡ x i,j =⇒ ¬x i,j ′ (NoDouble i) ∀j ∀i ′ ̸ = i, φ A2 i,i ′ ,j ≡ x i,j =⇒ ¬x i ′ ,j (NoDouble j) ∀i ′ > i ∀j ′ < j, φ C i ′ ,i,j,j ′ ≡ x i,j =⇒ ¬x i ′ ,j ′ (NoCrossing) ∀a∀b ̸ = b ′ , φ f a,b,b ′ ≡ y a,b =⇒ ¬y a,b ′ (Function) ∀a ̸ = a ′ ∀ ̸ = b, φ inj a,a ′ ,b ≡ y a,b =⇒ ¬y a ′ ,b (Injectivity) ∀i∀j, φ M i,j ≡ x i,j =⇒ y ui,vj (Match) ∀i, φ ∃ i ≡ 1≤j≤p x i,j (ExistsMatch) 
We then define φ c as the conjunction of all the formulas (NoDouble i), (NoDouble j), (NoCrossing), (Function), and (Match). Furthermore, we define φ inj as the conjunction of all the (Injectivity) formulas. Lastly, we define φ w = Since f is a function, (Function) is satisfied. Finally, if ν(x i,j ) = ⊤, then (i, j) ∈ A, and since A is a matching, f (u

) i = f (u i ) = v j and ν(y ui,vj ) = ⊤.
The proof for φ b is the same, and (Injectivity) ensures the injectivity of f . ◀

What is more, this proof can be adapted to change the ID distance to the Levenshtein distance, simply by choosing to consider all the (Match) formulas as soft clauses.

Experiments

The two approaches presented in Section 5 were implemented in Python to solve P M ID .

They are available under the GPL license at https://github.com/AaronFive/paramatch.

The FPT algorithm of Section 5.1 is implemented in the function parameterizedAlignment Our initial motivation to introduce parameterized matching under various distances is theater play comparison. To represent the structure of a theater play, we represent each character by a letter of the alphabet, and create the parameterized word obtained by considering the succession of all consecutive speakers. To check their adequacy with real data, we use a corpus of theater plays in which each character is represented by one letter of the alphabet, and each act of the play is represented by a string corresponding to the sequence of speaking characters. A letter may be duplicated in this string if the corresponding characters has lines in the end of a scene and in the beginning of the next one. Therefore, the edit distance between two parameter words representing acts will be small if both acts have a similar structure in terms of succession of speaking characters. We selected a corpus of 10 pairs of plays where one inspired the other, and performed 47 comparisons between pairs of acts. Among those comparisons, 26 were solved by the maxSAT algorithm and all by the FPT algorithm (detailed results are presented in the supplementary material available at https://github.com/AaronFive/paramatch/tree/main/corpus10pairs), with a 800 second timeout. The computation times are obtained on a XMG laptop running on Windows, with a 2.60 Ghz processor and 16 Gb RAM. Only the running time of MaxHS is provided, the encoding into a MaxSAT formula usually runs in approximately 1 second. Note that all instances are solved faster by the FPT algorithm than by the MaxSAT approach. The analysis of running times depending on the product of the lengths of the input strings (see supplementary material) shows that the MaxSAT approach may be relevant for strings with more than 10 distinct characters, but where the product of the length of input strings may not exceed 2000.

Conclusion

In this paper, we studied the complexity of several variants of the edit distance problem between parameterized words. We proved the np-completeness of all previously unsolved cases, including the Levenshtein distance left open in [START_REF] Hazay | Approximate parameterized matching[END_REF], and provided practical approaches to solve real instances of those problems. We also studied similar problems for various definitions of words with parameters, namely parameter words and parameterized expressions, proving some relationships with parameterized word problems.

As future work, we will study the restrictions introduced in [START_REF] Gawrychowski | Matching patterns with variables under hamming distance[END_REF][START_REF] Gawrychowski | Matching patterns with variables under edit distance[END_REF] for a pattern matching problem with patterns in the parameter, in order to obtain polynomial time algorithms for the edit distance between parameterized words. Moreover, we will explore the question of distance between sets of words, in particular when they are defined through generalizations of automata. These problems are variants of the notion of distance between regular languages as defined in [START_REF] Benedikt | The cost of traveling between languages[END_REF]. In this context, we can notice that different notions of automata can be considered: either automata generating parameterized words, or automata using parameters to define languages over classical words, with two different semantics as defined in [START_REF] Barceló | Parameterized regular expressions and their languages[END_REF].
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 1 Figure 1 Complexity of the variants of parameterized matching P M d , depending on the kind of operations (D: deletion, I: insertion, S: substitution) allowed in the edit distance d.

C P M 2 0 2 3 16: 4 On

 34 Distances between Words with ParametersFinally, in Section 7, we conclude the paper and give a few perspectives on the notion of distance between parameterized languages.

  we denote by P M d the parameterized matchingproblem under d, which is the following: Input: two parameterized words u, v, a parameter alphabet Π , an alphabet Σ of constants, and a natural number k. Problem: Does there exist u ′ such that d(u, u ′ ) ≤ k and u ′ and v are parameterized matching, i.e. there exists a 1-to-1 function f : Π ∪ Σ → Π ∪ Σ such that f | Σ = Id Σ , f (Π) = Π, and f (u ′ ) = v ?

Figure 2

 2 Figure 2 Side-by-side comparison of P M DIS , F M DIS 1

1 and F M d 2 ,▶ Example 4 . 1 , 1 ,

 12411 and we substitute v i to f (a). If a letter a is deleted in u at position i, we insert f (a) in v at position i instead. It then holds that f (u) = v ′ , and hence P M d 2 (u, v) ≤ k. ◀ Note that the above proof does not work to prove the converse inequality between F M d as it would require to consider an element of f -1 (a), which might be empty. This is illustrated in the following example, on the alphabet Π = {a, b}: Let N ∈ N and consider u = a N b N b and v = a N a N b. u and v are not in parameterized matching, hence F M DIS 1 (u, v) > 0 and F M DIS 2 (u, v) > 0. By substituting the last b in v for a a, and picking a function f such that f (a) = f (b) = a, we get F M DIS 2 (u, v) = 1 (see Figure 2 for an example with N = 2). For F M DIS since b appears in v, it holds that for any function f realizing F M DIS f (a) = b or f (b) = b. Hence, at least N occurrences of b appear in f (u). Since there is only one occurrence of b in v, it is clear

Example 5 .▶ Proposition 6 .

 56 Consider the words u = axyb and v = xbby, on the alphabets Σ = {a, b} and Π = {x, y}, and consider the distance S. On the one hand, F M S 1 (u, v) = 4, because regardless of the matching chosen, every letter of f (u) has to be substituted. On the other hand, for any function f 1 : Π → Σ, choosing f 2 such that f 2 (x) = a and f 2 (y) = b yields a distance d(f 1 (u), f 2 (v)) of at most 2, by substituting the 2 middle letters. Given a big enough alphabet, those two definitions can in fact be shown equivalent: Let w 1 and w 2 be words over Σ ∪ Π, and let d be a symmetric edit distance on Σ ∪ Π. Suppose |Σ| ≥ |w 1 | + |w 2 |, and let k be an integer. Then, the following are equivalent:

▶ Lemma 7 .

 7 Let d be a distance, k an integer and u, v two parameterized words such that P M d (u, v) ≤ k, and let f realize this parameterized match. Then: d(f (u), v) ≤ k. The same result holds for F M d 1 (u, v).

  and the applications f i realizing those matchings are all compatible.
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 31010 constant alphabet; indeed, constants can be encoded with parameters, as shown in Appendix B. Lemma 9 is still valid if P M D is replaced by F M D 2 . This time, we conduct this proof without resorting to the use of constants. This result will be used twice : once for the proof Distances between Words with Parameters of theorem 17, and again to show that we can once more encode constants into Π using Lemma 25 in Appendix B. Let u 1 , . . . u n and v 1 , . . . v n be parameterized words over Π such that k i = |v i | -|u i | ≥ 0, and k = n i=1 k i . Then there exist u and v, two parameterized words over

  and the applications f i realizing those matchings are all compatible.

  and the applications f i realizing those matchings are all compatible.

  ) in time O(|Π| |Π| |u||v|) Proof. Algorithm 1 uses an exhaustive search and finds min f :Π→Π d(f (u), v), which is the definition of F M d (u, v). Furthermore, there are |Π| |Π| functions from Π to Π, and computing d(f (u), v) is done in time O(|f (u)||v|) = O(|u||v|), hence a total running time in O(|Π| |Π| |u||v|).◀Note that this also leads to a similar algorithm for P M d by iterating over injective functions rather than all functions from Π to Π.

  literals, a formula φ = n i=1 φ i on V in conjunctive normal form (CNF), a weight function w : 1, n → N. Output : a valuation ν : V → {0, 1} such that ν⊨φi w(i) is maximal. Moreover, we will sometimes use a partially weighted variant of Max-SAT, which is defined in the following way : Input: a set V of literals, a satisfiable formula φ c on V in CNF, a formula φ w = n i=1 φ i on V in CNF and a weight function w : 1, n → N. Output : a valuation ν : V → {0, 1} such that ν ⊨ φ c and ν⊨φi w(i) is maximal.

4 . 1 . 2 .▶ Theorem 22 .

 41222 Aligned positions match in u and v : if (i, j) ∈ A, then u i = v j An alignment relates to the insertion/deletion distance ID in the following way : ▶ Theorem 21. Let u, v be words on Π and k ≤ |u| + |v| be an integer. The following are equivalent : There exists an alignment A such that 2|A| = |u| + |v| -k ID(u, v) ≤ k. Proof. The proof, which works by induction, can be found in Appendix C. ◀ We now turn to the max-SAT encoding of our problem. Let u and v be two words over Π. There exists a formula φ u,v = φ c ∧ φ w and a weight function w, instance of the partially weighted Max-SAT problem such that the following are equivalent: ν is a solution to this partially weighted Max-SAT instance and satisfies k clauses of φ w There exists a function f : Π → Π and an alignment between f (u) and v of size k. The formula φ uses |m||p| + |Π| 2 variables and is of size O(m 2 p 2 ) , where m = |u| and p = |v|. Moreover, there exists φ inj of size O(|Π| 3 ) such that the above result is true for f injective by replacing φ c with φ ′ c = φ c ∧ φ inj .

There are m p 2 ( 2 p 2 (NoCrossing), n n 2 (

 2222 set w(C) = 1 for every clause C of φ w . NoDouble i) formulas, p m 2 (NoDouble j), m Function) and (Injectivity) formulas, pm (Match) formulas and n (ExistsMatch) formulas. We now prove both implications of the theorem. Suppose ν is a valuation satisfying φ c and k clauses of φ w . We define, for all a, b ∈ P i, f (a) = b if and only if ν(y a,b ) = ⊤. Since ν satisfies all the (Function) formulas, this is a correct definition of a (partial) function. We define A = {(i, j) | ν(x i,j)=⊤ }. A is an alignment between f (u) and v. Indeed : (NoDouble i) and (NoDouble j) ensures point 1. and 2. of Definition 20, (NoCrossing) ensures point 3., and Match ensures point 4. The size of A is the number of x i,j instantiated to ⊤, which is exactly the number of clauses of φ c satisfied, i.e., k. Suppose now that there exists a function Π → Π and an alignment A between f (u) and v. Similarly, we define ν(y a,b ) = ⊤ if and only if f (a) = b, and ν(x i,j ) = ⊤ if and only if (i, j) ∈ A. Since A is an alignment, ν satisfies (NoDouble i),(NoDouble j), and (NoCrossing).
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 316 Distances between Words with Parametersof file fpt_alphabet_size.py. The MaxSAT-reduction of Section 5.2 is implemented in the function make_sat_instance of file sat_instance.py. The MaxHS solver[START_REF] Davies | Solving MAXSAT by Decoupling Optimization and Satisfaction[END_REF] available at http://www.maxhs.org is used by our script to solve the MaxSAT instances derived from the P M ID instances.
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2 Notations and Definitions 2.1 Basic Notations on Words and Editions Words An alphabet is

  a set of letters. A word on an alphabet A is a finite sequence of letters from A, indexed starting from 1. Let u be a word on A. Unless defined differently, we note u i the i-th letter of u, and |u| is the length of u.If i / ∈ [1, |u|], u i isdefined as the empty word ε. If x is a letter from A, |u| x is the number of times x appears in u. Similarly, if X is a set of letters, |u| X = x∈X |u| x is the number of occurrences of letters of X in u. If f is a function defined on an alphabet A, we extend it to A * in the usual way, so that f

Input: G = (V, E) a graph with vertices V and edges E Output: A coloring c : V → {c 1 , c 2 , c 3 } such that for all {u, v} ∈ E, c(u) ̸ = c(v) Let G = (V, E) be an instance of 3-Coloring, and let V = {x 1 , . . . , x n } be the set of its n vertices, and E = {e 1 , . . . , e m } be the set of its edges. The parameter alphabet Π, of polynomial size in O(|G|) will contain:

x 1 , . . . x n , corresponding to the vertices of G; n copies of the parameters corresponding to the colors c 1 , c 2 and c 3 :

for every edge e, the delimiters Y e and □ e 1 , . . . □ e 6 ; 2n bottom symbols, ⊥ i 1 , ⊥ i 2 for 1 ≤ i ≤ n, which will be used to fix the image of some parameters.

First, we define words that will encode the constraint that each vertex is colored, and we make sure that the unused color variables cannot be assigned elsewhere. For 1 ≤ i ≤ n,

We then define words that include all possible colorings of each edge, and we make sure to use enough brackets. For every edge e = {x i , x j }, we define u e 2 = □ e ⇒: Suppose G is 3-colorable. Let c : V → {c 1 , c 2 , c 3 } be a 3-coloring of G. We define f in the following way, for 1 ≤ y ≤ 3:

For every edge e = {x i , x j } ∈ E, since c is a valid coloring, and since every allowed arrangements of the colors is in u e 2 , there exists a unique factor of the form □ e y f -1 (x i )f -1 (x j )□ e y in u e 2 , for some 1 ≤ y ≤ n. Hence, we define f (□ e y ) = Y e . The function f can then be extended in any way to be 1-to-1 (the remaining characters whose image under f are not yet defined will all be deleted in what follows, so their image doesn't matter).

By using f defined in this way:

≤ 2, by deleting the 2 colors not matching the color of

For every edge e ∈ E, P M D (u e 2 , v e 2 ) ≤ 20, by keeping only the factor delimited by the □ e y symbols defined above.

Thus Lemma 9 yields P M D (u, v) ≤ k.

⇐: We now suppose u and v are a parameterized match with k deletions. The following can then be derived about f :

Each of these matchings is done with exactly 2 deletions, for a total of 2n.

2.

Since the u i ⊥ and v i ⊥ are in matching, the two other colors that are not sent to x i are sent to ⊥ i 1 and ⊥ i 2 . Each of these matchings is done with exactly one deletion, for a total of n.

3.

For every edge e ∈ E, u Finally, u e′ 2 is of the form □ e y c t c t ′ □ e y , where t ̸ = t ′ are elements of {1, 2, 3}. Each of these matchings is done with exactly 20 deletions, for a total of 20m.

The function f then implies a coloring of G. Formally, we define col(c i y ) = c y for 1 ≤ i ≤ n and 1 ≤ y ≤ 3. We can then define c :

Point 1 above ensures that this function definition is correct. Furthermore, for every edge The same result in fact holds for all other distances, and in particular the longest common sub-word distance ID. This proves once again the result shown in [START_REF] Keller | On the longest common parameterized subsequence[END_REF]:

▶ Corollary 14. The problems P M I , P M DI , P M IS , P M DS are all np-complete.

Proof. From Section 3.2, P M I and P M D are equivalent in the 1-to-1 case. For the other problem, we do an immediate reduction from P M I or P M D analog to the proof of Theorem 13.

◀

We now turn to proofs of np-completeness without the restriction asking f to be injective.

Function Matching F M d 1

The problem considered in this section is the one where both deletions and f are applied to the first word. A reduction very similar to the one given for P M D is used.

Proof idea: The reduction follows the same idea as in Theorem 12. Since the function f realizing the matchings is not injective in this version, it will be used to send every vertex to its color. Moreover, we add more "sink" ⊥ letters to force the image of every unused letter.

The full proof can be found in Appendix A.

This again ensures the np-completeness of the problem for all edit distances, using the same proof as for Theorem 13.

We can notice that the problem F M S 1 , where substitution is the only operation allowed, is polynomial-time solvable. Intuitively, for each parameter, consider the possible parameters that it could be mapped to, and their respective number of occurrences. Then, choose the letter with the highest number of occurrences for the mapping. The remaining letters are then substituted.

A Details of the proofs

Proof of Lemma 7. We proceed by induction on k. If k = 0, then u and v are parameterized matching, and f (u) = v, thus d(f (u), v) = 0. Suppose the result holds until a fixed k. Suppose

, we get u ′′ from u by applying only one operation. We prove that regardless of this operation,

which will conclude the proof. There are 3 cases to consider:

If the operation is a deletion, u = v 1 xv 2 and u ′′ = v 1 v 2 for some words v 1 and v 2 and some letter x. Then

If it is an insertion, u = v 1 v 2 and u ′′ = v 1 xv 2 , and we can similarly go from

If it is a substitution, u = v 1 xv 2 and u ′′ = v 1 yv 2 , and we can go from f (u) to f (u ′′ ) by replacing f (x) with f (y).

Hence d(f (u), f (u ′′ )) = 1, which concludes the proof for P M d .

Since this proof does not use the fact that f is 1-to-1, it also stands for

We prove that any rewriting sequence from zu to zv can be modified such that no edit operation is applied in z. This will be enough to prove the result, as the edit sequence obtained can be seen as an edit sequence between u and v. We proceed by induction on the size of z. Suppose |z| = 1. Then z = a ∈ Σ ∪ Π. We can consider that no character is modified twice in an edit sequence (i.e. no character is inserted and then deleted, or inserted and then substituted etc.), as that is always sub-optimal. Suppose z is modified. There are 3 possible cases:

1. There is an insertion in z, hence a word w ends up being inserted before a. Since zv = av starts with a, w must start with an a, hence w = aw ′ . We insert w ′ a to the right of z instead with the same operations. If z should be deleted or substituted, we apply the same operation to the new a instead. These operations yield the same result, and do not modify z.

2.

There is a deletion in z, and hence a is deleted. Since this an optimal rewriting sequence, no a is created at that position through insertion or substitution afterwards. Since av starts with an a, u must be of the form u = sau ′ , where all the characters in s are deleted, and a isn't. Deleting sa instead of as yields the same result, and doesn't modify z.

3.

There is a substitution in z, hence a is modified into a character b ̸ = a, that will not be further modified. Since av starts with a, an a has to be inserted in z, which is handled in case 1.

Hence, we can consider that every edit operations is done in u, and d(au, av) = d(u, v). The proof of the reverse direction is the same as in Lemma 9, so we only prove the other one.

Assume F M D 2 (u, v) ≤ k. Let v ′ and f realize this parameterized match.
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We prove that f (#) = #, and that no other character is sent to # by f . Indeed, v starts with k + 1 symbols #, which ensure that v ′ starts with the letter #. Since u starts with # and f (u

Hence |v ′ | # = k + n and all those inequalities are equalities, which is only the case when no # symbols is deleted from v, and that for all x ̸ = #, f (x) ̸ = #.

Since all the # symbols are left untouched, the rest of the proof is the same as in Lemma 9, and all of the factors u i and v i are parameterized matching. ◀

Proof of Lemma 11. Let # be a fresh parameterized letter, and

we only prove the non-trivial implication.

Suppose F M D 1 (u, v) ≤ k, and let f and u ′ realize this matching. Since u starts with k + 1 copies of #, u ′ starts with #. Since v starts with # too, f (#) = #.

We now prove that we can consider that for all x ̸ = #, f (x) ̸ = #. This will also imply that no # symbol is deleted from u. all # in v appear in blocks of size N , a must contribute to such a block, after deletions and application of f . We distinguish two cases:

1. The entirety of the word w 1 is deleted. In this case, at least one symbol # from the left # N block is deleted; otherwise f (# N )f (a) = # N +1 would be a factor of v, which is impossible. Thus, choosing not to delete # and to delete a instead yields the same result.

2. w 1 is not deleted. Since no character from S appears to the left of a, f (a) is the start of a # N block. Furthermore, since |u| S ≤ k, it is not possible to form # N with only a and w 2 , and characters from the right # N contribute to it. Hence, at least one # symbol from this right block is deleted. Like before, the same result can be obtained by not deleting it, and deleting a instead.

Either way, we can repeat this process to eliminate all occurrences of characters of S and of deletions of #, which proves that we can consider that for all x ̸ = #, f (x) ̸ = #. Once again, we are taken back to the conditions of Lemma 9, and the rest of the proof follows. ◀ Proof of Theorem 15. We define Π like in Theorem 12, and we add the letters ⊥ 1 , ⊥ 2 , ⊥ 3 , ⊥ 4 and ⊥ 5 . Similarly, we define 

We then apply Lemma 11 with

⇒ Suppose G is 3 colorable. Define f like in Theorem 12 on the c i y and □ e y . Let e be an edge and k e ∈ [START_REF] Agrawal | Efficient similarity search in sequence databases[END_REF][START_REF] Baker | A theory of parameterized pattern matching: Algorithms and applications[END_REF] be the integer such that f (□ e ke ) is defined. We map every remaining □ e y C P M 2 0 2 3
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in the following way:

It is then easy to check that d(f (u), v) = k, and thus

⇐ Suppose F M D 1 (u, v) ≤ k, and let f and u ′ realize it. We define a coloring of G based on f . We note, for 1 ≤ i ≤ n and 1

We show in what follows that (1) this function definition is correct and ( 2) it is a valid coloring, i.e. if e = {x i , x j } is an edge, c(x i ) ̸ = c(x j ).

(1): The same points 1. and 2. from the proof of Theorem 12 apply, hence for every

while the two others are sent to ⊥ i 1 and ⊥ i 2 , hence the result.

(2): Let e be an edge. The words u e ⊥ and v e ⊥ are in matching, which is done with exactly one deletion. Hence, there exists k e such that for every e ∈ E and every 1 ≤ i, j ≤ 3, i ̸ = j, the delimiters Y e i,j .

We define for 1

If e is an edge and c i and c j are two colors,

For every edge e = {x i , x j }, we now define We now apply Lemma 10 with

⇒ Suppose G is 3-colorable, and let c :

For every edge e = {x i , x j }, let s and t be such that c(x i ) = c s and c(x j ) = c t .

We then define f (Y e ) = Y e s,t . It is easy to check now that d(f (u), v) = k, and hence

Lemma 10 ensures that the words u i and v i are in matching, which proves (1).

Lemma 10 also ensures that the words u e and v e are in matching. Hence, there exist i ̸ = j with 1 ≤ i, j ≤ 3 such that f (Y e ) = Y e i,j . This implies that all but one of the w e factors from v e 2 are suppressed, and that the remaining one is w e (c i , c j ).

Hence f (x s ) = c i and f (x t ) = c j , which proves (2).

◀

B Encoding Constant Alphabet Σ in Π

We show why it is always possible to consider that Σ = ∅ for certain problems. These results use the lemmas proved in Section 4.1.

▶ Lemma 23. Let d be a distance, k an integer and u and v be two parameterized words over the alphabet of constants Σ and the alphabet of parameters Π. There exist words ũ and ṽ over the alphabet of constants ∅ and the alphabet of parameters Π ′ = Π ⊎ Σ such that the following are equivalent:

In particular, this implies that if P M d (ũ, ṽ) ≤ k, all functions f realizing this matching verify that for all x ∈ Σ, f (x) = x, and for all x ∈ Π, f (x) ∈ Π. Hence P M d (u, v) ≤ k. ◀ ▶ Remark 24. Note that the words ũ and ṽ have a size increased by N Σ. If less operations are considered, it is possible to reduce this overhead. For example, in the case of P M D , we can take z to be of the form a 1 . . . a n z N , to reduce the overhead to N + Σ.

Similarly, constants can be encoded in Π in some F M problems. We prove this result for F M D 2 , with the help of the block decomposition allowed by Lemma 10.

▶ Lemma 25. Let u and v be two parameterized words over the alphabet of constants Σ and the alphabet of parameters Π. There exist words ũ and ṽ over the alphabet of constants ∅ and the alphabet of parameters Π ′ = Π ⊎ Σ such that the following are equivalent: 

too. Indeed, it is enough to apply the same operations in v, and to delete all the characters but f (b i ) in the i-th copy of z Π .

Suppose now that F M D 2 (ũ, ṽ) ≤ k, and let f realize it. Then, by Lemma 10, we have:
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For every 1