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ABSTRACT

SIGNAL belongs to the synchronous languages family. Such
languages are widely used in the design of safety-critical real-
time systems such as avionics, space systems, and nuclear
power plants. This paper reports a key step of a verified SIG-
NAL compiler prototype, that is the transformation from a
subset of SIGNAL to S-CGA (a variant of clocked guarded
actions) and the proof of semantics preservation. Compared
with the existing SIGNAL compiler, we use clocked guarded
actions as the intermediate representation, to integrate more
synchronous programs into our verified compiler prototype
in the future. However, in contrast to the SIGNAL language,
clocked guarded actions can evaluate a variable even if its
clock does not hold. Thus, we propose a variant of clocked
guarded actions, namely S-CGA, which constrains variable
accesses as done by SIGNAL. To conform with the revised
semantics of clocked guarded actions, we also do some ad-
justments on the existing translation rules from SIGNAL to
clocked guarded actions. Finally, the verified transformation
is mechanized in the theorem prover Coq.

Keywords

Synchronous languages, Verified compiler, SIGNAL, Guarded
actions, Semantics preservation

1. INTRODUCTION
Safety-critical real-time systems such as avionics, space

systems, and nuclear power plants, are also considered as
reactive systems, because they always interact with their
environment continuously. The environment can be some
physical devices to be controlled, a human operator, or other
reactive systems. These systems receive from the environ-
ment input events, and compute the output information,
which is eventually sent to the environment. The arrival
time of events may be different, and the computation needs
time. The synchronous approach is an important choice for
the design of these systems, which relies on the synchronous
hypothesis [25]. Firstly, the computation time is abstracted
as zero, that lets system behaviors be divided into a dis-
crete sequence of instants. At each instant, the system does
input-computation-output, which takes zero time. Secondly,
the different arrival time of events are abstracted as the rel-
ative order between events. Even if the physical time is ab-
stracted, the inherent functional properties are not changed,
so we can say this method focuses on functional behaviors
at a platform-independent level.

There are several synchronous languages, such as ESTEREL
[3], LUSTRE [16] and QUARTZ [27] based on the perfect
synchrony paradigm, and SIGNAL [1] based on the poly-
chrony paradigm. Halfway between LUSTRE and SIGNAL,
we can cite Lucid Synchrone [26] which allows clock synthe-
sis and oversampling. These languages can be considered as
different implementations of the synchronous hypothesis.

However, an integration infrastructure for different syn-
chronous languages has gained a lot of interests in recent
years [4][5][28]. It is not only possible to deepen the under-
standing of these different models of computation but more
importantly, one can reuse a common verification, simula-
tion and synthesis back-end tool for different models. A
classical solution used e.g. in most compilers is to use a
common intermediate representation, which bridges the gap
between powerful programming languages with complex se-
mantics and the low-level description of the target code.

Guarded commands [9], called asynchronous guarded ac-
tions by J. Brandt et al. [4], are a well-established concept
for the description of concurrent systems. In the spirit of the
guarded commands, J. Brandt et al. propose synchronous
guarded actions [7] as an intermediate representation for



their QUARTZ compiler. As the name suggests, it follows
the synchronous model. Hence, the behavior (control flow
as well as data flow) is basically described by sets of guarded
actions of the form 〈γ ⇒ A〉. The boolean condition γ is
called the guard and A is called the action. To support the
integration of synchronous, polychronous and asynchronous
models (such as CAOS [8] or SHIM [10]), they propose an ex-
tended intermediate representation, that is clocked guarded
actions [4][5] where one can declare explicitly a set of clocks.
They also show how clocked guarded actions can be used for
verification by symbolic model checking (SMV) and simula-
tion by SystemC. [6] presents an embedding of polychronous
programs into synchronous ones. The embedding gives us
access to the methods and tools that already exist for syn-
chronous specifications, especially for simulation and veri-
fication (as provided by the Averest system1). Moreover,
we can also do a translation in another direction, that is
the translation of synchronous programs into polychronous
ones. It can be considered as a desynchronization of syn-
chronous programs to GALS architectures through reusing
the existing Polychrony2 tool.

For a safety-critical system, it is naturally required that
the compiler must be verified to ensure that the source pro-
gram semantics is preserved. For example, the SCADE
Suite3 KCG automatic C code generator has been qualified
as a development tool at DO-178B level A. Our work mainly
focuses on the SIGNAL language. Following the global idea,
we would like to extract a verified SIGNAL compiler from a
correctness proof developed within the theorem prover Coq
as it has been done in the GENEAUTO project for a part of
the SIMULINK compiler [18]. The intermediate representa-
tion is a variant of clocked guarded actions (called S-CGA),
and currently the target is sequential C code (multi-threaded
code will be considered in the future). This paper reports
one of the transformations of the verified SIGNAL compiler
prototype, that is the transformation from the subset of SIG-
NAL to S-CGA and the proof of semantics preservation.
There exist several semantics for SIGNAL, such as deno-
tational semantics based on traces (called trace semantics)
[2][12][14], denotational semantics based on tags which puts
forward a partial order view of time (called tagged model se-
mantics) [12][15], structural operational semantics defining
inductively a set of possible transitions [1][12], operational
semantics defined by synchronous transition systems (STS)
[23]. [31] study the equivalence between the trace semantics
and the tagged model semantics, to assert a determined and
precise semantics of the SIGNAL language. [28] defines a
unified constructive semantic framework to unite QUARTZ
and SIGNAL. This framework allows us to better under-
stand the relationship between synchrony and polychrony.
Along the way, they define an executable operational seman-
tics of SIGNAL. The relation between our work and related
work is shown in Figure 1 (which extends the Figure given
in [4]).

The contribution of this paper is the study of a veri-
fied SIGNAL compiler prototype, while existing formal ver-
ification techniques around SIGNAL are mainly based on
translation validation [23][22]. Furthermore, compared with
the existing SIGNAL compiler-Polychrony, we use clocked

1http://www.averest.org
2http://www.irisa.fr/espresso/Polychrony
3http://www.esterel-technologies.com/

Figure 1: A global view of the relation between our
work and related work

guarded actions as the intermediate representation, to inte-
grate more synchronous programs such as QUARTZ, AIF4

[4] into our verified compiler prototype in the future. How-
ever, in contrast to the SIGNAL language, clocked guarded
actions can evaluate a variable even if its clock does not
hold. Thus, we propose a variant of clocked guarded ac-
tions, namely S-CGA, which constrains variable accesses as
done by SIGNAL. To conform with the revised semantics
of clocked guarded actions, we also do some adjustments
on the translation rules from SIGNAL to clocked guarded
actions (which are given by [4][5]). Moreover, the verified
transformation is mechanized in the theorem prover Coq.

The rest of this paper is structured as follows. Section 2
introduces the basic concepts of the SIGNAL language. The
abstract syntax of SIGNAL and its denotational semantics
based on the trace model are also given. Section 3 presents
the abstract syntax and the denotational semantics of S-
CGA. Section 4 gives the translation rules. The proof of
the semantics equivalence of the transformation is presented
in Section 5. Section 6 gives an overview of our compiler
prototype. Section 7 discusses the related work, and Section
8 gives some concluding remarks.

2. AN INTRODUCTION TO SIGNAL
In the SIGNAL language, the variables can be evaluated

only at some instants which define their so-called clocks.
Moreover, since SIGNAL is polychronous, each variable can
have its own clock. In this section, we first introduce the
basic concepts and the abstract syntax of the SIGNAL lan-
guage, and then we present the semantics domain and the
trace semantics of SIGNAL.

2.1 Basic Concepts and Abstract Syntax of SIG-
NAL

Signals As declared in the synchronous hypothesis, the
behaviors of a reactive system are divided into a discrete se-
quence of instants. At each instant, the system does input-
computation-output, which takes zero time. So, the inputs
and outputs are sequences of values, each value of the se-
quence being present at some instants. Such a sequence
is called a signal. Consequently, at each instant, a signal
may be present or absent (denoted by ⊥). In SIGNAL, sig-
nals must be declared before being used, with an identifer
(i.e., signal variable or the name of signal) and an associated
type for their values such as integer, real, complex, boolean,
event, string, etc.

4Averest Intermediate Format



Example 1 Three signals named input1, input2, output are
shown as follows.

input1 1 ⊥ 3 ⊥ · · ·
input2 ⊥ 5 7 9 · · ·
output ⊥ ⊥ 10 ⊥ · · ·

Abstract Clock The set of instants where a signal takes
a value is the abstract clock of the signal. Two signals are
synchronous if they are always present and absent at the
same instants, which means they have the same abstract
clock.

In the example given above, the abstract clock of input1,

input2 and output, denoted respectively înput1, înput2 and

ôutput, are defined by different sets of logical instants.
Moreover, SIGNAL can specify the relations between the

abstract clocks of signals in two ways: implicitly or explic-
itly.

Primitive Constructs SIGNAL uses several primitive
constructs to express the relations between signals, includ-
ing relations between values and relations between abstract
clocks. Moreover, the primitive constructs can be classified
into two families: monoclock operators (for which all sig-
nals involved have the same abstract clock) and multiclock
operators (for which the signals involved may have different
clocks).

• Monoclock operators, including instantaneous function
and delay. The instantaneous function x := f(x1, · · · , xn)
applied on a set of inputs x1, · · · , xn will produce the
output x, while the delay operator x := x1 $ init c

sends a previous value of the input to the output with
an initial value c.

• Multiclock operators, including undersampling and de-
terministic merging. The undersampling operator x :=
x1 when x2 is used to check the output of an input at
the true occurrence of another input, while the deter-
ministic merging operator x := x1 default x2 is used
to select between two inputs to be sent as the output,
with a higher priority to the first input.

Note that, these operators specify the relations between
the abstract clocks of the signals in an implicit way.
In the SIGNAL language, the relations between values

and the relations between abstract clocks of the signals, are
defined as equations, and a process consists of a set of equa-
tions. Two basic operators apply to processes, the first one
is the composition of different processes, and the other one
is the local declaration in which the scope of a signal is re-
stricted to a process.
Extended Constructs SIGNAL also provides some op-

erators to express control-related properties by specifying
clock relations explicitly, such as clock synchronization, set
operators on clocks (union, intersection, difference) and clock
comparison.

• Clock synchronization, the equation x1 ˆ= x2 ˆ= · · ·
ˆ= xn specifies that signals x1, x2, · · · , xn are syn-
chronous.

• Set operators on clocks, such as the equation x:= x1

ˆ+ x2 defines the clock of x as the union of the clocks
of signals x1 and x2, the equation x:= x1 ˆ* x2 defines
the clock of x as the intersection of the clocks of signals
x1 and x2, and the equation x:= x1 ˆ- x2 defines the

clock of x as the difference of the clocks of signals x1

and x2.

• Clock comparison, such as the statement x1 ˆ< x2

specifies a set inclusion relation between the clocks of
signals x1 and x2, and the statement x1 ˆ> x2 specifies
a set containment relation between the clocks of signals
x1 and x2.

The semantics of each of the extended constructs is de-
fined in term of the primitive constructs, so we just consider
the primitive constructs, that is kernel SIGNAL (kSIGNAL
for short). Its abstract syntax is presented as follows.

P ::= x := f(x1, · · · , xn) (instantaneous function)
|x := x1 $ init c (delay)
|x := x1 when x2 (undersampling)
|x := x1 default x2 (deterministic merging)
|P |P ′ (composition)

We should notice that we can use both primitive con-
structs and extended constructs in the subset of SIGNAL.
However, the compiler will translate it into kSIGNAL (just
use primitive constructs). So, in the proof of semantics
preservation, we consider kSIGNAL and S-CGA.

2.2 Trace Model
There exist several semantics for SIGNAL, such as trace

semantics (which is used in the reference manual for SIG-
NAL Version 4), tagged model semantics (based on tags
which puts forward a partial order view of time), structural
operational semantics, etc. This paper considers the trace
semantics. In the following paragraphs, we summarize the
trace model [2][12] which is used to define the trace seman-
tics of SIGNAL.

Let X be a set of variables, and let V be the set of values
that can be taken by the variables. For a variable x ∈ X , and
a non-empty subset X of variables in X , we consider Vx the
domain of values that may be taken by x, and VX =

⋃
x∈X

Vx.

The symbol ⊥ (⊥ 6∈ V) is introduced to express the ab-
sence of valuation of a variable. Then we denote:

V⊥ = V ∪ {⊥}

V⊥
X = VX ∪ {⊥}

The basic object manipulated by the SIGNAL language
are signals. The length of a signal can be either finite or
infinite.

Definition 1 (Signal) A signal s is a sequence (si)i∈I of
typed values (of V⊥), where I is the set of natural numbers
N or an initial segment of N, including the empty segment.

After, the definition of traces is given. Note that, a sig-
nal is just a sequence of values corresponding to a signal
variable, while a trace defines the synchronized sequences of
values of a set of signal variables.

Definition 2 (Event) Considering X a non-empty subset
of X , we call event on X any application

e : X → V⊥
X

• e(x) = ⊥ indicates that variable x has no value in the
event.



• e(x) = v indicates, for v ∈ Vx, that variable x takes
the value v in the event.

The absent event on X (X → {⊥}), where all the signals
are absent at a logical instant, is denoted ⊥e(X). Moreover,
the set of events on X (X → V⊥

X) is denoted εX .
A trace is a sequence of events. For any subset X of X ,

we consider the following definition of the set ΦX of traces
on X .

Definition 3 (Traces) ΦX is the set of traces on X , de-
fined as the set of applications N → εX where N is the set
of natural numbers.

Similarly, a trace can be finite. However, we can extend
the finite sequence with infinite absent events, to get an
infinite trace.

The absent trace on X (N → {⊥e(X)}), i.e., the infinite
sequence formed by the infinite repetition of ⊥e(X), is de-
noted ⊥X .

Definition 4 (Process) Given a SIGNAL process, its trace
semantics, denoted Process, includes a set of signal variables
defining the domain of the process and a set of traces.

Definition 5 (Trace Equivalence) Two traces are equiv-
alent if and only if they have the same set of signal variables
and the same set of signals.

2.3 Trace Semantics of SIGNAL
Based on the trace model, the trace semantics of SIGNAL

is presented as follows. It defines the set of traces associated
to each primitive construct of SIGNAL.

Trace Semantics 1 The trace semantics of the instanta-
neous function x := f(x1, · · · , xn) is defined as follows:

∀i ∈ N

xi =

{
⊥ if x1i = . . . = xni = ⊥
f(x1i, . . . , xni) if x1i 6= ⊥ ∧ . . . ∧ xni 6= ⊥

At each instant i, the signals are either all present or all
absent, i.e., they are synchronous, denoted x ˆ = x1 ˆ = · · ·
ˆ = xn. xi gets the value of f(x1i, . . . , xni) when the signals
are all present. The function f includes different mathe-
matical operations, such as arithmetic operations, boolean
operations, etc.
Trace Semantics 2 The trace semantics of the delay

construct x := x1 $ init c is defined as follows:

− (∀i ∈ N) x1i = ⊥ ⇔ xi = ⊥
− {k | x1k 6= ⊥} 6= ∅ ⇒ xmin{k|x1k 6=⊥} = c

− (∀i ∈ N) x1i 6= ⊥ ∧ {k > i | x1k 6= ⊥} 6= ∅
⇒ xmin{k>i|x1k 6=⊥} = x1i

Here, min(X) denotes the minimum of a non-empty set of
naturals. Similarly to the instantaneous function, the delay
construct also requires signals x and x1 have the same clock,
denoted x ˆ= x1. Given a logical instant i, x takes the most
recent value of x1 except the one at i. Initially, x takes the
value c.

Trace Semantics 3 The trace semantics of the under-
sampling construct x := x1 when x2 is defined as follows:

∀i ∈ N

xi =

{
x1i if x2i = true

⊥ otherwise

Here, x and x1 have the same type and x2 is a boolean
signal. The clock of x is the intersection of the clock of x1

and the true occurrences of x2, denoted x=x1 ˆ* [x2], where
[x2] = x̂2 ∧ x2 represents the true occurrences of x2.

Trace Semantics 4 The trace semantics of the deter-
ministic merging construct x := x1 default x2 is defined as
follows:

∀i ∈ N

xi =

{
x1i if x1i 6= ⊥
x2i otherwise

Here, signals x, x1 and x2 have the same type. The clock
of x is the union of the clocks of x1 and x2, denoted x =
x1 ˆ+ x2. Given a logical instant i, xi gets the merge of
the values of x1i and x2i, and the value of x1i has a higher
priority.

Finally, we apply these semantics rules to a SIGNAL pro-
cess, to get a complete semantics of the process, that is
Process (Definition 4).

3. S-CGA
In the papers [4] and [5], clocked guarded actions has

been defined as a common representation for synchronous
(via synchronous guarded actions), polychronous and asyn-
chronous (via asynchronous guarded actions) models. It has
multi-clocked feature. However, in contrast to the SIGNAL
language, clocked guarded actions can evaluate a variable
even if its clock does not hold. As a consequence, we intro-
duce S-CGA, which is a variant of clocked guarded actions.
S-CGA constrains variable accesses as done by SIGNAL. In
this section, we first present the syntax of S-CGA, and then
we give the denotational semantics of S-CGA based on the
trace model.

3.1 Abstract Syntax of S-CGA
S-CGA has the same structure as clocked guarded actions,

but they have different semantics.

Definition 6 (S-CGA) A S-CGA system is represented
by a set of guarded actions of the form 〈γ ⇒ A〉 defined
over a set of variables X. The Boolean condition γ is called
the guard and A is called the action. Guarded actions can
be of the following forms:

(1) γ ⇒ x = τ (immediate)
(2) γ ⇒ next(x) = τ (delayed)
(3) γ ⇒ assume(σ) (assumption)

where

• the guard γ is a Boolean condition over the variables
of X, their respective clocks (for a variable x ∈ X, we
denote its clock x̂), and their respective initial clocks
(denoted init(x̂)),

• τ is an expression over X,

• σ is a Boolean expression over the variables of X and
their clocks.



An immediate assignment x = τ writes the value of τ im-
mediately to the variable x. The form (1) implicitly imposes
that if γ is defined5 and its value is true, then x is present
and τ is defined. Moreover, init(x̂) exactly holds the first
instant when x is present.

A delayed assignment next(x) = τ evaluates τ in the given
instant but changes the value of the variable x at next time
clock x̂ ticks.

The form (3) defines a constraint. It determines a Boolean
condition which has to hold when γ is defined and true. All
the execution traces must satisfy this constraint. Otherwise,
they are ignored.

Guarded actions are composed by using the parallel oper-
ator ‖.

Remark 1 The⇒ is S-CGA syntactic token for separating
the guard and the action, later we use → for the logical
implication.

To define the semantics of S-CGA precisely, we first present
the syntax of guards (γ), assumptions (σ) and expressions
(τ) in detail.

Definition 7 The syntax of γ, σ, and τ are as follows.

γ, σ ::= init(x̂) | x | x̂ | f(γ, ..., γ)
τ ::= x | f(τ, ..., τ)

Note that, in this definition, f can represent a constant
(true, false, . . . ), an arithmetic or logical operator, and
more generally an user-defined function.

3.2 Denotational Semantics of S-CGA
Firstly, we introduce the clock of the terms such as guards

(γ), assumptions (σ) and expressions (τ). We consider here
that guards and assumptions have the same syntax.

Definition 8 Given a trace S and an instant i, we define
the following functions:

• ĴγK
S,i

defines the domain of JγKS,i. ĴγK
S,i

is true in S

at instant i if all the variables of γ are present at that

instant. Note that Ĵx̂K
S,i

is defined to be true because
a clock can be read at any instant.

ĴγK
S,i

:





̂Jinit(x̂)K
S,i

= true

̂Jf(γ1, ..., γn)KS,i = Ĵγ1KS,i ∧ ... ∧ ĴγnK
S,i

ĴxK
S,i

= (S(i, x) 6= ⊥)

Ĵx̂K
S,i

= true

• JγKS,i is a partial function defined when ĴγK
S,i

, and it

is used to compute the value of γ (true or false).

JγKS,i :





Jinit(x̂)KS,i = S(i, x) 6= ⊥
∧∀j < i, S(j, x) = ⊥

Jf(γ1, ..., γn)KS,i = f(Jγ1KS,i, ..., JγnKS,i)
JxKS,i = S(i, x)
Jx̂KS,i = S(i, x) 6= ⊥

5An expression is said to be defined if all the variables it
contains are present.

• ĴτK
S,i

defines the domain of JτKS,i. ĴτK
S,i

is true in S

at instant i if all the variables of τ are present at that
instant.

ĴτK
S,i

:

{
̂Jf(τ1, ..., τn)KS,i = Ĵτ1KS,i ∧ ... ∧ ĴτnK

S,i

ĴxK
S,i

= (S(i, x) 6= ⊥)

• JτKS,i is a partial function defined when ĴτK
S,i

, and it
is used to compute the value of τ .

JτKS,i :

{
Jf(τ1, ..., τn)KS,i = f(Jτ1KS,i, ..., JτnKS,i)
JxKS,i = S(i, x)

Secondly, based on the trace model (section 2.2) and the
definitions given as above, we give the trace semantics of
S-CGA.

Definition 9 (Trace semantics of S-CGA) The trace se-
mantics of a S-CGA system is defined as a set of traces, that
is JSCGAK = {S | ∀scga ∈ SCGA, JscgaKS = true}. We
have the following semantics rules,

(1) Jγ ⇒ x = τKS =

∀i ∈ N, ĴγK
S,i
∧ JγKS,i

→ (ĴxK
S,i
∧ ĴτK

S,i
∧ JxKS,i = JτKS,i)

(2) Jγ ⇒ next(x) = τKS =
∀i1 < i2 ∈ N,

((∀i′ ∈ N, i1 < i′ < i2 → ¬ĴxK
S,i′

) ∧ ĴγK
S,i1

∧ JγKS,i1)

→ (ĴxK
S,i1

∧ ĴτK
S,i1

∧ (ĴxK
S,i2

→ JxKS,i2 = JτKS,i1))

(3) Jγ ⇒ assume(σ)KS =

∀i ∈ N, ĴγK
S,i
∧ JγKS,i → ĴσK

S,i
∧ JσKS,i

• Rule (1): when γ is present, and the value of γ is true,
x and τ are both present, and the value of x is that of
τ .

• Rule (2): when γ is present and the value of γ is true
at instant i1, x and τ are present at i1, and if i2 is the
next instant where x is present, then the value of x at
i2 is that of τ at instant i1.

• Rule (3): when γ is present, and the value of γ is true,
σ is present and true.

The semantics of S-CGA composition is defined as Jscga1 ‖
scga2KS = Jscga1KS ∧ Jscga2KS .

Remark 2 In S-CGA, we check if a variable is present or
absent. For a guard γ, we compute its value when it is
present. However, clocked guarded actions can evaluate a
variable even if its clock does not hold. In this case, its
value is the one of the last instant it was defined.

• For the immediate assignment, we do the assignment
x = τ when x and τ are present, else we don’t do it.
However, clocked guarded actions do the assignment
even if the clock of τ does not hold.



• For the delay assignment, we should notice that the
original semantics given in [5] leads to non-natural con-
straints on the model. Actually, when writing γ ⇒
next(x) = τ , should γ becomes twice or more satisfied
before the next instant of x raises an inconsistency if τ
has different values (See Example 2). Thus, in S-CGA,
we have the constraints γ → x̂ and γ → τ̂ .

• For the assumption, we have the constraint γ → σ̂.

Example 2 An example based on the original semantics of
γ ⇒ next(x) = τ .

i1 i′ · · · i2 · · ·
τ v1 v2 · · · · · ·
x v ⊥ ⊥ x =? · · ·
γ true true · · · · · ·

At the instant i1, the guard γ is satisfied, τ is evaluated
and its value is v1. The next instant of x̂ is i2. However, γ is
also satisfied in the instants during i1 and i2. For instance,
at the instant i′, γ is satisfied and the value of τ is v2. It
implies that v1 should be equal to v2.

4. TRANSLATION FROM KSIGNAL TO S-

CGA
kSIGNAL can be structurally translated to S-CGA by

translating each construct separately. The translation rules
are close to the ones which have been given in [4]. However,
to conform with the semantics of S-CGA (i.e. the revised
semantics of clocked guarded actions), we have done some
adjustments.

kSIGNAL S − CGA

(1) x := f(x1, · · · , xn) ⇛





x̂⇒ x = f(x1, · · · , xn)
‖ x̂1 ⇒ assume(x̂)
‖ ...
‖ x̂n ⇒ assume(x̂)

(2) x := x1 $ init c ⇛





init(x̂)⇒ x = c

‖ x̂⇒ next(x) = x1

‖ true⇒ assume(x̂ = x̂1)

(3) x := x1 when x2 ⇛

{
x̂1 ∧ x2 ⇒ x = x1

‖ x̂⇒ assume(x̂1 ∧ x2)

(4) x := x1 default x2 ⇛





x̂1 ⇒ x = x1

‖ x̂2 ∧ ¬x̂1 ⇒ x = x2

‖ x̂⇒ assume(x̂1 ∨ x̂2)

• Translation (1): The instantaneous function is applied
to the inputs and produces the output. Note that the
immediate assignment x̂ ⇒ x = f(x1, · · · , xn) implic-
itly imposes x̂ ⇒ x̂1, ..., x̂ ⇒ x̂n, so in the assumption
we only assert x̂1 ⇒ assume(x̂), ..., x̂n ⇒ assume(x̂).
Thus all variables have the same clock as required by
the semantics of SIGNAL.

• Translation (2): The translation of the delay construct
is split up in two cases. a) The first value that is
produced by this construct is the constant c at the
first instant when x is present. b) In all other instants
the value of x is assigned by the value of x1 evaluated
at the last non-absent instant of x̂1. The assumption
ensures that both variables have the same clock.

• Translation (3): The undersampling construct trans-
fers the value of x1 to x whenever it is needed. The
clock assumption ensures that x̂ only holds when both
inputs (i.e., x1 and x2) are present and x2 is true.
Thanks to the assume semantics (Rule(3) of Defini-
tion 9), assume(x̂1 ∧ x2) implies x̂1 ∧ x̂2 ∧ x2.

• Translation (4): The deterministic merging construct
merges two signals with priority for the first one. There-
fore, if the first input is present, it is passed to x. If it
is not present, but the second one is, the second one
is passed to x. The clock assumption ensures that x̂

only holds when at least one of the inputs is present.

Remark 3 Compared with the translation rules given in
[4]. The main change is in the Translation (3), true ⇒
assume(x̂ = x̂1 ∧ x̂2 ∧ x2) has been changed into x̂ ⇒
assume(x̂1 ∧ x2). According to the Rule (3) (Definition
9): when γ is present, and the value of γ is true, σ must
be present, and the value of σ is true. true⇒ assume(x̂ =
x̂1 ∧ x̂2 ∧ x2) implies x2 is always present and always true.
Thus, to conform with the semantics of S-CGA, we change
it into x̂ ⇒ assume(x̂1 ∧ x2). It means when x is present
and its value is true, x̂1 ∧ x2 is present and true.

5. THE PROOF OF SEMANTICS PRESER-

VATION
We envision the extraction of a complete verified-compiler

prototype from the mechanization in the future. Thus, we
would like to use the theorem prover Coq, to express and
verify the transformation from kSIGNAL to S-CGA. In this
section, we first give a brief introduction to Coq. Then, we
give the proof of semantics preservation of the transforma-
tion.

5.1 A Brief Introduction to Coq
Coq [30] is a theorem prover based on the Calculus of In-

ductive Constructions (CiC) which is a variant of type the-
ory, following the “Curry-Howard Isomorphism” paradigm,
enriched with support for inductive and co-inductive defini-
tions of data types and predicates. From the specification
perspective, Coq offers a rich specification language to de-
fine problems and state theorems. From the proof perspec-
tive, proofs are developed interactively using tactics, which
can reduce the workload of the users. Moreover, the type-
checking performed by Coq is the key point of proof verifi-
cation.

Here, we try to give an intuitive introduction to the Coq
terminologies which are used in this paper. In the spirit
of “Curry-Howard Isomorphism” paradigm, types may rep-
resent programming data-types or logical propositions. So,
the Coq objects used in this paper can be sorted into two
categories: the Type sort and the Prop sort:

• Type is the sort for data types and mathematical struc-
tures, i.e. well-formed types or structures are of type
Type. Data types can be basic types such as nat,
bool, nat→ nat, etc., and can be inductive structures,
record and co-inductive structures (for infinite objects,
as for example infinite traces). We use Fixpoint and
CoFixpoint definitions to define functions over induc-
tive and to co-inductive data types.



• Prop is the sort for propositions, i.e. well-formed propo-
sitions are of type Prop. We can define new predicates
using inductive, record (for conjunctions of properties)
or co-inductive definitions.

5.2 Semantics Preservation
As shown in Figure 2, the Coq mechanization includes 7

modules (about 1300 lines of Coq code), i.e., the abstract
syntax of kSIGNAL, the trace model, the trace semantics of
kSIGNAL, the abstract syntax of S-CGA, the trace seman-
tics of S-CGA, the translation rules, and the proof of the
semantics preservation. Here, the semantics preservation is
defined as a trace equivalence between two trace semantics
models related to kSIGNAL and its translation into S-CGA
respectively.

Figure 2: The global view of the semantics preser-
vation

All the definitions given in this paper have been mech-
anized in Coq. Here we just present the main idea of the
proof.

Firstly, we prove each semantics rule of the trace semantics
of kSIGNAL is trace equivalent with its translation into S-
CGA. For each semantics rule, there are two Lemmas to be
proven (in two directions).

For the instantaneous function construct. (1) Its trace se-
mantics is defined as Sassignment. (2) As defined in section
4, its translated guarded actions are x̂⇒ x = f(x1, · · · , xn),
x̂1 ⇒ assume(x̂), ..., and x̂n ⇒ assume(x̂). Applying the
semantics of S-CGA (scgaSimm is the semantics rule of im-
mediate assignment), we can get the semantics of instanta-
neous function construct by translating into S-CGA. Then,
we prove the trace equivalence between (1) and (2).

Lemma s i g n a l 2 s c g a a s s 1 : ∀ f x x i tr ,
Sassignment x f x i t r →
( scgaSimm ˆx x { | exp fun := f ; exp args := x i | } t r
∧ strModel . s t r a c e s

( s cga2Sproces s (GA ipar ( fun i : FctAr f
⇒ ˆ( x i i ) =⇒ assume (ˆx ) ) ) ) t r ) .

Lemma s i g n a l 2 s c g a a s s 2 : ∀ f x x i tr ,
scgaSimm ˆx x { | exp fun := f ; exp args := x i | } t r
→ strModel . s t r a c e s

scga2Sproces s (GA ipar ( fun i : FctAr f ⇒
ˆ( x i i ) =⇒ assume (ˆx ) ) ) ) t r

→ Sassignment x f x i t r .

For the delay construct. (1) Its trace semantics is de-
fined as Sdelay. (2) There are three translated guarded
actions, i.e., init(x̂) ⇒ x = c, x̂ ⇒ next(x) = x1, and
true⇒ assume(x̂ = x̂1). Applying the semantics of S-CGA
(getFirst0 is used to get the first instant when x is present,
that is init(x̂), scgaSnext is the semantics rule of delayed as-
signment, and scgaSctr is the semantics rule of assumption),
we can get the semantics of delay construct by translating

into S-CGA. Then, we prove the trace equivalence between
(1) and (2). In the Lemmas, x̂ = x̂1 is denoted x̂ ˆ= x̂1 (as
clock synchronization operator in SIGNAL).

Lemma s i gna l 2 s c g a d e l ay1 : ∀ x x1 v tr ,
Sdelay x x1 v t r →
( ( scgaSimm i n i t ( x ) x v t r ( g e tF i r s t 0 t r ) )
∧ (∃ c : Value ,

scgaSnext gTrue x x1 c t r ( g e tF i r s t 0 t r ) ) )
∧ s cgaSc t r gTrue (ˆx ˆ= ˆx1 ) t r ( g e tF i r s t 0 t r ) .

Lemma s i gna l 2 s c g a d e l ay2 : ∀ x x1 v tr ,
scgaSimm i n i t ( x ) x v t r ( g e tF i r s t 0 t r )
→ (∃ c : Value ,

scgaSnext gTrue x x1 c t r ( g e tF i r s t 0 t r ) )
→ s cgaSc t r gTrue (ˆx ˆ= ˆx1 ) t r ( g e tF i r s t 0 t r )
→ Sdelay x x1 v t r .

For the undersampling construct. (1) Its trace semantics
is defined as Swhen. (2) There are two translated guarded
actions, i.e., x̂1 ∧ x2 ⇒ x = x1 and x̂ ⇒ assume(x̂1 ∧ x2).
Applying the semantics of S-CGA, we can get the seman-
tics of undersampling construct by translating into S-CGA.
Then, we prove the trace equivalence between (1) and (2).
In the Lemmas, x̂1 ∧ x2 is denoted x̂1 ˆ∗ x2 (reusing the
clock intersection operator of SIGNAL).

Lemma s igna l2scga when1 : ∀ x x1 x2 tr ,
Swhen x x1 x2 t r →
scgaSimm (ˆ x1 ˆ∗ x2 ) x x1 t r
∧ s cgaSc t r ˆx (ˆ x1 ˆ∗ x2 ) t r .

Lemma s igna l2scga when2 : ∀ x x1 x2 tr ,
scgaSimm (ˆ x1 ˆ∗ x2 ) x x1 t r
→ s cgaSc t r ˆx (ˆ x1 ˆ∗ x2 ) t r
→ Swhen x x1 x2 t r .

For the deterministic merging construct. (1) Its trace se-
mantics is defined as Sdefault. (2) There are three translated
guarded actions, i.e., x̂1 ⇒ x = x1, x̂2 ∧ ¬x̂1 ⇒ x = x2, and
x̂ ⇒ assume(x̂1 ∨ x̂2). Applying the semantics of S-CGA,
we can get the semantics of deterministic merging construct
by translating into S-CGA. Then, we prove the trace equiv-
alence between (1) and (2). In the Lemmas, x̂2 ∧ ¬x̂1 is
denoted x̂2 ˆ− x̂1 (clock difference operator of SIGNAL),
and x̂1 ∨ x̂2 is denoted x̂1 ˆ+ x̂2 (clock union operator of
SIGNAL).

Lemma s i g n a l 2 s c g a d e f a u l t 1 : ∀ x x1 x2 tr ,
Sde f au l t x x1 x2 t r →
( scgaSimm ˆx1 x x1 t r
∧ scgaSimm (ˆ x2 ˆ− ˆx1 ) x x2 t r )
∧ s cgaSc t r ˆx (ˆ x1 ˆ+ ˆx2 ) t r .

Lemma s i g n a l 2 s c g a d e f a u l t 2 : ∀ x x1 x2 tr ,
scgaSimm ˆx1 x x1 t r
→ scgaSimm (ˆ x2 ˆ− ˆx1 ) x x2 t r
→ s cgaSc t r ˆx (ˆ x1 ˆ+ ˆx2 ) t r
→ Sde f au l t x x1 x2 t r .

Secondly, based on these Lemmas, we prove the follow-
ing Theorem, that the two semantics models, i.e., (Pro-
cess2Sprocess P) and (scga2Sprocess(signal2scga P)) are trace
equivalent (they have same set of signal variables and the
same set of traces). This property concerns infinite ob-
jects and cannot generally be proved automatically. This is
why we use the proof assistant which verifies a user-assisted
proof.

Record SPeq ( p1 p2 : Sproces s ) :Prop:=
{



SPd : ∀ y , sdom p1 y ↔ sdom p2 y ;
SPs : ∀ tr , s t r a c e s p1 t r ↔ s t r a c e s p2 t r

} .

Theorem s i gna l 2 s c ga che ck : ∀ p ,
SPeq ( Proces s2Sproces s p)

( scga2Sproces s ( s i gna l 2 s c g a p ) ) .

Finally, we can extract the corresponding CAML code, to
synthesis the first stage of the verified compiler prototype.

6. TOWARDS A VERIFIED COMPILER PRO-

TOTYPE
The compilation process of synchronous languages is not

limited to code generation: some analyses are first applied to
determine if the specification is indeed executable. The SIG-
NAL compilation process contains one major analysis called
clock calculus from which code generation directly follows.
Moreover the clock calculus contains several steps [15], such
as the synchronizations of each process, i.e., an equation
system of relations over clocks; resolution of the system of
clock equations; construction of a clock hierarchy on which
the automatic code generation strongly relies.

For a safety-critical system, it is important to optimize
the control structure of the generated code. In the SIGNAL
compiler, the control flow expressed by abstract clocks serves
to derive a control structure in automatic code generation.
Thus, the quality of clock calculus has a strong impact on
the correctness and efficiency of implementations. In [11],
the authors have shown that there is a limitation of the
clock calculus of the SIGNAL compiler. For example, for
the under-sampling construct x = x1 when x2, the clock of
the Boolean expression x2 is partitioned into [x2] and [¬x2],
which are referred to as condition-clocks. If x2 is defined
by a numerical expression such as an integer comparison or
defined by a complex boolean function, [x2] and [¬x2] are
seen as black boxes. This has a strong impact on the anal-
ysis precision and the quality of generated code. Thus, the
authors propose a new clock abstraction, that is combined
numerical-Boolean abstraction, to eliminate this problem.
They also use an SMT solver to reason on the new abstrac-
tion. With the same purpose, in [13], an interval-based data
structure referred to as Interval-Decision Diagram (IDD) is
considered for the analysis of numerical properties in SIG-
NAL programs.
As shown in Figure 3, in our compiler prototype: (1) We

have considered the main concepts of the clock calculus, such
as the synchronizations of each process, resolution of a sys-
tem of clock equations, and construction of a clock hierar-
chy. (2) To integrate more synchronous programs into our
prototype in the future, we introduce S-CGA as the inter-
mediate representation, and we rewrite the clock calculus
on S-CGA. (3) We propose an appropriate modular archi-
tecture for our prototype. One benefit of this approach is
that we just need to redo a part of proof when some mod-
ules of the compilation process are changed. (4) We have
considered existing enhancements such as [11][13], so in the
resolution of a system of clock equations, there are two op-
tions Cpt rnf on BDD and Cpt rnf on SMT.

Specifically, the compilation process is mainly structured
as five modules, and at each module, there are several sub-
modules.

• Module 1: As mentioned in section 2.1,beyond the

usual lexical analysis, parsing and type checking, the
compiler will transform the user program (using the
subset of SIGNAL) whose statements all expressed
with both primitive constructs and extended constructs
to the normalized program (using kSIGNAL) whose
statements are all expressed with primitive constructs.

• Module 2: As a difference with the existing SIGNAL
compiler, we construct S-CGA from the normalized
program. S-CGA contains control flow (a system of
clock equations) as well as data flow. As mentioned
above, for the under-sampling construct, the SIGNAL
compiler consider the condition-clocks [x2] and [¬x2] as
black boxes if x2 is defined by a numerical expression
or a complex boolean function. When x2 is defined by
a complex boolean function, we have [x2] = x̂2 ∧ x2

and [¬x2] = x̂2 ∧ ¬x2. Based on this abstraction, we
can get more precise clock analysis.

• Module 3: If the system of clock equations contains
more than one equation with the same clock, the exe-
cution of the generated code will check the same con-
trol condition several times, and it is inefficient. This
is why we need to resolve it. All the clock equa-
tions are considered as predicates. We can use BDD
or SMT technology to check the equivalence of two
predicates, and put the corresponding clock variables
into the same equivalence class. We also check the en-
dochrony property at this step, namely there is just
one master clock.

• Module 4: The code generation is based on both the
clock hierarchy and the data dependencies. However,
there may be clock-to-data cycles. To reduce these
cycles, we first sort all the guarded actions. It will
be easier to construct a clock hierarchy based on de-
terministic sorting, and we consider the sorting as a
depth first search (DFS) order.

• Module 5: The basic idea of code generation is the
same as in the SIGNAL compiler. Furthermore, we
do some optimizations based on clock inclusions. For
instance, there are two equations in a given process,
y = x when x1 and z = x when (x1 and x2), there is
a clock-inclusion relation: [x1 ∧ x2] → [x1], that’s the
clock of [x1∧x2] is a subset of the clock of [x1]. Conse-
quently, we can do the code optimization illustrated as
follows. If control condition x1 holds, we do not need
to check x1 again in x1&&x2. We just need to check
if x2 holds or not.

if (x1){
do actions

...

if (x1&&x2){
do actions

...}
}

⇛

if (x1){
do actions

...

if (x2){
do actions

...}
}

Actually, the first version of the compiler prototype has
been implemented in CAML directly. It is a good way to
provide a basis for the Coq mechanization of the prototype.
Finally, we envision the extraction of a complete prototype
from the mechanization.



Figure 3: The architecture of the verified compiler prototype

7. RELATED WORK
For a safety-critical system, it is naturally required that

the compiler must be verified to ensure that the source pro-
gram semantics is preserved. For example, the SCADE Suite
KCG automatic C code generator has been qualified as a
development tool at DO-178B level A. Moreover, one of
the supplements to DO-178C, the DO-330 (Software Tool
Qualification Considerations) provides a guidance to qual-
ify tools. This means a tool for example a development
tool or a verification tool also needs to be qualified. There
are many approaches to gain assurance that the transfor-
mation or the translation of a specification or a program is
semantic-preserving. This can be done by directly building
a theorem-prover-verified compiler [20], by using translation
validation [23], etc.

A. Pnueli et al. propose the notion of translation val-
idation to verify the code generator of SIGNAL [23]. In
that work, the authors define a language of symbolic mod-
els to represent both the source and target programs, called
Synchronous Transition Systems (STS). An STS is a set of
logic formulas which describe the functional and temporal
constraints of the whole program and its generated C code.
Then they use BDD representations to implement the sym-
bolic STS models, and their proof method uses a SAT-solver
to reason on the signal constraints.

In [22], the authors adopt translation validation to for-
mally verify that the clock semantics and data dependence
are preserved during the compilation of the SIGNAL com-
piler. They represent the clock semantics, the data de-
pendence of a program and its transformed counterpart as
first-order formulas which are called Clock Models and Syn-
chronous Dependence Graphs (SDGs) respectively. Then
they introduce clock refinement and dependence refinement
relations which express the preservations of clock semantics
and dependence, as a relation on clock models and SDGs
respectively. Finally, an SMT-solver is used for checking the
existence of the correct transformation relations.

In the work of [21], the authors encode the source SIG-
NAL programs and their transformations with Polynomial
Dynamical Systems (PDSs), and prove that the transforma-

tions preserve the abstract clocks and clock relations of the
source programs. By using the simulation in model checking
techniques, their approach suffers from the increasing of the
state-space when it deals with large programs.

These existing researches mainly use the method of trans-
lation validation. However, translation validation treats the
compiler as a “black box”, namely it just checks the input
and output of each program transformation to validate the
semantics preservation. So it yields that one need to redo the
validation when the source program is changed. Following
the global idea, we would like to extract a verified SIGNAL
compiler which considers a subset of the SIGNAL language,
based on the theorem-prover-verified compiler method [20].

8. CONCLUSION AND FUTURE WORK
This paper reports a key step of a verified SIGNAL com-

piler prototype, that is the transformation from a subset
of SIGNAL to the intermediate representation S-CGA and
the proof of semantics preservation. Since SIGNAL is poly-
chronous, each variable can have its own clock. Moreover,
the variables can be evaluated only at some instants which
define their so-called clocks. In contrast to the SIGNAL lan-
guage, clocked guarded actions can evaluate a variable even
if its clock does not hold. As a consequence, we propose
a variant of clocked guarded actions, namely S-CGA, which
constrains variable accesses as done by SIGNAL. S-CGA has
the same structure as clocked guarded actions, but they have
different semantics. Moreover, to conform with the revised
semantics of clocked guarded actions, we also do some ad-
justments on the existing translation rules from SIGNAL to
clocked guarded actions. Finally, the verified transformation
is mechanized in the theorem prover Coq.

In the next step, we will rewrite in Coq the remaining
modules of our compiler prototype, that is from S-CGA to
sequential code. Moreover, in order to exploit the emerging
multi-core processors, thanks to the theory of weakly en-
dochronous systems [24], there are several research to syn-
thesize multi-threaded code from the synchronous specifi-
cations [17][19][29]. However, one also needs to prove the
semantics preservation from the SIGNAL specifications to



the multi-threaded code.
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