
HAL Id: hal-04080819
https://hal.science/hal-04080819v1

Submitted on 25 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Widening Blockchain technology toward access control
for service provisioning in cellular networks

Fariba Ghaffari, Nischal Aryal, Emmanuel Bertin, Noel Crespi, Joaquin
Garcia-Alfaro

To cite this version:
Fariba Ghaffari, Nischal Aryal, Emmanuel Bertin, Noel Crespi, Joaquin Garcia-Alfaro. Widening
Blockchain technology toward access control for service provisioning in cellular networks. Sensors,
2023, 23 (9), pp.4224. �10.3390/s23094224�. �hal-04080819�

https://hal.science/hal-04080819v1
https://hal.archives-ouvertes.fr

Citation: Ghaffari, F.; Aryal, N.;

Bertin, E.; Crespi, N.; Garcia-Alfaro, J.

Widening Blockchain Technology

toward Access Control for Service

Provisioning in Cellular Networks.

Sensors 2023, 23, 4224. https://

doi.org/10.3390/s23094224

Academic Editor: Rongxing Lu

Received: 22 February 2023

Revised: 8 April 2023

Accepted: 13 April 2023

Published: 23 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Widening Blockchain Technology toward Access Control for
Service Provisioning in Cellular Networks

Fariba Ghaffari 1,2 , Nischal Aryal 1,3 , Emmanuel Bertin 3, Noel Crespi 1 and Joaquin Garcia-Alfaro 1,∗

1 Samovar, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France
2 Institute of Research and Technology b-com, 35510 Cesson-Sévigné, France
3 Orange Innovation, 14000 Caen, France
* Correspondence: joaquin.garcia_alfaro@telecom-sudparis.eu

Abstract: The attention on blockchain technology (BCT) to create new forms of relational reliance has
seen an explosion of new applications and initiatives, to assure decentralized security and trust. Its
potential as a game-changing technology relates to how data gets distributed and replicated over
several organizations and countries. This paper provides an introduction to BCT, as well as a review
of its technological aspects. A concrete application of outsource access control and pricing procedures
in cellular networks, based on a decentralized access control-as-a-service solution for private cellular
networks, is also presented. The application can be used by service and content providers, to provide
new business models. The proposed method removes the single point of failure from conventional
centralized access control systems, increasing scalability while decreasing operational complexity,
regarding access control and pricing procedures. Design and implementation details of the new
method in a real-world scenario using a private cellular network and a BCT system that enables
smart contracts are also provided.

Keywords: blockchain technology; distributed ledger; smart contract; access control; development;
private cellular network

1. Introduction

Blockchain technology (BCT), as the foundational design of distributed ledger technol-
ogy (DLT), has revolutionized many aspects of business models and operations. Based on
the traditional idea of hash chains to assure the integrity of data over distributed computing
scenarios, BCT is believed to bring innovative new solutions, due to its key characteristics,
such as decentralization, transparency, and immutability. Decentralization relies on the dis-
tribution of nodes over a global network, whose records are stored in registers (e.g., blocks)
containing every transaction initiated in the system. All transactions are verified by multi-
ple entities and securely recorded several times, through the use of encryption keys and
electronic signatures. Records cannot be reversed, modified, or repudiated, thus creating
an irrevocable and verifiable history of transactions. Registry management is decentralized
and operates without a control body or centralized storage.

The use of BCT has received increasing attention, with Bitcoin [1] being the most
famous application in the realm of cryptocurrencies, as well as Ethereum [2] and the
extension of the concept of smart contracts [3], to autonomously execute agreements reached
between distributed nodes. Together, these methods offer new possibilities to validate data
transactions while offering traceability in a wide range of complex scenarios, far beyond the
original usage of cryptocurrencies [4]. Examples include copyright management, sharing
healthcare information, supply data, and real state control [5–7]. The intrinsic advantages of
BCT are expected to change many aspects of business models, management, and operations
in a range of fields. The list of major actors who reportedly explore BCT grows almost

Sensors 2023, 23, 4224. https://doi.org/10.3390/s23094224 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23094224
https://doi.org/10.3390/s23094224
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2785-9950
https://orcid.org/0000-0001-6600-8492
https://orcid.org/0000-0003-2962-192X
https://orcid.org/0000-0002-7453-4393
https://doi.org/10.3390/s23094224
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23094224?type=check_update&version=1

Sensors 2023, 23, 4224 2 of 28

weekly [8]. Their expectations may vary and include potential cost savings, maintenance of
technology leadership, and securing future business models.

In this paper, we focus on the establishment of trust in service provisioning ecosystems
via BCT. The three main actors in need of the establishment of trust are users, mobile
network operators, and service providers. For service provisioning through a mobile
network, the conventional subscription and access management procedures are as follows.
First, users need to subscribe to a given Mobile Network Operator (MNO) (which generally
is a prepaid service) for calls and internet connections. In parallel, users also need to
subscribe to the services provided by other providers (e.g., for video streaming, calls,
storage services, and online games). Note that the services are often prepaid, i.e., users
need to pay a fixed amount of money regardless of using the services in the end. In the
access control and payment steps, the Service Provider (SP) needs to authenticate and
authorize the user based on the information stored in the centralized server. While using
the service, users shall pay both MNO (by decreasing its remained internet capacity) and
SP (via prepaid or per-service pricing models).

The aforementioned scenario suffers from several drawbacks. First of all, the use
of a centralized architecture for access control, by SP, leads to single points of failure [9]
and low scalability. Moreover, centralized architectures impose higher complexity in IT
operation, management, and maintenance. Since access management in conventional
systems is handled in centralized servers or centralized parties, it can not only increase
the processing load and overhead at the central point, but also reduces Quality of Service
(QoS) [10]. Finally, it leads to high maintenance costs, since the maintenance of the central
system and the provision of services to a large set of potential users is an expensive and
complex endeavor. We propose to address the aforementioned challenges using a BCT-
based solution for service provisioning in cellular networks. Our contributions include the
outsourcing of an access control-distributed solution via a smart contract that decreases
operation load in SP and MNO, while eliminating the need for trusted third parties. It
also provides the automation of both access control and pricing procedures in service
provisioning for SP and MNO, introducing new pricing models based on prepaid and
Pay-As-You-Go (PAYG) scenarios.

The remaining sections are organized as follows. Section 2 provides the background
on BCT, smart contracts, and access control methods. Section 3 presents our concrete
BCT application, based on a decentralized access control as a service via smart contracts,
to illustrate a representative new business model using BCT ideas. Section 4 provides
our results. Section 5 discusses the advantages and limitations of our solution. Section 6
provides related work. Section 7 concludes the paper.

2. Background

In this section, we provide a comprehensive introduction of the essential preliminaries
for the rest of the paper. First, we discuss Blockchain and distributed ledger technologies,
as well as their operation workflows, benefits, and features. Then, the concept of smart
contracts and their operation steps, as the most common extension of this technology,
are presented. Finally, concerning our proposed system (i.e., a distributed access control
solution relying on BCT benefiting from the smart contracts), some representative access
control solutions and their workflows are described in the last subsection.

2.1. Blockchain and Distributed Ledger Technologies

Blockchain technology’s (BCT) proposal dates from 2009 [1], and it is tied to the Bitcoin
cryptocurrency, where a practical implementation of the traditional concept of hash chains
to ensure data integrity was revisited. A hash chain is the successive application of a crypto-
graphic hash function to continuous flows of data transactions. In BCT, the authenticity of
such transactions is also assured by digitally signing them by a sender, before broadcasting
the result to a peer-to-peer network [11]. Special BCT users in that peer-to-peer network,
known as miners. The term miner is commonly used in consensus models derived from

Sensors 2023, 23, 4224 3 of 28

the Bitcoin cryptocurrency. For the other consensus models, terminologies such as block
validator or leader can replace the term miner). In the realm of cryptocurrencies, miners
perform two main validations on the transactions. First, miners validate the correctness
of the digital signature associated with the transaction. Second, miners validate that the
the transaction is logically valid based on the policies in the network (e.g., in the case of a
cryptocurrency, miners validate that the traded asset belongs to the sender and does not
involve any double spending). If both validations succeed, the miners include the transac-
tion in the next block of the chain, hence validating the consensus protocol underlying the
network governance.

The workflow of processing the transactions and block generation in the BCT is
depicted in Figure 1, in a simple example of trading between two entities. First, a transaction
is initiated and broadcast to other nodes in the network. Then, the nodes which receive
the transaction use the digital signature to verify the authenticity of the transaction. Once
a transaction is validated, it is included in the list of valid transactions in the nodes.
In the third step, the miners need to record the transaction into a new block and add it
to the chain. To record the verified transactions, miners work to publish the new block
(e.g., in the consensus model associated with the Bitcoin cryptocurrency, miners conduct
this procedure by finding a potential Nonce to reach an agreement) and store a block of
transactions in the ledger. Finally, other miners can then verify all the transactions stored
in the block via the Merkle root. If all other verification steps hold correct information
(e.g., authentication, integrity, lack of double spending, etc.) the new block is also added
to their local replicas of the ledger. Indeed, two main concerns in this simple example (as
well as other Blockchain-based distributed systems) are the lack of centralized authority to
manage the synchronization of the transactions, as well as their ordering, and the integrity
of data.

Successful miner

3
A successful miner creates a
new block n+ 1 and records
Tx1 into its local ledger

4 All other nodes validate and
replicate the new block

? ? ? ?

?

2 The transaction is broadcast
and validated by other nodes.

Tx1

Broadcast & validation

? ? ?

A B

1 A transaction is initiated be-
tween nodes A and B.

Transaction Tx1 initiation

Ledger replication

Figure 1. Use of a BCT system for trading assets between two nodes A and B. The ‘?’ symbol in Steps
2 and 4 refer to the execution of a given procedure by network nodes (e.g., transaction validation
process in Step 2, and block replication in Step 4).

Addressing the challenges of data transaction ordering, synchronization, and integrity
of data in BCT is done by the difficulty of rolling back in the chain of blocks. This provides
strong immutability in BCT that makes the partial chain rendering unfeasible. In other
words, by hashing the preceding block and inserting this amount as a header in the current
block, any simple modification of a transaction included in previous blocks would require
solving a consensus problem for all of the subsequent blocks. To assure that the whole chain
of blocks becomes immutable, the inclusion of a new block in the BCT system must entail
a given degree of difficulty. This is conducted by requesting the miners to perform some

Sensors 2023, 23, 4224 4 of 28

particular tasks defined in the consensus algorithm that may differ from every specific
BCT implementation.

In addition to immutability, many other opportunities are provided by BCT designs.
First of all, BCT allows for the creation of a new distributed paradigm, in which not only
there is no centralized authority to control the network, but network failures are handled in
a distributed manner. As a result, BCT-based systems can provide a high level of availability
and fault tolerance. The idea to achieve this is the following. All nodes in a BCT system
rely on consensus theory (i.e., a well-established sets of rules and algorithms to ensure that
everyone behaves as expected). This assures the integrity-by-design feature. Additional
properties associated with BCT systems include traceability, transparency, non-repudiation
and permanence. Traceability and transparency mean that all data transactions are available
to be seen and tracked by any nodes with access to the system. In other words, data must
always be available and traceable at any time. Non-repudiation in BCT means that nobody
can deny their actions in the system. The use of cryptography in BCT ensures that all
parties must digitally sign their actions, hence avoiding the possibility of action denial by
BCT entities. Finally, permanence means that all data in a BCT can be available at any time
(nothing may be removed from the network).

In terms of data structures associated with BCT, blocks are composed of a body and a
header (cf. Figure 2). The body stores the transaction data. The header contains metadata,
such as the hash of the previous block, a timestamp, a cryptographic Nonce (i.e., a number
used only once, for security purposes), and a Merkle root. The hash value is calculated
by passing the header of the previous block to a hash function. The timestamp is used
to keep track of the specific creation time of the block. The Merkle tree is a binary data
structure, in which each leaf node is labeled with the hash of one transaction stored in
the block body, and the non-leaf nodes are labeled with the concatenation of the hash of
its child nodes. The Merkle root represents the root hash of the Merkle tree. It is used
for performance purposes, such as optimizing the search time during the verification of
transactions contained in the Blockchain. Any modification affecting a transaction (i.e., even
a bit-flip) will render to a different Merkle root; hence verification and comparisons can
be conducted by simply looking at the Merkle root of the block, without the need to go
through all the transactions stored in a block.

Version
Previous block hash
Merkle root
Timestamp
Difficulty target
Nonce

HEADER

BODY
Transaction Txn−1,1

Transaction Txn−1,2

Transaction Txn−1,3

. . .
Transaction Txn−1,!

Block n− 1

Version
Previous block hash
Merkle root
Timestamp
Difficulty target
Nonce

HEADER

BODY
Transaction Txn,1
Transaction Txn,2
Transaction Txn,3
. . .
Transaction Txn,8

Block n

Version
Previous block hash
Merkle root
Timestamp
Difficulty target
Nonce

HEADER

BODY
Transaction Txn+1,1

Transaction Txn+1,2

Transaction Txn+1,3

. . .
Transaction Txn+1,m

Block n+ 1

h root
h(h1234 or h5678)

h1234
h(h12 or h34)

h5678
h(h56 or h78)

h12
h(h1 or h2)

h34
h(h3 or h4)

h56
h(h5 or h6)

h78
h(h7 or h8)

h1
h(Txn,1)

h2
h(Txn,2)

h3
h(Txn,3)

h4
h(Txn,4)

h5
h(Txn,5)

h6
h(Txn,6)

h7
h(Txn,7)

h8
h(Txn,8)

Merkle Tree

Figure 2. Structure of a BCT design and its use of Merkle trees.

Sensors 2023, 23, 4224 5 of 28

The more general concept of distributed ledger technology (DLT) includes aforemen-
tioned designs around the concept of blocks and Merkle trees, as well as alternative designs,
including different data structures, consensus algorithms, and governance solutions. Blocks
can be replaced by other non-linear data families, including with the use of directed acyclic
graph (DAG) or any other hybrid data structures. Different designs can be classified
depending on the rule that regulates as to which nodes can access, verify and validate
the transactions in the system [12]. DLT platforms associated with Bitcoin and Ethereum
represent the idea of permissionless (public) ledgers, i.e., DLT designs whose ledgers are
accessible to the public. In other words, these are designs in which any participant can
broadcast new transactions, participate in the consensus procedures, write into the ledger,
etc. While Bitcoin and Ethereum mainly represent existing DLT examples underlying
contractual decentralized transaction models, some other existing frameworks extend
them to address applications in different domains, such as https://ripple.com/ (accessed
on 21 February 2023), for banking applications, https://www.energyweb.org/ (accessed
on 21 February 2023), for energy, https://www.hyperledger.org/ (accessed on 22 April
2023), for supply chain, logistics, and much more, etc. In all those previous cases, and by
granting the authority of maintaining a ledger to all the nodes, public ledgers may also
become fully distributed and even allow scenarios with anonymity requirements. However,
these systems suffer from the low speed of transaction validation and require a certain
level of computation to secure them regarding the intrinsic vulnerabilities of DLT. Next, we
provide some additional information on existing DLT-models.

Permissioned designs can be used to construct either private or consortium DLT-
platforms. The former is related to the solutions that are usually maintained by a single
organization, i.e., the ledger is developed in specific organizations based on their needs.
The rights to access the ledger and to verify the transactions are granted through a central
controller to the permissioned nodes. A permissioned network is thus established, in which
only the authorized nodes can access certain transactions of the ledger or participate in
working to publish new blocks. Due to having a minimum level of trust among the nodes
in the permissioned network, the computation-intensive consensus algorithm can be ei-
ther omitted or replaced by a simpler algorithm. Hence, the secrecy of the transactions is
highly improved and the decentralization of authority of transaction validation is under
the control of the organization. A second subcategory of permissioned designs leads to con-
sortium ledgers, which are similar to the private ones, in the sense that they are maintained
in a permissioned network, but differ from private ledgers, since they involve multiple
organizations to share the right to access and validate the transactions. Although these orga-
nizations might not fully trust each other, they can work together by altering the consensus
algorithm, based on the level of trust among them. Consortium platforms can also be used
as a distributed and reliable database for predefined enterprises for business-to-business
purposes. However, only the eligible nodes, defined by participating organizations, can
join in the consensus process. The anonymity of users can be violated. Moreover, the use
of tokens or fees is not mandatory for the process or for validation of transactions.

For the sake of simplicity, we assumed in previous explanations that to reach transac-
tion validation, it suffices to validate the correctness of digital signatures associated with
the transactions, as well as asset ownership and double spending avoidance. However,
this minimal set of conditions can be extended to reach some more complex agreements.
This can be achieved using smart contracts. In the following, we provide some additional
information about it.

2.2. Smart Contracts Enabled by BCT

Originally defined in the mid-1990s [3], the concept of smart contracts refers to auto-
mated agreements among mutually distrusting parties [13], without the need for a trusted
intermediary. Users can request the execution of a smart contract via peer-to-peer network
transactions of a distributed ledger, i.e., each execution request gets logged into a public,

https://ripple.com/
https://www.energyweb.org/
https://www.hyperledger.org/

Sensors 2023, 23, 4224 6 of 28

append-only Blockchain. Potential conflicts in the execution of each execution requests are
also handled through the distributed ledger, i.e., using its associated consensus protocol.

The operation of a smart contract is briefly described next, with a representative
example [14], in which an entity A agrees to remunerate a second entity B for setting up
a new service. The remuneration is expected to be conducted in two steps. First, 70%
of the total remuneration is assumed upon completion of an initial configuration step.
Then, 30% of the total remuneration occurs two months after the full completion of the
service, thus making it possible to validate the service of B. The contractual establishment
is conducted in two main stages. During the first stage, entities A and B establish a smart
contract between them. A and B have assumed valid accounts related to a given Blockchain.
The smart contract between A and B is also stored over the Blockchain, as a special
entity that conceptually resembles the instantiation of an object and which defines various
operational rules in the form of publicly exposed methods. Such methods determine a
change in the state of the instantiated object, i.e., the state of the smart contract. Once the
conditions of the smart contract are validated by the corresponding parties (e.g., miners,
validators, etc.), we assume that the contract starts its execution. With respect to traditional
execution environments, the immutable nature of BCT is materialized in an execution that
is virtually impossible to be stopped (i.e., once the execution of the contract is launched, it
cannot be reverted).

Notice that the previously formalized agreement between A and B is executed upon
the ledger in an automated manner. Each change of state of the program is a recorded trans-
action. Neither of the two parties (nor anyone else) can perturb the execution of the contract.
The stages of the service associated with B are checked automatically, and if these are carried
out, the planned contributions are rewarded to B in the form of transactions associated with
B within the ledger itself. In the end, whenever all the conditions (i.e., agreements) are met,
the transaction is completed and B becomes the owner of the assets. Otherwise, if the con-
ditions are not properly satisfied, A remains the owner (i.e., A recovers the amount due).
The deployment of smart contracts on top of a DLT platform, such as Ethereum, can
generally be done by the development of decentralized application (DApp), which are
digital applications or programs that exist and run on a distributed network of computers
instead of a single computer (cf. Section 3 for further details about more elaborated smart
contract examples). In terms of data structures, platforms such as Ethereum also generalize
the approach depicted in Figure 2, with some more elaborated data structures. Each block
header (w.r.t. the approach depicted in Figure 2) can now be tied to several trees; one tree
is used to store the transactions, another is used to store the state, and a third tree is used
to store the results. The combination of Merkle trees together with Patricia trees [15] is
the fundamental data structure on which Ethereum is built. However, a more elaborate
presentation of these structures is left out of the scope of this paper.

Before moving forward, and presenting our proposal concerning a concrete application
over a specific BCT system enabling smart contracts, we provide next some necessary
background on representative access control solutions and preliminaries of the private
cellular networks in the following two subsections.

2.3. Access Control Models

Access control regulates who or what (i.e., a subject) can perform which action
(or have which permissions) upon an object (e.g., network resource, applications, services,
databases, etc.) [16]. The access control procedure is done in three main steps. We must first
define a series of rules associated with a policy, determining the conditions for accessing an
object. Each rule definition is varied based on the access control model. Secondly, access
verification is conducted, in which the access control server examines the received access
request based on a subject’s permissions. If they match, an access solution based on the
enforcement method will be assigned to the subject. The recording of access logs completes
the third step, in which all activities of the subjects and their accesses will be recorded.

Sensors 2023, 23, 4224 7 of 28

Several well-known access control methods are introduced as follows. The Discre-
tionary Access Control (DAC) model [17] considers the owner-based administration of
objects. More precisely, the owner of an object defines the access rules and policies.DAC
can be implemented via an Access Control List (ACL) that defines as to which objects
can be accessed by what subject and with what type of permission. A similar access con-
trol method is Capability-based Access Control (CapBAC) [18], in which a capability is
associated with each subject and used for access management. In CapBAC, users are
granted access permissions based on an access token, such as a key, a ticket, or a credential.
When a system aims to manage a large number of assets, CapBAC and DAC decrease the
manageability [19]. Hence, Role-Based Access Control (RBAC) is developed to resolve this
challenge. It manages the subjects’ access, based on their role within the system, and defines
what kind of accesses are associated with the subject of a given role [20].

Attribute-Based Access Control (ABAC) [21] is a logical model that controls the access
to objects by evaluating some defined access control rules or policies in terms of the subject,
object, action and environment attributes. Fine-grained access management of ABAC makes
this solution a primitive candidate for our proposed method. ABAC is fine-grained because
it supports different constraints in order to define the legitimate user. Furthermore, it
provides dynamic and context-specific access, which makes the resource owner capable of
defining the access control policy based on their needs. ABAC generally uses Boolean logic,
in which the policy controller can verify the subject’s eligibility in Boolean logic, based on
four sets of attributes to define the access policy and manage the subject’s access to the
object. These sets are Subject, Object, Environment, and Action attributes.

Subject attributes specify the subject by its identifiers, such as its username, token,
and so on. Object attributes distinguish the resources that the subject wants to access, for
instance, the file name, the network resource, the service name, etc. Action attributes are
the actions that can be performed by the subject (e.g., read, write, and execute). Finally,
Environment attributes describe the context in which access is requested (e.g., the time and
location of the access request, or the type of communication channel). After receiving the
object’s request, policy controllers would validate this request based on the defined rules in
terms of these four attributes, and the access control result is returned as allow or deny to
the user.

Once establishing the building blocks in the area of access control solutions, we present,
in the following subsection, some needed preliminaries on private cellular networks,
in order to establish the use of the concrete application promoted in this paper.

2.4. Private Cellular Networks

Private Cellular Networks (PCNs) are local area networks that leverage radio access
technologies (e.g., 4G Long Term Evolution (LTE) and 5G technologies) to establish a
dedicated network and meet the requirements specific to an organization (e.g., schools,
industrial sites, and smart cities). PCNs use small cell towers to cover a defined location,
and the organization is responsible for the core network management. By using Sub-
scriber Identity Module (SIM) cards exclusive to the network, only selected devices can
connect to it.

PCNs can be considered to be small-scale versions of public cellular networks. The main
difference between private and public networks is the control over the overall aspect of the
network [22]. The infrastructures and resources in public networks are shared, whereas
private networks control all network infrastructures and resources. At the same time, PCNs
are suitable for services that require high availability and performance [23]. Other advan-
tages of private networks include lower cost, better connectivity, improved security, higher
scalability, and good coverage [24,25]. These factors have led to a great interest in private
networks from both business and academia.

It is crucial to have a lab deployment before private cellular networks are used in real
life to test and validate any theories [26]. There are many open-source programs available to
build private cellular networks. For our purposes, we utilize OpenAirInterface (OAI) and

Sensors 2023, 23, 4224 8 of 28

Magma core, because they are the two primary open-source projects that allow the flexible
deployment of small-scale mobile communication systems, but with two contrasting ideas
in their architecture and execution.

OAI is an open-source platform to provide services for the software-based implemen-
tation of different cellular network infrastructures, such as user equipment, radio access
networks, and core networks [27]. OAI complies with standards from the 3GPP partner-
ship program. It supports 4G LTE and 5G broadband cellular network implementations.
Along with the software version, OAI provides features to integrate commercially avail-
able hardware, such as smartphones, programmable SIM cards, and universal software
radios, for transceiver functionality. On the other hand, the Magma core is an open-source
implementation of the cellular core that supports 4G LTE and 5G radio access technologies.
It consists of three major components: the Access Gateway, the Orchestrator, and the Fed-
eration Gateway. The Access Gateway (AGW) represents the core network services and
policies. It uses the evolved packet core for LTE networks and the 5G core for 5G networks.
It can be integrated with commercial radio hardware to provide network services. The Or-
chestrator is the cloud service responsible for configuring and monitoring network activities
hosted on a public/private cloud. It provides a web platform for network configuration
and a visual representation of network traffic flows. The Federation Gateway connects the
MNO core to the Magma network via a standard interface (e.g., 3GPP interfaces). It acts as
a proxy between the MNO’s network and the Magma AGW. Additionally, it handles the
core functions (e.g., authentication and policy enforcement).

Compared to a typical mobile core implementation, Magma core does not support
3GPP interfaces between mobile core components [28]. However, it provides federation
gateway interfaces and Radio Access Network (RAN) support for 3GPP protocols. Next,
we will use OAI and Magma core to establish our BCT-based application, in order to to
outsource access control and pricing procedures of cellular networks via smart contracts.

3. BCT-Based Access Control for Service Provisioning in Cellular Networks

We introduce in this section our BCT-based ABAC system for service provisioning in
cellular networks, which provides the opportunity of introducing new business and pricing
models in this market. In the current service-provisioning model using the mobile data
in cellular networks, first, the user subscribes to a given MNO, in parallel to the services
provided by other service providers. To access the services (as well as in the pricing step),
SP authenticates and authorizes the user in their centralized servers. In this scenario, not
only the user is subscribed to SP and is paying for that, but using the service consumes
their mobile data in the network.

We have identified several drawbacks in this scenario. First, the central authoriza-
tion server can be a single point of failure and limits the system’s scalability. Moreover,
the processing loads and the complexity of IT operations in both SP and MNO are very
high. Furthermore, several intrinsic issues of centralized access control solutions can defect
these systems as well. For instance, these include the risk of losing the user’s data in
a centralized server, denial of an action done by a malicious user because of low non-
repudiation, the low immutability of rules in the system, and the high maintenance costs of
the centralized server.

To address these challenges, our proposed ABAC model outsources the authorization
and pricing procedures of service providers and MNOs to a distributed network containing
a consortium of participating organizations. Moreover, this system proposes a new business
model that can attract users by eliminating their payment to MNO while using the services
provided through the platform (i.e., the user’s mobile data will not be used while using the
service, and instead of that, either the service provider pays MNO on behalf of the user,
or the user pays both the MNO and SP separately without using the mobile data).

The overall steps of access control and payment procedures of the proposed method
are enumerated as follows:

Sensors 2023, 23, 4224 9 of 28

1. The user registers in the provided DApp by sending a request to a dedicated smart
contract through a transaction in the Blockchain.

2. The registration smart contract deploys a unique smart contract for the user
(only for the first time).

3. User chooses their desired service from the list of available services for registration.
4. To access the service, the user sends an access transaction to the dedicated smart

contract in the system.
5. The access manager smart contract authorizes the user regarding the stored policies

of the requested service.
6. According to the pricing model of the service, the access manager smart contract

blocks an amount of money.
7. After termination of the service usage, the access manager smart contract pays the

MNO, SP, and (if it is required) the user, according to the pricing model.

Next, we detail the system architecture and the design of smart contracts.

3.1. System Design

In this section, we provide a brief description of the smart contract models, which
handle the registration, access control, and payment procedures in the system. In this
regard, we categorized the smart contracts into the following groups: (i) reference contracts;
(ii) database contracts; (iii) policy definition contracts; (iv) manager contracts. Figure 3
depicts the connection between contracts and contract attributes, and their definitions.

𝑼𝒔𝒆𝒓 𝒄𝒐𝒏𝒕𝒓𝒂𝒄𝒕 (𝑺𝑪𝑼)

𝐴𝑑𝑑𝑟𝑈𝐸: 𝐵𝑦𝑡𝑒𝑠

𝐵𝑎𝑙𝑎𝑛𝑐𝑒: 𝑖𝑛𝑡

𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠: 𝑺𝒆𝒓𝒗𝒊𝒄𝒆[]

𝑨𝒅𝒅𝒓𝒆𝒔𝒔 𝑩𝒐𝒐𝒌 (𝑺𝑪𝑨𝑩)

𝐼𝐷𝑆𝐶: 𝑆𝑡𝑟𝑖𝑛𝑔

𝐴𝑑𝑑𝑟𝑆𝐶: 𝐵𝑦𝑡𝑒𝑠

𝑼𝒔𝒆𝒓 𝑳𝒊𝒔𝒕 (𝑺𝑪𝑼𝑳)

𝐴𝑑𝑑𝑟𝑈𝐿: 𝐵𝑦𝑡𝑒𝑠

𝐴𝑑𝑑𝑟𝑈𝐸: 𝐵𝑦𝑡𝑒𝑠

𝐴𝑑𝑑𝑟𝑆𝐶𝑈𝐸: 𝐵𝑦𝑡𝑒𝑠

𝑺𝒆𝒓𝒗𝒊𝒄𝒆 𝑷𝒓𝒐𝒗𝒊𝒅𝒆𝒓
𝑳𝒊𝒔𝒕 (𝑺𝑪𝑺𝑷𝑳)

𝐴𝑑𝑑𝑟𝑆𝑃: 𝐵𝑦𝑡𝑒𝑠

𝐶𝑜𝑑𝑒𝑆𝑃: 𝑖𝑛𝑡

𝐴𝑑𝑑𝑟𝑆𝐶𝑆𝑃: 𝐵𝑦𝑡𝑒𝑠

𝑴𝑵𝑶 𝑳𝒊𝒔𝒕 (𝑺𝑪𝑴𝑵𝑶𝑳)

𝐴𝑑𝑑𝑟𝑀𝑁𝑂: 𝐵𝑦𝑡𝑒𝑠

𝐶𝑜𝑑𝑒𝑀𝑁𝑂: 𝑖𝑛𝑡

𝐴𝑑𝑑𝑟𝑆𝐶𝑀𝑁𝑂
: 𝐵𝑦𝑡𝑒𝑠

𝑴𝑵𝑶 𝒄𝒐𝒏𝒕𝒓𝒂𝒄𝒕 (𝑺𝑪𝑴𝑵𝑶)

𝐴𝑑𝑑𝑟𝑀𝑁𝑂: 𝐵𝑦𝑡𝑒𝑠

𝐵𝑎𝑙𝑎𝑛𝑐𝑒: 𝑖𝑛𝑡

𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠: 𝑺𝒆𝒓𝒗𝒊𝒄𝒆[]

𝑷𝒐𝒍𝒊𝒄𝒚 𝑳𝒊𝒔𝒕 (𝑺𝑪𝑷𝑳)

𝐶𝑜𝑑𝑒𝑃: 𝑖𝑛𝑡

𝐴𝑑𝑑𝑟𝑆𝐶𝑃 : 𝐵𝑦𝑡𝑒𝑠

𝑺𝒆𝒓𝒗𝒊𝒄𝒆 𝑷𝒓𝒐𝒗𝒊𝒅𝒆𝒓
(𝑺𝑪𝑺𝑷)

𝐴𝑑𝑑𝑟𝑆𝑃: 𝐵𝑦𝑡𝑒𝑠

𝐵𝑎𝑙𝑎𝑛𝑐𝑒: 𝑖𝑛𝑡

𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠: 𝑺𝒆𝒓𝒗𝒊𝒄𝒆[]

𝑷𝒐𝒍𝒊𝒄𝒚 𝑪𝒐𝒏𝒕𝒓𝒂𝒄𝒕(𝑺𝑪𝑷)

𝐶𝑜𝑑𝑒𝑃: 𝑖𝑛𝑡

𝑃𝑜𝑙𝑖𝑐𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛

𝐶𝑜𝑑𝑒𝑝 = 1 𝑖𝑠 for Registration in Platform policy

𝐶𝑜𝑑𝑒𝑝 = 2 𝑖𝑠 for Registration in Service policy

𝐶𝑜𝑑𝑒𝑝 = 3 𝑖𝑠 for MNO Support policy

𝐶𝑜𝑑𝑒𝑝 = 4 𝑖𝑠 for Time control policy

𝐶𝑜𝑑𝑒𝑝 = 5 𝑖𝑠 for Balance control policy

𝐶𝑜𝑑𝑒𝑝 = 6 ,… for other policies defined by SP/MNO

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 is a with the following variables:
• 𝐶𝑜𝑑𝑒𝑆𝑃
• 𝐶𝑜𝑑𝑒𝑠𝑒𝑟𝑣𝑖𝑐𝑒
• 𝐸𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
• 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑆𝑡𝑜𝑟𝑎𝑔𝑒
• 𝑃𝑎𝑦𝑚𝑒𝑛𝑡 𝑡𝑦𝑝𝑒

Here 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 is a with only 𝐶𝑜𝑑𝑒𝑆𝑃 as its identifier.
Price of each service is defined by service provider.

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 is a with following attributes:
• 𝑪𝒐𝒅𝒆𝒔𝒆𝒓𝒗𝒊𝒄𝒆

• 𝑪𝒐𝒔𝒕𝑼𝑬
𝑷𝒓𝒆𝒑𝒂𝒊𝒅

: the service cost for user in prepaid scenario for

predefined time or storage/data usage

• 𝑺𝒉𝒂𝒓𝒆𝑴𝑵𝑶
𝑷𝒓𝒆𝒑𝒂𝒊𝒅

: the MNO’s share of connection in prepaid services.

• 𝑪𝒐𝒔𝒕𝑼𝑬
𝑷𝑨𝒀𝑮in PAYG scenario, the price of the service for the defined

time/data usage (e.g., each MB or hour)
• 𝒎𝒊𝒏𝑻𝒐𝒌𝒆𝒏: in pay-as-you-go scenario, the price that will be

blocked in access manager contract until end of connection.

• 𝑺𝒉𝒂𝒓𝒆𝑴𝑵𝑶
𝑷𝑨𝒀𝑮: the MNO’s share of user’s connection in percentage in

PAYG scenario

Figure 3. Relations and connections among designed contracts (excluding manager contracts).

Our two main general assumptions for deploying the proposed system are the fol-
lowing. First, all the connections between the user, the decentralized application (DApp),
the service provider, and the MNO are secure. Second, an unlimited number of MNOs, SPs,
and users can register to the system. More information about the precise contracts and the
registration steps is presented in the following.

3.1.1. Reference Contract

In this category, the Address Book contract (SCAB) is defined to store a mapping of
an identifier to the address of single smart contacts (i.e., SCReM, SCACM, SCUL, SCPL,
SCSPL, SCNPL) as:

EntryAB
IDSC←−− AddrSC

where IDSC is a predefined unique identifier for smart contracts and AddrSC is its address
in Blockchain. The primary objectives of designing this contract are as follows: (i) avoid-
ing the use of hard-coded addresses to prevent potential maintainability issues of smart

Sensors 2023, 23, 4224 10 of 28

contracts [29], (ii) managing a list of addresses and implementing modifiers in functions
to leverage the intrinsic access control capability of smart contracts, and (iii) facilitating
secure collaboration among multiple parties involved in the contract.

3.1.2. Database Contracts

Seven additional contracts are defined under this category:

• The User List contract (SCUL), MNO List contract (SCMNOL), and Service Provider List
contract (SCSPL) store the list of registered users, network providers, and service
providers, mapped with the following structures, respectively:

EntryUL
AddrU←−−− AddrSCU

EntryMNOL
CodeMNO←−−−−− AddrMNO

AddrMNO←−−−−− AddrSCMNO

EntrySPL
CodeSP←−−− AddrSP

AddrSP←−−−− AddrSCSP

• User contract (SCU), which is a unique smart contract for a particular user which stores,
at least, the user’s balance and all their registered services in the following structure:

AttrU
AddrU , CodeSP←−−−−−−−− (Balance, Services[])

CodeService←−−−−− ExpTime, AvailableStorage

where Balance is the user’s current balance in their wallet, Services[] is a list of the
user’s application-layer services or specific subscribed services, ExpTime is the expira-
tion time of the user’s access to that specific service (if it is not applicable, it can be set
to 0), and the user’s available storage if the service is related to storage.

• MNO contract (SCMNO), which is a unique smart contract for a particular MNO, which
stores, at least, their balance and all the services (or service providers) that the related
MNO supports.

• Service Provider contract (SCSP), which is a unique smart contract for a particular service
provider, which stores, at least, their balance in the system, all their provided services,
and the list of applicable policies for each service.

• Policy List contract (SCPL), which stores the address of the policy smart contract, with a
mapping to their code, as shown in

EntryPL
CodeP←−−− AddrSCP

where CodeP is the policy’s pre-defined code in the system, and AddrSCP is the related
smart contract that defines that policy.

3.1.3. Manager Contracts

In this category, the following two contracts are introduced:

• A Registration Manager contract (SCReM), which manages the user, network provider,
and service provider registration procedure in the platform. The main functions of
this smart contract are:

– registerServiceProvider() that registers new service providers in the platform.
– registerNewUser() that registers a new user in the system and deploys the

user’s smart contract for the first time.
– registerNewMNO() that registers new network providers in the platform. This

registration needs the consensus of all other registered network providers.
– registerToServicePrepaid() that registers the user in a prepaid service.
– registerToServicePAYG() that registers the user in a PAYG service.

• Access Control Manager contract (SCACM), which manages the user’s access control by
validating the request against applicable policies for the requested service. Moreover,

Sensors 2023, 23, 4224 11 of 28

after the termination of the service usage, this contract handles the payment procedure.
The main functions of this smart contract are:

– userValidation() to validate the user’s eligibility to access the service regarding
different policies and payment methods. Moreover, it blocks a specific amount
of money inside the contract, as a distributed trusted party for the user, SP and
the MNO, using the user’s address as the indicator, to manage the payment
procedure after termination.

– terminationAndPayment() manages the payment to the SP, the user, and the MNO.

3.1.4. Policy Definition Contracts

For the first setup of the system setup, we define five rules to validate the request’s
access attributes. Each policy is defined in the different smart contracts, and the service
providers can add the list of applicable policies to their services. The following rules are set
in the first setup of the system. If any SP needs to add a policy, such an SP deploys a smart
contract for that and adds its code to their service.

• Subject attribute validation, which includes a series of policies to validate the user’s
registration, as follows:

– Registration in Platform contract (SCRP): validates if the user is registered in the
platform.

– Registration in Service contract (SCRS): validates if the user is registered in the
specific requested service of the particular service provider.

• Environment attribute validation, which includes another series of policies to validate if
the user is eligible to use the service, as follows:

– MNO Support contract (SCMNOS): validates if the user’s MNO supports the user’s
demanded service.

– Time Control contract (SCTC): validates if the service’s expiration time is not passed
for that specific user.

– Balance Control contract (SCBC): validates if the user has enough balance to register
and access the service in the following scenarios:

– For the prepaid services, the user’s balance needs to be checked in the regis-
tration step.

– For the prepaid services, the service provider’s balance needs to be checked
in the access control step.

– For the PAYG services, the user’s balance needs to be checked in the access
control step.

3.2. Registration Step

In this step, the registration procedure of SPs, MNOs, and users is described.

3.2.1. Service Provider Registration

The registration of the SP in the system is completed via the following steps (cf. Figure 4
for a more detailed description of this procedure):

1. First, SP sends the registration request to SCReM. Since each service provider can
register only one time, SCReM needs to verify that the SP is not registered beforehand.
To do so, it calls the isExist() function of SCSPL and sends the address of the caller as
its argument. Note that here the caller is SP, so SCSPL sends the Addrsp in isExist()
function. Since msg.sender in Solidity language is the address of the caller or the
creator of the transaction, in the rest of the paper we use msg.sender to indicate the
caller of the function.

2. After receiving confirmation from SCSPL, SCReM deploys the service provider’s
unique smart contract (i.e., SCSP). Note that the deployment of smart contracts for all
entities in the system is only can be done by SCReM. Therefore, the constructor() of

Sensors 2023, 23, 4224 12 of 28

SCSP verifies that msg.sender is equal to AddrSCReM . It is important to mention that
in the proposed system, the only fixed and hard-coded address is AddrSCAB , to be
able to use this smart contract as a reference point. After the deployment of SCSP, its
address is sent to SP.

3. Finally, SP as the owner of the smart contract can add its preferred services into SCSP.
These services would be advertised to the network providers and the users for further
registration. While inserting the services into SCSP, the service provider defines the
costs for prepaid and PAYG scenarios (note that the service providers can choose one
of these payment solutions based on their preference). The following costs will be
added to SCSP for each advertised service (cf. Figure 3, SCSP):

• CostPrepaid
UE : defines the prepaid cost that the user needs to pay for registering in

this service for a predefined time/data usage.
• SharePrepaid

MNO : defines the fee that SP will pay to MNO on behalf of the user,
after user access termination.

• CostPAYG
UE : defines the fee that the user needs to pay per hour/MB while using a

PAYG service.
• minToken: defines the minimum required tokens in the user’s wallet to give

access to a PAYG service. Note that the user’s real usage may be more than this
amount, so, the user will be charged after access termination for the remaining
part. or, if the real cost is less than this amount, the user’s wallet would be
refunded.

• SharePAYG
MNO : defines the MNO’s share in percentage from the user’s real usage of

service. So, the cost of the user’s real usage will be between SP and MNO based
on this value.

𝑆𝑃 𝑆𝐶𝑅𝑒𝑀 𝑆𝐶𝑆𝑃𝐿 𝑆𝐶𝑆𝑃 𝑆𝐶𝐴𝐵

1. 𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝟏. 𝑬𝒙𝒊𝒔𝒕(𝑺𝑷)

𝟏. 𝑬𝒙𝒊𝒔𝒕 𝒎𝒔𝒈. 𝒔𝒆𝒏𝒅𝒆𝒓 validates that the SP does not registered before.
2. 𝑽𝒂𝒍𝒊𝒅 𝒎𝒔𝒈. 𝒔𝒆𝒏𝒅𝒆𝒓 : validates that 𝑚𝑠𝑔. 𝑠𝑒𝑛𝑑𝑒𝑟 == 𝐴𝑑𝑑𝑟𝑆𝐶𝑅𝑒𝑀
𝟑. 𝒊𝒔𝑶𝒘𝒏𝒆𝒓(): validates that 𝑚𝑠𝑔. 𝑠𝑒𝑛𝑑𝑒𝑟 == 𝐴𝑑𝑑𝑟𝑆𝑃

1. 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛

2.𝐷𝑒𝑝𝑙𝑜𝑦()
𝟐. 𝒊𝒔𝑽𝒂𝒍𝒊𝒅(𝑹𝒆𝑴)

2. 𝐴𝑑𝑑𝑟𝑆𝐶𝑆𝑃2. 𝐴𝑑𝑑𝑟𝑆𝐶𝑆𝑃

3. 𝑎𝑑𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒()

𝟑. 𝒊𝒔𝑶𝒘𝒏𝒆𝒓()
3. 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛

Figure 4. Service provider registration steps.

3.2.2. MNO Registration

The registration of MNOs consists of two main phases. First, they register to the
system to insert their address in SCMNOL, and then they register to the provided service
by the service provider, to let their user use the service with the new proposed business
model. At the same time, the MNO registration steps in the system and service provider
are as follows (cf. Figure 5 for the precise workflow):

• MNO registration in the system:

1. MNO sends the registration request to SCReM. Similar to the service provider reg-
istration procedure, each MNO can register only one time to the system. So, SCReM

Sensors 2023, 23, 4224 13 of 28

verifies that the MNO is not registered beforehand (i.e., by using the isExist()
function of SCMNOL and sending the MNO address, msg.sender, as its argument).

2. After receiving confirmation from SCMNOL, SCReM deploys the MNO’s unique
smart contract (i.e., SCMNO), after verifying that msg.sender == AddrSCReM .
After registration, MNO as the owner of the smart contract can add its preferred
services into SCMNO, using the following steps.

• MNO registration in the services:

3. MNO selects the desired services from existing options, then sends the registra-
tion request to SCReM. After receiving the request, SCReM verifies that MNO is
already registered in the system. Note that, when MNO selects a service from
existing services in the system, this means that it agrees on the prices that are
related to the payment to MNO (i.e., SharePrepaid

MNO and SharePAYG
MNO).

4. To register the MNO is an specific service, SCReM inserts the CodeMNO and
AddressMNO into SCSP. So, the service provider would have the MNO in its cus-
tomer list. Moreover, the CodeSP and Codeservice will be inserted in SCMNO as well.

𝑀𝑁𝑂 𝑆𝐶𝑅𝑒𝑀 𝑆𝐶𝑀𝑁𝑂𝐿 𝑆𝐶𝑀𝑁𝑂 𝑆𝐶𝐴𝐵

1. 𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝟏. 𝑬𝒙𝒊𝒔𝒕(𝑴𝑵𝑶)

𝟏. 𝑬𝒙𝒊𝒔𝒕 𝒎𝒔𝒈. 𝒔𝒆𝒏𝒅𝒆𝒓 validates that the MNO does not registered before.
2. 𝑽𝒂𝒍𝒊𝒅 𝒎𝒔𝒈. 𝒔𝒆𝒏𝒅𝒆𝒓 : validates that 𝑚𝑠𝑔. 𝑠𝑒𝑛𝑑𝑒𝑟 == 𝐴𝑑𝑑𝑟𝑆𝐶𝑅𝑒𝑀

1. 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛

2.𝐷𝑒𝑝𝑙𝑜𝑦()
𝟐. 𝒊𝒔𝑽𝒂𝒍𝒊𝒅(𝑹𝒆𝑴)

2. 𝐴𝑑𝑑𝑟𝑆𝐶𝑀𝑁𝑂
2. 𝐴𝑑𝑑𝑟𝑆𝐶𝑀𝑁𝑂

3. 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑇𝑜𝑆𝑒𝑟𝑣𝑖𝑐𝑒()

3. 𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑆𝐶𝑆𝑃

R
e

gi
st

ra
ti

o
n

 in
 s

ys
te

m
R

e
gi

st
ra

ti
o

n

in
 S

P

4. 𝐴𝑑𝑑𝑀𝑁𝑂()

4. 𝐴𝑑𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒()

Figure 5. MNO registration steps for the platform and service provider.

3.2.3. User Registration

Figure 6 depicts the procedure associated with the user registration in the system and
service provider. It works as follows:

• User registration in the system:

1. UE sends the registration request to SCReM. Since each user can register only
once to the system, SCReM verifies that the UE has not been registered beforehand
(i.e., by calling the isExist() function associated with SCUEL and sending the
value of AddrUE (msg.sender) as its argument).

2. After receiving confirmation from SCUEL, then SCReM deploys the unique smart
contract of the user (i.e., SCUE).

• User registration in the prepaid pricing model:

3. UE selects the desired services from existing options, then sends the registration
request to SCReM. After receiving the request, SCReM fetches all policies that are
defined for the registration of the user in the system (e.g., checking the user’s
balance and verifying that BalanceUE ≥ CostPrepaid

UE).

Sensors 2023, 23, 4224 14 of 28

4. Once getting the list of policies, SCReM will retrieve the address of each smart
contract in which those policies are defined (e.g., SCRP, SCRS, SCMNOS, SCTC,
SCBC). Then it can verify the user’s eligibility based on each policy.

5. In case of the user’s eligibility, the CodeSP and Codeservice will be inserted into

SCUE. Moreover, the CostPrepaid
UE will be transferred from the user to the service

provider’s wallet. Note that this transfer is based on ERC20 standards [30].

• User registration in the PAYG pricing model: Because the majority of the registration
steps in this model are the same as for the prepaid one, we only summarized the
main steps.

6. UE sends the registration request to SCReM, then it fetches all required registra-
tion policies.

7. SCReM verifies the user’s eligibility based on each policy.
8. CodeSP and Codeservice will be inserted into SCUE. In this pricing model, the user

does not need to make any payment in the registration step.

𝑈𝑠𝑒𝑟 𝑆𝐶𝑅𝑒𝑀 𝑆𝐶𝑈𝐸𝐿 𝑆𝐶𝑈

1. 𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝟏. 𝑬𝒙𝒊𝒔𝒕(𝑼𝒔𝒆𝒓)

𝟏. 𝑬𝒙𝒊𝒔𝒕 𝒎𝒔𝒈. 𝒔𝒆𝒏𝒅𝒆𝒓 validates that the user does not registered in the system before.
2. 𝑽𝒂𝒍𝒊𝒅 𝒎𝒔𝒈. 𝒔𝒆𝒏𝒅𝒆𝒓 : validates that 𝑚𝑠𝑔. 𝑠𝑒𝑛𝑑𝑒𝑟 == 𝐴𝑑𝑑𝑟𝑆𝐶𝑅𝑒𝑀
𝟑. 𝑭𝒆𝒕𝒄𝒉𝑨𝒅𝒅𝒓𝒆𝒔𝒔(𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒑𝒐𝒍𝒊𝒄𝒊𝒆𝒔) to get the address of required policy smart contracts (i.e., 𝑆𝐶𝑅𝑃 , 𝑆𝐶𝑀𝑁𝑂𝑆 , 𝑆𝐶𝐵𝐶)
𝟕. 𝑭𝒆𝒕𝒄𝒉𝑨𝒅𝒅𝒓𝒆𝒔𝒔(𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒑𝒐𝒍𝒊𝒄𝒊𝒆𝒔) to get the address of required policy smart contracts (i.e., 𝑆𝐶𝑅𝑃 , 𝑆𝐶𝑀𝑁𝑂𝑆)

1. 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛

2.𝐷𝑒𝑝𝑙𝑜𝑦()

2. 𝐴𝑑𝑑𝑟𝑆𝐶𝑈2. 𝐴𝑑𝑑𝑟𝑆𝐶𝑈

3. 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑇𝑜𝑆𝑒𝑟𝑣𝑖𝑐𝑒()

𝑆𝐶𝑃𝐿

R
e

gi
st

ra
ti

o
n

 in
 s

ys
te

m
R

eg
is

tr
at

io
n

 in
 S

P

(P
re

p
ai

d
)

𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠

𝟒. 𝑭𝒆𝒕𝒄𝒉𝑨𝒅𝒅𝒓𝒆𝒔𝒔(𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒑𝒐𝒍𝒊𝒄𝒊𝒆𝒔)

Checking user eligibility against required policies as step 4

𝑆𝐶𝑆𝑃

5. 𝐴𝑑𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒(),
𝑅𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑒

5. 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑒

6. 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑇𝑜𝑆𝑒𝑟𝑣𝑖𝑐𝑒()

R
e

gi
st

ra
ti

o
n

 in
 S

P

(P
A

Y
G

)

𝟕. 𝑭𝒆𝒕𝒄𝒉𝑨𝒅𝒅𝒓𝒆𝒔𝒔(𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒑𝒐𝒍𝒊𝒄𝒊𝒆𝒔)

Check user eligibility against policies as step 7

8. 𝐴𝑑𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒()

4. 𝑔𝑒𝑡𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑜𝑙𝑖𝑐𝑦𝐿𝑖𝑠𝑡()

6. 𝑔𝑒𝑡𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑜𝑙𝑖𝑐𝑦𝐿𝑖𝑠𝑡()

Figure 6. The user registration steps of the platform and service provider for prepaid and PAYG
pricing methods.

3.3. Attribute-Based Access Control

After successful registration of the entities in the system and services, the users are
able to access these services through the proposed system. The access control procedure for
different pricing methods is enumerated as follows (see Figure 7):

• User access verification:

1. UE selects a service among registered services, (this selection creates an access
request transaction to SCACM smart contract).

2. After receiving the request, SCACM fetches all policies that are defined as prereq-
uisites for access o the service (e.g., checking the user’s balance, checking the
geographical IP, etc.).

3. After getting the list of policies, SCACM retrieves the address of each smart
contract in the list (e.g., SCRP, SCRS, SCMNOS, SCTC, SCBC). Then it can verify

Sensors 2023, 23, 4224 15 of 28

the user’s eligibility based on each policy (i.e., for the verification we defined
a isEligible() function, that compares the user’s access attributes with the
defined rules).

• User access control to the prepaid pricing model:

4. If the access verification is successful, SCACM validates the service provider’s
balance for further user access. It is important to mention that, in the prepaid
pricing model, the user is paid to the service provider while the registration step,
and while using the service, the user would not pay to MNO (e.g., the user’s
mobile data will not be reduced while using the service); and, the service provider
is the entity that will pay to MNO on behalf of the user. So, SCACM verifies that
BalanceSP ≥ SharePrepaid

MNO .

5. If the balance verification is successful, the SharePrepaid
MNO will be transferred from

the service provider’s wallet to SCACM as a distributed trusted party for all
entities. Note that, this transfer is based on ERC20 standard [30]. Record of this
payment is added to SCACM as a mapping of the user’s address to a balance
as follows:

BalanceU
AddrU←−−− StoredBalanceU

• User access control to the PAYG pricing model:

6. If the access verification is successful, SCACM validates the user’s balance, since,
in this pricing model, the user needs directly pay the service provider and MNO
separately, according to the real service utilization. So, SCACM verifies that
BalanceUE ≥ minToken.

7. If the balance verification is successful, the minToken will be transferred from
the user’s wallet to SCACM. Note that this amount balance is only a minimum
balance to guarantee the payment to the service provider and MNO. It means
that the user’s real utilization will be sent to SCACM after termination, and the
real price will be calculated at that time. Same as in the prepaid model, the record
of this payment is added to SCACM.

𝑈𝑠𝑒𝑟 𝑆𝐶𝐴𝐶𝑀 𝑆𝐶𝑃𝐿 𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠

1. 𝐴𝑐𝑐𝑒𝑠𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡

𝑆𝐶𝑆𝑃

P
re
p
ai
d

𝑆𝐶𝑈

P
A
Y
G

3. Checking user eligibility against
required policies

𝟐. 𝑭𝒆𝒕𝒄𝒉𝑨𝒅𝒅𝒓𝒆𝒔𝒔
(𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒑𝒐𝒍𝒊𝒄𝒊𝒆𝒔)

4. 𝐺𝑒𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑒()

𝟒. 𝑽𝒂𝒍𝒊𝒅𝒂𝒕𝒊𝒐𝒏()

5. 𝐵𝑙𝑜𝑐𝑘𝑀𝑁𝑂𝑆ℎ𝑎𝑟𝑒()

5. 𝑃𝑎𝑦𝑅𝑒𝑞𝑢𝑒𝑠𝑡()

5. 𝑃𝑎𝑦𝑀𝑁𝑂𝑆ℎ𝑎𝑟𝑒()

6. 𝐺𝑒𝑡𝐵𝑎𝑙𝑎𝑛𝑐𝑒()

𝟔. 𝑽𝒂𝒍𝒊𝒅𝒂𝒕𝒊𝒐𝒏()

7. 𝐵𝑙𝑜𝑐𝑘𝑀𝑖𝑛𝐹𝑒𝑒()

7. 𝑃𝑎𝑦𝑅𝑒𝑞𝑢𝑒𝑠𝑡()

7. 𝑃𝑎𝑦𝑀𝑖𝑛𝐹𝑒𝑒()

𝟐. 𝑭𝒆𝒕𝒄𝒉𝑨𝒅𝒅𝒓𝒆𝒔𝒔(𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒑𝒐𝒍𝒊𝒄𝒊𝒆𝒔) get the address of smart contracts of policies that are indicated in the service
𝟒. 𝑽𝒂𝒍𝒊𝒅𝒂𝒕𝒊𝒐𝒏() Checks if the service provider has enough balance to pay the MNO after connection termination
𝟔. 𝑽𝒂𝒍𝒊𝒅𝒂𝒕𝒊𝒐𝒏() Checks if the user has enough balance to pay the SP and MNO after connection termination

2. 𝐹𝑒𝑡𝑐ℎ 𝑎𝑐𝑐𝑒𝑠𝑠 𝑝𝑜𝑙𝑖𝑐𝑖𝑒

Figure 7. The ABAC procedure for user access to the services in the prepaid and PAYG scenarios.

Sensors 2023, 23, 4224 16 of 28

3.4. Payment

Once the user terminates the service utilization, the pricing and payment procedure
will be executed as follows:

• Checking service type:

1. UE sends the termination transaction to the SCACM smart contract. This contract
checks the service type for handling the further payment procedure.

• Payment in the prepaid pricing model:

2. In the prepaid pricing model, once SCACM receives the termination transaction, it

retrieves the blocked SharePrepaid
MNO and pays it to MNO (see Figure 8). This transfer

complies with the ERC20 standard [30].

• Payment in the PAYG pricing model:

3. First, SCACM calculates the real service price as follows:

FinalPrice = Usage× CostPAYG
UE

Then, it calculates the amount of money that the user needs to pay or be reim-
bursed as follows:

UserPayment = FinalPrice−minToken

In this equation, if UserPayment ≥ 0, the user needs to pay this amount, other-
wise, the user will be refunded by userPayment.

4. If UserPayment ≥ 0, payment request will be sent to user, and SCACM will
receive the tokens from user’s wallet.

5. SCACM calculates the MNO and service provider’s shares from UserPayment as
follows, and transfer tokens to each one.

MNOshare = (UserPayment + minToken)× SharePAYG
MNO

SPshare = (UserPayment + minToken)−MNOshare

𝑈𝑠𝑒𝑟 𝑆𝐶𝐴𝐶𝑀

𝟏. 𝑻𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒊𝒐𝒏

𝑆𝐶𝑆𝑃

P
re
p
ai
d

𝑆𝐶𝑀𝑁𝑂

P
A
Y
G

1. 𝑖𝑠𝑃𝑟𝑒𝑝𝑎𝑖𝑑()

2. 𝑅𝑒𝑡𝑟𝑖𝑣𝑒 𝑏𝑙𝑜𝑐𝑘𝑒𝑑
𝑀𝑁𝑂𝑆ℎ𝑎𝑟𝑒

𝟑. 𝑪𝒂𝒍𝑹𝒆𝒂𝒍𝑷𝒓𝒊𝒄𝒆()

4. 𝑃𝑎𝑦𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑓𝑖𝑛𝑎𝑙𝑃𝑟𝑖𝑐𝑒)

4. 𝑃𝑎𝑦𝑚𝑒𝑛𝑡

2. 𝑃𝑎𝑦𝑀𝑁𝑂()

𝑆𝐶𝑈

5. 𝑃𝑎𝑦 𝑆𝑃 𝑠ℎ𝑎𝑟𝑒

5. 𝑃𝑎𝑦 𝑀𝑁𝑂 𝑠ℎ𝑎𝑟𝑒

𝟏. 𝑻𝒆𝒓𝒎𝒊𝒏𝒂𝒕𝒊𝒐𝒏 DApp sends the brief summery of the connection containing
𝐴𝑑𝑑𝑟𝑈, 𝐶𝑜𝑑𝑒𝑠𝑒𝑟𝑣𝑖𝑐𝑒 , 𝐶𝑜𝑑𝑒𝑆𝑃, connection time, data usage
𝟑. 𝑪𝒂𝒍𝑹𝒆𝒂𝒍𝑷𝒓𝒊𝒄𝒆() access manager contract will calculate the real final price of connection

Figure 8. The payment procedure to service provider and MNO in the prepaid and PAYG scenarios.

Sensors 2023, 23, 4224 17 of 28

4. Evaluation
4.1. Implementation

The overall implementation of our proposed system is depicted in Figure 9. This
implementation can be discussed in terms of two sub-categories: Deployment of Cellular
Network Testbed and Deployment of a Decentralized application on top of Blockchain.

Decentralized Application
(Dapp)

OAI RAN

U
H

D

N
IC

–
en

o
1

UE

Core Network

N
IC

–
en

o
2

Docker Container

MME

SPGW-U SPGW-C

HSS

N
IC

–
en

o
1

N
IC

–
en

o
3

Web site Frontend
HTML, CSS, JS

Web site Backend
Java Spring, Web3j, Solidity

USRP
B210

N
IC

–
en

o
1

N
IC

–
en

o
1

UHD = Universal Hardware Driver
NIC = Network Interface Controller

= USB Connection
= Custom Gateway
= Ethernet Connection

Description

Samsung
Galaxy S4

Blockchain

Ethereum nodes
Using Ganache

Figure 9. General architecture of our proposed system. The smartphone, USRP, OAI RAN, and Core
network represent the cellular network testbed. The decentralized application and Blockchain
represent the Blockchain technology implementation.

4.1.1. Deployment of Cellular Network Testbed

Our Github (https://github.com/nischalaryal/cellular-network-testbed-setup
(accessed on 21 February 2023)) page provides a clear description for implementing the
cellular network testbed. This testbed configuration requires three components: user equip-
ment (UE), radio access network (RAN), and cellular network (CN) [26]. The primary goal
of this configuration is to create an E2E setup, in which the UE equipment communicates
with the CN via the RAN. The CN verifies the UE’s authenticity, and the UE verifies that
it is connected to the correct network. Following successful authentication, the UE can
connect to the internet via CN.

• User Equipment: We utilize the Samsung Galaxy S4 smartphone with LTE network
capability as our used equipment. A programmable SIM card connects the smartphone
to the cellular network. The SIM card stores information such as secret keys, mobile
country codes, mobile network codes, etc. This information helps in choosing the right
network operator during the authentication process. We utilize a SIM card reader
and pySim (https://github.com/osmocom/pysim (accessed on 21 February 2023))
software to program the SIM card and store the necessary information.

• Radio Access Network: We employ OpenAirInterface5g (https://gitlab.eurecom.fr/
oai/openairinterface5g (accessed on 21 February 2023)) software to implement a
softwerized RAN in COTS system. The COTS system configuration includes an Intel
Core i7-6700 CPU running at 3.40 GHz, 16 GB of RAM, and Ubuntu 18.04 OS with a
low latency kernel. The OAI RAN software includes the v1.1.0 git branch. We attach an
USRP B210 device to the system for radio communication between the UE and RAN.
All the functionalities of the USRP B210 device are handled by the USRP Hardware
Driver (UHD), which is installed in the same system. In order to set up interfaces
for communication with CN, OAI software provides numerous configuration files

https://github.com/nischalaryal/cellular-network-testbed-setup
https://github.com/osmocom/pysim
https://gitlab.eurecom.fr/oai/openairinterface5g
https://gitlab.eurecom.fr/oai/openairinterface5g

Sensors 2023, 23, 4224 18 of 28

that contain data regarding PLMN and IP addresses. We utilize the configuration file
named enb.band7.tm1.50PRB.usrpb210.conf to store the PLMN values, IP addresses,
and network interfaces of RAN and CN.

• Core Network: We utilize OpenAirInterface LTE+ software to implement the core net-
work in the COTS system. The COTS system configuration includes an Intel Xeon W-
2102 CPU running at 2.90 GHz, 16 GB of RAM, and Ubuntu 20.04 OS. The OAI-based
core network utilizes the master branch (https://github.com/OPENAIRINTERFACE/
openair-epc-fed (accessed on 21 February 2023)) and the MagmaCore uses version
1.8 branch (https://github.com/magma/magma/tree/v1.8 (accessed on 21 February
2023)). All the modules of the core network are containerized using either Docker or
VirtualBox. The MME functionality of CN initiates a connection with RAN and man-
ages all requests arriving from UE via RAN. The information regarding the user, such
as secret keys, is stored in the HSS database and is utilized during the authentication
process.

4.1.2. Deployment of the Decentralized Application via BCT

As shown in Figure 9, the decentralized application (DApp) part of the system imple-
ments a web service connected to BCT nodes. The web service consists of a front-end written
in the Javascript language, connected to the back-end that is deployed using the Java Spring
framework (https://spring.io/projects/spring-framework (accessed on 21 February 2023)).
The connection to smart contracts and BCT nodes is handled by the web3j library (https://
docs.web3j.io/ (accessed on 21 February 2023)). The smart contracts are deployed in Solid-
ity language and compiled by the solc compiler (https://www.npmjs.com/package/solc
(accessed on 21 February 2023)). The code of the deployed DApp is available online,
in a GitHub repository (https://github.com/FaribaGhaffari91/AccessControlUsingBCT
(accessed on 21 February 2023)).

4.2. Performance Evaluation

To assess the implementation feasibility of the proposed method in private cellular
networks, we designed a use case, in which the user uses their mobile connectivity (i.e., cel-
lular network) to connect to the implemented DApp. To do so, we deploy a private cellular
network environment to connect the user to the Data Network (DN). Note that the DN can
be either the internet (i.e., when the DApp is deployed on the internet for public-use cases)
or the MNO network (i.e., when the DApp is locally hosted in the MNO site for the private
service-provisioning cases).

The performance analysis of the proposed method has been done in three connection
and deployment types, as follows:

• Connecting the COST UE to the OAI-RAN and OAI-core networks, and DApp is
hosted
in MNO;

• Connecting the COST UE to OAI-RAN and magma core, and DApp is hosted in MNO;
• Connecting the COST UE to a public network, and DApp is hosted in either MNO or

other third-party entities (available through the internet);

In the aforementioned testbeds, the following performance indicators are evaluated:

• The GAS usage: GAS is the fee that must be paid by the sender to submit transac-
tions to the Ethereum network. GAS price in the public networks is defined in Gwei
(i.e., as 10(−9)ETH, which is the real-time price of the Ethereum cryptocurrency).
However, in the private or consortium Blockchains, this price can be modified by the
actors and governors.

• The user-experienced latency (Ttotal): This time is the exact period it takes from sending
the user’s request through the browser to getting the answer from the network.

• The transaction validation time (smart contract function execution time) (Tf n): this
time defines the period that it takes for the network to execute all function(s) related

https://github.com/OPENAIRINTERFACE/openair-epc-fed
https://github.com/OPENAIRINTERFACE/openair-epc-fed
https://github.com/magma/magma/tree/v1.8
https://spring.io/projects/spring-framework
https://docs.web3j.io/
https://docs.web3j.io/
https://www.npmjs.com/package/solc
https://github.com/FaribaGhaffari91/AccessControlUsingBCT

Sensors 2023, 23, 4224 19 of 28

to a specific request in the network and to return a transaction receipt for that. Note
that Tf n is dependent on the block time in the Blockchain network.

• The DApp latency (Tdapp): this time consists of the latency in the internal functions in
DApp and the non-transaction calls to the Blockchain.

• The network latency (Tnet): this time is the network latency of the user’s connection to
RAN or core networks (i.e., Tnet = Ttotal − (Tdapp + Tf n)).

These performance indicators are assessed in the following scenarios simulated in the
system with COST users:

1. RegMNO: the registration of the MNO in the system including the deployment
of SCMNO;

2. RegSP: the registration of the service provider in the system, including the deployment
of SCSP ad insertion of two services for each service provider, and the definition of
two access policies for each service.

3. RegUE: the registration of the user in the system including the deployment of SCU ;

4. RegPrepaid
UE : the registration of the user in one of the available services with the prepaid

pricing model.
5. ACCPrepaid

UE : attribute-based access control of the user to access the registered
prepaid service.

6. PayPrepaid: termination of the user’s access to the service and service provider’s
payment to MNO on behalf of the user.

7. RegPayG
UE : the registration of the user in one of the available services with the PAYG

pricing model.
8. ACCPayG

UE : attribute-based access control of the user to access the registered
PAYG service.

9. PayPayG: termination of the user’s access to the service, the user’s access time to the
service, and their payment to the service provider and MNO accordingly.

User-experienced latency of the proposed method for private use cases is provided
in Figure 10 regarding the different scenarios and the aforementioned performance indica-
tors. Each bar in the figure indicates how the user experienced latency is decomposed to
different times (i.e., Tnet, Tdapp, Tf n).

Note that the utilized configuration for this analysis is applicable in private or semi-
private use cases, where one/several companies govern the Blockchain and have the right to
participate in consensus procedures and write them into the Blockchain. These companies
offer services either exclusively to their specific customers (e.g., video streaming, remote
meetings, storage, etc. for employees of one or several companies), or publicly for all users.
Private-use cases here refer to a limited number of entities governing and managing the
associated DLT, rather than a limited number of users. The security requirements in these
use cases are higher due to the need to protect the system against intrinsic BCT attacks like
a 51% attack [31]. Since participating nodes are already authenticated and known in the
system, there is a minimum level of trust, making a simple consensus procedure sufficient
for these networks. To simulate a simple consensus procedure, we set a minimum value for
the block time, which defines the complexity of the consensus procedure. Figure 10 shows
that the latency of function execution for user access to the system is very low compared
to network and DApp latency. Additionally, the user’s experienced latency for access
control is around 3 seconds, well comparable to existing centralized systems. In the real
implementation of our method, many of the extra procedures in the DApp do not need to
be executed, which can significantly decrease the value of Ttotal .

Figure 11 provides the performance analysis for public-use cases where DLT gover-
nance is not in the hands of several organizations, and every micro-business or user can
use it. In this scenario, no trust level can be assumed, and actors need to protect the system
against BCT attacks [32] by enforcing more complex and secure consensus procedures.
To simulate a complex consensus procedure, we choose a block time of 5 seconds, which

Sensors 2023, 23, 4224 20 of 28

is near to public networks. As shown in Figure 11, the latency of function execution to
provide user access to the system is a significant portion of the user’s real experienced
latency. To have a more secure network, we assume that nodes can update their ledger
after two block times. Hence, when we select a block time of 5 seconds, the minimum
time by which the user can see the result of her transaction is 15 seconds. This latency is
higher than the expectation of the user and the experienced latency in centralized systems.
A discussion on solutions to overcome this problem is provided in Section 5.2. In Figure 11,
we avoided providing the latency data related to SP registration, as at least 15 transactions
need to be validated and added to the blocks. Therefore, it is done at around 2.5 seconds,
creating a significant difference from other data in the figure.

63

65

120

406

409

715

57

42

71

48

59

71

61

48

99

53

82

102

36

32

61

59

54

82

60

54

204

940

965

1,068

1,871

1,935

2,108

934

959

1,053

2,066

2,071

2,423

2,905

2,949

3,328

2,885

3,005

3,339

2,015

2,056

2,378

2,893

2,942

3,317

2,892

2,919

3,341

271

531

311

180

108

219

81

81

113

195

77

96

67

87

743

200

553

257

153

208

90

123

472

82

217

191

510

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

OAI

Magma

Public MNO

OAI

Magma

Public MNO

OAI

Magma

Public MNO

OAI

Magma

Public MNO

OAI

Magma

Public MNO

OAI

Magma

Public MNO

OAI

Magma

Public MNO

OAI

Magma

Public MNO

OAI

Magma

Public MNO

M
N

O
 r

e
gi

st
ra

ti
o

n
SP

 r
e

gi
st

ra
ti

o
n

U
se

r
re

gi
st

ra
ti

o
n

in
 s

ys
te

m
R

e
gi

st
ra

ti
o

n
 in

p
re

p
ai

d
A

cc
e

ss
 t

o
 p

re
p

ai
d

P
ay

m
en

t
in

p
re

p
ai

d
R

e
gi

st
ra

ti
o

n
 in

p
ay

-a
s-

yo
u

-g
o

A
cc

e
ss

 t
o

 p
ay

-a
s-

yo
u

-g
o

P
ay

m
en

t
in

 p
ay

-
as

-y
o

u
-g

o

User experienced latency

Transaction validation time DApp latency Network latency

𝑃
𝑎
𝑦
𝑃
𝐴
𝑌
𝐺

𝐴
𝐶
𝐶
𝑈
𝐸
𝑃
𝐴
𝑌
𝐺

𝑅
𝑒𝑔

𝑈
𝐸

𝑃
𝐴
𝑌
𝐺

𝑃
𝑎
𝑦
𝑃
𝑟
𝑒
𝑝
𝑎
𝑖𝑑

𝐴
𝑐𝑐
𝑈
𝐸

𝑃
𝑟
𝑒
𝑝
𝑎
𝑖𝑑

𝑅
𝑒
𝑔
𝑈
𝐸

𝑃
𝑟
𝑒
𝑝
𝑎
𝑖𝑑

𝑅
𝑒
𝑔
𝑈
𝐸

𝑅
𝑒
𝑔
𝑆
𝑃

𝑅
𝑒
𝑔
𝑀
𝑁

Figure 10. The user experienced latency of the system for the private or consortium DLT use-
case, with low-security and high throughput requirements. Each bar in the figure represents the
latency experienced by the user, and it is made up of network latency (Tnet), DApp latency (Tdapp),
and transaction validation latency (Tf n).

Sensors 2023, 23, 4224 21 of 28

15,020

15,014

15,022

15,016

15,016

15,025

15,017

15,015

15,025

15,015

15,015

15,023

15,017

15,016

15,058

15,017

15,018

15,024

15,016

15,017

15,023

15,017

15,016

15,046

1,005

919

1,061

995

932

1,060

2,130

2,005

2,425

3,127

2,854

3,352

3,135

2,864

3,244

2,182

1,981

2,555

3,077

2,838

3,426

3,068

2,852

3,357

84

134

1,258

165

215

1,430

65

120

809

143

75

1,195

88

79

97

182

122

420

439

134

604

197

73

84

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

OAI

Magma

Public MNO

OAI

Magma

Public MNO

OAI

Magma

Public MNO

OAI

Magma

Public MNO

OAI

Magma

Public MNO

OAI

Magma

Public MNO

OAI

Magma

Public MNO

OAI

Magma

Public MNO

M
N

O
 r

e
gi

st
ra

ti
o

n
U

se
r

re
gi

st
ra

ti
o

n
 in

sy
st

e
m

R
e

gi
st

ra
ti

o
n

 in
p

re
p

ai
d

A
cc

e
ss

 t
o

 p
re

p
ai

d
P

ay
m

en
t

in
 p

re
p

ai
d

R
e

gi
st

ra
ti

o
n

 in
 p

ay
-

as
-y

o
u

-g
o

A
cc

e
ss

 t
o

 p
ay

-a
s-

yo
u

-g
o

P
ay

m
en

t
in

 p
ay

-a
s-

yo
u

-g
o

User experienced latency

Transaction validation time DApp latency Network latency

𝑃
𝑎
𝑦
𝑃
𝐴
𝑌
𝐺

𝐴
𝐶
𝐶
𝑈
𝐸
𝑃
𝐴
𝑌
𝐺

𝑅
𝑒
𝑔
𝑈
𝐸

𝑃
𝐴
𝑌
𝐺

𝑃
𝑎
𝑦
𝑃
𝑟
𝑒
𝑝
𝑎
𝑖𝑑

𝐴
𝑐𝑐
𝑈
𝐸
𝑃
𝑟
𝑒
𝑝
𝑎
𝑖𝑑

𝑅
𝑒
𝑔
𝑈
𝐸

𝑃
𝑟
𝑒
𝑝
𝑎
𝑖𝑑

𝑅
𝑒
𝑔
𝑈
𝐸

𝑅
𝑒
𝑔
𝑀
𝑁

Figure 11. The latency of the system for public Blockchain-use case with high-security requirements.
Each bar in the figure represents the latency experienced by the user, and it is made up of network
latency (Tnet), DApp latency (Tdapp), and transaction validation latency (Tf n).

The GAS usage of the execution of smart contracts in each of the above-mentioned
scenarios is provided in Table 1, based on the GAS used, and its price in Euro (€) at the
time of writing the paper. As it is shown, the most expensive transactions will be sent to
the network only once (i.e., RegMNO, RegSP, and RegUE). It is important to mention that
in our use cases, since the system will not be deployed on top of public Ethereum, these
prices are the maximum price that we can consider for the system. In consortium or private
Blockchains, there is no need to define these prices for the transactions; they can be fully
adjustable based on the application requirement.

Sensors 2023, 23, 4224 22 of 28

Table 1. Environment specifications.

Parameter GAS Used Price in €

RegMNO 320,065 0.47
RegSP 463,673 0.69
Add new service by SP 135,841 0.20
Add new policy for service 51,529 0.07
RegUE 343,685 0.51
RegPrepaid

UE 182,172 0.27
ACCPrepaid

UE 95,671 0.14
PayPrepaid 68,307 0.10
RegPayG

UE 48,331 0.07
ACCPayG

UE 95,787 0.14
PayPayG 75,831 0.11

5. Discussion

In this section, an essential discussion of different aspects of the deployment of the
proposed method is provided. First, we propose some answers to potential questions
concerning the real implementation of the system. Moreover, due to the ever-growing
demands on the service provisioning domain, it is crucial to provide sufficient updatability
and maintainability to the system, especially when we rely on an immutable system
architecture, such as in the case of smart contracts. Furthermore, in the following subsection,
we will also discuss two of the important points of discord in using BCT and smart contracts
for access control procedures (i.e., the latency of the system and its storage complexity).

5.1. Real Implementation of the System

To deploy the proposed method in a real-world scenario for public or private cellular
networks, several prerequisites need to be well-defined. For instance, (i) who are the
governors or regulators of the ledger of our proposed blockchain design? (ii) Which entities
are eligible to participate in securing such a ledger? (iii) How would the trust among
actors (i.e., users, service providers, and MNOs) be addressed? and (iv) How can the
maintainability and updatability of the smart contracts be guaranteed?

In terms of governance and security assurance of the system, the main actors in the
proposed system are users, MNOs, and service providers. In our proposed method, the
underlying ledger of our blockchain design can be implemented as a consortium DLT
platform. Note that we propose to exclude users from participating in consensus and
storing the entire ledger, as it would be challenging for users with power-constrained
devices with limited and all-purpose storage to participate in the consensus of the DLT
platform. Additionally, involving users in maintenance and securing operations not only
requires an education phase (which can affect the user’s positive experience of using the
system) but also raises higher security and privacy concerns. Therefore, we propose the
following setting for method implementation in an operational scenario. The DLT itself
should be governed by a consortium between MNOs and SPs. Smart contracts, such as
SCAB, which play a critical role in securing the connection of smart contracts (e.g., to
prevent Reentrancy attacks), and provide a level of trustworthiness in the system, should
be deployed once, with the approval of all entities, without the possibility of alteration
in the next steps. Note that since SCAB acts as a distributed database, without any other
operational role in the system, the agreement of a minimum number of participating actors
would be sufficient in the first step of system setup.

Regarding the level of trust in the system, this concern can be broken down into the
following sub-questions, with the provided proposals as follows:

• Trustworthiness in the immutability of prices advertised by the service provider:
Since the advertised prices of the service providers are stored in SCSP with the service

Sensors 2023, 23, 4224 23 of 28

provider’s ownership, the first concern is how the other entities can be assured that this
prices will not change without their agreement. To address this concern, we propose
to implement a simple voting system for the entities that will be affected by the price
changes. For instance, the following scenario is implemented in the current version:
when an MNO registers in the service, its address is added to the list of beneficiaries
in SCSP. Updating the prices will be managed by updatePrice() function in SCReM.
This function will execute a voting procedure, in which all the existing MNOs in
beneficiaries list need to vote in a predefined time (the request will be sent to
them as an event). Once the predefined tile is finished, or all beneficiaries voted,
the decision will be based on the majority of the votes. Therefore, we can state
that the prices are adaptable only in case of the agreement of all (or the majority of)
the participants.

• Guaranteed payment to service providers and the MNOs after providing the service
and network: Since, in this system, either the user will not pay the MNO (i.e., in pre-
paid services) or they pays based on their real utilization of the service (i.e., in PAYG
pricing model), it is crucial for the MNOs, as well as service providers, to be sure
about the payment. If the payment guarantee can not be provided in the proposed
system, indeed, the service providers and MNOs will not be motivated to accept the
new business model. To address this issue, we benefit from the trustworthiness of
smart contracts through automatic execution in a deterministic way. In both prepaid
and PAYG pricing models, we defined a fee that is blocked in the SCACM at the time
of the user’s request to access the service. The following approaches are proposed for
two pricing models:

– In the prepaid scenario, since the user already paid the service provider, this

fee (i.e., SharePrepaid
MNO) will be deducted from the service provider’s account and

blocked in SCACM. After termination of the service usage, SCACM will transfer
the blocked money to MNO. It means the service provider is guaranteed to pay
the MNO on behalf of the user.

– In the PAYG scenario, since the user will pay both the MNO and service provider
according to their usage, a minimum fee (i.e., minToken) will be deducted
from the user’s account and blocked in SCACM. After termination of the service
usage, SCACM will transfer the blocked money to MNO and the service provider
according to their share of this fee. In the current implementation of the system,
if the user’s real usage is less than the blocked money, the user will be refunded,
unless the remaining fee can be deducted from the user’s account. Other
solutions are also possible to address this exceptional situation, provided as
future directions.

Regarding the updatability of the system, there are two main concerns to consider.
The first concern is related to the maintainability of smart contracts, which is a well-known
challenge in the field. Once smart contracts are deployed, their code cannot be updated
due to their immutability, which ensures their trustworthiness. To overcome this challenge,
one solution proposed in [29] is to avoid hard-coding the addresses of smart contracts in
the operational system of distributed applications. In our proposed method, we provide
a solution that enables the update of contracts and replacement of the deployed smart
contract with a new one. This can be done by defining SCAB as a reference smart contract
to retrieve the current address of other smart contracts in the system instead of using
hard-coded smart contract addresses. The admin(s) of the system can update this smart
contract as needed.

The second concern is related to the flexibility of attributes and policies. Defining
the access control policies inside one smart contract (e.g., SCACM in our example) limits
the flexibility of the system and increases the maintenance effort, as it restricts the access
attributes to the pre-defined attributes at the time of smart contract deployment. To address
this problem, we define the policies based on each service and design SCPL to keep the list of

Sensors 2023, 23, 4224 24 of 28

all policies mapped to their code. Each service has a mapping of its required access policies
and attributes. At the time of access control, SCACM fetches the related smart contract to
the specific policy code, defined in the list of policies of the user’s requested service, and
calls its verification function. Therefore, new policies can be defined in smart contracts, and
their address will be recorded in SCPL for further access verification procedures.

5.2. Discussion on Latency and Storage Complexity

Low latency in access control procedures is a critical requirement in service provi-
sioning use cases. In the use case of service provisioning for private purposes, where the
participating nodes in the consensus procedure are authenticated and well-known for the
system, the system latency can be significantly manageable by the level of complexity
of the consensus procedure, as shown in Figure 10. Therefore, we skip discussing these
scenarios. However, it is important to mention that due to our observations and the existing
business model, this type of service provisioning may be more attractive to organizations
and businesses.

Regarding the access control for service provisioning in public use cases, latency is
one of the critical requirements. There are some proposals to address this issue as follows:

• Designing a tailor-made DLT for access control purposes can encourage the BCT
community researchers to design a precise ledger with specific consensus models,
block sizes, transaction fees, block times, incentives, and other specifications to make
it possible to validate the higher number of transactions with high security in a given
time. The main problem with this solution is that it needs lots of research and proof
before application.

• Chain sharding is another novel solution that horizontally shards the chain to dis-
tribute the transaction loads among shards [33]. After the validation of transactions
in the shards and generating the blocks, a smart contract would be utilized to merge
the shard blocks to the main chain. This solution increases the throughput and de-
creases storage usage. Several sharding solutions are recently proposed that state the
feasibility of this method. For instance, RapidChain [34] increased the throughput to
7380 TpS, in comparison with 15 to 20 in Ethereum, with 4000 participating nodes and
250 shards.

Regarding storage, BCT needs a considerable amount of storage in its full nodes to keep
the ledger updated. Currently, the proposed method generates one to three transactions
that are all stored in full-node storage. To address the storage complexity challenge of
BCT, as mentioned earlier in the latency problem, the chain sharding solution can be
applied. Chain sharding can be highly beneficial in case of storage requirements. In this
technique, each shard functions independently of the other shards (i.e., it has its own
block validation method, number of input transactions, and storage requirements). In each
shard, the participating nodes are required to keep the transactions of their own shard.
Moreover, optimizing the number of required transactions to be sent to the network is
another proposal to address this challenge.

5.3. Discussion on Scalability

Scalability, security, and decentralization cannot be provided simultaneously due to
the Blockchain trilemma. Scalability is the third characteristic that needs to be addressed
due to the importance of all three factors in our use case and the knowledge that security
and decentralization are provided in the proposed architecture (based on the intrinsic
security features of smart contracts and the Blockchain). Access control solutions face a
major obstacle because of the scalability issue with DLT on various systems. To increase
throughput while expanding the number of concurrent transactions, scalability must
be increased. Blockchain scalability can be divided into two categories: horizontal and
vertical. Vertical scalability tries to expand the capabilities of participating nodes to achieve
higher throughput, whereas horizontal scalability refers to the ability of Blockchain to raise

Sensors 2023, 23, 4224 25 of 28

the throughput (or at least not to decrease it) by adding new nodes. On the one hand,
employing public DLTs might reduce system performance, raise costs, and add delays
even though they are more horizontally scalable. Using permissioned DLTs appears to
be a promising solution in light of these issues. On the other hand, the user’s identity
and privacy may be in danger with permissioned DLTs. Therefore, a fascinating area for
future work would be to propose a scalable customized DLT devoted to the use case that
is a consortium of all participating providers. Although the aforementioned solution is
beneficial in several aspects, it needs lots of research and proof before application. Another
novel solution, which is also discussed in Section 5.2, is sharding the chain horizontally to
distribute the transaction loads among shards [33]. This solution increases the throughput
even by using the pre-examined and approved consensus models such as PoS, PBFT, etc.
For instance, RapidChain [34] increased the throughput to 7380 TpS in comparison with
15–20 in Ethereum with 4000 participating nodes and 250 shards.

6. Related Work

Many recent solutions have been proposed on the topic of efficient access control for
service provisioning. However, a considerable portion of the state-of-the-art research in
access control is dedicated to centralized systems, which do not have a direct link to service
provisioning in cellular networks. While centralized solutions are easier to implement and
offer low latency and storage efficiency, they suffer from having a single point of failure,
low scalability, low availability, and low non-repudiation. [35,36].

There are several decentralized access control solutions in the related literature. Shafeeq
et al. [37] proposed an ABAC mechanism that uses Tangle [38] to store policies and access
attributes in a DAG-based DLT solution. In their method, owners define and manage the
access rules, security policies, and authorization granularity over their assets and store them
in the DLT. Upon receiving an access request, the owner sends the authorization token to
the requester only if the requester meets the conditions defined in the access control policy.
Zhang et al. [39] proposed a hierarchical model for sharing and accessing healthcare data.
In this method, BCT is used as a distributed ledger of permissioned clients to store verified
codes of ciphertexts and record the hash values of auditing logs. Qin et al. [40] proposed an
ABAC method to share data in the cloud environment by storing the access policies in the
BCT. In this system, a certification authority (CA) manages the security of the entire system.
First, the CA issues an attribute key to the user and the system in the smart contract, which
has an expiration time. Then, in the access control phase, the data owner uploads the ciphered
text to the system, and the system invokes the contract to obtain the user’s valid attribute set.
BlendCAC [35] is another system that uses smart contracts for storing the access control matrix
of the CapBAC model. Each node interacts with the smart contract through the provided
contract address and the use of remote procedure calls.

Rather than using BCT as a distributed database, the following works exploit this
technology as an access validation and enforcement solution. In the field of cellular
networks and telecommunications, Ling et al. [41] proposed B-RAN, an ABAC model
implemented as a BCT for access management in Radio Access Networks (RAN). This
method implements self-organized access for users and providers, along with enabling
mobility management. The user and network provider reach an agreement on cost and
digitized spectrum assets, written in a smart contract. After validating the smart contract
concerning these parameters, the user can use the resource for a limited time, and the access
point will automatically receive payment for the access. Moreover, Ling et al. [42] proposed
a BCT-based medium access control method. Suk-hodolskiy et al. [43] presented a system
that manages user access via smart contracts, containing the location of the object, access
policy, and additional owner’s information. One obstacle in the adoption of this method is
the incompatibility between the immutability of typical BCT designs and attribute updates
or revocations, which is addressed in [44]. Wang et al. [45] proposed a fine-grained access
control for cloud storage. In this method, the owner deploys a smart contract to store the
essential data of the file. To grant access, the owner defines the expiration time and a secret

Sensors 2023, 23, 4224 26 of 28

key and adds them to the smart contract. Then, the owner sends the data to the user, who
can download and decrypt the file.

The previous work by Ghaffari et al. [46] proposes an access control method for
service provisioning based on BCT. In this method, a single network provider supplies
a BCT-based system to provide an access control solution as a service for other service
providers. This approach removes the single point of failure in the access control procedure,
improves scalability, immutability, integrity, and provides a new business model for service
provisioning. However, this early version of the work suffers from several issues such
as storage complexity due to the non-linear deployment of smart contracts over system
entities, low maintenance capability regarding policy updates, revocation complexity, and
a limited number of network providers.

This paper presents a solution to the aforementioned issues. The proposed solution
decreases the order of smart contracts deployment to linear complexity. It maps regis-
tered services and their information explicitly into a single smart contract for each user,
service provider, and mobile network operator. Instead of hard-coded policies in the ac-
cess manager smart contract, the proposed solution deploys one smart contract for each
policy. Each service has a list of policies that can be applied while validating the user’s
access to the system. The user revocation procedure is straightforward since specific smart
contracts are now explicitly mapped for each user. Additionally, the retrieving complexity
of users’ registrations for each specific service is constant, which supports an unlimited
number of network providers to participate in the system. The new solution also extends
payment methods to prepaid and PAYG schemes, providing new business models for
service providers’ registration in the system and decreasing the cost of the smart contract’s
function execution.

7. Conclusions

There is growing interest in widening blockchain technology (BCT) towards new
applications. BCT assures decentralized security and trust. We have reviewed some of
the main technological aspects of BCT and presented a concrete application. We have
proposed a decentralized access control-as-a-service solution for private cellular networks.
The solution builds a distributed access control system that can be used by service and
content providers. We have shown how our approach can provide new business models.
The design and implementation of our method in a real-world scenario have been presented
and evaluated. Discussion and comparison to related work have also been addressed.

For future work, we plan to extend our implementation in a number of ways. First,
we plan to improve the assessment and analysis of the proposed method, including a more
detailed study of the cost and performance of the system. Likewise, we plan to include
some additional scenarios and platforms (e.g., Hyperledger Fabric and Quorum), as well
as additional consensus models, to balance the parameters of the system. Other ideas
include extending to a hybrid pricing model and proposing a new BCT-based pricing
model. For instance, instead of the user’s direct payment by money, the user’s payment to
the MNO or SP can be done by paying the transaction fee while sending a transaction to
the system. The new business model can be defined to set a price for sending transactions
to the system with the price of the service.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge support from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101007820.

Sensors 2023, 23, 4224 27 of 28

Disclaimer: This article reflects only the authors’ view and the REA (Research Executive
Agency) is not responsible for any use that may be made of the information it contains.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Decentralized Business Review 2008; p. 21260. Available online:

https://assets.pubpub.org/d8wct41f/31611263538139.pdf (accessed on 12 April 2023).
2. Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.
3. Szabo, N. Formalizing and securing relationships on public networks. First Monday 1997, 2. [CrossRef]
4. Ali, M.S.; Vecchio, M.; Pincheira, M.; Dolui, K.; Antonelli, F.; Rehmani, M.H. Applications of blockchains in the Internet of Things:

A comprehensive survey. IEEE Commun. Surv. Tutor. 2018, 21, 1676–1717. [CrossRef]
5. Jing, N.; Liu, Q.; Sugumaran, V. A blockchain-based code copyright management system. Inf. Process. Manag. 2021, 58, 102518.

[CrossRef]
6. Saari, A.; Vimpari, J.; Junnila, S. Blockchain in real estate: Recent developments and empirical applications. Land Use Policy 2022,

121, 106334. [CrossRef]
7. Xi, P.; Zhang, X.; Wang, L.; Liu, W.; Peng, S. A review of Blockchain-based secure sharing of healthcare data. Appl. Sci. 2022,

12, 7912. [CrossRef]
8. García-Corral, F.J.; Cordero-García, J.A.; de Pablo-Valenciano, J.; Uribe-Toril, J. A bibliometric review of cryptocurrencies: How

have they grown? Financ. Innov. 2022, 8, 2. [CrossRef]
9. Nguyen, D.C.; Pathirana, P.N.; Ding, M.; Seneviratne, A. Blockchain for 5G and beyond networks: A state of the art survey. J.

Netw. Comput. Appl. 2020, 166, 102693. [CrossRef]
10. Agyapong, P.K.; Iwamura, M.; Staehle, D.; Kiess, W.; Benjebbour, A. Design considerations for a 5G network architecture. IEEE

Commun. Mag. 2014, 52, 65–75. [CrossRef]
11. Donet, J.A.; Pérez-Sola, C.; Herrera-Joancomartí, J. The bitcoin P2P network. In Financial Cryptography and Data Security: FC 2014

Workshops, BITCOIN and WAHC 2014, Christ Church, Barbados, 7 March 2014, Revised Selected Papers; Springer: Berlin, Germany,
2014; pp. 87–102.

12. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X.; Wang, H. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018,
14, 352–375. [CrossRef]

13. Lande, S.; Zunino, R. SoK: Unraveling Bitcoin smart contracts. In Proceedings of the 7th International Conference on Principles
of Security and Trust, Thessaloniki, Greece, 14–20 April 2018; pp. 217–242.

14. Dumas, J.G.; Lafourcade, P.; Tichit, A.; Varrette, S. Les Blockchains en 50 Questions-2éd.: Comprendre le Fonctionnement de Cette
Technologie; Dunod: Malakoff, France, 2022.

15. Morrison, D. PATRICIA—Practical algorithm to retrieve information coded in alphanumeric. J. ACM 1968, 15, 514–534. [CrossRef]
16. Ferraiolo, D.; Kuhn, D.R.; Chandramouli, R. Role-Based Access Control; Artech House: New York, NY, USA, 2003.
17. Lampson, B.W. Protection. ACM SIGOPS Oper. Syst. Rev. 1974, 8, 18–24. [CrossRef]
18. Levy, H.M. Capability-Based Computer Systems; Digital Press: Los Angeles, CA, USA, 2014.
19. Samarati, P.; de Vimercati, S.C. Access control: Policies, models, and mechanisms. In Foundations of Security Analysis and Design:

Tutorial Lectures Springer: Berlin, Germany, 2000; pp. 137–196.
20. Sandhu, R.S. Role-based access control. In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 1998; Volume 46, pp. 237–286.
21. Goyal, V.; Pandey, O.; Sahai, A.; Waters, B. Attribute-based encryption for fine-grained access control of encrypted data. In

Proceedings of the 13th ACM Conference on Computer and Communications Security, Alexandria, VA, USA, 30 October–3
November 2006; pp. 89–98.

22. Orange. Mobile Private Network. Available online: https://www.orange-business.com/fr/produits/mobile-private-networks
(accessed on 21 February 2023).

23. Ericsson. Dedicated Networks. Available online: https://www.ericsson.com/en/portfolio/enterprise-wireless-solutions/
dedicated-networks (accessed on 21 February 2023).

24. Samsung. Digital Transformation Powerd by Private Networks. Available online: https://www.samsung.com/global/business/
networks/solutions/private-networks/ (accessed on 21 February 2023).

25. Nokia. Private Cellular Networks Can Effectively and Affordably Serve the Needs of Education. Available online: https:
//www.nokia.com/blog/private-cellular-networks-can-effectively-and-affordably-serve-the-needs-of-education/ (accessed on
21 February 2023).

26. Aryal, N.; Ghaffari, F.; Rezaei, S.; Bertin, E.; Crespi, N. Private Cellular Network Deployment: Comparison of OpenAirInterface
with Magma Core. In Proceedings of the 2022 18th International Conference on Network and Service Management (CNSM),
Thessaloniki, Greece, 31 October–4 November 2022; IEEE: New York, NY, USA, 2022; pp. 364–366.

27. Nikaein, N.; Marina, M.K.; Manickam, S.; Dawson, A.; Knopp, R.; Bonnet, C. OpenAirInterface: A flexible platform for 5G
research. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 33–38. [CrossRef]

https://assets.pubpub.org/d8wct41f/31611263538139.pdf
http://doi.org/10.5210/fm.v2i9.548
http://dx.doi.org/10.1109/COMST.2018.2886932
http://dx.doi.org/10.1016/j.ipm.2021.102518
http://dx.doi.org/10.1016/j.landusepol.2022.106334
http://dx.doi.org/10.3390/app12157912
http://dx.doi.org/10.1186/s40854-021-00306-5
http://dx.doi.org/10.1016/j.jnca.2020.102693
http://dx.doi.org/10.1109/MCOM.2014.6957145
http://dx.doi.org/10.1504/IJWGS.2018.095647
http://dx.doi.org/10.1145/321479.321481
http://dx.doi.org/10.1145/775265.775268
https://www.orange-business.com/fr/produits/mobile-private-networks
https://www.ericsson.com/en/portfolio/enterprise-wireless-solutions/dedicated-networks
https://www.ericsson.com/en/portfolio/enterprise-wireless-solutions/dedicated-networks
https://www.samsung.com/global/business/networks/solutions/private-networks/
https://www.samsung.com/global/business/networks/solutions/private-networks/
https://www.nokia.com/blog/private-cellular-networks-can-effectively-and-affordably-serve-the-needs-of-education/
https://www.nokia.com/blog/private-cellular-networks-can-effectively-and-affordably-serve-the-needs-of-education/
http://dx.doi.org/10.1145/2677046.2677053

Sensors 2023, 23, 4224 28 of 28

28. Magma. Implications of the Magma Architecture Interoperability, Scale and Resilience. 2022. Available online: https:
//magmacore.org/wp-content/uploads/sites/5/2022/10/WP_Implications_of_Magma_Architecture_092822.pdf (accessed on
21 February 2023).

29. Chen, J.; Xia, X.; Lo, D.; Grundy, J.; Luo, X.; Chen, T. Defining smart contract defects on ethereum. IEEE Trans. Softw. Eng. 2020,
48, 327–345. [CrossRef]

30. Wackerow, P. ERC-20 Token Standard. 2022. Available online: https://ethereum.org/en/developers/docs/standards/tokens/
erc-20 (accessed on 21 February 2023).

31. Aponte-Novoa, F.A.; Orozco, A.L.S.; Villanueva-Polanco, R.; Wightman, P. The 51% attack on blockchains: A mining behavior
study. IEEE Access 2021, 9, 140549–140564. [CrossRef]

32. Saad, M.; Spaulding, J.; Njilla, L.; Kamhoua, C.; Shetty, S.; Nyang, D.; Mohaisen, D. Exploring the attack surface of blockchain:
A comprehensive survey. IEEE Commun. Surv. Tutor. 2020, 22, 1977–2008. [CrossRef]

33. Kaur, G.; Gandhi, C. Scalability in blockchain: Challenges and solutions. In Handbook of Research on Blockchain Technology; Elsevier:
Amsterdam, The Netherlands, 2020; pp. 373–406.

34. Zamani, M.; Movahedi, M.; Raykova, M. Rapidchain: Scaling blockchain via full sharding. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; pp. 931–948.

35. Xu, R.; Chen, Y.; Blasch, E.; Chen, G. Blendcac: A smart contract enabled decentralized capability-based access control mechanism
for the IoT. Computers 2018, 7, 39. [CrossRef]

36. Ali, G.; Ahmad, N.; Cao, Y.; Khan, S.; Cruickshank, H.; Qazi, E.A.; Ali, A. xDBAuth: Blockchain based cross domain authentication
and authorization framework for Internet of Things. IEEE Access 2020, 8, 58800–58816. [CrossRef]

37. Shafeeq, S.; Alam, M.; Khan, A. Privacy aware decentralized access control system. Future Gener. Comput. Syst. 2019, 101, 420–433.
[CrossRef]

38. Popov, S. The tangle. White Pap. 2018, 1, 30.
39. Zhang, J.; Yang, Y.; Liu, X.; Ma, J. An efficient blockchain-based hierarchical data sharing for Healthcare Internet of Things. IEEE

Trans. Ind. Inform. 2022, 18, 7139–7150. [CrossRef]
40. Qin, X.; Huang, Y.; Yang, Z.; Li, X. An access control scheme with fine-grained time constrained attributes based on smart contract

and trapdoor. In Proceedings of the 26th International Conference on Telecommunications (ICT), Hanoi, Vietnam, 8–10 April
2019; IEEE: New York, NY, USA, 2019; pp. 249–253.

41. Ling, X.; Wang, J.; Bouchoucha, T.; Levy, B.C.; Ding, Z. Blockchain radio access network (B-RAN): Towards decentralized secure
radio access paradigm. IEEE Access 2019, 7, 9714–9723. [CrossRef]

42. Ling, X.; Le, Y.; Wang, J.; Ding, Z. Hash access: Trustworthy grant-free IoT access enabled by blockchain radio access networks.
IEEE Netw. 2020, 34, 54–61. [CrossRef]

43. Sukhodolskiy, I.; Zapechnikov, S. A blockchain-based access control system for cloud storage. In Proceedings of the 2018
IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg, Russia, 29
January–1 February 2018 ; IEEE: New York, NY, USA, 2018; pp. 1575–1578.

44. Yu, G.; Zha, X.; Wang, X.; Ni, W.; Yu, K.; Yu, P.; Zhang, J.A.; Liu, R.P.; Guo, Y.J. Enabling attribute revocation for fine-grained
access control in blockchain-IoT systems. IEEE Trans. Eng. Manag. 2020, 67, 1213–1230. [CrossRef]

45. Wang, S.; Wang, X.; Zhang, Y. A secure cloud storage framework with access control based on blockchain. IEEE Access 2019,
7, 112713–112725. [CrossRef]

46. Ghaffari, F.; Bertin, E.; Crespi, N.; Behrad, S.; Hatin, J. A novel access control method via smart contracts for internet-based
service provisioning. IEEE Access 2021, 9, 81253–81273. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://magmacore.org/wp-content/uploads/sites/5/2022/10/WP_Implications_of_Magma_Architecture_092822.pdf
https://magmacore.org/wp-content/uploads/sites/5/2022/10/WP_Implications_of_Magma_Architecture_092822.pdf
http://dx.doi.org/10.1109/TSE.2020.2989002
https://ethereum.org/en/developers/docs/standards/tokens/erc-20
https://ethereum.org/en/developers/docs/standards/tokens/erc-20
http://dx.doi.org/10.1109/ACCESS.2021.3119291
http://dx.doi.org/10.1109/COMST.2020.2975999
http://dx.doi.org/10.3390/computers7030039
http://dx.doi.org/10.1109/ACCESS.2020.2982542
http://dx.doi.org/10.1016/j.future.2019.06.025
http://dx.doi.org/10.1109/TII.2022.3145851
http://dx.doi.org/10.1109/ACCESS.2018.2890557
http://dx.doi.org/10.1109/MNET.001.1900159
http://dx.doi.org/10.1109/TEM.2020.2966643
http://dx.doi.org/10.1109/ACCESS.2019.2929205
http://dx.doi.org/10.1109/ACCESS.2021.3085831

	Introduction
	Background
	Blockchain and Distributed Ledger Technologies
	Smart Contracts Enabled by *bct
	Access Control Models
	Private Cellular Networks

	*bct-Based Access Control for Service Provisioning in Cellular Networks
	System Design
	Reference Contract
	Database Contracts
	Manager Contracts
	Policy Definition Contracts

	Registration Step
	Service Provider Registration
	MNO Registration
	User Registration

	Attribute-Based Access Control
	Payment

	Evaluation
	Implementation
	Deployment of Cellular Network Testbed
	Deployment of the Decentralized Application via BCT

	Performance Evaluation

	Discussion
	Real Implementation of the System
	Discussion on Latency and Storage Complexity
	Discussion on Scalability

	Related Work
	Conclusions
	References

