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ABSTRACT Lumacaftor-ivacaftor is a cystic fibrosis transmembrane conductance regula-
tor (CFTR) modulator combination approved for patients with cystic fibrosis (CF) who are
homozygous for the F508del allele. This treatment showed significant clinical improve-
ment; however, few studies have addressed the evolution of the airway microbiota-myco-
biota and inflammation in patients receiving lumacaftor-ivacaftor treatment. Seventy-five
patients with CF aged 12 years or older were enrolled at the initiation of lumacaftor-iva-
caftor therapy. Among them, 41 had spontaneously produced sputa collected before and
6 months after treatment initiation. Airway microbiota and mycobiota analyses were per-
formed via high-throughput sequencing. Airway inflammation was assessed by measuring
the calprotectin levels in sputum; the microbial biomass was evaluated via quantitative
PCR (qPCR). At baseline (n = 75), bacterial alpha-diversity was correlated with pulmonary
function. After 6 months of lumacaftor-ivacaftor treatment, a significant improvement in
the body mass index and a decreased number of intravenous antibiotic courses were
noted. No significant changes in bacterial and fungal alpha- and beta-diversities, patho-
gen abundances, or calprotectin levels were observed. However, for patients not chroni-
cally colonized with Pseudomonas aeruginosa at treatment initiation, calprotectin levels
were lower, and a significant increase in bacterial alpha-diversity was observed at
6 months. This study shows that the evolution of the airway microbiota-mycobiota in CF
patients depends on the patient’s characteristics at lumacaftor-ivacaftor treatment initia-
tion, notably chronic colonization with P. aeruginosa.

IMPORTANCE The management of cystic fibrosis has been transformed recently by
the advent of CFTR modulators, including lumacaftor-ivacaftor. However, the effects
of such therapies on the airway ecosystem, particularly on the microbiota-mycobiota
and local inflammation, which are involved in the evolution of pulmonary damage,
are unclear. This multicenter study of the evolution of the microbiota under protein
therapy supports the notion that CFTR modulators should be started as soon as
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possible, ideally before the patient is chronically colonized with P. aeruginosa. (This
study has been registered at ClinicalTrials.gov under identifier NCT03565692).

KEYWORDS cystic fibrosis, airway microbiome, airway mycobiome, airway
inflammation, lumacaftor-ivacaftor, inflammation, microbiome

Cystic fibrosis (CF) is a predominant genetic disease in Caucasian populations, caused
by mutations in the gene encoding the CF transmembrane conductance regulator

(CFTR) protein. The corresponding defect in ion-water transport results in multiple-organ
dysfunction, but airway colonization and infection, lung inflammation, and malnutrition
are among the most important prognostic factors in patients with CF (1).

The lung ecosystem is now considered polymicrobial, and advances in next-generation
sequencing have led to the better characterization of its bacterial (microbiota) and fungal
(mycobiota) communities (2–4). In CF, reduced airway clearance, the accumulation of respi-
ratory secretions, as well as other factors, such as the host immune response and treat-
ments (e.g., antibiotics), contribute to the disruption of the airway microbiota-mycobiota,
which includes a decrease in microbial alpha-diversity and an overrepresentation of patho-
gens. Such changes are associated with lung disease severity in CF patients and are a bio-
marker of disease evolution. Airway microbiota alpha-diversity is inversely correlated with
pulmonary inflammation and positively correlated with the percent predicted forced expir-
atory volume in 1 s (ppFEV1) and body mass index (BMI). Microbiota alpha-diversity is also
predictive of disease evolution (3, 5, 6).

Cystic fibrosis management was previously limited to symptomatic management with
inhaled mucolytics, airway clearance techniques, antibiotic courses to treat respiratory infec-
tions, associated pancreatic extracts, and nutritional supplements. However, in the past dec-
ade, the therapeutic management of CF patients has been changed by the development of
CFTR modulators, long-term treatments aimed at restoring the functionality of the CFTR
protein. In 2015, the combination of lumacaftor (LUM) and ivacaftor (IVA) (CFTR corrector
and potentiator, respectively) became the first protein therapy approved for F508del homo-
zygous patients (about 40% of patients with CF) (7, 8). Clinical trials have confirmed the effi-
cacy and safety of lumacaftor-ivacaftor in patients with CF aged 12 years and older (9). It
significantly improves the ppFEV1, pulmonary exacerbations, BMI, chloride concentrations
in sweat, the lung clearance index (LCI), and the parameters of magnetic resonance imag-
ing (MRI) of the chest (8, 10, 11). However, the correlation between lung function improve-
ment and sweat chloride levels is only modest, suggesting that the patient response to
lumacaftor-ivacaftor is multifactorial (12). Moreover, the clinical response is heterogeneous
during the first 6 months (13, 14).

It is therefore important to investigate the effects of modulators, in particular their
effects on airway microbiology, for several reasons. First, it should be done to assess their
impacts on underlying pathophysiology, with the objective of reducing the abundance of
pathogens and restoring the pulmonary microbiota to one more closely resembling the
microbiota in early disease (increases in commensal organisms and microbial alpha-diver-
sity). Moreover, these findings could provide biomarkers of treatment efficacy, which could
be used to adapt associated therapies (e.g., the continuation of inhaled antibiotics).

CFTR modulators can modify the airway microbiome in several ways. First, direct
antimicrobial properties have been described in vitro for ivacaftor and lumacaftor,
including against Pseudomonas aeruginosa and Staphylococcus aureus (15–17). In addi-
tion, indirect antimicrobial effects are possible, including an improvement of mucocili-
ary clearance, modification of pH, hydration of airway secretions, and adaptation of
associated therapies (such as antibiotic use). Several studies that have investigated the
effects of CFTR modulator therapies on the airway microbiome have reported signifi-
cant changes in composition, sometimes as early as the first weeks of treatment (11,
18–26). Some of them have shown an increase in bacterial alpha-diversity and a
decrease in the abundance of P. aeruginosa bacteria in sputum, but these results are
inconsistent with those of other reports. In addition, most studies have involved
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patients with at least one G551D mutation treated with ivacaftor. Fewer studies have
focused on the evolution of the airway microbiome after lumacaftor-ivacaftor therapy
(11, 26). There are limited and contradictory results, and most studies have not taken
into account the mycobiota and inflammation (11), both of which are biomarkers of
lung function (3, 6, 18, 27, 28).

In this study, we hypothesized that improved CFTR function after lumacaftor-ivacaf-
tor initiation might be associated with changes in the airway microbiota-mycobiota
composition and decreased airway inflammation. We examined associations among
the airway microbiota-mycobiota, airway inflammation, and clinical outcomes in spu-
tum samples from a multicenter cohort of CF patients aged 12 years and older, pro-
spectively followed up before and 6 months after the initiation of lumacaftor-ivacaftor
treatment.

RESULTS
Patient characteristics at baseline. Seventy-five CF patients (35 [47%] 12 to 17 years

old and 40 [53%] $18 years old) were analyzed. Patient characteristics at baseline are
summarized in Table 1. All patients received continuous lumacaftor-ivacaftor treatment
and were followed up for 6 months, but only 41 (55%) had a sufficient volume of sponta-
neous sputa for metabarcoding analysis at the second visit (i.e., the subgroup with pairs
of sputum samples at treatment initiation [M0] and at 6 months of follow-up [M6]) (see
Fig. S1 in the supplemental material). At baseline, these 41 patients had significantly
lower ppFEV1 values and greater P. aeruginosa chronic colonization; no other significant
differences were observed compared to the whole population (Table 1).

Airway microbiota-mycobiota and inflammation at baseline. Among the final
median count of 30,890 bacterial reads (interquartile range [IQR], 24,815, 37,816 reads) for
1,329 bacterial amplicon sequence variants (ASVs), the microbiota composition at baseline
was dominated by Pseudomonas (21%), followed by Streptococcus (13%) and Prevotella
(12%). Veillonella and Staphylococcus each accounted for 10% of the bacterial ASVs (Fig.
S2B). Among the factors influencing the microbiota composition at baseline, adults had an
airway microbiota distinct from that of adolescents, as shown by the beta-diversity
(P = 0.01 by permutational multivariate analysis of variance [PERMANOVA]) (Fig. S3A), the
lower alpha-diversity (Fig. S3B), and the overrepresentation of P. aeruginosa (Fig. S3C).
Patients with a ppFEV1 of $80% also had a distinct microbiota in terms of alpha-diversity
(Shannon and Simpson index P values of 0.03 and 0.01, respectively) (Fig. 1A) and beta-di-
versity (P = 0.02) (Fig. 1B) compared to patients with a ppFEV1 of ,80% at baseline.
Furthermore, alpha-diversity indices were correlated with ppFEV1 (Fig. 1C). Using the linear
discriminant analysis (LDA) effect size (LEfSe) method, we identified numerous taxonomic
nodes predicting ppFEV1 in our population. Patients with a ppFEV1 of,80% showed signifi-
cantly increased relative abundances of Pseudomonas and Lautropia (Fig. 1D). Among the
16 genera whose relative abundances were significantly different at baseline in patients
with an FEV1 of $80%, there was an overrepresentation of Streptococcus, Porphyromonas,
Actinomyces, TM7x, and Peptostreptococcus (Fig. 1D).

Regarding the mycobiota, the final median count was 2,031 reads (IQR, 671, 7,722 reads)
for 493 fungal ASVs. The mycobiota composition at baseline was dominated by Candida
(35%), followed by Malassezia (14%) and Saccharomyces (8%). Aspergillus accounted for 5%
of the fungal ASVs (Fig. S2A). Of note, 19 (25%) of the 75 patients had a positive galacto-
mannan (GM) index, but no significant association was observed between the GM level and
chronic colonization status or the relative abundance of A. fumigatus. The mycobiota was
not significantly different in alpha- or beta-diversity according to age (adolescents
versus adults) (data not shown) or lung function (ppFEV1 of $80% versus ppFEV1 of
,80%) (Fig. S4).

At baseline, the mean calprotectin level in sputum was 3,941 mg/mL (IQR, 3,098,
4,581 mg/mL) (Table 1). The level significantly increased with age (r = 0.43; P = 0.003)
and was negatively correlated with the ppFEV1 value and bacterial alpha-diversity indi-
ces (r = 20.48, 20.53, and 20.59, respectively; P , 0.001) (Fig. 2A to D). Calprotectin
levels were also significantly higher in patients chronically colonized with P. aeruginosa
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than in those not chronically colonized (4,278 mg/mL [IQR, 3,827, 4,743 mg/mL] and
3,168 mg/mL [IQR, 768, 3,902 mg/mL], respectively) (P , 0.001) and were correlated with
P. aeruginosa loads quantification (r = 0.44; P , 0.001) (Fig. 2E and F). Furthermore, the
compositions of the airway microbiota, but not the mycobiota, significantly differed in
terms of alpha- and beta-diversities between patients with and those without P. aerugi-
nosa chronic colonization (Fig. 3).

TABLE 1 Clinical characteristics at baseline of all patients with CF and the subgroups with and without M6 samplesa

Parameter

Value for group

P valuec

All patients
Patients with M0
and M6 samples

Patients without
M6 samples

No. of
missing
valuesb Value

No. of
missing
valuesb Value

No. of
missing
valuesb Value

No. (%) of patients 75 41 (55) 34 (45)

Median age (yrs) (6SD) 0 21.0 (69.0) 0 22.5 (69.0) 0 19.0 (68.7) 0.10
No. (%) of patients,18 yrs of age 35 (47) 16 (39) 19 (54) 0.16

No. (%) of female patients 0 40 (53) 0 19 (46) 0 21 (62) 0.18
Median ppFEV1 (%) (IQR) 4 65 (53, 84) 1 58 (42, 78) 3 73 (62, 87) 0.01

Median BMI (kg/m2) (IQR) 2 18.8 (17.3, 21.0) 2 19.2 (17.5, 20.3) 0 18.7 (16.9, 21.6) 0.92
Median BMI Z-score (IQR)d 20.8 (21.1, 0.1) 20.8 (21.2,20.1) 20.8 (21.1, 0.2) 0.59

No. (%) of patients with$1 i.v. antibiotic course
in the previous 12 mo

4 40 (56) 1 25 (64) 3 15 (47) 0.15

No. (%) of patients taking maintenance
pulmonary medication(s) at baseline

Inhaled antibiotics 1 45 (61) 1 26 (65) 0 19 (56) 0.42
Azithromycin 0 45 (60) 0 26 (63) 0 19 (56) 0.51
Dornase alfa 1 59 (80) 1 31 (78) 0 28 (82) 0.6
Inhaled corticosteroids 0 52 (69) 0 32 (78) 0 20 (59) 0.07
Oral corticosteroids 0 3 (4) 0 2 (5) 0 1 (3) 1
Inhaled hypertonic saline 5 8 (11) 5 3 (8) 0 5 (15) 0.47
Inhaled bronchodilators 5 59 (84) 5 30 (83) 0 29 (85) 0.82

No. (%) of patients with pulmonary
colonization

MSSA 0 45 (60) 0 21 (51) 0 24 (71) 0.09
MRSA 0 12 (16) 0 8 (20) 0 4 (12) 0.36
H. influenzae 0 7 (9) 0 3 (7) 0 4 (12) 0.7
P. aeruginosae 0 41 (55) 0 27 (66) 0 14 (41) 0.03
B. cepacia 0 2 (3) 0 1 (2) 0 1 (3) 1
A. fumigatuse 16 23 (39) 13 13 (46) 3 10 (32) 0.27

Sputum supernatant dosage
Median calprotectin level (mg/mL) (IQR) 11 3,941 (3,098,

4,581)
6 4,232 (3,216,

4,652)
5 3,696 (2,251,

4,471)
0.17

No. (%) of patients with a GM index of.1 5 19 (25) 1 13 (32) 4 6 (20) 0.24
Median total fungal load (log pg/mL) (IQR) 0 0.7 (0, 1.3) 0 0.7 (0, 1.3) 0 0.7 (0, 1.1) 0.7
Median total bacterial load (log pg/mL) (IQR) 0 2.3 (1.8, 2.8) 0 2.1 (1.7, 2.6) 0 2.4 (2.1, 2.8) 0.1
Median P. aeruginosa load (log copies/mL)
(IQR)

1 3.0 (2.4, 6.3) 1 3.7 (2.4, 6.1) 0 2.7 (2.2, 6.7) 0.7

aData are means (6SD), medians (IQRs), or numbers (percentages). ppFEV1, percent predicted forced expiratory volume in 1 s; BMI, body mass index; MSSA, methicillin-
susceptible S. aureus; MRSA, methicillin-resistant S. aureus.

bMissing values correspond to the number of patients without the corresponding data.
cComparisons between patients with and those without M6 samples. Significant values (p, 0.05) are in boldface.
dFor adolescents.
eP. aeruginosa and A. fumigatus colonizations refer to chronic colonization status defined according to local practices as the presence of P. aeruginosa isolates in
3 consecutive cultures with at least 1 month between positive cultures during the previous 6 months (49) or as.50% of samples positive in the last 12 months (50) and as
2 sputum cultures positive for A. fumigatus during the last 12 months (51).
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Changes in clinical outcomes, the microbiota-mycobiota, and inflammation
characteristics under lumacaftor-ivacaftor treatment are linked to P. aeruginosa
chronic colonization status at baseline. Changes in clinical outcomes between M0
and M6 for all patients and the subgroup of 41 patients with paired sputum samples
(M0-M6 sputum samples) were comparable (Table 2). No significant changes in ppFEV1

but significant increases in BMI were observed, and the BMI Z-score was stable in ado-
lescents in both populations. Patients also had a significant decrease in the number of
intravenous (i.v.) antibiotic courses (Table 2).

Next, we focused on the subgroup of 41 patients with M0-M6 sputum samples to
decipher the evolution of the airway microbiota and mycobiota and sputum bio-
markers. The median time between treatment initiation and the M6 visit was 183 days
(IQR, 165, 210 days). The airway microbiota and mycobiota did not have significantly

FIG 1 Bacterial composition of sputum at baseline according to lung function. (A) Alpha-diversity indices (Shannon and Simpson) of the microbiota. (B)
Beta-diversity (which assesses differences in microbiota compositions between samples) according to lung function at baseline, using a nonmetric
multidimensional scaling (NMDS) ordination method with the Bray-Curtis distance metric. (C) Correlation between the ppFEV1 and the Shannon index. (D)
LEfSe method showing ASVs distinguishing patients with a ppFEV1 of ,80% and a ppFEV1 of $80% at baseline.
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different alpha- and beta-diversities between M0 and M6 in the population of 41
patients. No changes were observed in P. aeruginosa ASV relative abundances or P.
aeruginosa quantitative PCR (qPCR) loads, bacterial and fungal loads, GM positivity
rates, or sputum calprotectin levels (Table 2). Subgroup analyses by age (adolescents
or adults) and lung function (ppFEV1 of $80% or ppFEV1 of ,80%) at baseline also
showed no significant changes in the airway microbiota and mycobiota with lumacaftor-
ivacaftor treatment.

Chronic colonization with P. aeruginosa is a turning point in disease evolution. Patients

FIG 2 Sputum calprotectin at baseline, according to patient and disease characteristics. Shown are sputum calprotectin levels at baseline according to age (A),
ppFEV1 (B), bacterial alpha-diversity indices (Shannon [C] and Simpson [D]), qPCR load of P. aeruginosa (E), and chronic colonization with P. aeruginosa (F).
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chronically colonized with P. aeruginosa have a lower ppFEV1 and more courses of antibi-
otics (Table S1). In addition, chronic colonization with P. aeruginosa was significantly asso-
ciated with a higher calprotectin level and decreased bacterial alpha-diversity indices
(Fig. 2F and Fig. 3C). Shifts in the bacterial community occurred more in patients not
chronically colonized with P. aeruginosa than in patients colonized with P. aeruginosa
(Fig. 4). Only patients without such colonization had significant increases in bacterial
alpha-diversity indices under lumacaftor-ivacaftor treatment (Fig. 4). We did not observe
any significant changes in fungal alpha-diversity, bacterial and fungal beta-diversities
(data not shown), or calprotectin or microbial loads (Table 2). Regarding the M0-M6
microbiota and mycobiota data, DESeq2 analysis revealed a significant increase in
Malassezia restricta and decreases in Candida albicans, Capnocytophaga spp., Veillonella
spp., TM7x spp., Rothia spp., and Fusobacterium spp. (with no differences in evolution
between Gram-positive and Gram-negative organisms) in patients not chronically colon-
ized with P. aeruginosa (Table S2).

FIG 3 Bacterial and fungal compositions of sputa at baseline according to the P. aeruginosa chronic colonization phenotype. (A and B) Comparison of
targeted metagenomics data obtained from sputum samples at baseline (M0) between the patients colonized and those not colonized with P. aeruginosa
for alpha- and beta-diversities. Beta-diversity, which assesses differences in microbial compositions between samples using a nonmetric multidimensional
scaling (NMDS) ordination method with the Bray-Curtis distance metric of bacterial (A) and fungal (B) communities, is shown to measure the microbiota
and mycobiota compositional similarity throughout. Permutational multivariate analysis of variance (PERMANOVA) was used to test sample clustering
hypotheses. (C and D) Alpha-diversities of bacterial (C) and fungal (D) communities determined using the Shannon and Simpson indices.
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FIG 4 Evolution of bacterial alpha-diversity indices with lumacaftor-ivacaftor treatment according to P.
aeruginosa chronic colonization at baseline. Shown is the evolution of bacterial alpha-diversity indices
with lumacaftor-ivacaftor treatment in patients without (A and B) and with (C and D) P. aeruginosa chronic
colonization at baseline.
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DISCUSSION

We assessed the evolution of F508del homozygous patients treated with lumacaf-
tor-ivacaftor over 6 months. First, the initiation of lumacaftor-ivacaftor was associated
with improved BMI and decreased i.v. antibiotic courses. Second, changes in the airway
microbiota under treatment were dependent on the status of chronic colonization by
P. aeruginosa at baseline.

In our population of 75 CF patients, we did not observe a significant improvement
in ppFEV1 under treatment despite continuous exposure to lumacaftor-ivacaftor. In
contrast, real-life data in a study on a large number of patients indicated a 3% increase
in ppFEV1 (10). However, ppFEV1 evolution is multifactorial (i.e., local inflammation or
the presence of bronchiectasis), as suggested by the partial correlation between sweat
levels of chloride and ppFEV1 evolution (12, 29, 30). In addition, improvements in
ppFEV1 with lumacaftor-ivacaftor are more difficult to establish in patients with good
lung function (ppFEV1 of $90%) or advanced lung disease (ppFEV1 of ,40%), with the
latter condition representing one-third of our cohort values at baseline (11, 29, 30).
Because the study was observational and sweat chloride or LCI estimates were not per-
formed in routine care at 6 months of follow-up, we did not have data regarding these
sweat parameters (which are more sensitive than ppFEV1 [11, 31]). However, we
observed improvements in BMI and intravenous antibiotic courses, which reflect more
consistent effectiveness outcomes according to numerous studies (8, 10, 11, 29, 30). To
date, studies on the effects of lumacaftor-ivacaftor treatment have focused mainly on
conventional clinical and biological parameters, except for a recent study that analyzed
the bacterial microbiota (11).

It is now well recognized that the lung ecosystem, encompassing resident microbial
communities and the local inflammatory response, is strongly associated with the
pathophysiology and outcomes of CF patients (5). Few data are available on the evolu-
tion of the airway microbiota under lumacaftor-ivacaftor or elexacaftor-tezacaftor-iva-
caftor treatment, and there is no information on the airway mycobiota (11, 26, 32, 33).
In this study, no significant changes in the airway microbiota and mycobiota were
observed in the cohort of patients with spontaneously expectorated sputa at both
time points, in contrast to preliminary results suggesting that lumacaftor-ivacaftor may
increase bacterial alpha-diversity indices (32). We found no significant changes in the
relative abundances or qPCR loads of fungal, bacterial, and P. aeruginosa biomasses.
The data on the effects of lumacaftor-ivacaftor on bacteria or P. aeruginosa abundances
are contradictory and inconclusive (26, 32).

At baseline, the airway microbiota and mycobiota compositions were consistent
with those in the literature on CF (4, 33–35). These microbial communities are influ-
enced by different factors related to CF evolution (i.e., pulmonary function and chronic
colonization by P. aeruginosa or A. fumigatus), which may also affect changes in the mi-
crobial communities under modulator treatment. The status of chronic colonization by
P. aeruginosa caught our attention because of its clinical relevance, its role in the evo-
lution of the microbiota under modulator therapy (6, 24, 26, 32, 33), and its correlation
with calprotectin levels in the sputum. In this study, patients who were not chronically
colonized with P. aeruginosa at lumacaftor-ivacaftor treatment initiation had lower cal-
protectin levels before treatment and significant increases in bacterial alpha-diversity
after 6 months of treatment. These results were congruent with the role of CF patho-
gens such as P. aeruginosa, which show decreased diversity with increased lung dis-
ease severity (28). With lumacaftor-ivacaftor, the same patients showed significant
decreases in the abundances of anaerobes (i.e., Fusobacterium and Veillonella) as well
as Rothia, which may contribute to lung damage through interactions with CF patho-
gens, including P. aeruginosa (6). These bacteria can degrade sputum mucins by gener-
ating short-chain amino acids and fatty acids that stimulate P. aeruginosa growth (36).
The production of short-chain fatty acids by anaerobes could also be involved in the
inflammatory response through the interleukin-8 (IL-8)-related pathway (6, 37). In addi-
tion, P. aeruginosa uses substrates produced by Rothia to generate primary metabolites
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in vitro (5, 38). The role of anaerobes remains to be investigated by differentiating bac-
terial species and patient phenotypes based on the increased abundances of some
anaerobes (Porphyromonas and Peptostreptococcus) in patients with a ppFEV1 of $80%
(33, 39).

Although the airway microbiota is relatively stable over time, even under ivacaftor
treatment (31), the airway mycobiota has been shown to fluctuate over time, conditioned
by the inhalation of environmental conidia (34). The impact of lumacaftor-ivacaftor treat-
ment on the airway mycobiota is therefore difficult to analyze because its effect must be
greater than spontaneous variation (40). However, in the patients who were not chroni-
cally colonized with P. aeruginosa, the C. albicans abundance was significantly decreased
by lumacaftor-ivacaftor, and C. albicans is associated with worsening CF disease and a sig-
nificant impairment of lung function (41). This result is in line with recent reports that
P. aeruginosa coexists with Candida species more frequently in CF patients than in those
with other respiratory disorders and that the rates of colonization by Candida and patho-
genic bacteria in CF patients increase with age (42).

Because calprotectin is functionally related to neutrophil activation, we assessed
the calprotectin level in the sputum supernatant to evaluate local inflammation (27,
43). We detected high levels of calprotectin, in line with the airway inflammation asso-
ciated with lumacaftor-ivacaftor (11). In agreement with a previous report (24), we did
not find a significant change in inflammation under treatment, even in patients who
were not chronically colonized with P. aeruginosa, indicating that correcting airway
inflammation in CF patients is challenging. Breath metabolome profiles were modified
after 12 months of lumacaftor-ivacaftor therapy, in a way suggesting relationships with
local inflammation and oxidative stress rather than with the airway microbiota compo-
sition (26).

This study had several limitations. Metabarcoding may not identify all microbial gen-
era and species, although the V3-V4 and internal transcribed spacer 2 (ITS2) regions are
efficient targets for amplifying bacterial and fungal DNAs, respectively (44, 45). To opti-
mize the process, we used a denoising method (DADA2 with ASVs), which improves the
resolution of low-frequency taxa and enhances the assessment of diversity compared to
clustering methods (with operational taxonomic units) (46). Furthermore, patients with-
out an M6 sputum sample were less chronically colonized with P. aeruginosa and had a
higher ppFEV1 at baseline. They can therefore be considered to have less severe and less
advanced CF disease, which may render them less able to expectorate at 6 months, as
recently suggested (11). Moreover, the success of CFTR modulators has resulted in several
therapeutic options for chronic P. aeruginosa infection and subsequently requires adapta-
tion to approaches for antimicrobial therapy (47). In addition, the evolution of the airway
microbiota and mycobiota and inflammation may be different under lumacaftor-ivacaftor
treatment, as proposed previously for ivacaftor treatment (24). Furthermore, the impact
of lumacaftor-ivacaftor on the airway microbiota-mycobiota was evaluated after 6 months
of treatment. Changes in the airway microbiota were observed from the first weeks of iva-
caftor treatment (21), and a clinical response with lumacaftor-ivacaftor was achieved at
3 months (10), suggesting that evaluation at 6 months enables the detection of changes
in the microbiota and mycobiota. However, this does not provide information on longer-
term evolution, which may be different, as suggested by a previous study with ivacaftor
(21). Therefore, longer-term studies are needed, taking into account confounding biases
(poor compliance and antibiotic use) (22). Finally, because lumacaftor-ivacaftor treatment
was part of standard care for F508del homozygous patients older than 12 years of age, it
was not ethically conceivable to have control patients with CF paired for age, sex, and
mutations. However, longitudinal analysis of the respiratory microbiota allowed the
patients to be used as their own controls.

In conclusion, we report the evolution of the airway microbiota-mycobiota and
inflammation in CF patients treated with lumacaftor-ivacaftor. In line with reports that
alpha-diversity is a relevant marker of the microbial community (3, 48), our results
highlight the importance of considering the CF lung ecosystem as a whole entity in
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which the microbiome, the metabolome, and inflammation collectively contribute to
disease progression (5, 26, 33). By combining clinical and biological parameters with
inflammation and microbiota-mycobiota data, our findings support the notion that
CFTR protein modulators should be started as early as possible, ideally before the
patient is colonized with P. aeruginosa and the airways are irreversibly damaged (26).
These data need to be confirmed, expressly by focusing on 2- to 11-year-old patients
treated with lumacaftor-ivacaftor. Given our data and recent reports (11, 24, 26, 33), a
comprehensive evaluation of CF management is warranted in the era of CFTR modula-
tors, which should include clinical features, lung function evaluation (ppFEV1, LCI, and
MRI), and lung ecosystem analysis (local inflammation, microbiota-mycobiota, and
metabolome assessments) in a personalized approach, together with assessments of
the gut-lung axis, as recommended for ivacaftor (31).

MATERIALS ANDMETHODS
Study design and patients. Patients enrolled in the LumIvaBiota longitudinal observational study

were F508del homozygous and aged 12 years or older. They were monitored in one of six French CF
centers that participated in the study (CRCM Centres of Bordeaux, Roscoff-Brest, Foch, Grenoble,
Marseille, and Robert Debré). All patients initiated lumacaftor-ivacaftor treatment between December
2015 and June 2018 and expectorated spontaneously.

Sputum was obtained during care before treatment initiation (M0) and after 6 months (M6) of treat-
ment. It consisted of spontaneous expectorations obtained during a visit to the hospital, eventually after
physical therapy, according to the practice of each center. Participants were not required to perform an
oral rinse or undergo hypertonic saline nebulization prior to expectoration. After the performance of
conventional microbial analyses required for routine care, the remains of the spontaneously secreted
sputa were frozen on-site at 220°C and shipped on dry ice to the Mycology Department of Bordeaux
Hospital for centralized analyses of the microbiota-mycobiota, galactomannan (GM), and calprotectin. At
both visits, patient clinical status was documented using data from the French National Prospective
Cohort nested within the French Cystic Fibrosis Registry (10).

All patients, or their guardians as applicable, received information about the study. Nonopposition
was obtained before the collection of the remains of sputum samples and clinical data (age, gender,
ppFEV1, BMI, medications, and results of microbial cultures of sputa performed during routine care).
Microbiological data were collected to determine each patient’s state of pulmonary colonization with
S. aureus, Haemophilus influenzae, Burkholderia cepacia, P. aeruginosa, and Aspergillus fumigatus.
Regarding P. aeruginosa and A. fumigatus colonization, chronic colonization was defined according to
local practice as the presence of P. aeruginosa isolates in three consecutive cultures with at least 1 month
between positive cultures during the previous 6 months (49) or as .50% of samples positive in the last
12 months (50) and as two sputum cultures positive for A. fumigatus during the last 12 months (51).
Because there was no consensus definition for colonization with the other pathogens, the determination
of colonization status was at the discretion of the investigator.

Samples were obtained from the Bordeaux Centre for Biological Collections (authorization number
AC-2014-2166). This study was registered at ClinicalTrials.gov under identifier NCT03565692.

Pretreatment of sputa and DNA extraction. After pretreatment with an equal volume of Sputasol
(Oxoid, Basingstoke, UK) for 30 min at 37°C followed by centrifugation (1,500 � g for 10 min), the super-
natants and pellets were separately frozen at 220°C for calprotectin and GM assessments and DNA
extraction, respectively (4, 52). We used the DNeasy PowerSoil kit (Qiagen, Les Ulis, France) to extract
DNA from the samples, as described previously (53), after ensuring that it allowed the lysis of all bacteria
and fungi in our artificial community (see the supplemental material). Next, we followed the manufac-
turer’s protocol and enhanced the mechanical lysis step with Precellys evolution (two cycles of 30 s at
7,000 rpm), as described previously (54). Negative controls (250 mL of DNA-free water) were processed
using the same protocol. DNA samples were used at 20 ng/mL.

Microbiota and mycobiota evaluation using metabarcoding. The taxonomic composition of
sputa was assessed by targeting the V3-V4 and ITS2 regions of rRNA, as described previously (54). The
primers used to amplify the V3-V4 and ITS2 loci were as follows: 16S-forward (TACGGRAGGCAGCAG),
16S-reverse (CTACCNGGGTATCTAAT), ITS2-forward (GTGARTCATCGAATCTTT), and ITS2-reverse (GATATG
CTTAAGTTCAGCGGGT). In addition to the negative extraction controls, library blanks and two positive con-
trols (in-house artificial bacterial and fungal communities [see the supplemental material]) were processed,
sequenced alongside the patient samples, and used to validate the experimental procedures. PCR amplifica-
tion was performed by using barcoded primers (final concentration of 0.2mM) at an annealing temperature
of 50°C for 30 cycles. PCR products were checked on an Agilent automated system, purified by using mag-
netic beads, and mixed in equimolar concentrations. Next-generation sequencing was performed using
250-bp paired-end technology on a MiSeq system (Illumina, San Diego, CA) at the Plateforme Génome
Transcriptome de Bordeaux (PGTB) platform of Bordeaux University.

Analysis of bacterial and fungal reads. Reads were demultiplexed; primers were removed using
CutAdapt. Samples were processed through the DADA2 pipeline in R (version 4.0.3) using standard filter-
ing parameters, trimming, dereplication, and merging of paired-end reads (46, 55, 56). As recently pro-
posed (57), only forward sequences were analyzed for characterizing the fungal community. Two distinct
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amplicon sequence variant (ASV) tables were constructed, and taxonomy was assigned from the Silva
database (release 138) for bacterial ASVs and from the Unite database (release 8.2) for fungal ASVs. We
used mock communities to detect potential nonefficient experiments and the negative controls to iden-
tify and remove potential reagent contaminants of the microbiota and mycobiota with the microDecon
R package (58). ASVs present in fewer than 1% of the samples were removed (56). The coverage of each
sample was assessed using rarefaction curves. All samples reached the plateau of rarefaction curves
except for 10 samples from 8 patients with fewer than 100 fungal reads; these were removed from the
final ITS2 analyses.

Quantification of the bacterial, fungal, and P. aeruginosa loads. qPCR targeting the 16S loci was
used to quantify total bacterial loads, as previously described (11, 54). Quantification was performed
using a standard range of Escherichia coli (ATCC 25922) concentrations (2.79 to 2,787.1 pg/mL).

P. aeruginosa abundance was quantified using a combination of two qPCRs (oprL and ecfX-gyrB),
which have a sensitivity of 100% with a threshold of 10 CFU/mL and a specificity of 100% (59–61).

Fungal sequencing was based on amplification of the ITS2 region, consistent with published data
showing better performance of ITS2 sequencing compared to other regions, including the 18S region
(44). Published and widely used primers based on targeting of the fungal 18S region were selected for
quantification of fungal load by qPCR (62). Quantification was performed using a standard range of
Candida albicans (ATCC 5314) DNA concentrations (0.37 pg/mL to 3,663.5 pg/mL).

Calprotectin dosages. The levels of calprotectin, a proinflammatory factor abundant in CF sputum
(27, 43), in the sputum supernatants were evaluated by an enzyme-linked immunosorbent assay (ELISA)
(catalog number S100A8/9; Buhlmann Laboratories AG, Schonenbuch, Switzerland) (27, 43).

Galactomannan dosages. A Platelia Aspergillus enzyme immunoassay (EIA) (Bio-Rad, Marnes-La-
Coquette, France) was used to assess the GM antigen indices of the sputum supernatants according to
the manufacturer’s recommended protocol; an index of $1 was considered positive, and assays with
positive results were repeated in duplicate (63, 64).

Statistical analyses. Results are means (6standard deviations [SD]) for parametric variables,
medians (interquartile ranges [IQRs]) for nonparametric variables or absolute values, and percentages
for categorical variables. The nonparametric Wilcoxon-Mann-Whitney test was used to compare quanti-
tative variables between groups. Correlations were calculated using the Spearman method. McNemar’s
test and the Wilcoxon signed-rank test were used to analyze paired nominal data and quantitative data,
respectively. P values were corrected for multiple testing using Benjamini-Hochberg adjustment (65).

For microbiota and mycobiota data, alpha-diversity metrics (Simpson and Shannon indices) were
generated using the phyloseq R package. For cross-sectional analyses, at a specific time, significant dif-
ferences in alpha-diversity indices were identified using the Wilcoxon rank sum test. For longitudinal
analyses, the Wilcoxon signed-rank test was used. Differences in beta-diversities were tested by permu-
tational multivariate analysis of variance (PERMANOVA) in the vegan R package with 10,000 permuta-
tions. DESeq2 (66) was used to perform two-class testing for differential relative abundances. Paired tests
were used when comparing data before and after treatment initiation. The LEfSe method was used to
identify metabarcoding biomarkers (67).

Analyses were performed in R studio (version 1.3.1056 for Windows); a P value of ,0.05 was consid-
ered indicative of statistical significance.

Data availability. The 16S rRNA gene and ITS2 sequences have been submitted to the European
Nucleotide Archive (accession number PRJEB53549). The codes are available at https://github.com/
raphaelenaud/LumIvaBiota. Other data sets generated and/or analyzed during the current study are not
publicly available but are available from the corresponding author upon reasonable request.
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