
HAL Id: hal-04080728
https://hal.science/hal-04080728

Submitted on 25 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A formal approach for correct-by-construction system
substitution
Guillaume Babin

To cite this version:
Guillaume Babin. A formal approach for correct-by-construction system substitution. European
Dependable Computing Conference (EDCC 2014), May 2014, Newcastle, United Kingdom. pp.1-3,
�10.48550/arXiv.1404.7513�. �hal-04080728�

https://hal.science/hal-04080728
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13147

To cite this version : Babin, Guillaume A formal approach for
correct-by-construction system substitution. (2014) In: European
Dependable Computing Conference (EDCC), 13 May 2014 - 16 May
2014 (Newcastle, United Kingdom).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/13147/
http://oatao.univ-toulouse.fr/13147/
mailto:staff-oatao@listes-diff.inp-toulouse.fr

A formal approach for

correct-by-construction system substitution

Guillaume Babin∗‡

∗Université de Toulouse ; INP, IRIT ; 2 rue Camichel, BP 7122, 31071 Toulouse Cedex 7, France
‡CNRS ; Institut de Recherche en Informatique de Toulouse ; Toulouse, France

guillaume.babin@irit.fr

Abstract—The substitution of a system with another one may
occur in several situations like system adaptation, system failure
management, system resilience, system reconfiguration, etc. It
consists in replacing a running system by another one when given
conditions hold. This contribution summarizes our proposal to
define a formal setting for proving the correctness of system
substitution. It relies on refinement and on the Event-B method.

Keywords: system substitution, state recovery, correct-by-

correction, Event-B, refinement

I. MOTIVATION

Several efforts were devoted to the formal development

of complex systems. Different formal approaches have been

defined, they led to numerous system developments in real

life applications like transportation systems, web applications,

information and data management, etc.

One of the major concerns in system development relates to

the substitutability of a system by another one. This capability

can be seen throughout different concerns. Among these ones

we are mainly interested in two of them: functional and

behavioural concerns.

1) The functional concern deals with the function of the

system i.e. what it does. We have identified three main

substitutions:

- a system may be replaced by an equivalent one;

- a system may be degraded i.e. replaced by a sys-

tem achieving less functions, the problem being to

identify that the critical ones are still achieved;

- a system may be upgraded i.e. replaced by a system

achieving more functions.

The functional concern relates to the preservation of the

functions of the substituted system by the substitute one.

This preservation is studied through property verifica-

tion. Classical formal verification techniques guarantee

that the substituted and the substitute systems refine the

same specification.

2) The behavioural concern deals with the behaviour of

a system in terms of execution sequences. We have

identified two main substitutions:

- a system may be replaced by another system, but it

requires to restart the system from its initial state.

This corresponds to a cold start substitution;

- a system may be replaced at a given state by

another system recovering this state and pursuing

the execution of the system from this recovered

state. This corresponds to a warm start or hot start

substitution.

The behavioural concern requires an explicit modelling

of system states during execution.

Through these concerns several properties like dependability

[1], adaptation [2] [3], resilience, self-healing systems [4], loss

of QoS can be addressed.

System substitution is performed when an event requiring

this change occurs. In several cases, this event is (or these

events are) triggered by monitors in case of monitored systems,

or by evaluating a given situation in autonomous systems

(self-⋆ systems).

This paper overviews the formal approach we propose to

handle system substitutions.

II. OUR APPROACH

In the following, we consider systems that are expressed as

states and transitions describing state changes. Our approach

is a correct-by-construction one, it relies on refinement and on

the Event-B method [5] [6] [7] [8]. It addresses system substi-

tution and covers both concerns, functional and behavioural.

A. The functional concern: refinement

Refinement relates an abstract system to a concrete one.

The refined concrete system preserves the properties of the

abstract one. Both of the three identified cases of the functional

concern may be encoded by refinement. Indeed, several con-

crete representations of a given specification can be given at

different abstraction levels, linked by a refinement relationship.

Invariants represent the key feature for describing equivalent,

degraded or upgraded systems.

B. The behavioural concern: refinement and variants

Once the functional concern has been addressed, it becomes

possible to assert that a system may substitute another one in

one of the three identified cases above. When a system runs,

one obvious substitution case corresponds to a re-start of the

substitute system. But, when the sequence of system running

states is recorded, one may identify correlations between the

states of the substitute system and the current state of the

substituted system. Our proposal is to use explicit variants

to identify the substitution state and invariants to express

such state correlation. Indeed, variants describe the sequence

of running states. Correspondences between states of the

substituted and of the substitute system are expressed by the

variant values. Invariants define properties between the states

of both systems, enabling the copy of the substituted state

variables to the substitute state variables.

C. Why Event-B ?

The Event-B method is set-up in order to formalise our ap-

proach. Event-B is a state-based method that promotes correct-

by-construction development paradigm and formal verification

by theorem proving. Indeed, Event-B supports the definition of

state-based systems where transitions recording state changes

are encoded by events. Moreover, it offers the capability to

explicitly express variants and invariants, and to build systems

using refinements.

1) Event-B refinement for the functional concern: a top

level machine, representing the main function(s) of a system

may be refined by one or more other machines leading to

different concrete system designs. All the obtained machines

are possible system substitutes.

2) Event-B refinement and variants for the behavioural

concern: it is possible to link two substitute systems of the

same system into a single refinement. The idea consists in

linking these two substitutes with a property establishing a

relation between the state variables of one substitute system

and the corresponding state variables of the other substitute

system. We call this property an horizontal invariant. The

corresponding state is defined thanks to explicit variants.

Indeed, a state of the substitute system can recover the state

of another substitute system if their variant values match. A

specific event switch commutes to the substitute system in a

single Event-B model of both systems.

III. FORMALISATION WITH EVENT-B

A. Functional concern

The first step consists in defining a top level specification

Event-B machine. Each system, refining this specification is

considered as a potential substitute. Obviously, the chosen

invariant defines the nature of this substitution (equivalence,

degradation or upgrade). Once these refinements have been

conducted, we get a set of potential substitutes.

B. Behavioural concern

The behavioural concern requires the explicit manipulation

of the current state of the system to be substituted. Therefore,

our model defines systems as pairs (sv, V arExp):

- sv being a subset of V ars the set of system variables,

such that sv ⊆ V ars

- an expression V arExp = exp(v1, · · · , vn) over vi ∈ sv

evaluating to a natural number and defining a decreasing

function. This expression describes a variant for the

studied system.

This model, combining functional and behavioural concerns,

is generic enough to enable the expression of a system together

with an explicit representation of its states, if combined with

a valuation of its variables. This explicit representation makes

it possible to explicitly manipulate a state in an Event-B ma-

chine. As a consequence of this modelling, the expression of

generic mechanisms combining variant values for recovering

states becomes possible.

C. Fragment of the Event-B generic model

The following Event-B fragment results from the previously

described model.

- V ariables defines the carrier set containing all the sys-

tem variables

- V alues is the carrier set of the values of the variables

- V ariablesSets ⊆ P (V ariables) a set of sets of vari-

ables to identify the variables of each system (partition)

- V aluations = V ariables → V alues functions that give

the value of a variable

- Systems = V ariablesSets × (V aluations → N) a

system is a pair composed of a group of variables and a

variant function

- Systems states = Systems × V aluations: all the

states of the systems, i.e. pairs (system – variables values)

IV. CASE STUDY

To illustrate our approach a case study issued from elec-

tronic commerce is shown. We consider an online purchase of

goods composed of four steps: selection of goods by filling a

cart, payment, billing and delivery. Solely the selection step

is detailed below. Moreover, for this case study, we consider

that the event triggering the system substitution is a system

failure. A failure may occur while the client is filling his cart

with goods during the selection step. Failure is the event that

triggers system substitution.

Setting up our approach led to the following steps.

A. Functional concern

- an upper model level with an abstract selection of a set

of goods in a cart has been designed (corresponding to

the Event-B machine M1);

- a first basic selection system (Sys1) composed of one

cart located on a website, has been created by refining

M1 (machine M11);

- a second basic selection system (Sys2) composed of two

carts located on different websites, without failures, has

been created by refining M1 (machine M12);

- a system composed of the previous ones. The used system

is chosen at initialisation (machine M13 refining M1).

B. Behavioural concern

- The first step towards handling the behavioural concern

was the creation of an abstract selection feature, refining

M1 and introducing the possibility to switch from Sys1 to

its substitute Sys2 . Here, we detail the switching process

only. (Machine M14)

- Cold start. M14 is refined, by defining a mechanism

that substitutes Sys1 by Sys2 with a reinitialisation on the

TABLE I
PROOFS STATISTICS

Event-B Total Automatic Interactive
Machine PO proof proof

M1 31 27 4 (13%)

M11 28 27 1 (4%)

M12 57 56 1 (2%)

M13 99 97 2 (2%)

M141 133 129 4 (3%)

M142 230 214 16 (7%)

Generic model 37 28 9 (24%)

Instanciation 53 39 14 (26%)

initial state of Sys2. The event triggering the substitution

re-initialises Sys2 from its initial state. (Machine M14)

- Hot or Warm start. M14 is refined to a machine where

Sys1 is substituted by Sys2 with preservation of the

previous Sys1 executions. The event that triggers the

substitution restores the current state of Sys2 to a state that

functionally matches with Sys1 state before substitution.

By functionally, we mean that there is no selected goods

of Sys1 cart that are lost. (Machine M142)

C. Instanciation of the generic model

We instantiated our model, according to the previously

overviewed generic model, with the following definitions.

- V ariables = {C1, C2a, C2b} corresponding to the carts.

C1 for Sys1 and C2a, C2b for Sys2;

- V alueElements = {Prod1, P rod2, P rod3, P rod4,
P rod5} is the set of goods;

- V aluations = ({C1} 7→ P(V alueElements))
∪ ({C2a, C2b} 7→ P(V alueElements)) asso-

ciates a subset of goods to each cart;

- V ariablesSets = {{C1}, {C2a, C2b}} identifies the

variables of each system Sys1 and Sys2;

- Sys1 = {C1} 7→ (λval · val ∈
{C1} → P(V alueElements) |

card(V alueElements)− card(val(C1)))
- Sys2 = {C2a, C2b} 7→ (λval · val ∈ {C2a, C2b} →

P(V alueElements) | card(V alueElements)
− card(val(C2a) ∪ val(C2b)))

- Systems = {Sys1, Sys2}
- Systems states = Systems× V aluations

We were then able to refine this machine with one express-

ing directly C1, C2a and C2b carts, and prove the refinement.

Moreover, the following safety properties have been proved on

each of the machines.

- All the desired products are selected after the selection

action. If P ⊆ PRODUCTS is the set of products to

purchase, and carts ∈ SITES × PRODUCTS is the

variable denoting the pair of selected products on a given

website. This property is expressed as

selection done ⇒ ran(carts) = P

- There is no product selected twice i.e. no product in both

of the two carts, expressed as

∀p, p ∈ ran(carts) ⇒ card(carts−1[{p}]) = 1

Here, the horizontal invariant is val(C1) = val(C2a) ∪
val(C2b), where val is the corresponding valuation.

This generic model together with this case study have been

modelled on the RODIN platform [9] [10] and the statistics

of table I (proof obligations PO) have been obtained.

V. ONGOING WORK

This paper presented a global view of our approach for

system substitution. This approach exploits the notion of

refinement, invariants and variants. System substitution has

been illustrated with a use case from electronic commerce.

Currently, our work is pursued in two directions. On the one

hand, we are building a generic model for system substitution

formalised within the Event-B method. A set of generic ma-

chines, to be instantiated, defining system substitution is under

construction. It is planned to study within this framework

adaptation, self-healing, reliability, . . . situations. On the other

hand, we plan to integrate a monitor in order to monitor a

property of the system behaviour and trigger system substitu-

tion. For example, monitored properties could be identification

of system failures or loss of quality of service.

REFERENCES

[1] J.-C. Laprie, “Dependable computing and fault tolerance: Concepts
and terminology,” in Fault-Tolerant Computing, 1995, Highlights from
Twenty-Five Years., Twenty-Fifth International Symposium on, Jun 1995,
pp. 2–11.

[2] D. Weyns, M. U. Iftikhar, D. G. de la Iglesia, and T. Ahmad,
“A survey of formal methods in self-adaptive systems,” in
Proceedings of the Fifth International C* Conference on Computer
Science and Software Engineering, ser. C3S2E ’12. New
York, NY, USA: ACM, 2012, pp. 67–79. [Online]. Available:
http://doi.acm.org/10.1145/2347583.2347592

[3] S. Kell, “A survey of practical software adaptation
techniques,” Journal of Universal Computer Science, vol. 14,
no. 13, pp. 2110–2157, jul 2008. [Online]. Available:
http://www.jucs.org/jucs 14 13/a survey of practical

[4] M. Parashar and S. Hariri, “Autonomic computing: An overview,”
in Unconventional Programming Paradigms, ser. Lecture Notes in
Computer Science, J.-P. Banâtre, P. Fradet, J.-L. Giavitto, and
O. Michel, Eds. Springer Berlin Heidelberg, 2005, vol. 3566, pp.
257–269. [Online]. Available: http://dx.doi.org/10.1007/11527800 20

[5] J.-R. Abrial, Modeling in Event-B: System and Software Engineering,
1st ed. New York, NY, USA: Cambridge University Press, 2010.

[6] J.-R. Abrial and S. Hallerstede, “Refinement, decomposition, and
instantiation of discrete models: Application to event-b,” Fundamenta
Informaticae, vol. 77, no. 1, pp. 1–28, 2007. [Online]. Available:
http://iospress.metapress.com/content/C74274T385T6R72R

[7] Y. Ait-Ameur, M. Baron, and N. Kamel, “Encoding a process alge-
bra using the event b method. application to the validation of user
interfaces,” in Proceedings of 2nd IEEE international symposium on
leveraging applications of formal methods (ISOLA), 2005.

[8] Y. Ait-Ameur, M. Baron, N. Kamel, and J.-M. Mota, “Encoding a
process algebra using the event b method,” International Journal on
Software Tools for Technology Transfer, vol. 11, no. 3, pp. 239–253,
2009. [Online]. Available: http://dx.doi.org/10.1007/s10009-009-0109-2

[9] J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin, “An open
extensible tool environment for event-b,” in Formal Methods and
Software Engineering, ser. Lecture Notes in Computer Science, Z. Liu
and J. He, Eds. Springer Berlin Heidelberg, 2006, vol. 4260, pp.
588–605. [Online]. Available: http://dx.doi.org/10.1007/11901433 32

[10] J.-R. Abrial, M. Butler, S. Hallerstede, T. Hoang, F. Mehta, and
L. Voisin, “Rodin: an open toolset for modelling and reasoning
in event-b,” International Journal on Software Tools for Technology
Transfer, vol. 12, no. 6, pp. 447–466, 2010. [Online]. Available:
http://dx.doi.org/10.1007/s10009-010-0145-y

