
HAL Id: hal-04080721
https://hal.science/hal-04080721

Submitted on 25 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Modelling of Dynamic Instantiation of Input
Devices and Interaction Techniques: Application to

Multi-Touch Interactions
Arnaud Hamon, Philippe Palanque, Martin Cronel, Raphaël André, David

Navarre, Eric Barboni

To cite this version:
Arnaud Hamon, Philippe Palanque, Martin Cronel, Raphaël André, David Navarre, et al.. Formal
Modelling of Dynamic Instantiation of Input Devices and Interaction Techniques: Application to
Multi-Touch Interactions. 6th ACM SIGCHI Symposium on Engineering Interactive Computing Sys-
tems - EICS 2014, ACM SIGCHI: Special Interest Group on Computer-Human Interaction, Jun 2014,
Roma, Italy. pp.173-178, �10.1145/2607023.2610286�. �hal-04080721�

https://hal.science/hal-04080721
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13172

To link to this article : DOI :10.1145/2607023.2610286
URL : http://dx.doi.org/10.1145/2607023.2610286

To cite this version : Hamon, Arnaud and Palanque, Philippe and
Cronel, Martin and André, Raphaël and Barboni, Eric and Navarre,
David Formal Modelling of Dynamic Instantiation of Input Devices
and Interaction Techniques: Application to Multi-Touch Interactions.
(2014) In: The sixth ACM SIGCHI Symposium on Engineering
Interactive Computing Systems - EICS 2014, 17 June 2014 - 20 June
2014 (Roma, Italy).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/13172/
http://oatao.univ-toulouse.fr/13172/
http://dx.doi.org/10.1145/2607023.2610286
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Formal Modelling of Dynamic Instantiation of Input Devices
and Interaction Techniques:

Application to Multi-Touch Interactions

Arnaud Hamon
1,2

, Philippe Palanque
2
, Martin Cronel

2
, Raphaël André

1
,

Eric Barboni
2
, David Navarre

2

1 AIRBUS Operations, 316 Route de Bayonne, 31060, Toulouse, France
2 ICS-IRIT, University of Toulouse, 118 Route de Narbonne, F-31062, Toulouse, France

(hamon, palanque, silva, barboni)@ irit.fr, raphael.andre@airbus.com

ABSTRACT

Representing the behavior of multi-touch interactive systems
in a complete, concise and non-ambiguous way is still a
challenge for formal description techniques. Indeed, multi-
touch interactive systems embed specific constraints that are
either cumbersome or impossible to capture with classical
formal description techniques. This is due to both the
idiosyncratic nature of multi-touch technology (e.g. the fact
that each finger represent an input device and that gestures
are directly performed on the surface without an additional
instrument) and the high dynamicity of interactions usually
encountered in this kind of systems. This paper presents a
formal description technique able to model multi-touch
interactive systems. We focus the presentation on how to
represent the dynamic instantiation of input devices (i.e.
finger) and how they can then be exploited dynamically to
offer a multiplicity of interaction techniques which are also
dynamically instantiated.

Author Keywords

Multi-touch interactions, model-based approaches, formal
description techniques

INTRODUCTION

Over the last decade the field of interactive systems
engineering had to face multiple challenges at a pace never
encountered before. Indeed, while new interaction techniques
have been proposed on a regular basis by the research

community (e.g. multimodal gesture+voice interactions by R.
Bolt in [5], post-WIMP interactions such as [4] etc.) recent
years have seen the adoption and deployment of such
interaction techniques in many different types of systems.
Together with this evolution of interaction techniques, the
appearance and adoption of new input devices is also a
significant change with respect to the past. Indeed, mass
market computers remained for nearly 20 years equipped
with standard mouse and keyboard while nowadays, one
interacts with more sophisticated input devices such as multi-
touch surfaces, Kinect, Wiimote, …

However, these new input devices and their associated
interaction techniques have significantly increased the
complexity the development of interactive systems. For
instance, multimodal interaction techniques are now common
both as input and output modalities. One of the most
challenging examples is the one of multi-touch systems1.
Indeed, even though some studies [4] show that they improve
the bandwidth between the users and the system, they bring
specific challenges such as handling dynamic management of
input devices (the fingers) and their associated interaction
techniques (including fusion and fission of input (e.g. input
fusion for a pinch) as well as fusion and fission of rendering
(e.g. output fusion for fingers clustering)).

This paper presents a formal description technique able to
describe in a complete and unambiguous way the behavior of
multi-touch systems. As it consists in extensions of previous
work [9], we make explicit the changes that have been made
to the ICO notation. We present the basic constructs of the
extensions and how they can be applied on a simple example
making particularly explicit how dynamic management of
both input devices and interaction techniques are accounted
for. This paper addresses more specifically multi-touch input
devices and interaction techniques but the concepts are
applicable to any interactive system where input devices are
connected and disconnected at runtime and requiring
reconfiguration of interaction techniques.

1 We use in this paper multi-touch systems as a shortcut for
interactive systems offering multi-touch interactions

MODELLING CHALLENGES DUE TO DYNAMIC ASPECTS
OF MULTITOUCH SYSTEMS

In classical interactive systems, the set of input and output
devices are identified at design time and the interaction
techniques to be used for interacting with the application are
based on this predefined set and also defined beforehand [3].
Multi-touch systems challenge this by requiring the capacity
for handling input devices (i.e. fingers) that may appear and
disappear dynamically while the interaction takes place.

In such context, when the interactive system is started input
devices are not present and thus not identified. Users’ fingers
are considered as input devices and are only detected as they
touch (or get close enough to) the tactile surface. The input
devices (fingers) detected at execution time need to be
dynamically instantiated in order to be registered and listened
to. While this can be easily managed using programming
languages, such aspect is usually not addressed by modelling
techniques as highlighted in the related work section (next
section). While model-based approaches provide well
identified benefits such as abstract description, possible
reasoning about models, complete and unambiguous
descriptions, in order to deal with multi-touch systems they
have to address the following challenges:

 Describe the dynamic management of input devices.
This includes the description (inside models) of dynamic
creation (instantiation) of input devices and the
description of how many of them are present at any time.
This management also requires the removal of the
devices from the models when they are freed;

 Make explicit in the models the connection between the
hardware (input devices) and their software counterpart
(i.e. device drivers and transducers as introduced in [6]
and formalized in [1]);

 Describe the set of states, the events produced and the
event consumed by the device drivers and the
transducers;

 Describe the interaction techniques that have to handle
references to dynamically instantiated models related to
the input devices (drivers and transducers);

 Describe how interaction techniques behavior evolves
according to the addition and removal of input devices.
Such capability is extremely demanding on the
specification techniques requiring dynamic management
of interaction techniques as demonstrated in [14].

 Described fusion and fission of input and output within
the interaction technique. Indeed, the use of multiple
input devices (fingers) makes it possible for interaction
designers to define very sophisticated interaction
techniques making use of several fingers grouped
together for instance. Such grouping requires fusions of
events from the groups of fingers but also the fusion of
output information to provide feedback to the users
about the current state of recognition of the interaction.

For example, interaction techniques featuring a group of
two fingers will require modifying the initial rendering
of each finger’s graphical feedback as in Figure 1-b).
Figure 1-a) presents a graphical feedback of three fingers
on a multi-touch application.

These challenges go beyond the ones brought by multimodal
interactions identified in [13].

Figure 1- a) (left) 3 input device detected; b) (right) output of the

clustering of two input devices (merged disks bottom left)

RELATED WORK

This section provides a succinct overview of the related work
in the area of modelling techniques for multi-touch
interactions. Table 1 summarizes this related work,
structuring the comparison according to the criteria
(represented as lines in the table) detailed below.

The first three characteristics deal with description of
information in the models including namely “Data”, “State”,
and “Events”. There is no specific constraint related to multi-
touch systems. Concurrent behavior representation is critical
for multi-touch interactions due to the concurrent use of
multiple fingers and hands this is why all the notations listed
address this characteristic.

Time

Quantitative time between two consecutive model elements
represents behavioral temporal evolutions related to a given
amount of time (usually expressed in milliseconds). This is
necessary for the modeling of the temporal windows in a
fusion engine for multimodal interfaces, where events from
several input devices are fused only if they are produced
within a same time frame. Quantitative time over
nonconsecutive elements was introduced in [18] for multi-
mice double and fusion double click interactions.

Dynamic instantiation

As explained in the list of challenges in previous section,
dynamic instantiation is a corner stone for modeling
techniques for multi-touch interactions. Three types of
dynamic instantiation have been identified, but only the last
two ones are idiosyncratic to multi-touch interactions. In the
multi-touch context, new fingers are detected during at
execution time. Thus, the description language must be able
to receive dynamically created objects. Supporting explicit
representation of dynamic instantiation requires the
description technique to be able to explicitly represent an
unbounded number of states, as the newly created objects

will by definition represent a new state for the system. Most
of the time, this characteristic is handled by means of code
and remains outside the description technique. In Petri nets
[8] this is particularly easy to represent by the
creation/destruction of tokens associated to the objects. This
way, for instance, for each finger currently touching the
multi-touch surface, a corresponding token will be set in a
place of the Petri net.

Dynamicity has also to be addressed at operation time in
order to cope with potential hardware failure reconfigurations
of the interaction techniques might be required [14]. This
requires a meta-level representation of interactions which can
be dynamically selected at run-time. This is an important
aspect to address if multi-touch interactions and is presented
in a static way in [19].

Multimodality

These rows refer to the capability of a language to support
the fusion and fission of several distinct modalities such as
the combination of pen and multi-touch in [7]. Fusion
engines have been a focal point of the research in the area of
multimodal interactions and they are of prime importance as
far as multi-touch interactions are concerned. Multi-touch
interactions are by nature multi-modal and their design
requires at least the same expressive power as the one of
multimodal one (see [13] for a survey on these aspects).

Table 1 - Partial comparison of UIDLs

For all characteristics in Table 1, there are four possible
values.

 Yes means that the characteristic is explicitly handled by
the multi-touch description technique;

 No means that the characteristic is not explicitly handled
(at least in the referred article);

 Partly means that the characteristic is not completely
explicit;

 Code means that the characteristic is made explicit but
only at the code level and is thus not a construct of the
description language.

The notations referenced in Table 1 are not formal. We chose
to highlight the fact that event non-formal notations, which
are supposed to have a higher expressive power, do not
handle dynamic instantiation for example.

THE EXTENDED ICO NOTATION

Based on the study of the related work and the dimensions
described in [9], only the ICO notation allows the explicit
modelling of all the multi-touch characteristics. However,
extensive modelling of multi-touch systems has
demonstrated the need for modifying the ICO notation in
order to provide primitives for handling specificities of multi-
touch systems. It is important to note that these primitives do
not constitute extensions to the expressive power of ICOs but
bring the formal description technique closer to what is
needed to model multi-touch systems. This is why the
proposed extensions contribute beyond ICOs as such
extensions could be added to other notations, provided their
expressive power is sufficient for modeling multi-touch
systems.

Introduction

The ICO notation (Interactive Cooperative Objects) is a
formal description technique devoted to specify interactive
systems. Using high-level Petri nets [8] for dynamic behavior
description, the notation also relies on object-oriented
approach (dynamic instantiation, classification,
encapsulation, inheritance and client/server relationships) to
describe the structural or static aspects of systems. ICO
notation objects are composed of four components: a
cooperative object for the behavior description, a
presentation part (i.e. Graphical Interface), and two functions
(activation and rendering) describing the links between the
cooperative object and the presentation part.

ICOs have been used for various types of multi-modal
interfaces [12] and in particular for multi-touch [9]. This
notation is also currently applied for formal specification in
the fields of Air Traffic Control interactive applications [16],
space command and control ground systems [19], or
interactive military [2] or civil cockpits [1].

Informal description of dynamic instantiation

ICOs, due to their Petri nets underpinning, are particularly
efficient to create and destroy elements when they are
represented as tokens. As ICOs’ tokens refer to objects or
other ICOs, it is possible to use such high-level tokens to
represent input devices such as fingers on a touchscreen.
Such tokens refer to other ICO models describing the
detailed behavior of the input device. For instance, Figure 3
presents the behavior of a finger both in terms of states
(values for position, pressure, etc.) and events (e.g. update
corresponding to move events).

The ICO model in Figure 2 describes how new input devices
are instantiated and stored in a manager. The top-left
transition in Figure 2 illustrates how new input devices can
be added to an ICO model with the creation of a model of
finger type (instruction finger=create Finger(touchinfo)). The
newly created reference is then stored in a waiting place
(called ToAddFinger) in order to be connected to an
interaction technique in charge of handling the events that
will be produced by the new device.

Handling events from dynamically instantiated sources

An ICO model may act as an event handler for events
emitted by other models or java instances. The detailed
description of these mechanisms is available in [20]. In
addition, the different transition blocks of Figure 2 (top-left
transition) are presented in Table 2.

Block Field Name Field Description

1: Name block name
unique name, not necessary linked to

the eventName

2 : Precondition
block

precondition
boolean expression independent
form the event but depending on

marking

3 : Event block

eventName
name of the event the transition is

linked to

eventSource the source of the event received

eventParameters
The collection of the parameters of

the received event

eventCondition
boolean expression based on the

eventParameters’ values used for the
firing

4 : Action block action an action

Table 2- Properties of the generic event transition

Formal description

Due to space constraints, the formal definition of the
extensions are not given there but its denotational semantics
is given in terms of “standard” ICOs as defined in [16].

DEMONSTRATING HANDLING OF INPUT DEVICES: AN
SIMPLE EXAMPLE USING ICOS

This paragraph describes the ICO models used for the
example presented Figure 1-b which handles dynamically
referenced input devices.

Low-level transducer description

The model presented in Figure 2 is called a transducer as it is
located (in terms of software architecture) in between the
hardware devices and the interaction techniques. There could
be a chain of such models handling events from the lower
level (raw events or data from the hardware input devices) to
high-level events as a double click (see [1] for more details
on transducers).

The low-level transducer encapsulates the references towards
the upper-level models of the handling mechanism such as
FingerModels and the interaction technique
ClusteringModel. The role of this low-level transducer is to
forward events received from the hardware to low-level
events in FingerModels (which model the fingers’ behavior).

During the initialization, the low-level transducer instantiates
the ClusteringModel through the createClustering transition
and stores its reference in the ClusteringModel place. When
the low-level transducer receives a “rawToucheventf_down”
event from the hardware, the fingerInstantiation transition is
fired, the event parameters (the touch id, and its other
information’s) are retrieved and used to dynamically
instantiates a new instance of FingerModel. The
addFingerToClustering transition then adds the FingerModel

reference to the cluster model. This is how the interaction
technique is informed of the detection of new fingers. The
low-level transducer then stores the reference of the
FingerModel in the FingerPool place (which contains the list
of all the detected fingers). When the transducer receives
“rawToucheventf_update” (resp. “rawToucheventf_up”)
events from the hardware, the transition updatingFinger
(resp. freeFinger) is then triggered and updates accordingly
the proper FingerModel. These updates are provided using
the communication mechanism of ICO services and not using
events since the low-level transducer contains references
toward the FingerModels and is able to send hardware events
to the corresponding finger model.

Figure 2 – Excerpt of the model of a low level transducer

Modelling touch fingers

Each time the low-level transducer receives an event
corresponding to the detection of a finger on the hardware, it
creates the model and links it with the interaction technique
model(s). When the event received corresponds to an update
of an already detected finger, the low-level transducer
notified the corresponding finger model using the services
“update”. When the finger is removed from the hardware, the
low-level transducer fires the transition freeFinger which
destroys the corresponding FingerModel.

For readability purposes, the model presented in Figure 3
features a limited set of fingers properties: position and
pressure. However, more complex finger models have been
described offering various properties such as finger tilt angle,
acceleration and direction of the movements.

Lastly, this finger model is an extensible model that can
describe very complex behaviors. For example, if one needs
to describe the behavior a finger input as in Proton++ [11],
this can be done in a finger model as the one presented.
Indeed this model specifies when the touch events are
broadcasted and that such broadcasting can be controlled in

order to match a sequential system sending user events every
30ms as in [11].

Figure 3 – Generic Model of Finger

Modelling the interaction technique “finger clustering”

This paragraph describes how the ICO notation handles
interaction techniques including output fusion of information
related to the reception of events produced by dynamically
instantiated input devices (see Figure 4). In this example, the
interaction technique model is in charge of pairing co-located
input devices so they can be handled as a group of fingers.
This corresponds to the interaction presented in Figure 1
where the right-hand side of the figure presents the rendering
associated to the detection of a pair of fingers (bottom-left of
the figure) while the other finger remains ungrouped. The
model presented in Figure 4 is composed of a service
(addFinger), two places (ListOfPairs storing the pairs of
fingers and SingleFingersList storing the “single” fingers)
and event-transitions to update the clustering according to the
evolution of the position of fingers on the touchscreen. Each
time a finger model is created (a new finger touches the
screen), the low level transducer calls the “addFinger”
service and a reference to a new finger model is set in place
SingleFinger. When a finger from SingleFingerList (called
finger1 for instance) moves close enough to another finger
(e.g. finger2) in that place too, two cases are represented:

 finger2 is close enough of finger1 (condition in the event
condition zone of transition cluster2Fingers is true) then
transition cluster2Fingers is fired, finger1 and finger2
are removed from place SingleFingerList and a new
token consisting of the pair (finger1, finger2) and their
respective position is stored in place ListOfFingerPairs.

 finger2 is too far from finger1 (condition in the event
condition zone of transition noClusterDetected is true)
then that transition is fired and the new position of finger
is updated.

When a pair is detected, the user interface should display
graphically such dynamic grouping. This is defined by the
rendering function associated to the interaction technique and

presented in Table 3. When two fingers are merged, the token
referencing these two models are removed from
SingleFingerList place which triggers the method
hideFingerRendering for each model. This method hides the
elementary rendering associated to each finger. When a pair
is detected, both references are combined in a token added to
place LisfOfFingerPairs which calls the method
createPairedFingerRendering which displays the rendering
associated to the two-finger cluster.

ObCS Node

name

ObCS

event
Rendering method

SingleFingerList tokenAdded showFingerRendering

SingleFingerList tokenRemoved hideFingerRendering

ListOfFingerPairs tokenAdded createPairedFingerRendering

ListOfFingerPairs tokenRemoved removePairedFingerRendering

Table 3 -Rendering functions of the interaction technique

It is important to note that output is thus connected to state
changes in the models (which only occur when tokens are
added to or removed from places) while input are event based
and thus associated to transitions.

CONCLUSION

This paper has identified a set of challenges towards the
production of complete and unambiguous specifications of
multi-touch systems. The main issues deal with the dynamic
instantiation of input devices and the dynamic
reconfiguration of interaction techniques. We have
highlighted the fact that such concerns have not previously
encountered (at least at this large scale) when engineering
interactive systems. This paper has presented a twofold way
for addressing these issues:

 A layered software architecture made of communicating
models which makes explicit a set of components and
their inter-relations in order to address this dynamicity
challenge;

 A formal description technique able to describe in a
complete and unambiguous way such dynamic
behaviors.

While the formal notation contribution is very specific to the
work presented here, the layered architecture is independent
from it and can be reused within any framework dealing with
multi-touch interactions.

REFERENCES
1. Accot J., Chatty S., Maury S. & Palanque P. Formal Transducers:

Models of Devices and Building Bricks for Highly Interactive Systems.
DSVIS 1997, Springer Verlag, pp. 234-259.

2. Bastide R., Navarre D., Palanque P., Schyn A. & Dragicevic P. A
Model-Based Approach for Real-Time Embedded Multimodal Systems
in Military Aircrafts. Int. Conference on Multimodal Interfaces
(ICMI'04), ACM DL, 10 pages.

Figure 4 - Model of the interaction technique “finger clustering”

3. Bellik Y., Rebaï I., Machrouh E., Barzaj Y., Jacquet C., Pruvost G.,
Sansonnet J.-P.: Multimodal Interaction within Ambient Environments:
An Exploratory Study. INTERACT (2) 2009: 89-92

4. Bi X., Grossman T., Matejka J., and Fitzmaurice G.: 2011. Magic desk:
bringing multi-touch surfaces into desktop work. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI
'11). ACM, New York, NY, USA, 2511-2520.

5. Bolt, R and Herranz, E. (1992). “Two-Handed Gesture in Multi-Modal
Natural Dialog”, Proceedings of the fifth annual ACM symposium on
User interface software and technology, ACM Press, p 7-14

6. Buxton W. A three-state model of graphical input, IFIP TC 13
INTERACT’90, 1990, p. 449–456.

7. Frisch M., Heydekorn J., & Dachselt R. 2009. Investigating multi-touch
and pen gestures for diagram editing on interactive surfaces. In Proc. of
the ACM Int. Conf. on Interactive Tabletops and Surfaces (ITS '09).
ACM, 149-156.

8. Genrich, H. J. 1991. Predicate/Transitions Nets. In High-Levels Petri
Nets: Theory and Application. K. Jensen and G. Rozenberg, (Eds.),
Springer Verlag (1991) pp. 3-43

9. Hamon A., Palanque P., Silva J-L., Deleris Y., & Barboni E. 2013.
Formal description of multi-touch interactions.5th symp. on Engineering
interactive computing systems (EICS '13). ACM, 207-216

10. Kammer D., Wojdziak J., Keck M., Groh R., & Taranko S. 2010.
Towards a formalization of multi-touch gestures. ACM Int. Conf. on
Interactive Tabletops and Surfaces (ITS '10)

11. Kenrick K., Björn H., DeRose T. & Maneesh A. 2012. Proton++: a
customizable declarative multitouch framework. Proc. of ACM
symposium on User interface software and technology (UIST '12).
ACM, 477-486.

12. Ladry J-F., Navarre D., Palanque P. Formal description techniques to
support the design, construction and evaluation of fusion engines for sure
(safe, usable, reliable and evolvable) multimodal interfaces. ICMI 2009:
185-192

13. Lalanne D., Nigay L., Palanque P., Robinson P., Vanderdonckt J. &
Ladry J-F. Fusion engines for multimodal input: a survey. ACM ICMI
2009: 153-160, ACM DL

14. Spano L-D., Cisternino A., Paternò F., Fenu G. GestIT: a declarative and
compositional framework for multiplatform gesture definition. EICS
2013: 187-196

15. Navarre D., Palanque P, Basnyat S. A Formal Approach for User
Interaction Reconfiguration of Safety Critical Interactive Systems.
SAFECOMP 2008: 373-386

16. Navarre D., Palanque P., Ladry J-F. & Barboni E. ICOs: A model-based
user interface description technique dedicated to interactive systems
addressing usability, reliability and scalability. ACM Trans. Comput.-
Hum. Interact., 16(4), 18:1–18:56. 2009

17. Oney S., Myers B., and Brandt J.. 2012. ConstraintJS: programming
interactive behaviors for the web by integrating constraints and states.
25th ACM symp. on User interface software and technology (UIST '12).
ACM, N-Y, 229-238.

18. Palanque P., Barboni E., Martinie De Almeida, Navarre D., Winckler M.
A Tool Supported Model-based Approach for Engineering Usability
Evaluation of Interaction Techniques. ACM (EICS 2011), Pisa, Italy.

19. Palanque P., Bernhaupt R., Navarre D., Ould M. & Winckler M.
Supporting Usability Evaluation of Multimodal Man-Machine Interfaces
for Space Ground Segment Applications Using Petri net Based Formal
Specification. Ninth Int. Conference on Space Operations, Italy, June 18-
22, 2006

20. Palanque P. & Schyn A. A Model-Based Approach for Engineering
Multimodal Interactive Systems in INTERACT 2003, IFIP TC 13 conf.
on HCI, 10 pages.

21. Songyang Lao, Xiangan Heng, Guohua Zhang, Yunxiang Ling, and
Peng Wang. 2009. A gestural interaction design model for multi-touch
displays. Proc. of the BCS HCI Conf. (BCS-HCI '09), 440-446

