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INTRODUCTION

Over the last decade the field of interactive systems engineering had to face multiple challenges at a pace never encountered before. Indeed, while new interaction techniques have been proposed on a regular basis by the research community (e.g. multimodal gesture+voice interactions by R. Bolt in [START_REF] Bolt | Two-Handed Gesture in Multi-Modal Natural Dialog[END_REF], post-WIMP interactions such as [START_REF] Bi | Magic desk: bringing multi-touch surfaces into desktop work[END_REF] etc.) recent years have seen the adoption and deployment of such interaction techniques in many different types of systems. Together with this evolution of interaction techniques, the appearance and adoption of new input devices is also a significant change with respect to the past. Indeed, mass market computers remained for nearly 20 years equipped with standard mouse and keyboard while nowadays, one interacts with more sophisticated input devices such as multitouch surfaces, Kinect, Wiimote, … However, these new input devices and their associated interaction techniques have significantly increased the complexity the development of interactive systems. For instance, multimodal interaction techniques are now common both as input and output modalities. One of the most challenging examples is the one of multi-touch systems 1 . Indeed, even though some studies [START_REF] Bi | Magic desk: bringing multi-touch surfaces into desktop work[END_REF] show that they improve the bandwidth between the users and the system, they bring specific challenges such as handling dynamic management of input devices (the fingers) and their associated interaction techniques (including fusion and fission of input (e.g. input fusion for a pinch) as well as fusion and fission of rendering (e.g. output fusion for fingers clustering)). This paper presents a formal description technique able to describe in a complete and unambiguous way the behavior of multi-touch systems. As it consists in extensions of previous work [START_REF] Hamon | Formal description of multi-touch interactions.5th symp. on Engineering interactive computing systems[END_REF], we make explicit the changes that have been made to the ICO notation. We present the basic constructs of the extensions and how they can be applied on a simple example making particularly explicit how dynamic management of both input devices and interaction techniques are accounted for. This paper addresses more specifically multi-touch input devices and interaction techniques but the concepts are applicable to any interactive system where input devices are connected and disconnected at runtime and requiring reconfiguration of interaction techniques.

In classical interactive systems, the set of input and output devices are identified at design time and the interaction techniques to be used for interacting with the application are based on this predefined set and also defined beforehand [START_REF] Bellik | Multimodal Interaction within Ambient Environments: An Exploratory Study[END_REF]. Multi-touch systems challenge this by requiring the capacity for handling input devices (i.e. fingers) that may appear and disappear dynamically while the interaction takes place.

In such context, when the interactive system is started input devices are not present and thus not identified. Users' fingers are considered as input devices and are only detected as they touch (or get close enough to) the tactile surface. The input devices (fingers) detected at execution time need to be dynamically instantiated in order to be registered and listened to. While this can be easily managed using programming languages, such aspect is usually not addressed by modelling techniques as highlighted in the related work section (next section). While model-based approaches provide well identified benefits such as abstract description, possible reasoning about models, complete and unambiguous descriptions, in order to deal with multi-touch systems they have to address the following challenges:

Describe the dynamic management of input devices. This includes the description (inside models) of dynamic creation (instantiation) of input devices and the description of how many of them are present at any time. This management also requires the removal of the devices from the models when they are freed; Make explicit in the models the connection between the hardware (input devices) and their software counterpart (i.e. device drivers and transducers as introduced in [START_REF] Buxton | A three-state model of graphical input[END_REF] and formalized in [START_REF] Accot | Formal Transducers: Models of Devices and Building Bricks for Highly Interactive Systems[END_REF]); Describe the set of states, the events produced and the event consumed by the device drivers and the transducers; Describe the interaction techniques that have to handle references to dynamically instantiated models related to the input devices (drivers and transducers); Describe how interaction techniques behavior evolves according to the addition and removal of input devices. Such capability is extremely demanding on the specification techniques requiring dynamic management of interaction techniques as demonstrated in [START_REF] Spano | GestIT: a declarative and compositional framework for multiplatform gesture definition[END_REF].

Described fusion and fission of input and output within the interaction technique. Indeed, the use of multiple input devices (fingers) makes it possible for interaction designers to define very sophisticated interaction techniques making use of several fingers grouped together for instance. Such grouping requires fusions of events from the groups of fingers but also the fusion of output information to provide feedback to the users about the current state of recognition of the interaction.

For example, interaction techniques featuring a group of two fingers will require modifying the initial rendering of each finger's graphical feedback as in Figure 1-b). Figure 1-a) presents a graphical feedback of three fingers on a multi-touch application.

These challenges go beyond the ones brought by multimodal interactions identified in [START_REF] Lalanne | Fusion engines for multimodal input: a survey[END_REF]. 

RELATED WORK

This section provides a succinct overview of the related work in the area of modelling techniques for multi-touch interactions. Table 1 summarizes this related work, structuring the comparison according to the criteria (represented as lines in the table) detailed below.

The first three characteristics deal with description of information in the models including namely "Data", "State", and "Events". There is no specific constraint related to multitouch systems. Concurrent behavior representation is critical for multi-touch interactions due to the concurrent use of multiple fingers and hands this is why all the notations listed address this characteristic.

Time

Quantitative time between two consecutive model elements represents behavioral temporal evolutions related to a given amount of time (usually expressed in milliseconds). This is necessary for the modeling of the temporal windows in a fusion engine for multimodal interfaces, where events from several input devices are fused only if they are produced within a same time frame. Quantitative time over nonconsecutive elements was introduced in [START_REF] Palanque | A Tool Supported Model-based Approach for Engineering Usability Evaluation of Interaction Techniques[END_REF] for multimice double and fusion double click interactions.

Dynamic instantiation

As explained in the list of challenges in previous section, dynamic instantiation is a corner stone for modeling techniques for multi-touch interactions. Three types of dynamic instantiation have been identified, but only the last two ones are idiosyncratic to multi-touch interactions. In the multi-touch context, new fingers are detected during at execution time. Thus, the description language must be able to receive dynamically created objects. Supporting explicit representation of dynamic instantiation requires the description technique to be able to explicitly represent an unbounded number of states, as the newly created objects will by definition represent a new state for the system. Most of the time, this characteristic is handled by means of code and remains outside the description technique. In Petri nets [START_REF] Genrich | Predicate/Transitions Nets[END_REF] this is particularly easy to represent by the creation/destruction of tokens associated to the objects. This way, for instance, for each finger currently touching the multi-touch surface, a corresponding token will be set in a place of the Petri net.

Dynamicity has also to be addressed at operation time in order to cope with potential hardware failure reconfigurations of the interaction techniques might be required [START_REF] Spano | GestIT: a declarative and compositional framework for multiplatform gesture definition[END_REF]. This requires a meta-level representation of interactions which can be dynamically selected at run-time. This is an important aspect to address if multi-touch interactions and is presented in a static way in [START_REF] Palanque | Supporting Usability Evaluation of Multimodal Man-Machine Interfaces for Space Ground Segment Applications Using Petri net Based Formal Specification[END_REF].

Multimodality

These rows refer to the capability of a language to support the fusion and fission of several distinct modalities such as the combination of pen and multi-touch in [START_REF] Frisch | Investigating multi-touch and pen gestures for diagram editing on interactive surfaces[END_REF]. Fusion engines have been a focal point of the research in the area of multimodal interactions and they are of prime importance as far as multi-touch interactions are concerned. Multi-touch interactions are by nature multi-modal and their design requires at least the same expressive power as the one of multimodal one (see [START_REF] Lalanne | Fusion engines for multimodal input: a survey[END_REF] for a survey on these aspects).

Table 1 -Partial comparison of UIDLs

For all characteristics in Table 1, there are four possible values.

Yes means that the characteristic is explicitly handled by the multi-touch description technique;

No means that the characteristic is not explicitly handled (at least in the referred article); Partly means that the characteristic is not completely explicit; Code means that the characteristic is made explicit but only at the code level and is thus not a construct of the description language. The notations referenced in Table 1 are not formal. We chose to highlight the fact that event non-formal notations, which are supposed to have a higher expressive power, do not handle dynamic instantiation for example.

THE EXTENDED ICO NOTATION

Based on the study of the related work and the dimensions described in [START_REF] Hamon | Formal description of multi-touch interactions.5th symp. on Engineering interactive computing systems[END_REF], only the ICO notation allows the explicit modelling of all the multi-touch characteristics. However, extensive modelling of multi-touch systems has demonstrated the need for modifying the ICO notation in order to provide primitives for handling specificities of multitouch systems. It is important to note that these primitives do not constitute extensions to the expressive power of ICOs but

Introduction

The ICO notation (Interactive Cooperative Objects) is a formal description technique devoted to specify interactive systems. Using high-level Petri nets [START_REF] Genrich | Predicate/Transitions Nets[END_REF] for dynamic behavior description, the notation also relies on object-oriented approach (dynamic instantiation, classification, encapsulation, inheritance and client/server relationships) to describe the structural or static aspects of systems. ICO notation objects are composed of four components: a cooperative object for the behavior description, a presentation part (i.e. Graphical Interface), and two functions (activation and rendering) describing the links between the cooperative object and the presentation part.

ICOs have been used for various types of multi-modal interfaces [START_REF] Ladry | Formal description techniques to support the design, construction and evaluation of fusion engines for sure (safe, usable, reliable and evolvable) multimodal interfaces[END_REF] and in particular for multi-touch [START_REF] Hamon | Formal description of multi-touch interactions.5th symp. on Engineering interactive computing systems[END_REF]. This notation is also currently applied for formal specification in the fields of Air Traffic Control interactive applications [START_REF] Navarre | ICOs: A model-based user interface description technique dedicated to interactive systems addressing usability, reliability and scalability[END_REF], space command and control ground systems [START_REF] Palanque | Supporting Usability Evaluation of Multimodal Man-Machine Interfaces for Space Ground Segment Applications Using Petri net Based Formal Specification[END_REF], or interactive military [START_REF] Bastide | A Model-Based Approach for Real-Time Embedded Multimodal Systems in Military Aircrafts[END_REF] or civil cockpits [START_REF] Accot | Formal Transducers: Models of Devices and Building Bricks for Highly Interactive Systems[END_REF].

Informal description of dynamic instantiation

ICOs, due to their Petri nets underpinning, are particularly efficient to create and destroy elements when they are represented as tokens. As ICOs' tokens refer to objects or other ICOs, it is possible to use such high-level tokens to represent input devices such as fingers on a touchscreen. Such tokens refer to other ICO models describing the detailed behavior of the input device. For instance, Figure 3 presents the behavior of a finger both in terms of states (values for position, pressure, etc.) and events (e.g. update corresponding to move events).

The ICO model in Figure 2 describes how new input devices are instantiated and stored in a manager. The top-left transition in Figure 2 illustrates how new input devices can be added to an ICO model with the creation of a model of finger type (instruction finger=create Finger(touchinfo)). The newly created reference is then stored in a waiting place (called ToAddFinger) in order to be connected to an interaction technique in charge of handling the events that will be produced by the new device.

Handling events from dynamically instantiated sources

An ICO model may act as an event handler for events emitted by other models or java instances. The detailed description of these mechanisms is available in [START_REF] Palanque | A Model-Based Approach for Engineering Multimodal Interactive Systems in INTERACT[END_REF]. In addition, the different transition blocks of Figure 2 (top-left transition) are presented in Table 2. 

Table 2-Properties of the generic event transition

Formal description

Due to space constraints, the formal definition of the extensions are not given there but its denotational semantics is given in terms of "standard" ICOs as defined in [START_REF] Navarre | ICOs: A model-based user interface description technique dedicated to interactive systems addressing usability, reliability and scalability[END_REF].

DEMONSTRATING HANDLING OF INPUT DEVICES: AN SIMPLE EXAMPLE USING ICOS

This paragraph describes the ICO models used for the example presented Figure 1-b which handles dynamically referenced input devices.

Low-level transducer description

The model presented in Figure 2 is called a transducer as it is located (in terms of software architecture) in between the hardware devices and the interaction techniques. There could be a chain of such models handling events from the lower level (raw events or data from the hardware input devices) to high-level events as a double click (see [START_REF] Accot | Formal Transducers: Models of Devices and Building Bricks for Highly Interactive Systems[END_REF] for more details on transducers).

The low-level transducer encapsulates the references towards the upper-level models of the handling mechanism such as FingerModels and the interaction technique ClusteringModel. The role of this low-level transducer is to forward events received from the hardware to low-level events in FingerModels (which model the fingers' behavior).

During the initialization, the low-level transducer instantiates the ClusteringModel through the createClustering transition and stores its reference in the ClusteringModel place. When the low-level transducer receives a "rawToucheventf_down" event from the hardware, the fingerInstantiation transition is fired, the event parameters (the touch id, and its other information's) are retrieved and used to dynamically instantiates a new instance of FingerModel. The addFingerToClustering transition then adds the FingerModel reference to the cluster model. This is how the interaction technique is informed of the detection of new fingers. The low-level transducer then stores the reference of the FingerModel in the FingerPool place (which contains the list of all the detected fingers). When the transducer receives "rawToucheventf_update" (resp. "rawToucheventf_up") events from the hardware, the transition updatingFinger (resp. freeFinger) is then triggered and updates accordingly the proper FingerModel. These updates are provided using the communication mechanism of ICO services and not using events since the low-level transducer contains references toward the FingerModels and is able to send hardware events to the corresponding finger model.

Figure 2 -Excerpt of the model of a low level transducer

Modelling touch fingers

Each time the low-level transducer receives an event corresponding to the detection of a finger on the hardware, it creates the model and links it with the interaction technique model(s). When the event received corresponds to an update of an already detected finger, the low-level transducer notified the corresponding finger model using the services "update". When the finger is removed from the hardware, the low-level transducer fires the transition freeFinger which destroys the corresponding FingerModel.

For readability purposes, the model presented in Figure 3 features a limited set of fingers properties: position and pressure. However, more complex finger models have been described offering various properties such as finger tilt angle, acceleration and direction of the movements.

Lastly, this finger model is an extensible model that can describe very complex behaviors. For example, if one needs to describe the behavior a finger input as in Proton++ [START_REF] Kenrick | Proton++: a customizable declarative multitouch framework[END_REF], this can be done in a finger model as the one presented. Indeed this model specifies when the touch events are broadcasted and that such broadcasting can be controlled in order to match a sequential system sending user events every 30ms as in [START_REF] Kenrick | Proton++: a customizable declarative multitouch framework[END_REF].

Figure 3 -Generic Model of Finger

Modelling the interaction technique "finger clustering"

This paragraph describes how the ICO notation handles interaction techniques including output fusion of information related to the reception of events produced by dynamically instantiated input devices (see Figure 4). In this example, the interaction technique model is in charge of pairing co-located input devices so they can be handled as a group of fingers. This corresponds to the interaction presented in Figure 1 where the right-hand side of the figure presents the rendering associated to the detection of a pair of fingers (bottom-left of the figure) while the other finger remains ungrouped. The model presented in Figure 4 is composed of a service (addFinger), two places (ListOfPairs storing the pairs of fingers and SingleFingersList storing the "single" fingers) and event-transitions to update the clustering according to the evolution of the position of fingers on the touchscreen. Each time a finger model is created (a new finger touches the screen), the low level transducer calls the "addFinger" service and a reference to a new finger model is set in place SingleFinger. When a finger from SingleFingerList (called finger1 for instance) moves close enough to another finger (e.g. finger2) in that place too, two cases are represented: finger2 is close enough of finger1 (condition in the event condition zone of transition cluster2Fingers is true) then transition cluster2Fingers is fired, finger1 and finger2 are removed from place SingleFingerList and a new token consisting of the pair (finger1, finger2) and their respective position is stored in place ListOfFingerPairs. finger2 is too far from finger1 (condition in the event condition zone of transition noClusterDetected is true) then that transition is fired and the new position of finger is updated.

When a pair is detected, the user interface should display graphically such dynamic grouping. This is defined by the rendering function associated to the interaction technique and presented in Table 3. When two fingers are merged, the token referencing these two models are removed from SingleFingerList place which triggers the method hideFingerRendering for each model. This method hides the elementary rendering associated to each finger. When a pair is detected, both references are combined in a token added to place LisfOfFingerPairs which calls the method createPairedFingerRendering which displays the rendering associated to the two-finger cluster. 

ObCS

Table 3 -Rendering functions of the interaction technique

It is important to note that output is thus connected to state changes in the models (which only occur when tokens are added to or removed from places) while input are event based and thus associated to transitions.

CONCLUSION

This paper has identified a set of challenges towards the production of complete and unambiguous specifications of multi-touch systems. The main issues deal with the dynamic instantiation of input devices and the dynamic reconfiguration of interaction techniques. We have highlighted the fact that such concerns have not previously encountered (at least at this large scale) when engineering interactive systems. This paper has presented a twofold way for addressing these issues:

A layered software architecture made of communicating models which makes explicit a set of components and their inter-relations in order to address this dynamicity challenge;

A formal description technique able to describe in a complete and unambiguous way such dynamic behaviors.

While the formal notation contribution is very specific to the work presented here, the layered architecture is independent from it and can be reused within any framework dealing with multi-touch interactions. 
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 1 Figure 1-a) (left) 3 input device detected; b) (right) output of the clustering of two input devices (merged disks bottom left)

  Event block eventName name of the event the transition is linked to eventSource the source of the event received eventParameters The collection of the parameters of the received event eventCondition boolean expression based on the eventParameters' values used for the firing 4 : Action block action an action

Figure 4 -

 4 Figure 4 -Model of the interaction technique "finger clustering"

We use in this paper multi-touch systems as a shortcut for interactive systems offering multi-touch interactions