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Abstract. The major paradigm for sequential decision under uncer-
tainty is expected utility. This approach has many good features that
qualify it for posing and solving decision problems, especially dynamic
consistency and computational efficiency via dynamic programming. How-
ever, when uncertainty is due to sheer lack of information, and expected
utility is no longer a realistic criterion, the approach collapses because dy-
namic consistency becomes counterintuitive and the global non-expected
utility criteria are no longer amenable to dynamic programming. In this
paper we argue against Resolute Choice strategies, following the path
opened by Jaffray, and suggest that the dynamic programming method-
ology may lead to more intuitive solutions respecting the Consequen-
tialism axiom, while a global evaluation of strategies relying on lottery
reduction is questionable.

1 Introduction

The traditional approach to multiple stage decision processes under the prob-
abilistic approach [9] is based on decision trees. A decision tree is a graphical
structure containing chance nodes and decision nodes. A strategy is the assign-
ment of a decision (i.e. a chance node) to each decision node and each strategy
turns the decision tree into a probability tree. This probability tree characterizes
a unique probability distribution on the space of final states, and the (global) ex-
pected utility of the strategy over the state space can be computed. The optimal
strategy is then the one with maximal expected utility.

This model has several features that make computations tractable [9]: Any
substrategy of an optimal strategy is optimal with respect to the corresponding
decision subtree, the optimal strategy can be computed by means of dynamic
programming from the leaves to the root of the decision tree.

The appeal of this approach is also due to three properties that it verifies:

– Dynamic Consistency: When reaching a decision node by following an opti-
mal strategy, the best decision at this node is the one that had been consid-
ered so when computing this strategy, i.e. prior to applying it.

– Consequentialism: the best decision at each step of the decision tree only
depends on potential consequences at this point.



– Tree Reduction: The result of the dynamic programming procedure on the
decision tree comes down to optimizing the criteria defined on the state
space via the probability distribution obtained from each strategy via the
reduction of lotteries.

More recently, with the emergence of non-additive uncertainty theories, the de-
cision tree approach has been adapted to new decision criteria that differ from
expected utility [10], but generalize known but less reputed criteria such as
Wald maximin criterion or Hurwicz criterion: for instance lower expected util-
ity with respect to a set of priors [2] or Jaffray’s belief function extension of
Hurwicz criterion [6]. These criteria turn out to be incompatible with the three
above assumptions in the sequential decision setting [4]. In particular, they vi-
olate Dynamic Consistency, and optimizing the non-expected utility criterion
cannot be carried out using dynamic programming [3]. Some authors tend to
privilege Dynamic Consistency and Tree Reduction and are ready to give up
Consequentialism (e.g., the Resolute Choice approach [1]). Another approach
called Veto-process has been proposed by Jaffray [7]. It insists on the fact that
Resolute Choice is not acceptable since a normally behaved decision-maker is
consequentialist.

The aim of this paper is to provide more arguments in favor of Consequen-
tialism as a natural property to be preserved when uncertainty accounts for
incomplete information rather than frequentist probability, while questioning
Resolute Choice. We follow the line initiated by Jaffray [7] who introduced the
so-called Veto-process in the frame of decision under total uncertainty. First,
we present the background on decision trees under pure uncertainty and the
Hurwicz criterion. Then, we illustrate Resolute Choice, showing its paradoxical
behavior on a example. Then we present and discuss two alternatives to Resolute
Choice, inspired by the Veto-process philosophy.

2 Background

In this section, we first recall the definition of the Hurwicz criterion and decision
trees under uncertainty.

Consider first simple, non sequential decision problems under complete un-
certainty: each decision δ is characterized by the multi set of consequences Eδ it
can lead to - or equivalently a simple, non probabilitistic lottery. Given a util-
ity function (u(s)) capturing the attractiveness of each of these consequences, a
usual way to taking into account the optimism of the decision-maker under total
uncertainty is to use the Hurwicz criterion [5]. The worth of a simple lottery δ

is then:
H(δ) = α× min

s∈Eδ

u(s) + (1− α)×max
s∈Eδ

u(s).

where α ∈ [0, 1] is the degree of optimism.
When the decision problem is sequential and fully observable, we shall use

decision trees [9] a graphical representations of the problem. This framework
proposes an explicit modeling, representing each possible scenario by a path



from the root to the leaves of the tree. Formally, the graphical component of a
decision tree T is composed of a set of nodes N and a set of edges E such that
the set N contains three kinds of nodes:

– D = {d0, . . . , dm} is the set of decision nodes (represented by rectangles).
– LN = {ln1, . . . , lnk} is the set of leaves, that represent final states in S =
{s1, . . . , sk} ; such states can be evaluated thanks to a utility function: ∀si ∈
S, u(si) is the utility of being eventually in state si (in node lni). For the
sake of simplicity we assume that only leave nodes lead to utilities.

– X = {x1, . . . , xn} is the set of chance nodes represented by circles.
For any node ni ∈ N , Succ(ni) ⊆ N denotes the set of its children. Moreover,
for any di ∈ D, Succ(di) ⊆ X : Succ(di) corresponds to the set of actions that
can be decided when di is observed. For any xi ∈ X , Succ(xi) ⊆ LN ∪ D:
Succ(xi) is indeed the set of outcomes of the action xi - either a leaf node
is observed, or a decision node is reached (and then a new action should be
executed).

In the present paper, we are interest in the simple case of total ignorance, where
information at chance nodes is just a list of potential outcomes without proba-
bility distribution.

Solving a decision tree amounts to building a strategy δ that selects an action
(i.e. a chance node) δ(di) ∈ Succ(di) for each reachable decision node di ∈ D
that associates a chance node δ(di) ∈ Succ(di) to each decision node di: δ(di) is
the action to be executed when a decision node di is reached.

Let ∆ be the set of strategies that can be built from the decision tree. Any
strategy in ∆ can be viewed as a connected subtree of the decision tree where
there is exactly one decision arc left at each decision node - skipping the deci-
sion nodes, we get a chance tree or, using von Neuwman and Morgernsterm’s
terminology, a coumpound lottery.

3 Resolute Choice

To evaluate/compare strategies with the Hurwicz criterion, we shall first follow
a resolute choice approach. The idea is that any compound lottery is equivalent
to a simple one, using a principe of lottery reduction. In our context of decision
under total ignorance, no probability distribution is available and reducing a
lottery Tδ of a strategy δ comes down to computing the multiset of possibly
reached states Eδ. We shall now simply compare the strategies by computing
H(δ) = α×mins∈Eδ

u(s)+(1−α)×maxs∈Eδ
u(s) for each of them. This decision-

maker behavior is called Resolute Choice and consists in making a strategic
decision now and keeping the same strategy over time.

In the literature, the Hurwicz criterion has been generalized to decision trees
pervaded with imprecise probabilities by applying it to the reduced lottery [8].
It follows that this criterion will violate Consequentialism in the probabilistic
case, and this is also the case in our simple non probabilistic framework. For
instance, consider the following decision tree under incomplete information :



d0
s0 ⇒ 0

up

down

d1

up
s1 ⇒ 10

s7 ⇒ 20

down

s2 ⇒ 2

s8 ⇒ 25

d2

up
s3 ⇒ 1

s4 ⇒ 19

down

s5 ⇒ 0

s6 ⇒ 24
Fig. 1. Decision Tree.

There are 5 strategies : (d0 = up) , (d0 = down, d1 = up, d2 = down), (d0 =
down, d1 = down, d2 = up), (d0 = down, d1 = up, d2 = up), (d0 = down,
d1 = down, d2 = down))

The problem is to find the best strategy for a Hurwicz decision-maker with
degree of optimism α, if there is no other information at x1, x2, x3, x4, x5.

The Resolute Choice approach consists in noticing that each strategy yields
a different set of possible rewards and computing the best strategy using the
prescribed decision criterion.

– Reachable states : E(d0=down,d1=up,d2=up) = {s1, s7, s3, s4} :H(d0 = down, d1 =
up, d2 = up) = α+ 20(1− α)

– Reachable states : E(d0=down,d1=up,d2=down) = {s1, s7, s5, s6} :H(d0 = down, d1 =
up, d2 = down) = 24(1− α)

– Reachable states : E(d0=down,d1=down,d2=up) = {s2, s8, s3, s4} :H(d0 = down, d1 =
down, d2 = up) = α+ 25(1− α)

– Reachable states : E(d0=down,d1=down,d2=down) = {s2, s8, s5, s6} : H(d0 =
down, d1 = down, down) = 25(1− α)

– Reachable states : Ed0=up = {s0}: H(d0 = up) = 0

So the optimal strategy ex ante consists in deciding for ”down” at node d0,
for “down” at node d1 and ”up” at node d2 what ever α ∈ [0, 1].

However assume Consequentialism. Suppose the decision-maker reaches de-
cision node d1, because she/he choses ”down” at d0: Now the sets of remaining
possible rewards and the corresponding evaluations are for each remaining strat-
egy (the boldface decision is a past one):

– E(d0=down,d1=up) = {s1, s7}: H(d0 = down, up) = 10α+ 20(1− α)
– E(d0=down,d1=down) = {s2, s8}: H(d0 = down, down) = 2α+ 25(1− α)

If the decision-maker is pessimistic enough (α > 5
13 ) the best decision d1 is

”up” (and not ”down” as found using Resolute Choice). Suppose now that the
decision-maker reaches decision node d2 due to the outcome of chance node x1 :

– E(d0=up,d2=up) = {s3, s4}: H((d0 = up, d2 = up)) = α+ 19(1− α)



– E(d0=up,d2=down) = {s5, s6}: H(d0 = up, d2 = down)) = 24(1− α)

If the decision-maker is enough optimistic α < 5
6 the best decision d2 is ”down”

and not ”up” as found using Resolute Choice. In this example is easy to see
that for a decision-maker which is not strictly optimistic nor pessimistic (more
precisely if α ∈] 5

13 ,
5
6 [), both decisions proposed by the Resolute Choice approach

are in conflict with the decision-maker’s preference at the moments he has to
decide.

4 An alternative to Resolute Choice under pure

uncertainty

Jaffray [7] starts from the psychological implausibility of the Resolute Choice: an
optimal strategy chosen at time t can become unacceptable in the future. This is
because in some sense, the decision-maker now is not the same as the decision-
maker in the future. Jaffray speaks of different egos. He assigns a different ego
to each decision node and tries to build a strategy now that is not dominated for
the future egos. The question of Jaffray is: how can egos collaborate? Contrary
to Resolute Choice where the present ego enforces his preferences to the future
ones, we present two alternatives to the Resolute Choice. The first is the direct
application of the Veto-process proposed by Jaffray [7]. The second approach is
based on the idea that the satisfaction of the present depends on the one of his
future egos.

4.1 A Veto-process under pure uncertainty

Let ∆N be a set of possible strategies from node N . The application of the
algorithm proposed by Jaffray to our case of pure uncertainty comes down to
letting each ego N select those of its possible strategies δ ∈ that are optimal
according to the Hurwicz criterion applied on the reduction of δ, i.e. on the the
leaves of δ∆N . So the algorithm consists in selecting the best substrategy (strict
Veto-process), from the last decision nodes to the root decision node by applying
lottery reduction and Hurwicz criterion.

Back to our example: suppose α ∈] 5
13 ,

5
6 [; the ego for decision d1 will choose

”up” and the ego of decision d2 will choose ”down”. So the ego of decision d0
will have to decide between strategies:

– δ1 = (d0 = down, d1 = up, d2 = down) : Eδ1 = {s1, s7, s5, s6} and H(δ1) =
24(1− α)

– δ2 = (d0 = up) : Ed0=up = {s0} and H(d0 = up) = 0

Then the best strategy is δ1



Algorithm 1: Veto-process under pure uncertainty

Input: decision tree T of depth p > 1, optimism coefficient α
Output: A strategy δ

foreach node N from the depth p− 1 to 0 in T do

if N ∈ X then

∆N ← ∪N ′∈Succ(N){{(N,N ′)} ∪ δ : δ ∈ ∆N ′}

if N ∈ D then

∆N ←
⋃

N ′∈Succ(N){∆N ′}

foreach δ ∈ ∆N do
Hδ ← α×minlni∈δ∩LN u(si) + (1− α)×maxlni∈δ∩LN u(si)

Vmax ← maxδ∈∆N
Hδ

∆N ← {argmaxδ∈∆N
Hδ};

In this approach, the Veto of future egos enforces Consequentialism. Since
each ego is responsible from the choice of its strategy, the algorithm ensures that
a future ego will not deviate from the chosen strategy.

In the Veto-process, the egos are like independent players, so that each player
tries to optimize its own criterion ; one can even imagine that each ego N works
with its own degree of optimism αN over the rewards it finally gets, letting
Hδ ← αN ×minlni∈δ∩LN u(si)+ (1−αN)×maxlni∈δ∩LN u(si) in the algorithm.

But in sequential decision under uncertainty, all players are dependent since
they participate of the same decision-maker. Moreover, only one player gets the
final reward. So, what is the relevance of assuming independent egos? In the
next section we propose a alternative process where the egos are dependent.

4.2 Ego-dependent process under pure uncertainty

Another possibility could be to consider that the preference degrees of one ego
is a function the satisfaction degree of its future egos - and eventually of the
egos that receive the final rewards, considering that like decision nodes, leaves
are more or less satisfied egos. Moreover the current decision

must put the future egos in the best position to be satisfied, until the last
ego (i.e., the ego of a leaf) obtains the final reward.

So in this section, we propose a new criterion that combines Hurwicz’s idea
and the philosophy of dependent satisfaction of the egos. For the ego of the
decision node di, the worth of decision N (a given posterior chance node) at this
node is recursively obtained as:

H(N) = α× min
u∈H(N )

u+ (1− α)× max
u∈H(N )

u. (1)

where H(N ) = {H(N ′) : ∀d′ ∈ Succ(N)}.
In other words, this approach comes down to recursively replacing any simple

lottery by a certainty equivalent H(L) that would provide utility H(L) for sure.
In a sense, we can say that we use a kind of lottery reduction that depends on



the parameters of the criterion used (Hurwicz), and more particulary on α. To
reduce a compound lottery, we replace all final simple lotteries by their Hurwicz
values, and carry on recursively.

Algorithm 2: Ego-dependent process under pure uncertainty

Input: decision tree T of depth p > 1, optimism coefficient α
Output: A strategy δ∗

foreach node N from the depth p to 0 in T do

if N ∈ LN then
VN ← {u(N)}

if N ∈ X then
VN ← ∪N ′∈Succ(N)V∆

N′

if N ∈ D then

foreach N ′ ∈ Succ(N) do
H(N ′)← α×minv∈V

N′
v + (1− α)×maxv∈V

N′
v

VN ← {maxN ′∈Succ(N)H(VN ′)}
δ∗ ← δ∗ ∪ (N, argmaxN ′∈Succ(N)H(VN ′))

Under this approach, it follows that the optimal strategy δ∗ under this cri-
terion is the strategy which maximizes H∗

N , ∀N ∈ Succ(d0). It yields an optimal
worth H∗, which is the maximal value of HN over the substrategies starting by
chance nodes in Succ(d0). For any chance node N in Succ(d0), HN is the utility
value such that all the future decisions are optimal for all the future egos; so this
model has several nice properties :

– Any substrategy of an optimal strategy is optimal with respect to the cor-
responding decision subtree.

– The optimal strategy can be computed by means of dynamic programming
from the leaves to the root of the decision tree.

This approach is appealing because it verifies two properties (Dynamic Con-

sistency and Consequentialism) and fails the other one (Tree Reduction). Indeed,
we do not consider that a decision tree is necessarily equivalent to a set of reduced
lotteries associated to strategies, in the face of total uncertainty: the structure of
the decision tree must influence the choice of strategies. Our Algorithm 2 is thus
based on dynamic programming, where VN , and H(VN ) are respectively sets of
evaluations and the worth of node N .

Back to our example with α = 6
13 . The egos of leaves get the utility value

associated to their states, so no choice is needed. The ego of decision node d1
will choose ”up” (Hd1=up = 6

13 × 10 + (1 − 6
13 ) × 20 ∼ 15.38 and Hd1=down ∼

14.38), the ego of decision node d2 will choose ”down” (Hd2=up ∼ 10.69 and
Hd2=down ∼ 12.92). The ego of decision node d0 only has to compare the decision
”up” with the decision ”down” when d1 = up, and d2 = down using Hurwicz
criterion on aggregated values {15.38, 12.92}; so the ego of d0 choice ”down”. In
the example, the two methods give the same optimal strategy, but they would
not if Hd0=up = 14 since then the would be optimal using the Veto-Process (it
actually considers only the ego at d2).



5 Conclusion

In this paper we investigate the problem of sequential decision under pure uncer-
tainty. We argue that the resolute Choice is not always psychologically accept-
able. Then we study Jaffray’s Veto-process in the context of pure uncertainty.
We point out a weakness since it considers that preferences of each ego are inde-
pendent while there is only one decision-maker over the whole sequential decision
process. Hence a new rational approach is proposed, under the assumption that
egos try to help the next egos in the sequence. An approach which satisfies this
rationality requirement is presented along with an algorithm. Our finding sug-
gest that defining the optimal criterion on the basis of a single reduced lottery
induced by the whole decision tree is not satisfactory and looks like a debat-
able fiction that neglects the structure of decision trees. This is in line with the
causal approach to probability revived by Shafer [11] who points out that prob-
ability trees were considered more expressive than probability distributions in
early times of probability theory. In fact, the thesis of this paper is that com-
puting the decision criterion on the reduced lotteries induced by a decision tree
is generally not faithful to what is expected from a best strategy in the face
of total uncertainty. Indeed, the optimal worth computed by non-expected util-
ity criteria corresponds to no actual reward, it just reflects the decision maker
attitude in front of uncertainty. It contrasts with the classical case, where the
optimal expected utility of strategies accounts for the actual satisfaction of the
decision-maker after playing the optimal strategy a sufficient number of times,
if nature acts according to the prescribed probabilities.
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