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Abstract: In recent decades, population growth has led to rapid urbanisation associated with a land degradation process 
that threatens soil organic carbon stocks (SOCS). This paper aims to model the interrelationships between 
SOCS and land use/land cover (LULC). The approach was based on the use of environmental covariates 
derived from Landsat-5 TM/8 OLI images, forty soil samples, Kriging spatial interpolation method and a 
Multi-layer Perceptron (MLP) model for the geo-spatialisation of SOCS. The analysis shows a high positive 
autocorrelations (R2>0.75) between vegetation indices and SOCS, particularly higher for SOCS derived from 
spatial modelling with MLP. On the other hand, the relationship between LULC and SOCS from the three 
approaches is very variable depending on the dynamics of LULC. The autocorrelations between SOCS and 
LULC units are very weak in 1985 and 2000 but significant for the year 2018. This suggests that the land use 
dynamics in the area are favourable to SOCS.  In general, the results show that SOCS increased in the tree 
crop, unused land and forest areas but decreased in the cropland. The SOCS varied in the following order: 
forest cover>unused land>cropland>urban area>tree crops. This indicates that LULC, topography and 
vegetation types had an impact on SOCS distribution characteristics. 

1 INTRODUCTION 

As the living foundation of agricultural and forestry 
production, soil is a finite and non-renewable 
resource on a human lifetime scale. It is subject to 
several increasing pressures that lead to tensions 
between land uses (Lal et al. 2007). Changes in 
agricultural production methods, the reversal of 
grasslands, the loss of arable or wooded land to 
urbanisation, the increase in biomass extraction, etc., 
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are all developments which, if not properly 
considered, could affect the quality of soils, and 
dissipate the carbon stocks they contain. Soil is a 
complex system that plays a central role in 
agricultural and forest ecosystems by regulating 
various natural cycles such as those of greenhouse 
gases. Through its agri-environmental functions, soil 
is both a storage site and a sink for organic carbon and 
is also a source of carbon dioxide (CO2) emissions to 
the atmosphere, a high greenhouse gas, which has an 



influence on climate change (Bernoux et al. 2001, 
Hutchinson et al. 2007, Lal et al. 2007). 

Soils are the largest terrestrial reservoirs of 
organic carbon (Yang et al. 2016). They contain about 
twice as much carbon as the atmosphere and are 
therefore a major compartment in the global carbon 
cycle (Xiong et al. 2014). Any change, positive or 
negative, in soil organic carbon stocks can represent 
a sink or source of atmospheric CO2 (Yang et al. 
2018). These stocks can be strongly modified by 
changes in practices or uses. They are also highly 
dependent on climate. Changes in land use within the 
agricultural sector (e.g., grassland turnover) and 
between agricultural and non-agricultural uses 
(afforestation, deforestation, urbanisation) impact 
soil carbon stocks and aboveground biomass. 
Urbanisation at the expense of generally agricultural 
land or natural areas contributes to the net greenhouse 
gas (GHG) emissions balance. Some previous studies 
that examined the effect of LULC on SOCS found 
that increasing urbanisation could lead to a loss of 
SOC due to artificialisation making soils non-
permeable (Beesley 2012, Wei et al. 2014); while 
others research found that some urban soils had 
higher SOC contents than agricultural, grassland and 
forest soils (Golubiewski 2006, Raciti et al. 2011). 
Previous studies on the study area are few and have 
focused particularly on climate change, ecosystem 
degradation, water stress, and changes in LULC at 
different times (Ait Ouhamchich et al. 2018, El 
Jazouli et al. 2018, Barakat et al. 2019, Baki et al. 
2021). However, no study has addressed the spatio-
temporal modelling of SOCS in relationship to LULC 
change and environmental covariates. Such studies 
are needed, given the extent of land use change in the 
study area. 

Remote sensing and spatial modelling based on 
deep learning and machine learning are techniques 
that have been more widely used in recent decades to 
quantify the spatio-temporal distribution of 
environmental variables such as LULC dynamics and 
soil organic carbon stocks (Bae et al. 2015, Shifaw, 
2018, Yang et al. 2018, Obeidat et al. 2019, Fathizad 
et al. 2022). Many studies have deployed remote 
sensing techniques and spatial modelling to 
specifically assess LULC change and its potential 
impacts on soil organic carbon sequestration (Yan et 
al. 2015, Taghizadeh-Mehrjardi et al. 2017, Yang et 
al. 2018). They were able to show the important role 
of spatial remote sensing in modelling past and 
current growth knowledge to predict the future 
(Nurmiaty et al. 2014, Huong and Phuong, 2018). 
Thus, some artificial intelligence models have been 
used to try to predict LULC and SOCS 

transformations and their potential environmental 
effects. Baker (1989) and Muller and Middleton 
(1994) have abbreviated the most used models to 
assess LULC dynamics. Markov chain analysis and 
Multi-layer Perceptron (MLP) are easy-to-use 
artificial intelligence approaches to predict the spatial 
characteristics of LULC and SOCS based on current 
conditions (Sharjeel et al. 2016, Hazhir et al. 2018, 
Emadi et al. 2020, Kılıc et al. 2022). Furthermore, 
since these approaches offer the possibility to study 
historical changes, we adopted them to estimate and 
predict the rate of change of LULC types and the 
spatial distribution of SOCS in our study area 
between 1985 and 2050. Soil analyses were carried 
out to characterise soil physical parameters, including 
texture, density, and soil organic carbon content, 
while remote sensing and spatial modelling were used 
to estimate LULC changes and the spatial distribution 
of SOCS. 

In the USA, Pouyat et al (2006) compared the 
variability of soil organic carbon stocks in six 
different cities and found that urban soils had the 
potential to sequester large amounts of atmospheric 
CO2. Urban greenspaces contained higher SOC 
stocks than native grasslands, agricultural areas or 
forests in Colorado, USA (Golubiewski, 2006). 
Hutyra et al (2011) reported that above-ground 
carbon stocks in Seattle's urban forests were 
comparable to those in the Amazon rainforest. Kaye, 
McCulley and Burke (2005) measured aboveground 
net primary productivity in urban lawns and found it 
to be four to five times higher than in surrounding 
farmland and grasslands. In addition, Mestdagh et al 
(2005) found that the SOC stock of roads, waterways 
and grassy railways in urban areas accounted for 15% 
of the total SOC stock in a city. Soils under 
impervious surfaces in urban areas provided another 
often-overlooked source of SOC (Raciti et al. 2012, 
Edmonds et al. 2014). 

In 2008, Morocco adopted the "Green Morocco 
Plan" as its agricultural and rural development 
strategy, which aims to promote Moroccan 
agriculture as a driver of economic and social 
development, while seeking to remove some of the 
many constraints on the sustainability of this 
development (Ministry of Agriculture 2008). The 
main objectives consist first in removing the 
constraint of spatial disparities, which are still 
significant and may even increase, due to unequal 
access to the means of agrarian development. The 
challenge of spatial planning and agricultural 
territorialisation, through development adapted to the 
conditions of each region by strengthening the assets 
of the various rural territories and correcting their 



weaknesses, can make it possible to respond. Among 
these weaknesses is the vulnerability of the land, 
which a policy of sustainable management and 
conservation can help to overcome. Secondly, the 
objectives of the 'Green Morocco Plan' aim to remove 
the constraint of the complex land tenure status of 
Moroccan lands, which is responsible for several 
forms of degradation, especially in state-owned lands 
and those with community status. This reform of the 
land tenure system aims to empower local actors in 
the conservation and rational management of natural 
resources (Ministry of Agriculture 2008). 

The objective of this study is to assess the effect 
of LULC change on SOCS in the different classes 
(tree crops, cropland, urban area, unused land, and 
forest cover) while using LULC change monitoring 
which is important, especially when it results in 
inefficient and rapid urbanisation policy, unregulated, 
often uncontrolled urbanisation, often associated with 
threats to the SOCS. Rapid urbanisation, i.e., the 
growth of cities and infrastructure, extends to the 
surrounding land, which is usually natural areas, and 
this is usually associated with land and soil 
degradation. Land degradation is implicated in 
several major environmental problems such as soil 
erosion, landslides, biodiversity loss, increased 
atmospheric CO2 concentration, desertification, and 
groundwater pollution (Townshend et al. 2012). 
Therefore, studies on LULC changes and their 
impacts on soil organic carbon stock are needed to 
achieve environmental sustainability. Spatial and 
temporal analysis of LULC trends and the 
relationships between the factors that lead to these 
variations would allow for better land use 
management. The main stages of this study are (1) 
mapping LULC in 1984, 2000 and 2018, (2) 
predicting LULC in 2018, 2030 and 2050, (3) soil 
sampling in the different LULC types to measure 

SOCS and soil texture, (4) spatial distribution of 
SOCS as a function of environmental covariates and 
(5) spatial autocorrelations between SOCS and 
environmental covariates.  

2 MATERIALS AND METHODS 

2.1 Study Area  

The study area is in the Beni Mellal-Khenifra region 
of Morocco. It covers an area of 252,5 km2 and a 
perimeter of 63,9 km2, located at the junction of the 
High Atlas of Beni Mellal and Tadla plains (Figure 
1). The altitude varies from 439 m in the northwest to 
1709 m in the southeast of the study area. 
Administratively, it covers the municipalities of Sidi 
Jaber, Ouled M'barek, Adouz and Beni Mellal. The 
region has significant water resources from the Atlas 
Mountains. It also contains a large amount of fertile 
land (Ennaji et al. 2018, Barakat et al. 2019), making 
it a region with high agricultural production. 
Agriculture and livestock are the main sectors of 
economic activity and income. Olive and citrus are 
the main tree crops in the region. The climate of the 
Beni Mellal region is characteristic of a continental 
climate, with an average annual rainfall in this region 
of about 350-650 mm, of which almost 87% is 
received from October to March. In summer, Beni 
Mellal receives less rainfall than in winter. The 
average annual temperature is 14,17°C, with an 
average minimum temperature of 1,1°C observed in 
January and an average maximum temperature of 
30°C in July and August. The average annual 
precipitation varies between 350-650 mm, of which 
about 87% is received from October to March. 

 

Figure 1: Location of the study area and soil sampling points. 



The soils in the study area belong, in order of 
importance, to the following groups: Isohumous, 
brown subtropical or chestnut soils are by far the most 
widespread (Aghzar et al. 2002). They are found in 
the Tadla plain and cover nearly 83% of the irrigated 
area. These soils have a clayey or balanced texture 
and are favourable to agricultural development under 
irrigation.  Brown calcimagnesic calcareous soils are 
shallow, very calcareous, and stony soils, but with a 
balanced texture. They are found along the wadis. 
These soils occupy 11% of the soil cover of the Tadla 
perimeter. The validation points presented in Figure 
1 are mainly used to validate the LULC maps, and at 
the same time in each validation point, soil samples 
were taken to determine the soil organic carbon stock 
and texture of each LULC type. 

2.2 Data and methods 

2.2.1 Data, pre-processing and validation  

In this study, the LULC maps from 1985, 2000 and 
2018 were mapped using Landsat 5 TM (Thematic 
Mapper) and Landsat 8 OLI (Operational Land 
Imager) satellite images (earthexplorer.usgs.gov). 
The images have a ground resolution of 30 m, except 
for the IR (infrared) thermal band (band 6) having a 
resolution of 120 m for Landsat 5 TM images, and 
the panchromatic band (band 8) having a resolution 
of 15 m for Landsat 8 OLI images. All spatial data 
were defined on the same coordinate system, 
WGS_1984_UTM_Zone_29 N. All satellite images 
were taken during the dry season (4 July 1985, 13 
July 2000, and 29 June 2018) to minimise errors 
caused by seasonal variations and seasonal effects of 
crops. The digital terrain model (ASTER GDEM) 
was taken on 23 September 2014 with a spatial 
resolution of 30 m (earthexplorer.usgs.gov). The 
selected temporal images were subjected to 
radiometric calibration (RC) and dark object 
subtraction (DOS) corrections. The raster images of 
the study area were subdivided according to a 
rectangular polygon created that covers the selected 
study area. Then, each raster image was classified to 
obtain the LULC maps. Field data and the Google 
Earth platform were used to identify the LULC 
classes, i.e., urban areas, forest cover, unused land, 
cropland and tree crops. The supervised classification 
method Spectral Angle Mapper (SAM) was used to 
obtain a broad level of classification, to derive all 
predefined LULC classes. The accuracy of the 
generated maps (1985, 2000 and 2018) was achieved 
for each land cover based on field observations and 
using 2018 "natural" colour RGB composition 
images from the WORLDVIEW-3 satellite with a 
resolution of 30 cm by viewing on the Google Earth 
platform. The Markov chain model was used to 

validate the detected changes and predict future 
LULC maps for 2018, 2030 and 2050. In the present 
study, the Markov transition matrix was applied to 
predict the 2018 LULC using the 1985 and 2000 
LULC maps, and the 2000 and 2018 LULC maps 
were used to determine the LULC transition matrix 
for 2030 and 2050. For the model of validation, the 
simulated CA-Markov 2018 LULC was compared to 
the actual 2018 LULC map by image analysis. 

2.2.2 Spectral Angle Mapper (SAM)   

The SAM method is a supervised classification 
approach based on the measurement of the angular 
similarity between the spectrum of each pixel in the 
image and reference spectra, called endmembers 
(Hunter and Power, 2002). The latter can be 
measured directly in the field using a 
spectroradiometer, as well as extracted from the 
image. The assignment of an image pixel to a given 
class is based on the value of this angle "α" which 
measures the similarity or difference between the 
reference spectrum vector and its image counterpart 
(Girouard et al. 2004). Thus, the pixel will be 
assigned to the spectral class with which it has the 
most similarity, i.e., the smaller the angle "α", the 
greater the similarity between the spectrum of the 
evaluated pixel and the reference (Kruse et al. 1993). 
In our case, the prototype spectral signatures used to 
run the SAM were extracted from the image. They 
represent 5 severity classes (tree crops, cropland, 
unused land, urban areas, and forest cover). In this 
study, after visually testing and comparing the LULC 
results of six supervised classification algorithms 
(Support Vector Machine, Spectral Angle Mapper, 
Parallelepiped, Minimum Distance, Maximum 
Likelihood and Mahalanobis Distance), the SAM 
algorithm gave the best supervised classification 
result. The SAM algorithm was used to classify the 
five dominant LULC classes in the study area. 

2.2.3 Soil sampling and analysis 

The soil sampling sites were located by their GPS 
Coordinates and selected according to the LULC 
classes using the generated LULC map of 2018 
(Figure 1). A total of 40 sites (8 points in tree crops 
class, 11 in cropland class, 9 in unused land class, 5 
in urban areas and 7 in forest cover class) were 
sampled on 26/04/2019 and 03/05/2019 at a depth of 
(0- 15cm) in the absence of means to sample the 
entire soil profile. Each soil sampling site consisted 
of 3 intact soil cores using a metal cylinder 15cm high 
and 9cm in diameter for subsequent calculation of 
soil bulk density from the volume of the cylinder. All 
samples were dried in an oven at a temperature of 
40°C for 2 days to a constant weight. The dry soil was 
sieved to 2 mm to separate pebbles >2 mm. Then the 



volume of the pebbles was measured to calculate the 
bulk density (BD). The fraction < 2mm was 
recovered and then crushed with an agate mortar to 
obtain a finer, homogeneous fraction that will be 
analysed for organic carbon content and soil texture. 

BD =
(total dry mass − pebbles mass)

(total volume − volume of pebbles)
 

Soil organic carbon (SOC) content was 
determined using soil organic matter (SOM) which 
was determined by the incineration method (loss on 
ignition or loss on fire). Loss on ignition is a direct 
measure of organic matter in the soil. The samples 
are placed in a muffle furnace at 540 °C for 4 hours. 
The loss by weight, after calcination, gives us the soil 
organic matter (SOM). 

SOC =
1.724

SOM
 

Where SOC: Soil organic carbon in % and SOM: Soil 
organic matter in %. After determining the soil 
organic carbon content, soil bulk density and volume 
of pebbles in the samples, we calculated the soil 
organic carbon stock using the following equation: 

SOCS = SOC × BD × ST ×
(1 − pebbles)

10
 

Where SOC is the organic carbon content, BD is the 
bulk density and ST is the sampled thickness (15 cm). 
The SOC stocks for each LULC class in the study 
area were summarised according to the following 
equation: 

Total SOCS =  (SOC stock × Si)
୬

୧ୀଵ
 

Where Si is the area of the LULC type (in km2). 
Soil texture was determined by particle size analysis, 
which consists of separating the mineral part of the 
soil into categories classified according to the size of 
the mineral particles smaller than 2 mm and 
determining the relative proportions of these 
categories (sand, silt, clay), as a percentage of the 
total mineral soil mass. Textural classes were 
determined according to the USDA (United States 
Department of Agriculture) classification scheme 
(Garcia-Gaines, and Frankenstein, 2015). 

2.2.4 Spatial distribution of soil organic 
carbon stock 

Satellite images obtained by Landsat 5 TM in 1985 
and 2000, Landsat 8 OLI in 2018 were used to map 
the LULC, calculate vegetation indices and other 
remote sensing indices. After pre-processing the 
satellite images (part 2.2.1 radiometric and 
atmospheric corrections), a total of 4 vegetation 
indices were calculated. These indices include 
Normalized Difference Vegetation Index (NDVI), 

Soil Adjusted Vegetation Index (SAVI), Ratio 
Vegetation Index (RVI), Enhanced vegetation index 
(EVI), Principal Component Analyses (PCA) and 
Minimum Noise Fraction (MNF) of spectral bands. 
As well as a digital elevation model (DEM) was used 
as a topography variable in the study area. In this 
study, a deep learning Multi-Layer Perceptron (MLP) 
model was fitted using 2018 data. To estimate 
historical and future changes in SOCS, the MLP 
model was applied to remote sensing data collected 
for the periods 1985, 2000 and 2018, as well as field 
data.  MLP is the most important and commonly used 
artificial neural network (ANN) structure. It is a non-
parametric estimator that can be used for SOCS 
regression (Taghizadeh-Mehrjardi et al. 2017). The 
basic processing elements in MLP are highly 
interconnected neurons. The neurons are organised in 
layers: an input layer, one or more hidden layers and 
an output layer. Data is fed into the network by the 
input layer, which sends this information to the 
hidden layers. The data is processed by the hidden 
layers and the output layer. MLP derives its capability 
from the non-linear processing in the hidden layers 
(Emamgholizadeh et al. 2018). In this study, the MLP 
model was developed to estimate SOCS by regression 
to a depth of 15cm using environmental covariates 
and measured SOCS data from the 40 sampled and 
analysed sites. The environmental covariates and 
colour compositions images (red-green-blue RGB 
and near-infrared-green-blue NirGB) were integrated 
into the MLP model as images of the independent 
variables, while the SOCS measurements were 
integrated as the dependent image after their spatial 
interpolation by the Kriging method.  

 

Figure 2: Flow chart of the working methodology. 
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3 RESULTS AND DISCUSSION 

3.1 LULC change analysis 

The LULC maps (1985, 2000, 2018) obtained by the 
SAM supervised classification method of Landsat 5 
TM and Landsat 8 OLI data are presented in Figure 
3, along with their projections to 2018, 2030, and 
2050 obtained by the CA-Markov geosimulation 
model. These mapping results show current and 
future changes in five dominant LULC classes in the 
study area. These mapped LULC classes include five 
LULC types: Unused Land (Ivory colour), Forest 
Land (Purple colour), Urban Area (Midnight Blue 
colour), Cropland (Beige colour), and Tree Crops 
(Green colour). 

Statistical analyses of the LULC maps (Table 1 
and Figure 3) revealed that tree crops have increased 
significantly in the study area. They have evolved 
from 11,6% (29,3 km2) in 1985 to 18% (45,5 km2) in 
2018 with a positive rate of change of 55,3%. 
According to the projection in 2050, tree crops would 
be 18,2% (46 km2) with a rate of change of 1,1% 
between 2018 and 2050. This transition is linked to 
the Moroccan Ministry of Agriculture's tree sector 
support program (Green Morocco Plan), which aims 
to remove the constraint of the complex land tenure 
status of Moroccan lands, responsible for several 
forms of degradation, particularly in state lands and 
those with community status. This reform of the land 
tenure system aims to empower local actors in the 
conservation and rational management of natural 
resources. 

 

Figure 3: Observed LULC maps for: (A) 1985, (B) 2000, (C) 2018 real (D) 2018 predicted, (E) 2030 
predicted and (F) 2050 predicted. 

On the other hand, the statistics provided in Table 
1 show both regressive and progressive changes in the 
LULC natural units in the study area. We can see a 
slight increase in forest cover from 6,4% (16,2 km2) 
in 1985 to 6,8% (17,1 km2) in 2018. The cropland has 
decreased remarkably, from 68,9% (173,7 km2) in 
1985 to 37,6% (95 km2) in 2018. Based on this 
regressive trend, cropland in the study area could 
decrease to 33,9% (85,5 km2) in 2050 with a negative 
rate of change of -10% between 2018 and 2050 
according to CA-Markov based projections. 
Comparing the area gains and losses between 
cropland and each of the other LULC classes over this 
period, the most significant conversion of cropland 
was to urban areas and unused land. This main 
conversion of cropland contributing to the decline of 
fertile soils in the study area could be explained by 

the rapid increase in urbanisation and drought. A true 
conversion of cropland to urban areas around the city 
of Beni Mellal was also observed between 1985 and 
2018, which would be due to urban and suburban 
growth and expansion. Urban areas increased from 
1,8% (4,5 km2) in 1985 to 10,7% (27,1 km2) in 2018 
with a positive change rate of 502,2%. Simulations 
based on CA-Markov show that urban areas would 
reach 16,3% (41,1 km2) with a rate of change of 
51,7% between 2018 and 2050. This increase in urban 
areas during the study period (1985-2018) is related 
to the conversion of a portion of cropland into built-
up areas due to urban sprawl and expansion of 
economic development activities. At the same time, 
unused land increased from 11,3% (28,5 km2) in 1985 
to 26,9% (67,8 km2) in 2018 with a positive rate of 
change of 137,9%. This change would reach 23,5% 



(59,2 km2) in 2050 with a rate of change of -12,7%. 
The increase in unused land is linked to the 
conversion of agricultural land to urbanised areas in 

the future (public facilities, industrial areas, urban 
areas, and rural areas) and could also be explained by 
the droughts during the last decades. 

Table 1. Change area in different LULC categories between 1985 and 2050. 

3.2 Organic carbon stocks and soil 
texture of LULC types 

Analytical data on SOC stocks and texture of soils 
sampled in different LULC classes in the study area 
are presented in figures 4 and 7. Summary statistics 
in terms of min, max and mean for the analysed 
parameters (SOC and SOCS) are provided in Figure 
4. 

Soil organic matter and soil organic carbon is rich 
in forests and unused or infertile land because: (1) 
Forests and unused soils are less disturbed than 
agricultural soils. (2) Forests and unused soils evolve 
slowly. Nevertheless, their fertility is limited and 
strongly dependent on the natural flows of elements 
and organic matter. (3) Forests and unused soils are 
generally the poorest soils chemically or those with 
physical properties most unfavourable to agriculture. 
In contrast to agricultural soils, they are not worked 
or are only lightly worked. This results in a high 
accumulation of organic matter in the litter and 
surface soil horizons. 

Traditionally, SOC in forest ecosystems is 
usually considered in the regional assessment. As 
shown in this study (Figure 4), the organic carbon 
content at a depth of 0-15 cm in forest soils (4,9% - 
10,4%) was higher than that reported for urban soils 

in the Tadla plain (3,4% - 7,2%), where the city of 
Beni Mellal is located. This showed that forest soils 
can store large amounts of organic carbon in the soil. 
Soil organic carbon contents measured under 
different types of LULC varied in the following 
order: forest cover > unused land > urban areas > 
cropland > tree crops. A variation in SOC is very 
noticeable in urban soils mainly due to human 
activities that often change the parameters of these 
soils. 

SOC stocks were calculated for each sample in 
the study area using the organic matter, bulk density, 
and pebble volume values in the sample. In Figure 4, 
SOCS values in soils sampled at a depth of 15cm 
covering the whole study area ranged from 4,7 to 11,7 
kg/m2. The SOCS in the forest cover ranged from 8,1 
to 11,7 kg/m2, with an average of 9,9 kg/m2. In 
cropland, the SOCS varied between 5,8 and 10,1 
kg/m2 with an average of 7,9 kg/m2, while the SOCS 
stocks in tree crops varied between 4,7 and 8,9 kg/m2 
and an average of 6,4 kg/m2. Unused land had SOC 
stocks between 7,6 and 10,1 kg/m2 with an average of 
8,9 kg/m2. At the same time, urban areas had SOC 
values between 5,8 and 9,2 kg/m2 with an average 
value of 7,4 kg/m2. From these results of the sampled 
soils, we notice that the SOC stocks measured under 
different types of LULC varied in the following 
order: forest cover > unused land > cropland > urban 
areas > tree corps. 

Type of Land 
Use 

Surface 
1985 2000 2018 2030 2050 

(km2) (%) (km2) (%) (km2) (%) (km2) (%) (km2) (%) 
Tree Crops 29,3 11,6 23,2 9,2 45,5 18 46 18,2 46 18,2 
Cropland 173,7 68,9 139,4 55,3 95 37,6 86,4 34,2 85,5 33,9 
Urban Area 4,5 1,8 11,6 4,6 27,1 10,7 36,6 14,5 41,1 16,3 
Unused Land 28,5 11,3 67,5 26,8 67,8 26,9 61,7 24,4 59,2 23,5 
Forest Cover 16,2 6,4 10,5 4,2 17,1 6,8 21,8 8,6 20,7 8,2 
Total 252,2 100 252,2 100 252,5 100 252,5 100 252,5 100 

Type of Land 
Use 

Change 
 

1985-2000 1985-2018 2018-2030 2018-2050 
(km2) (%) (km2) (%) (km2) (%) (km2) (%) 

Tree Crops -6,1 -20,8 16,2 55,3 0,5 1,1 0,5 1,1 
Cropland -34,3 -19,7 -78,7 -45,3 -8,6 -9,1 -9,5 -10 
Urban Area 7,1 157,8 22,6 502,2 9,5 35,1 14 51,7 
Unused Land 39 136,8 39,3 137,9 -6,1 -9 -8,6 -12,7 
Forest Cover -5,7 -35,2 0,9 5,6 4,7 27,5 3,6 21,1 



Figure 4: Variation in SOC and SOCS by LULC type.

3.2.1 SOCS of the study period  

The SOC stocks for 1985, 2000, 2018, 2030 and 2050 
were calculated for each LULC type in the study area 
using the average SOCS values and the area of each 
LULC type. In Table 2, the SOCS values have been 
summed separately for each date and LULC type. 
These SOCS have changed slightly in the forest cover 
class from 160,4 kg/m2 in 1985 to 169,3 kg/m2 in 
2018 with a positive rate of change of 8,9 kg/m2. 
According to the projections in 2050, the SOCS 
would expect 204,9 kg/m2. At the same time there is 
a net increase in these stocks in the tree crops class 
from 187,5 kg/m2 in 1985 to 291,2 kg/m2 in 2018, 
with a rate of change of 103,7 kg/m2. In 2050, these 
stocks are projected to be 294,4 kg/m2. This slight 
increase in SOCS in the tree crop and forestry sectors 
is mainly due to the planting of fruit trees in the plains 
and afforestation in the forests that have been carried 
out under the two strategies (the Green Morocco Plan 
and the National Watershed Management Plan). 
These two strategies are carried out mainly to combat 
the degradation of natural resources (soil, water, 
forests, etc.) and to combat erosion to increase 
organic carbon stocks in the soil. 

Similarly, we can notice a strong increase of 
SOCS in unused land from 253,7 kg/m2 in 1985 to 

603,4 kg/m2 with a rate of change of 349,7 kg/m2. 
This increase could be explained by the increase of 
unused land surfaces during this period due to the 
drought. However, there is a strong decrease in the 
SOCS of cropland from 1337,5 kg/m2 in 1985 to 
731,5 kg/m2 in 2018 with a negative rate of change of 
-606 kg/m2. Based on this regressive trend, cropland 
SOCS could decrease to 658,4 kg/m2 in 2050 with a 
negative rate of change of -73,1 kg/m2. This decrease 
is generally due to the extension of urbanisation, the 
increase of informal settlements on the outskirts of 
the city of Beni Mellal (Adouz, M'ghila, Ourbiaa...), 
and to drought and water stress which convert the 
surfaces of croplands to unused lands. 

Moreover, in urban soils, SOCS has increased 
from 33,3 kg/m2 in 1985 to 200,5 kg/m2 in 2018 with 
a positive variation of 167,2 kg/m2. In 2050, 
according to projections, these stocks in urban soils 
would reach 304,1 kg/m2. According to Pouyat et al 
in 2006, urban soils have the potential to sequester 
large amounts of atmospheric CO2. Similarly, 
Golubiewski in 2006 found that urban green spaces 
contained higher stocks of SOC than native 
grasslands, agricultural or forested areas in Colorado, 
USA.

Table 1: Change in SOCS by LULC type between the years 1985, 2000, 2018, 2030 and 2050. 

Type of Land Use 
SOCS (kg/m2) SOCS Change (kg/m2) 

1985 2000 2018 2030 2050 1985-2018 2018-2030 2018-2050 
Tree Crops 187,5 148,5 291,2 294,4 294,4 103,7 3,2 3,2 
Cropland 1337,5 1073,4 731,5 665,3 658,4 -606 -66,2 -73,1 
Urban Area 33,3 85,8 200,5 270,8 304,1 167,2 70,3 103,6 
Unused Land 253,7 600,8 603,4 549,1 526,9 349,7 -54,3 -76,5 
Forest Cover 160,4 104 169,3 215,8 204,9 8,9 46,5 35,6 

The results show that there is a significant difference 
between the SOCS of different types of LULC. LULC 
play a dominant role in influencing SOC content and 
stock because surface soil disturbance, litterfall and 
decomposition vary with LULC, resulting in a 

difference in SOCS according to land use. The SOCS 
of forest soils is very high compared to other LULC 
due to the intense topography and forest cover, which 
slows down soil erosion and organic carbon 
decomposition, resulting in forest soils having SOCS 



and SOC above their potential capacity. However, the 
SOCS of tree crops and cropland is very low 
compared to forest cover and unused land due to 

intensive agricultural cultivation (tillage), which 
accelerates soil erosion and decomposition of soil 
organic carbon (Lal, 2005, Laganière et al. 2010).  

3.2.2 Soil Organic Carbon Trends for 1985, 
2000, 2018, 2030 and 2050 

To spatially distribute the content of SOC stocks 
between 1985 and 2050, spatial regression maps of 
these stocks from different environmental covariates 
(DEM, NDVI, EVI, RVI, SAVI, LULC, MNF, PCA, 
RGB, NirGB) were generated using a deep learning 
approach with MLP (Figure 5). The maps were 
plotted at the same scale and with geometric intervals 
to facilitate comparisons. The results indicated that 
SOC stocks showed high spatial variability in the 
higher elevations of the study area. From the results 
obtained concerning the stock of SOC, we deduce that 
the important factors affecting this stock are the 
topography of the place, the uses, and the types of 
soil. In addition, the fact that photosynthesis allows 
through biomass to store carbon in the soil, which we 
see in Figure 5 concerning the forest where there is an 
increase in the stock of SOC according to the years 
1985, 2000, 2018 and 2050. Similarly, SOCS are 
more sensitive to growth and increasing population 
density (Lal and Augustin, 2011, Liu et al. 2016). 
Urbanisation and buildings in the study area degrade 
soils, cementing them and making them 
impermeable, and thus they cannot absorb carbon 
circulating in the biosphere. Thus, agricultural soils 

and unused land transformed over time into built-up 
areas could increase the loss of soil carbon sinks. This 
indicates that land use has had an impact on the 
distribution characteristics of SOC in the topsoil (0-
15 cm) of the study area (Figure 5).  

The spatial distribution of SOCS (in 1985, 2000, 
2018, 2030 and 2050) is shown in Figure 5 and shows 
that high SOCS levels generally correspond to 
forests. The spatial distribution of SOCS is almost 
similar for each date across the different covariates 
and LULC types. Overall, SOCS stocks in the south-
east are higher than those in the north-west, east, and 
west of the study area, respectively. The results show 
small pockets of SOCS highest in the central and 
extreme south-eastern corner at a depth of 0-15 cm, 
which corresponds to unused land in the Tadla plain 
and forest cover in the mountains. The eastern and 
western corners of the study site have the lowest 
SOCS value as it is covered by urban areas, cropland, 
and tree crops. This indicates that forests and 
grasslands are more efficient in storing SOC than 
other types of LULC. Most of the study area has 
average SOCS values. The analysis suggests that, 
mainly in the topsoil (0-15 cm depth), the spatial 
distribution pattern of SOCS was highly variable due 
to small-scale variations in supply, redistribution, and 
stabilisation. The central part of the study area is 
represented by a low SOCS. 

 

Figure 5: Predicted soil organic carbon stocks (SOCS) (in kg/m2) maps for (A) 1985, (B) 2000, (C) 2018 
real, (D) 2018 predicted, (E) 2030 and (F) 2050. 



The multi-date (1985, 2000 and 2018) spatial 
autocorrelations of SOCS with environmental 
covariates derived from satellite images are presented 
in Figure 6. In this analysis, SOCS derived from 
spatial interpolation techniques (IDW and Kriging) 
and MLP were autocorrelated with spectral indices 
(NDVI, EVI, RVI, SAVI), image transformation 
indices (MNF, PCA), LULC units and spectral bands 
(RGB and NirGB). The analysis shows very high 
autocorrelations between the vegetation indices and 
the SOCS. However, these autocorrelations are 
particularly higher for the SOCS derived from spatial 
modelling with MLP than the SOCS derived from 
spatial interpolation techniques. This suggests that 
spatial modelling approaches to SOCS with deep 

learning algorithms from environmental covariates 
and in situ measurements are more accurate than uni-
variate spatial interpolation techniques based on field 
samples. Similarly, significant, and positive spatial 
autocorrelations were observed with the topographic 
variable, but very high negative autocorrelations were 
observed with the spectral bands and SOCS for all 
three dates. In contrast, the relationship between 
LULC units and SOCS from the three approaches is 
particularly variable depending on the multi-date 
dynamics of LULC. The autocorrelations between 
SOCS and LULC units are very weak in 1985 and 
2000 but significant for the year 2018. This suggests 
that the land use dynamics in the area have favoured 
SOCS.  

 

Figure 6: spatial autocorrelations between SOCS and environmental covariates. 

3.2.3 Soil texture 

Texture indicates the relative abundance of different 
particle sizes in the soil: sand, silt, or clay. Texture 
determines how easily the soil can be worked, how 
much water and air it contains, and how quickly water 
can enter and move through the soil. Soil texture is 
very stable over time and less affected by LULC. In 
addition, soil aggregates are a factor responsible for 
SOC stabilisation (micro-aggregates protect the SOC 
in the long term and the renewal of macro-aggregates 
is a crucial process that influences SOC stabilisation) 
(Six et al. 2004). Therefore, the texture analysis of the 
sampled soils was performed by adopting the USDA 

classification (Garcia-Gaines, and Frankenstein, 
2015). The forty sites sampled for each type of LULC 
have clay values ranging from 0,3% to 41,7%, sand 
values ranging from 5,6% to 51,4%, and silt values 
ranging from 22,5% to 94,1% (Figure 7). In the study 
area, the textural class of the studied soils is clay 
loam for the LULC classes of tree crops and urban 
areas and Silt-clay loam for the classes of cropland, 
unused land, and forest cover. The results of the 
particle size analyses projected onto the USDA 
triangular diagram showed that all LULC types have 
a loamy soil texture which is a moderately fine 
texture of fine sands and silts. 

 

Figure 7. Variation in the percentage of Sand, Silt and Clay by LULC type. 



4 CONCLUSIONS 

In this study, a multi-date geospatial approach to soil 
organic carbon stocks in the Beni Mellal region of 
Morocco and its relationship with LULC dynamics 
and environmental covariates was developed by 
applying two methods: a spatial interpolation 
method on in situ measurements and a MLP model 
trained on ten biophysical variables. For the three 
dates considered (1985, 2000 and 2018), the results 
obtained show highly significant spatial 
autocorrelations (R2>0,75) between the SOCS from 
the multivariate modelling with the MLP better than 
those obtained between the SOCS from the spatial 
interpolation techniques (IDW and Kriging). On the 
other hand, spatial autocorrelations between LULC 
units and SOCS are highly variable across years. For 
the earliest years (1985, 2000), very low 
autocorrelations were found between the SOCS and 
LULC units, but the most the recent year 2018 was 
distinguished by significant positive correlation 
values between the SOCS from the MLP modelling 
and the LULC units. Indeed, land use change in the 
study area between 1985 and 2018 was (11,6% to 
18%), (68,9% to 37,6%), (1,8% to 10,7%), (11,3% 
to 26,9%) and (6,4% to 6,8%) for tree crops, 
cropland, urban area, unused land, and forest cover 
respectively. In general, urbanisation linked to 
population growth has also had a significant impact 
on LULC change and has tended to implicitly reduce 
soil carbon sequestration. However, according to the 
SOCS results, tree crops, unused land and forest 
cover mainly tend to be more resistant to land 
degradation. Furthermore, it should be noted that this 
study was conducted at a very small spatial scale 
with few samples. A large-scale comparative 
evaluation of multivariate SOCS geospatial 
approaches based on deep learning or machine 
learning and spatial interpolation techniques is one 
of the perspectives for future studies to refine the 
different conclusions from this approach.  
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