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Introduction

The famous Collatz rule has two frequently-used variations.

C(n) =

n/2, if n is even; 3n + 1, if n is odd.

T (n) = n/2, if n is even; (3n + 1)/2, if n is odd.

Iterating these rules yields interesting sequences, for example:

C(n) : 7 → 11 → 34 → 17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 → 4 → 2 → 1 . . . T (n) : 7 → 11 → 17 → 26 → 13 → 20 → 10 → 5 → 8 → 4 → 2 → 1 → 2 → 1 . . .
The Collatz conjecture posits that every positive integer eventually reaches 1 under either rule. The conjecture has been verified for all 1 ≤ n ≤ 10 20 [START_REF] Barina | Convergence verification of the Collatz problem[END_REF] but has not yet been proven or refuted.

Main Result

The following rule K(n) simulates the Collatz C(n) rule. We present it in the spirit of other simple devices that compute Collatz trajectories, such as de Mol's tag system (de Mol, 2008), Korec's cellular automaton [START_REF] Korec | The 3x + 1 problem, generalized Pascal triangles, and cellular automata[END_REF], and Yolcu's rewrite system [START_REF] Yolcu | An automated approach to the Collatz conjecture[END_REF]. 4, 6, 12, 16, 18 or 24 (mod 30).

K(n) =                (375/2)n
Like rules by [START_REF] Conway | Unpredictable iterations[END_REF] and [START_REF] Monks | 3x + 1 minus the +[END_REF], K(n) simplifies Collatz trajectories by eliminating the "+1," which is a source of difficulties for analyzing Collatz dynamics. K(n) works on trajectory terms coded as powers of two. Here, it simulates the C(n) trajectory 3 → 10:

2 3 = 8 → 1500 → 93750 → 5859375 → 9765625 → 3906250 → 1562500 → 625000 → 250000 → 100000 → 40000 → 16000 → 6400 → 2560 → 2 10 = 1024
3 Background [START_REF] Conway | Unpredictable iterations[END_REF] situated the Collatz rule within a class of generalized Collatz rules that take the form

G(n) =          (a 0 n + b 0 )/d, if n ≡ 0 (mod d); (a 1 n + b 1 )/d, if n ≡ 1 (mod d); . . . (a d-1 n + b d-1 )/d, if n ≡ d -1 (mod d).
When d = 2, a 0 = 1, b 0 = 0, a 1 = 3, and b 1 = 1, G(n) implements the Collatz rule T (n). Conway also constructed a generalized Collatz rule that can mimic the computation of a universal Turing machine. The strong computational power of certain generalized rules may explain why the Collatz conjecture is so difficult to resolve.

Conway's universal rule did not require the "+b," being of the simpler form

G ′ (n) =          (a 0 n)/d, if n ≡ 0 (mod d); (a 1 n)/d, if n ≡ 1 (mod d); . . . (a d-1 n)/d, if n ≡ d -1 (mod d).
Monks ( 2002) constructed an ingenious generalized Collatz rule-also without "+b"-that simulates the Collatz rule itself. Monks proposed to study the Collatz dynamics in this simpler setting.

Both Conway and Monks presented their generalized Collatz rules in a more compact rule format called Fractran [START_REF] Conway | Fractran: A simple universal programming language for arithmetic[END_REF] To simulate the Collatz rule, each number in a Collatz T (n) trajectory (e.g., 7 → 11) is coded as a power of 2 (e.g., 2 7 → . . . → 2 11 ). Monks' Fractran rule is then applied to numbers of this form; other prime factors serve as registers for intermediate computations.

2 7 → 2 5 3 1 11 1 → 2 5 3 1 → 2 3 3 2 11 1 → 2 3 3 2 → 2 1 3 3 11 1 → 2 1 3 3 → 3 3 5 1 → 2 3 3 2 17 1 → 2 3 3 2 5 1 → 2 6 3 1 17 1 → 2 6 3 1 5 1 → 2 9 17 1 → 2 9 5 1 → 2 11 → 2 9 3 1 11 1 → 2 9 3 1 → . . . → 2 17 → . . . → 2 26 → . . . → 2 1 .
The Collatz conjecture is equivalent to the proposition that every integer 2 m (m ∈ N) eventually reaches 2 1 under Monks' rule.

The "if-then-otherwise" action of any Fractran rule can be expanded into a generalized Collatz rule. Monks sets d = lcm (11,15,17,5,21,13,7,4, 2) = 1021020 which implies conditions like

M (n) =          92820n/1021020,
if n ≡ 0 (mod 1021020); 7147140n/1021020, if n ≡ 1 (mod 1021020);

. . . 7147140n/1021020, if n ≡ 1021019 (mod 1021020).

Simplifying reveals the correspondence with Monks' Fractran rule:

M ′ (n) =         
(1/11)n, if n ≡ 0 (mod 1021020); (7/1)n, if n ≡ 1 (mod 1021020);

. . . (7/1)n, if n ≡ 1021019 (mod 1021020).

Simulating Collatz Trajectories

The new rule K(n) from Section 2 is much smaller, with only 30 conditions. This section explains its action.

Theorem 4.1. The rule K(n) simulates the Collatz rule C(n).

Proof: The logic of K(n) is straightforward. K(n) uses three registers (2, 3, 5) to keep track of the computational state. To simulate C(n) on start term 1, K(n) uses 6 steps.

2 1 375 2 -----→ 3 1 5 3 5 3 ---→ 5 4 2 5 ---→ 2 1 5 3 2 5 ---→ 2 2 5 2 2 5 ---→ 2 3 5 1 2 5 ---→ 2 4
To simulate C(n) on any odd term 2m + 1 (m ≥ 1), K(n) uses 8m + 6 steps. It starts by repeatedly decrementing the exponent of 2 by one while incrementing the exponent of 5 by three:

2 2m+1 → 2 2m+1-1 3 1 5 3 1 step of (375/2) → 2 2m+1-2 3 1 5 6 → . . . → 3 1 5 6m+3 2m steps of (125/2) → 5 6m+4 1 step of (5/3) → 2 1 5 6m+4-1 → 2 2 5 6m+4-2 → . . . → 2 6m+4 6m + 4 steps of (2/5)
Finally, K(n) uses 3m steps to simulate C(n) on any even term 2m (m ≥ 1). It begins by decrementing the exponent of 2 by two while incrementing the exponent of 3 by one.

2 2m → 2 2m-2 3 1 → 2 2m-4 3 2 → . . . → 3 m m steps of (3/4) → 3 m-1 5 1 → 3 m-2 5 2 → . . . → 5 m m steps of (5/3) → 5 m-1 2 1 → 5 m-2 2 2 → . . . → 2 m m steps of (2/5)
Here, K(n) uses 5 m as a stopover, instead of transiting directly from 3 m to 2 m -under the latter approach, upon encountering 2 a 3 b , K(n) would not know whether to decrement the exponent of 2 or increment it. Also, it is fortuitous that the (5/3) condition can be reused for different purposes. When processing odd terms, it puts the +1 in 3n + 1; for even terms, it transits from 3 m to 5 m . Now we must show that the K(n) classes modulo 30 encode the correct computational state. From the above trajectories, we see eight expressions that must be distinguished from one another: 2 2a+1 , 2 a 3 b 5 c , 3 b , 2 a 3 b , 2 a 5 c , 2 2a , 3 b 5 c , and 5 c . Using tables for 2 n , 3 n , and 5 n mod 30, we calculate possible classes (modulo 30) for these expressions.

2 2a+1 2, 8
2 a 3 b 5 c 0 3 b 3, 9, 21, 27 2 a 3 b 6, 12, 18, 24 2 a 5 c 10, 20 2 2a 4, 16 3 b 5 c 15 5 c 5, 25

Because the classes are distinct, K(n) can specify the correct action to take in each case.

Matthews-Watts Conjecture

The Matthews-Watts conjecture [START_REF] Matthews | Generalized 3x+1 mappings: Markov chains and ergodic theory[END_REF] provides another reason to study rules without "+b," beyond their simplicity. A generalized Collatz rule is defined as

contracting if a 0 a 1 • • • a d-1 < d d , and expanding if a 0 a 1 • • • a d-1 > d d .
The conjecture states that under a contracting rule, all start integers reach one of a finite number of cycles. Since the rule T (n) is contracting, the Matthews-Watts conjecture suggests that no start numbers diverge to infinity under the Collatz dynamics.

We follow Monks by investigating the possible combinations of fractions used in a cycle. Suppose (375/2) a (125/2) b (5/3) c (2/5) d (3/4) e = 1. Then 2 d-a-b-2e 3 a+e-c 5 3a+3b+c-d = 1, which means

d -a -b -2e = 0 a + e -c = 0 3a + 3b + c -d = 0.
This system of equations is solved by

b = e/2 -3a/2 (1) c = a + e d = 5e/2 -a/2.
By inspecting the action of K(n), we can assign interpretations to the variables. For example, K(n) processes an even number n by applying (3/4) some n/2 times. Therefore, e is half the sum of all even numbers in a Collatz cycle. This implies that the length of every K(n) cycle is a multiple of 5. Also, because e = a+b+c+d+e 5 , the (3/4) branch of K(n) is taken 20% of the time during any cycle, neither more nor less than its "fair share."

By further inspecting K(n), we note that a counts the number of odd terms in the cycle, while b is the sum of odd terms minus the count of odd terms. Letting m 1 • • • m k be the terms of any Collatz cycle, we rewrite Equation 1 

(2m i + 1) = 1 2 even mi m i .
This is a well-known property of C(n) cycles. For the trivial 1-2-4-1 cycle, we have 2(1)+1 = 1 2 (2+4).

  Theorem 6.1. The rule K(n) takes 5 2 m steps to simulate a C(n) cycle, where m is the sum of even terms in the cycle. Proof: Because e is half the sum of the even numbers in the cycle, m = 2e. a + b + c + d + e = a + (e/2 -3a/2) + (a + e) + (5e/2a/2) + e

  , if n ≡ 2 or 8 (mod 30);

	(125/2)n, if n ≡ 0 (mod 30);
	(5/3)n,	if n ≡ 3, 9, 15, 21 or 27 (mod 30);
	(2/5)n,	if n ≡ 5, 10, 20 or 25 (mod 30);
	(3/4)n,	if n ≡

  . Monks' rule is The rule is interpreted as follows: if n is divisible by 11, replace n by (1/11)n; otherwise, if n is divisible by 15, replace n by (136/15)n, and so on.

	(	1 11 ,	136 15 ,	5 17	,	4 5	,	26 21 ,	7 13 ,	1 7 ,	33 4 ,	5 2 ,	7 1	).

The intuition behind the Matthews-Watts conjecture is that if each branch of a contracting rule is taken with equal frequency, then trajectories will trend downward. Surprisingly, the conjecture does not refer at all to a rule's "+b" parameters, which are presumed irrelevant to the ultimate fate of start numbers.

The 30-condition rule K(n) is not a true generalized Collatz rule, because (3/4)n in the fifth condition cannot be rewritten as (a 4 n + b 4 )/30. A 60-condition variation suffices: 60,if n ≡ 2,8,32,38 (mod 60) 4, 6, 12, 16, 18, 24, 34, 36, 42, 46, 48, 54 (mod 60).

Is K ′ (n) a contracting rule, according to the Matthews-Watts conjecture? This question turns out to be inapplicable, because the conjecture only applies when a 0 a 1 • • • a d-1 is co-prime with d, which is not the case with K ′ (n).

Ignoring the co-prime requirement allows us to engineer rules whose conditions are invoked with unequal frequencies. For example, the trajectories of K ′ (n) contain very few numbers of the form n ≡ 2 (mod 30) compared to numbers of the form n ≡ 15 (mod 30), and possibly no numbers of the form n ≡ 1 (mod 30), depending on how the unspecified conditions are handled. [START_REF] Conway | Fractran: A simple universal programming language for arithmetic[END_REF] exploits this unequal-frequency capability to create powerful rules with arbitrary looping and testing. Of course, not all such rules yield Turing-equivalent power. Even the simple C(n) generates more even terms than odd terms and is thus not subject to the Matthews-Watts conjecture; 3n + 1 = (6n + 2)/2 and gcd(6, 2) > 1. Of course, C(n) could still turn out to have Turing power, in which case the Collatz conjecture and the Matthews-Watts conjecture would both be false.

Cycles

The trivial Collatz cycle 1-2-4-1 has a trajectory of length 15 under the K(n) rule: 2 1 = 2 → 375 →