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Sophie Laplante, Reza Naserasr, Anupa Sunny and Zhouningxin Wang∗

March 7, 2023

Abstract

Using spectral techniques, H. Huang proved that every subgraph of the hypercube of dimen-
sion n induced on more than half the vertices has maximum degree at least

√
n. Combined with

earlier work, this completed a proof of the sensitivity conjecture. In this work we show how
to derive Huang’s result using linear dependency and independence of vectors associated with
the vertices of the hypercube. Our approach leads to several improvements of Huang’s result.
In particular we prove that in any induced subgraph of Hn with more than half the number of
vertices, there are two vertices, one of odd parity and the other of even parity, each with at least
n vertices at distance at most 2. As an application, we show that for any Boolean function f ,
the polynomial degree of f is bounded above by s0(f)s1(f), a strictly stronger statement which
implies the sensitivity conjecture. Using these linear dependencies, we show structural relations
about the neighborhoods on the induced subgraph at distance at most three.

A key implement in Huang’s proof is to assign signs (+,−) to the edges of Hn such that the
product of the signs on each 4-cycle is −. With the set of negative edges being called a signature,
one may observe that there are a total of 22

n−1 such signatures on Hn satisfying this condition
and that the symmetric difference of any two such signatures is an edge cut. A question of
high interest then is to find the smallest size among all these signatures. This is known as the
frustration index in the study of signed graphs. Here we provide lower and upper bounds for this
parameter, observing that the two bounds match when n is a power of 4. We then establish a
strong connection with other studies: On the one hand with a question of Erdős on the number
of edges of the largest 4-cycle free subgraph of the hypercube. On the other hand with Ambainis
functions which are used to show a separation between degree and adversary lower bounds on
query complexity.
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1 Introduction

The notion of sensitivity was first introduced by Cook and Dwork and independently by Reischuk
[7, 19] to bound below the time taken to compute a function in a CREW (Concurrent Read
Exclusive Write) PRAM (Parallel Random Access Machines) model. The time complexity in this
model was later shown to be exactly characterized by the logarithm of block sensitivity in a paper
by Noam Nisan [16]. It follows from their definitions that block sensitivity is larger than sensitivity,
i.e., bs(f) ≥ s(f). The natural question of whether block sensitivity is bounded above by some
polynomial in sensitivity was then posed as the sensitivity conjecture as the largest separation
found between these two measures was quadratic1. A major breakthrough in this direction was
due to Nisan and Szegedy where they showed an upper bound on block sensitivity in terms of
polynomial degree [18]. This famous problem was reduced by Gotsman and Linial in 1992 to the
graph theoretic question posed by Chung et al. in 1988. Numerous other formulations of the
sensitivity conjecture also appeared over the years and a detailed survey can be found in the work
by Hatami et al. [10]. Chung, Füredi, Graham and Seymour [6] posed the following question:
how small can the maximum degree of an induced subgraph of a hypercube Hn with strictly more
than 2n−1 vertices be? They showed an upper bound of

√
n on this quantity and a lower bound of

Ω(log n). They also noted that the lower bound (and its proof) is similar to the one on sensitivity
of non-degenerate functions on n bits, where a non-degenerate function is one that depends on all
n bits.
In 2019, Hao Huang showed a surprisingly simple proof of the sensitivity conjecture using signed
hypercubes and Cauchy’s Interlace theorem [12].

Theorem 1.1 (Huang). Any induced subgraph of the n-dimensional hypercube with more than 2n−1

vertices has at least one vertex of degree larger than or equal to
√
n.

Using a signed hypercube, Huang proved that every subgraph of the hypercube Hn of dimension n
induced on more than half the vertices has maximum degree at least

√
n. Combined with earlier

work, this completed a proof of the sensitivity conjecture. Knuth [13] exhibited a collection of
eigenvectors of the signed hypercube used by Huang and provided a proof using a basis for the
eigenspace corresponding to the larger eigenvalue. The idea of using the linear dependence and a
basis of the eigenspace for proving the sensitivity conjecture has been attributed to a comment by
Shalev Ben-David [13].

We show an alternative proof of Huang’s result using only linear dependency of vectors associated
with the vertices of the hypercube. Our approach helps gain deeper insight on structural properties
of the induced subgraph in addition to the largest degree. In particular, we prove that in any
induced subgraph of Hn with more than half the number of vertices, there are two vertices, one of
odd parity and the other of even parity, each with at least n vertices at distance at most 2. As an
application, we show that for any Boolean function f , the polynomial degree is bounded above by
the product of 0-sensitivity and 1-sensitivity, s0(f)s1(f), a strictly stronger statement which implies
Huang’s theorem. Similarly, we prove that given an induced subgraph F of Hn with |V (F )|> 2n−1,
there exists a vertex v ∈ V (F ) such that the number of vertices of F at distance 3 from v (in F )
is at least n3/2 −∆F (2∆F − 1).

1This separation was achieved by the Rubinstein function which is a function on n bits with sensitivity
√
n and

block sensitivity n/2.
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A key implement in Huang’s proof was a signed hypercube with the property that every cycle of
length 4 is assigned a negative sign. We take a detailed look at this signature and give a nearly
optimal signature that uses the minimum number of negative edges while ensuring that every 4-
cycle is negative. This problem of optimizing the number of negative edges turns out to be related
to one of Erdős’ problems on the largest 4-cycle-free subgraph of the hypercube. We prove that the
construction of a large 4-cycle-free subgraph by Brass, Harborth and Nienborg [4] leads to a signed
hypercube with only negative 4-cycles. Surprisingly, we see that the Ambainis function naturally
comes up in the analysis of this construction.

2 Preliminaries

Graphs. A graph G is a pair (V,E) where V is the vertex set and E, the edge set, is an unordered
subset of

(
V
2

)
. The degree of a vertex x in a graph G, denoted dG(x), is the number of edges incident

to x. The maximum degree of G is the maximum degree over all vertices in G and is denoted by
∆G. Given a subset V ′ of V , the subgraph induced by V ′, denoted G[V ′], is the graph (V ′, E′)
where E′ consists of all the pairs in E whose both elements are in V ′. In particular, a cycle C of
G is an induced cycle if its vertices induce the cycle C. The distance between two vertices u and v
of G is the length of a shortest path connecting u to v.

Boolean functions. A Boolean function f takes as inputs n-bit strings and produces an output
of either 0 or 1, i.e., f : {0, 1}n → {0, 1}. We denote by xi the input obtained from x with the ith
bit flipped for an i ∈ [n], i.e., xi = x+ ei.

Hamming weight and distance. We denote the Hamming weight of a string x, which is the
number of 1s in x, by |x|. The support of x is the set of indices at which x is 1. The Hamming
distance between two strings x, y ∈ {0, 1}n is the number of positions where the two strings differ,
that is the Hamming weight of x− y, i.e., |x− y|.

Hypercubes. The hypercube of dimension n, denoted Hn, is a graph whose vertices are the binary
vectors (or strings) of length n, in other words elements of {0, 1}n. Two vertices are adjacent if
their Hamming distance is 1, equivalently, if their binary sum is one of the elements of the standard
basis, i.e., u ∼ v if u⊕v = ei for some i ∈ {1, 2, . . . , n}. More generally, the distance of two vertices
x and y of Hn is their Hamming distance as binary strings. The natural bipartition of Hn is by
considering the parity of the Hamming weight of vertices: The vertices with an odd number of 1’s,
called odd vertices, form one part denoted Uodd

n , and the vertices with an even number of 1’s, called
even vertices, form the other part, denoted U even

n .
Any Boolean function can be viewed as a 2-coloring of the vertices of Hn (not necessarily a proper
coloring).

Signed graphs. A signed graph (G, σ) is a graph together with an assignment σ of signs to the
edges of G. A key operation in signed graphs is switching. A switching at a vertex set X of V (G) is
to multiply the signs of all the edges with exactly one end in X by a −. Two signed graphs (G, σ1)
and (G, σ2) are said to be switching equivalent if one can be obtained from the other by switching
at a subset X of vertices.
The sign of a cycle, a closed walk, or in general a structure W in a signed graph (G, σ) is the
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product of the signs of its edges considering the multiplicity. A basic theorem in the study of
signed graphs is the following theorem of Zaslavsky.

Theorem 2.1 ([21, Theorem 3.2]). Given two signatures σ1 and σ2 of a graph G, (G, σ1) is
switching equivalent to (G, σ2) if and only if the sets of positive (or equivalently negative) cycles of
(G, σ1) and (G, σ2) are the same.

In practice, when using this theorem, one does not need to consider all the cycles of G but rather
just a set of cycles that generates all other cycles (by taking symmetric differences).

Signed hypercubes. In this work we will consider a special class of equivalent signatures on Hn.
Those are the signatures where all 4-cycles of Hn are negative. Let us first see why such a signature
exists noting that this was implicit in [1, 12].

Lemma 2.2 ([1, 12]). For each n ≥ 2, there exists a signature σn on Hn such that in (Hn, σn) all
4-cycles are negative.

Proof. For n = 2, as H2 is just a 4-cycle, it would be enough to choose a signature which assigns
− to only one edge. Assuming σn exists, to find σn+1 we use the inductive construction of Hn+1

as the Cartesian product of Hn and H2. Thus Hn+1 is built from two disjoint copies of Hn with
a perfect matching connecting the corresponding vertices in the two copies. We assign σn to the
edges of one copy, −σn to the edges of the other copy and + to the edges of the matching. It is
straightforward to check that all 4-cycles in Hn+1 have the required property now.

The signature on Hn, obtained from this proof, will be denoted by σ∗
n. Since the 4-cycles of Hn

generate all the cycles, following the remark on Theorem 2.1, any other signature on Hn where
all C4’s are negative is switching equivalent to σ∗

n. To denote a typical member of this switching
equivalent class, when the choice of signature is of no importance, we use Ĥn. We point out that
there are exactly 22

n−1 signatures with the property that all 4-cycles on Hn are negative, each
obtained from σ∗

n by switching on a subset of vertices which does not contain the vertex 0.

Recall that the adjacency matrix of a signed graph (G, σ), denoted A(G, σ), is a |V (G)| × |V (G)|
matrix whose rows and columns are labeled by the vertices of G where the entry xy is 0 if x and y
are nonadjacent, it is +1 if σ(xy) = +, and it is −1 if σ(xy) = −.
Observe that to switch at a vertex v of (G, σ) is the same as multiplying both the column and
the row of A(G, σ) associated to v by a −. Furthermore, we shall note that in the power k of the
adjacency matrix A, Ak(G, σ), the entry uv is the algebraic sum of the number of u-v walks of
length k, that is the number of positive u-v walks of length k minus the number of negative u-v
walks of length k.
Observing that each pair of vertices at distance 2 of Hn belongs to a unique 4-cycle, we have the
following key lemma.

Lemma 2.3. For any n ≥ 2 we have A2(Ĥn) = nI.

Proof. Noting that each edge incident to a vertex u provides a u-u walk of length 2, as the sign
of each such walk is + and as there are exactly n of them, we have n for the entry uu. For an
adjacent pair u and v, since Hn is bipartite, there is no u-v walk of length 2. If |u−v| = 2, then, as
mentioned, they are in a unique C4. As all C4’s are negative in Ĥn, one of the u-v walks of length
2 is positive and the other is negative, thus the corresponding entry is 0. For all other pairs there
is no walk of length 2 connecting them, thus the corresponding entry is 0.
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Sensitivity of a Boolean function. Given a Boolean function f , a vector x is said to be
sensitive at coordinate i if f(xi) ̸= f(x). The sensitivity of f at x, denoted s(f, x), is the number
of coordinates at which it is sensitive. With f viewed as a 2-coloring of Hn, s(f, x) is the number
vertices adjacent to x which are not of the same color as x. The sensitivity of the function f ,
denoted s(f), is then defined to be the maximum sensitivity over all vectors in {0, 1}n with respect
to f , i.e., s(f) = maxx s(f, x). Given a subset B of [n], a vector x is said to be B-sensitive with
respect to f , if simultaneously flipping all the bits in B changes the value of the function to 1−f(x).
The block sensitivity of f at x is the maximum number of disjoint subsets Bi of [n] such that x
is Bi-sensitive for each i. The block sensitivity of f is the maximum block sensitivity of f over all
vectors in {0, 1}n.
The 0-sensitivity of Boolean function f , denoted s0(f), is the maximum sensitivity of f over binary
vectors which evaluate to 0 on f . The 1-sensitivity of Boolean function f , denoted s1(f), is defined
similarly.

Definition 2.4. A Boolean function is said to be parity-balanced if the number of even vectors
that evaluate to 1 is the same as the number of odd vectors that evaluate to 1 (see Figure 1).

f−1(1)

Uodd

f−1(0)

U even

(a) Parity-balanced function

f−1(1)

Uodd

f−1(0)

U even

(b) Not parity-balanced function

Figure 1: Parity-balance in a Boolean function can be thought of as the equality of the shaded
regions in the figure above. A function has full degree if and only if it is not parity-balanced.

Polynomials and degree. For a vector v ∈ {0, 1}n whose support is B, we define the multilinear
polynomial Pv : Rn → R as follows:

Pv =
∏
i∈B

xi
∏
j∈B

(1− xj).

The polynomial has the property that when restricted to the elements of {0, 1}n, it takes the value 1
on v and 0 anywhere else. This polynomial has degree n where the coefficient of the term x1x2 . . . xn
is either +1 or −1 depending on the parity of v.
A polynomial p : Rn 7→ R represents a Boolean function f if for all x ∈ {0, 1}n, p(x) = f(x).
Every Boolean function can be represented by a multilinear polynomial Pf which is the sum of
polynomials Pv such that f(v) = 1, i.e.,

Pf =
∑

v;f(v)=1

Pv.

We may now define the degree of a Boolean function f , denoted deg(f), as the degree of the
multilinear polynomial Pf . Observe that a Boolean function f has full degree (i.e., degree n) if
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and only if it is not parity-balanced. This can also be found in [5] and was attributed to Yao and Shi.

Composition of multivariate Functions. For any two Boolean functions f : {0, 1}n → {0, 1}
and g : {0, 1}m → {0, 1}, we define the composed function f ◦g on an input x ∈ {0, 1}nm as follows:

f ◦ g(x) = f(g(x1, · · · , xm), · · · , g(x(n−1)m+1, · · · , xnm)).

Partial composition of multivariate functions. Let I be an m-subset of the coordinates of
{0, 1}n+m−1 and let ϑ be a function from the coordinates of {0, 1}n+m−1 to the coordinates of {0, 1}n
such that the coordinates in I are all mapped to the same coordinate, say i, and all other coordinates
are mapped to distinct coordinates. Then, given two Boolean functions f : {0, 1}n → {0, 1} and
g : {0, 1}m → {0, 1}, we define the partial composed function f ◦

I,ϑ
g on an input x ∈ {0, 1}n+m−1 as

follows. First we build the string x′ ∈ {0, 1}n whose ith-coordinate is g(X|I) and whose coordinate
ϑ−(j), j ̸= i, is xj . Then we set f ◦

I,ϑ
g(x) = f(x′).

The Ambainis function. Ambainis constructed a function to show that the positive adversary
bound can give better lower bounds on quantum query complexity than the polynomial method.

Definition 2.5 (fA [2]). The function fA is defined on inputs with 4-bits. The function evaluates
the following inputs 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000 to 1 and the rest to 0. In other
words, fA(x) = 1 if x1 ≤ x2 ≤ x3 ≤ x3 or x1 ≥ x2 ≥ x3 ≥ x4. The function is composed with itself

for larger inputs, i.e., fd
A : {0, 1}4d → {0, 1}

fd
A = fA ◦ fd−1

A ,

where f1
A = fA.

Some of the important properties of the Ambainis function are: s(fd
A) = 2d, approximate polynomial

degree d̃eg(fd
A) = 2d while the positive adversary bound MM(fd

A) = 2.5d and quantum query
complexity Q(fd

A) = 2.5135d [2, 14, 11].

3 The sensitivity conjecture

The sensitivity conjecture as posed by Nisan and Szegedy [17] was the following problem,

Problem 3.1. For every Boolean function f, bs(f) ≤ (s(f))O(1).

The last piece of the proof of this conjecture was proved in 2019 by Huang [12]. Below, we state
and review some of the works on the sensitivity conjecture leading up to this paper.

Nisan and Szegedy [17, 20] established a strong connection between degree and block sensitivity of
a Boolean function:

Theorem 3.2. (Nisan-Szegedy, Tal) For any Boolean function f , bs(f) ≤ deg(f)2.

This was proved using symmetrization and lower bounds on the degree of single-variable polyno-
mials. An excellent exposition on the proof of this theorem and those that relate other measures
of complexity of Boolean functions such as certificate complexity, decision tree complexity to block
sensitivity can be found in [5]. The theorem in the presented form is due to Tal [20].
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In 1992, Gotsman and Linial [9] showed the equivalence of the problem of showing that the poly-
nomial degree of a function is at most some polynomial in the sensitivity of the function and the
graph theoretic problem stated in Theorem 1.1.

Theorem 3.3. (Gotsman-Linial) For any monotone function h : N 7→ R, the following statements
are equivalent :

1. For any induced subgraph G of Hn such that |V (G)| ≠ 2n−1, there exists a vertex of degree at
least h(n) in either G or Hn \G.

2. For any Boolean function f , s(f) ≥ h(deg(f)).

A rough sketch of this proof is as follows: consider a monomial of the largest degree in the multilinear
polynomial representing the Boolean function and discard all variables that do not appear in this
monomial (i.e., set them to zero). The sensitivity of the modified function f ′ might be smaller than
that of the original function, but the polynomial degree of the function is preserved and f ′ now has
full polynomial degree. The range of f ′ is taken to be {+1,−1} instead of {0, 1}. This function is
further modified as g(x) = f ′(x)p(x) where p(x) = (−1)

∑
xi is the parity function.

Notice that if we consider the graph induced by the vertices in g−1(0) (similarly for g−1(1)), the
graph degree of a vertex x in this subgraph is the sensitivity of x with respect to f . Equivalently,
we can bypass g and consider the bipartite graph induced by the vertices in (f−1(0) ∩ U even) ∪
(f−1(1) ∩ Uodd), (similarly for (f−1(1) ∩ U even) ∪ (f−1(0) ∩ Uodd)).
Since the function f ′ has full degree, f ′ is not parity-balanced and without loss of generality
assume |f−1(1) ∩ Uodd| > |f−1(1) ∩ U even|. This implies that there are more than 2n−1 vertices
in (f−1(1) ∩ Uodd) ∪ (f−1(0) ∩ U even). By applying Theorem 1.1, we are sure that the subgraph
induced on this set of vertices has a vertex of degree (sensitivity) at least

√
n =

√
deg(f). A clear

presentation of this proof and a survey on the results leading up to the recent proof of the sensitivity
conjecture are provided in [10]. Putting together Theorem 1.1, Theorem 3.2 and Theorem 3.3, we
now have that bs(f) ≤ s(f)4.

4 Structural properties in linear dependency graphs

We have observed that A2(Ĥn) = nI in Lemma 2.3, applying conjugate identity we have

(A(Ĥn) +
√
nI)(A(Ĥn)−

√
nI) = 0 (1)

Following the labeling of columns and rows of A2(Ĥn), for each vertex v of Hn we define v+,
respectively v− to be the column of (A(Ĥn) +

√
nI), respectively (A(Ĥn) −

√
nI), corresponding

to v. Moreover let V +, respectively V −, be the subspace (of R|V (Hn)|) generated by v+ vectors,
respectively v− vectors.
A subset U of the vertices of Hn is said to be linearly dependent if for every u ∈ U there exists
cu ̸= 0 such that ∑

u∈U
cuu

+ = 0.

Observe that changing cu to −cu for only odd vertices we will have a linear dependency formula
based on v− vectors. Recall that Hn[U ] is the subgraph of Hn induced by a set of vertices U .
Huang’s result is a consequence the following.
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Lemma 4.1. Given a linearly dependent set U of vertices in Hn, the subgraph Hn[U ] has a vertex
of degree at least ⌈

√
n⌉.

Proof. Let
∑

u∈U cuu
+ = 0 be the linear dependency formula on U . Let w be a vertex in U such

that |cw| = max{|cu| : u ∈ U}. Consider the row corresponding to w in the linear dependency
formula. On the coordinate w of this row we have

√
ncw. For this value to vanish, there must be at

least ⌈
√
n⌉ nonzero element in the coordinates w. But each such entry corresponds to a neighbor

of w.

Observe that if the equality is to happen, i.e., U induces a subgraph of maximum degree exactly√
n, then cw = σ(wu)cu for each neighbor u of w. Thus when a linearly dependent set U of vertices

induced a subgraph of maximum degree
√
n, then the induced (signed) subgraph is

√
n-regular and

can be switched so that all edges are positive.

Corollary 4.2 (Huang’s degree theorem). The subgraph induced by any 2n−1 + 1 vertices of Hn

has maximum degree at least
√
n.

Proof. Since V + and V − are orthogonal subspaces of R2n , at least one has dimension at most
2n−1. Thus given a set of 2n−1 + 1 vertices a linearly dependency is guaranteed on some subset of
vertices.

It is however of interest to determine the exact dimension of V + and V −.

Proposition 4.3. We have dim(V +) = dim(V −) = 2n−1.

Proof. The set {u+ | u ∈ Uodd} is a set of size 2n−1 which is linearly independent. That is because
for each element u+ in this set, in the coordinate corresponding to u, u+ is the only vector with a
nonzero entry, all others, being neighbors of u, are in U even. Similarly V − is of dimension at least
2n−1. Since they are orthogonal, the sum of their dimensions is at most 2n which implies that 2n−1

is the exact dimension of both.

The most basic example of a linearly dependent set is N [w] which consists of a vertex w and all
its neighbors. For a linear dependency formula take cw =

√
n and cx = σ(wx) for every neighbor

x of w. One can build larger linear dependencies starting from this basic one: in the basic linear
dependency formula for w for some element x, x ̸= w, replace x+ with the formula of x+ obtained
from the basic linear dependency at x.
Observe that in a basic linearly dependent set, the maximum degree of the induced subgraph is n.
To deviate from this value one must create a fair number of vertices at distance 2. To put a limit
on this set of vertices at distance two, one has create even more vertices of distance 3 and so on. In
the next subsection we explore this idea to get almost best possible upper bound for the number
of distance 2 and distance 3 neighbors in a given linearly dependent set.

4.1 Structural Relations at distance 2

Extending Lemma 4.1, here we show that in the subgraph induced by a linearly dependent set U
of vertices in Hn, there are vertices with a large number of neighbors at distance 1 or 2 from it.

Theorem 4.4. Given a linearly dependent set U of vertices in Hn, there exist vertices u ∈ Uodd

and v ∈ U even in Hn[U ] such that |NU (u)|+ |NU
2 (u)| ≥ n and |NU (v)|+ |NU

2 (v)| ≥ n.
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Proof. Let c be the column vector in R2n , presenting linear dependency of U based on u− vec-
tors. Here coordinates are labeled by the vertices of Hn and nonzero coordinates of c are among
coordinates corresponding to the elements of U , noting that there must be at least one nonzero
coordinate. The linearly dependency formula can be written as: (Ân −

√
nI)c = 0.

Let AU be the adjacency matrix of Ĥn[U ]. Let us analyze A2
U . As mentioned before, since AU

is the adjacency matrix of a signed graph, the entry xy of this matrix is the algebraic sum of the
number of x-y walks of length 2. Thus the diagonal entry xx is dU (x) as each edge incident to
x contributes a value of 1 to this sum regardless of its sign. Noting that Hn and thus Ĥn[U ] is
bipartite, the entry xy is 0 if they are in different parts. The only other potentially nonzero entries
of A2

U then are entries xy where |x−y| = 2. This entry must be either +1 or −1 because if there are

more than one x-y walk of length 2 in Ĥn[U ], then there are exactly two and they form a negative
4-cycle, thus the corresponding entry is 0.
Let c′ be the vector obtained from c by keeping only the coordinates corresponding to the vertices
in U . The relation (Ân−

√
nI)c = 0 implies that (AU −

√
nI)c′ = 0, or equivalently AUc

′ =
√
nIc′.

Multiplying by AU and using the same identity we have

A2
Uc

′ = nIc′. (2)

Let u be a vertex in Uodd for which |c′u| is maximum among the entries corresponding to vertices
in Uodd, noting that this is a nonzero value. Consider the row corresponding to u in the identity

(2): on the right we have nc′u; on the left we have dU (u) +
∑

c′xA
2
U (ux). In this sum, the

contribution is from vertices x for which the xy-entry of A2
U is nonzero. Those are the vertices

that are at distance 2 from u (thus in Uodd), with the extra property that each has a unique path
to u in Hn(U) (but we do not use this extra property in this proof). Since |c′u| is chosen to be
the maximum, for this identity to hold, there must be at least n − dU (u) nonzero values among
A2

U (ux). This completes the proof of the claim for Uodd. The proof works the same for U even.

By taking a vertex u given by the theorem and considering one of its neighbors which has the
largest degree in Hn[U ] among all neighbors of u we conclude the following.

Corollary 4.5. If U is a linearly dependent set of vertices of Hn, then there exists an edge uv in
Hn[U ] such that dU (u)× dU (v) ≥ n.

Observe that this corollary is already stronger that Huang’s degree theorem as dU (u)× dU (v) ≥ n
implies that at least one of dU (u) or dU (v) is greater or equal to

√
n.

4.1.1 Application to odd and even sensitivity

We have the following corollary relating the degree of a function to its 0-sensitivity and 1-sensitivity
which gives a stronger upper bound on the polynomial degree of a Boolean function.

Corollary 4.6. For any Boolean function f , we have deg(f) ≤ s0(f)s1(f).

Proof. Assume deg(f) is d. We can concentrate on a function f ′ of degree d on d variables by
setting the variables outside of the largest monomial to be 0. Let x′ be a binary string in the
domain of f ′ and x be the binary vector in the domain of f whose coordinates outside those in x′

are set to 0. Then sensitivity of f ′ at x′ is at most the sensitivity of f at x i.e., s(f ′, x′) ≤ s(f, x).
In particular, this implies that s0(f

′) ≤ s0(f) and s1(f
′) ≤ s1(f).

8



We partition the domain of f ′ (which are binary strings of length d) into two sets U = (f ′−1(0) ∩
U even)∪(f ′−1(1)∩Uodd) and U ′ = (f ′−1(1)∩U even)∪(f ′−1(0)∩Uodd). As f ′ is not parity-balanced,
these sets are not of the same size (see Figure 1) and hence one of them, say U , has strictly more
than 2d−1. This implies that U is a linearly dependent set of vertices.
Since adjacent pairs x, y in Hd[U ] are assigned distinct values by f ′, one of s(f ′, x) and s(f ′, y)
is bounded above by s0(f) and the other by s1(f). By choosing xy according to Corollary 4.5,
we have s0(f

′)s1(f
′) ≥ d. The claim follows by noting that s0(f

′) ≤ s0(f), s1(f
′) ≤ s1(f) and

deg(f) = d.

Notice that we have proven something stronger, which is that the lower bound on 0-sensitivity and
1-sensitivity of a function is achieved on inputs at Hamming distance 1.
Since by Theorem 3.2 bs(f) ≤ deg(f)2, we get the following polynomial relation between sensitivity
and block sensitivity.

Corollary 4.7. For any Boolean function f , bs(f) ≤ s0(f)
2s1(f)

2.

4.2 Structural Relations at distance 3

We have the following theorem describing structural relations at distance 3 in the subgraph Hn[U ].

Theorem 4.8. Given a linearly dependent set of vertices U in Hn, there exists a vertex x ∈ U
such that,

|NU
3 (x)| ≥ n

3
2 −

∑
y:|x−y|=1

c(x, y)

where c(x, y) denotes the number of coordinates j ∈ [n] such that either xj or yj belongs to Hn[U ]
i.e.,

c(x, y) :=
∣∣{j : xj ∈ U ∨ yj ∈ U}

∣∣ .
and NU

3 (x) is the set of vertices y ∈ U at exactly distance 3 from x.

We now analyze the structure of an induced subgraph corresponding to a linear dependency at
distance at most 3. In other words, for studying the structure of Hn[U ] at distance 3, we will
analyze A3

U as it contains information about walks of length 3 in the subgraph Hn[U ]. In particular
for any two vertices x and y in Hn[U ], A3

U (x, y) is the sum of the signs of all the walks of length 3
from x to y.
The following lemmas will be useful in proving Theorem 4.8.

Lemma 4.9. Every induced 6-cycle in Ĥn is negative.

Proof. There are two types of 6-cycles in Ĥn: Ones that are the symmetric difference of two 4-cycles
(see Figure 2b) and ones that are the symmetric difference of three 4-cycles (see Figure 2a). As
all the 4-cycles are negative in Ĥn, the parity of the number of 4-cycles that are used to define a
6-cycle (as the symmetric difference of 4-cycles) determines its sign. What remains to note is that
6-cycles that are the symmetric difference of two 4-cycles are not induced.

9



(a) An induced 6-cycle (b) A not induced 6-cycle

Figure 2: 6-cycles in Ĥn

Lemma 4.10. Given a linearly dependent set of vertices U in Hn, for vertices x, y ∈ U ,

A3
U (x, y) =


0 if |x− y| > 3 or |x− y| is even,

0/− 1/+ 1 if |x− y| = 3,

σ(x, y) c(x, y) if |x− y| = 1,

where c(x, y) denotes the number of coordinates j ∈ [n] such that either xj or yj belongs to Hn[U ].

Proof. We have the following cases for A3
U (x, y) based on the Hamming distance between x and y

where x, y ∈ U .

Case 1: |x− y| > 3 or |x− y| is even
In this case there exists no walk of length 3 that connects x and y, and we have A3

U (x, y) = 0.

Case 2: |x− y| = 3
If y = x{i,j,k} where i, j, k ∈ [n], we can write A3

U (x, y) as the following

A3
U (x, y) = (AU ×A2

U )(x, y) =
∑

ℓ∈{i,j,k}

AU (x, x
ℓ)A2

U (x
ℓ, y).

In the proof of Theorem 4.4 for structural relations at distance 2, we had observed that for any two
vertices u and v at distance 2 from each other, A2

U (u, v) ∈ {0,−1,+1}. If there were two paths of
length 2 between u and v, the signs of the two paths would cancel each other, due to the property
of the signature we have chosen. Thus there can be at most three walks of length 3 from x to y
with a non-zero contribution to the term A3

U (x, y). Moreover, if there are more than one paths of
length 3 between x and y, they will form an induced 6-cycle. By Lemma 4.9, every induced 6-cycle
is negative. This gives us that |A3

U (x, y)| ≤ 1 when |x− y| = 3.

Case 3: |x− y| = 1
Let us suppose that y = xi for an i ∈ [n]. There are four types of possible walks of length 3 from
x to y which are shown in Figure 3. The walks of length 3 from x to y are marked in red in the
figure.
To count all of these possible walks from x to y in Hn[U ], we look at all the walks between them
using edges corresponding to an index j ∈ [n]. For each contributing index j, we have the following
sub-cases: when both xj and yj are both vertices in the subgraph Hn[U ], and when only one of xj

and yj belong to Hn[U ].
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Figure 3: All walks of length 3 from x to y when |x, y| = 1. The edges are labelled by the coordinate
on which the endpoints differ.

Case 3a: Both xj and yj belong to U

Assume j ̸= i. In this case, there are three x−y walks using coordinates i and j (see Figure 4
(a), (b), (c)). Of the three, two are of the same sign as σ(x, y) and the third is of the opposite

y

x

xj

yj

ij

ji

Figure 4: The subgraph when x, y, xj and yj belong to U . Edge labels are the indices at which
the endpoints differ.

sign. Thus the total contribution is σ(x, y).

When the index j = i, we have a single x − y walk using only coordinate i which is of the
sign σ(x, y) (see Figure 4 (d)). This implies that we have a contribution of σ(x, y) from each
index j such that both xj and yj belong to U .

Case 3b: Only one of xj and yj belong to U
In this case, we have one of the following walks of length 3 from x to y using edges corre-
sponding to the index j: either x – xj – x – y or x – y – yj – y (see Figure 5). Since each of
these walks has a signature σ(x, y), an index j such that only one of xj and yj belong to U
contributes σ(x, y) to A3

U (x, y).

In conclusion every index in the set {j : xj ∈ U ∨ yj ∈ U} contributes σ(x, y) to A3
U (x, y) when

|x− y| = 1 which completes the proof of the lemma.

We can now prove Theorem 4.8 which shows the structural relations between vertices in Hn[U ]
that are at distance 3.

Proof of Theorem 4.8. As observed in the proof of Theorem 4.4, a linear dependency among a set
of vertices U in Hn implies that (AU −

√
nI)c = 0 for a non-zero column vector c, in other words,
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Figure 5: The subgraph when only one of xj and yj belong to U . Edge labels are the indices on
which the endpoints differ.

AUc =
√
nc, thus

A3
Uc = n

3
2 c.

Let cx be the largest coefficient in the linear dependency U , i.e., cx = maxi{|ci|}. At the row
labelled by x we have,

n
3
2 cx = (A3

U × c)(x) =
∑
y∈U

A3
U (x, y) cy

n
3
2 |cx| ≤

∑
y∈U

∣∣A3
U (x, y) cy

∣∣ ≤∑
y∈U

∣∣A3
U (x, y)

∣∣ |cx| .

Based on Lemma 4.10 we get

n
3
2 ≤

∑
y∈U

∣∣A3
U (x, y)

∣∣ ≤ ∑
y:|x−y|=3

1 +
∑

y:|x−y|=1

c(x, y).

This shows that the size of the neighborhood of x at distance 3, NU
3 (x) ≥ n

3
2 −

∑
y:|x−y|=1

c(x, y)

which completes the proof of the theorem.

We have the following corollary from Theorem 4.8 that gives a lower bound on the number of
neighbors of a vertex at distance 3 in Hn[U ] in terms of ∆U , where ∆U denote the maximum
degree in Hn[U ].

Corollary 4.11. Given a linear dependency U , there exists a vertex in Hn[U ] that has at least

n
3
2 −∆U (2∆U − 1) neighbors at distance 3 from it.

Proof. From Theorem 4.8, we get a vertex x that has at least n
3
2 −

∑
y:|x−y|=1 c(x, y) neighbors at

distance 3 from it. The number of coordinates i such that xi belongs to Hn[U ] is at most ∆U for
any vertex x ∈ U . For any two vertices x and y in Hn[U ] such that x ∼i y for some i ∈ [n], the size
of the set of coordinates j such that either xj or yj belongs to Hn[U ] is at most 2∆U −1. This holds
as there is a vertex i such that both xi and yi belong to Hn[U ]. This implies that c(x, y) ≤ 2∆U −1
for any x and y such that |x − y| = 1. Since the number of y that are at distance 1 from x is
bounded above by ∆U , we have the above corollary.
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5 Signatures of Hypercubes with negative 4-cycles

The proof of the sensitivity conjecture relied crucially on signed hypercubes with the property that
each 4-cycle is negative, i.e., the product of the signs on the edges of the 4-cycle is negative. A
signature with this property was used to show the existence of a signed hypercube with exactly two
eigenvalues for the corresponding weighted adjacency matrix by Ahmadi et al. [1, Theorem 6.7 and
Corollary 6.9]. This was the same signature σ∗

n given by Huang inductively. As it was pointed out
in Section 2, there are 22

n−1 signatures each equivalent to σ∗
n and each of them can be employed

for these arguments.
While σ∗

n is the easiest signature to present, it is not necessarily the best one. In this section we
will see that to find one with the minimum (or equivalently, the maximum) number of negative
edges is a nontrivial task of high interest, relating to both some extremal graph theory questions
and the existence of some binary function of importance in computational complexity theory. To
this end we first give formal definition in the language of signed graphs.

Definition 5.1 (Frustration Index). The frustration index of a signed graph (G, σ), denoted
F (G, σ), is the smallest number of negative edges of (G, σ′) over all signatures σ′ that are a switching
of σ.

Recall that (Hn, σ
∗) is defined by viewing Hn as two copies of Hn−1 with a perfect matching

between them. Each edge of Hn−1 then is negative exactly in one copy and edges of the matching
are positive. Then there are (n − 1)2n−2 negative edges in (Hn, σ

∗). This gives us a trivial upper
bound on the frustration index F (Hn, σ

∗) ≤ (n − 1) · 2n−2. In what follows, we will first give a
lower bound on the frustration index F (Hn, σ

∗) and then construct a signature that tries to match
the lower bound.

5.1 A lower bound on the frustration index

Although the problem of finding the frustration index of (Hn, σ
∗) has not been looked at in the

literature to the best of our knowledge, a related problem of finding the minimum number of edges
that need to be removed from an Hn to make it C4-free has been studied extensively. A lower bound
on this problem would easily translate to a lower bound on F (Hn, σ

∗). First such lower bound was
implied by a result of Bialostocki [3]. We present one proof of this lower bound, different from the
original proof.

Theorem 5.2 (implied by [3]). For a signed hypercube (Hn, σ
∗) which satisfies the property that

every C4 is negative, the frustration index F (Hn, σ
∗) ≥ (n−

√
n) · 2n−2.

We use the following definition of negative and positive degrees for vertices in our proof.

Definition 5.3 (Positive and negative degree). Given a signed graph (G, σ) and a vertex v ∈ V (G),
we define the positive degree of v, denoted by d+(v), as the number of positive edges incident on
v, and negative degree of v, denoted by d−(v), as the number of negative edges incident on v. The
average negative degree of (G, σ), denoted by d−, is the average of the negative degree over all

vertices in G, i.e., d− =
∑

v∈V (G)

d−(v)
|V (G)| .

Proof of Theorem 5.2. Let us consider the following types of vertices in a 4-cycle in (Hn, σ
∗) :
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• type 00 point: if it has two positive edges in a 4-cycle.

• type 11 point: if it has two negative edges in a 4-cycle.

• type 10 point: if it has one negative edge and one positive edge in a 4-cycle.

A vertex could be counted repeatedly as different types of points with respect to different 4-cycles.
Every 4-cycle in (Hn, σ

∗), regardless of it having one or three negative edges, has two points of
type 10. Thus the number of points of type 10 is equal to twice the number of 4-cycles in Hn, i.e.,∑

v(d
+(v) · d−(v)) = 2

(
n
2

)
· 2n−2. Hence, we have∑

v

d−(v)(n− d−(v)) = n
∑
v

d−(v)−
∑
v

d−(v)
2
= n(n− 1)2n−2.

On applying the Cauchy-Schwarz inequality,∑
v

d−(v)
2 ≥

(
∑

v d
−(v))2

2n
,

we get

n ·
(∑

v d
−(v)

2n

)
−
(∑

v d
−(v)

2n

)2

≥ n(n− 1)

4

which simplifies as, 4d−
2 − 4nd− + (n2 − n) ≤ 0. This gives d− ∈ [n−

√
n

2 , n+
√
n

2 ], and hence

F (Hn, σ
∗) ≥ d− · 2n−1 = (n−

√
n) · 2n−2.

Interestingly, both the lower bound and the upper bound on the frustration index of (Hn, σ
∗) are

closely related to the problem of largest C4-free subgraph of Hn. This was posed by Erdős as one
of the interesting open problems in combinatorics [8]. In fact, he conjectured that the number of
edges in the largest C4-free subgraph of Hn is at most (n + c) · 2n−2 for some constant c but this
was later disproved in a work by Brass, Harborth and Nienborg [4]. Brass et al. showed that it is
at most (n+ 0.9

√
n) · 2n−2 for n ≥ 9 and showed a construction that achieves (n+

√
n) · 2n−2 for

n = 4k where k ≥ 1. We will now present the construction used in a slightly different language and
obtain a signature on the hypercube that satisfies every 4-cycle being negative. In particular, we
will prove the following theorem.

Theorem 5.4. For a signed hypercube (Hn, σ
∗), F (Hn, σ

∗) ≤ 2n−2

(
n− (n+2·4k−m

2 )
3·2k

)
where 4k ≤

n < 4k+1 and n+m = 1 (mod 3) with m ∈ {0, 1, 2}.

We make note that the construction is the same as that of Brass et al., but we present a proof of
the fact that it leads to a signature with only negative 4-cycles as that does not follow from the
original work. In addition, the new outlook on the construction naturally leads to the introduction
of a sequence of highly interesting binary functions, which on dimension n = 4k are known as the
Ambainis functions (see Section 5.3).
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5.2 Construction of a signed hypercube nearly achieving optimal frustration
index

The edges of Hn are 3-colored, say red, blue, and green, such that every 4-cycle has an odd number
of red edges, an odd number of blue edges, and hence an even number of green edges. Thus the
set of red (or blue) edges would form a signature of nearly minimum size, whereas, the set of
red and green edges together would form a signature of nearly maximum size. For the inductive
construction to work we must also color the vertices with two colors, say black and white (this is
implicit in [4]). The details are as follows:

White Black

Figure 6: White and Black halves of a fully colored H̃4

A fully colored hypercube of dimension k is a triplet (Hk, f, g) where the function f is a 2-coloring of
the vertices of the hypercube Hk. This vertex-coloring induces two types of edges: monochromatic
edges and 2-colored edges. The function g is a 3-coloring of the edges using (green), (red), (blue).
They satisfy the following constraints:

1. Red and blue edges are monochromatic under f .

2. Each 4-cycle of Hk has an odd number of red edges, an odd number of blue edges, and hence
an even number of green edges.

Let S1 and S2 be sets of indices such that S1 is of order k, S2 is of order m and they have a
single element i in common, i.e., S1 ∩ S2 = {i}. Let (Hk, f1, g1) be a fully colored hypercube of
dimension k whose coordinates are labeled by S1, and let (Hm, f2, g2) be a fully colored hypercube
of dimension m whose coordinates are labeled by S2. We define a fully colored (Hm+k−1, f, g) :=
(Hm, f2, g2)□(Hk, f1, g1) as follows:

• Hm+k−1 is a hypercube of dimension m+ k− 1 and the coordinates of its vertices are labeled
by elements in S1 ∪ S2.

• To define the vertex-coloring f on the new hypercube for a vertex x ∈ V (Hm+k−1), we take
x2 to be the restriction of x to the coordinates labelled by S2. Next define x

∗
1 to be the vector

15



obtained by restricting x to the coordinates labelled by S1 and setting the coordinate labelled
by i to be f2(x2). The vertex-coloring f on x is defined as f(x) := f1(x

∗
1).

We can think of this as replacing each vertex of Hm by a half of the hypercube Hk that is split
into two halves across the index i. For simplicity, we can think of Hm as the outer hypercube
and Hk as the inner hypercube. The color of the vertex in the outer hypercube decides which
half of the inner hypercube replaces it, and the new vertex in the larger hypercube inherits
the color from the vertex corresponding to it in this half of the inner hypercube.

• The edge-coloring g is defined for strings x, y ∈ V (Hm+k−1) such that x and y differ only at
an index j i.e., x ∼j y where j ∈ S1 ∪ S2 as follows:

– If j ∈ S1 \ {i}: we define the edge-coloring as g(x, y) = g1(x
∗
1, y

∗
1), i.e., if two vertices

differ at an index corresponding to the inner hypercube (other than the index i which is
common to both), they lie in the same half of the inner hypercube and the color of the
edges is inherited from that of the inner hypercube.

– If j ∈ S2 : we decide on the coloring based on g2(x2, y2) which is the edge-coloring of
the projection of x and y on the outer hypercube Hm. If g2(x2, y2) = green, and since
green edges are bichromatic (i.e., one of its endpoints is white and the other black),
they are replaced by the two halves of the inner hypercube. In this case, the edge xy
inherits the color from the edge class that split the inner hypercube into two halves, i.e.,
g(x, y) = g1(x

∗
1, y

∗
1). Otherwise, if g2(x2, y2) = red (and resp. blue) and if the restriction

of x to the coordinates labelled by S1 − {i}, denoted x1, is of an even weight we set
g(x, y) = blue (and resp. red). Note that the restriction of x or that of y onto S1 − {i}
are the same since x and y do not differ on any index in S1 − {i}. Otherwise, we set
g(x, y) = red (and resp. blue).

We will now see that this vertex-coloring and edge-coloring satisfy the conditions that blue and red
colored vertices are monochromatic and green edges are bichromatic. We will also prove that every
4-cycle of Hm+k−1 has an odd number of red and an odd number of blue edges.

Proposition 5.5. The construction of the hypercube (Hm+k−1, f, g) from fully colored hypercubes
(Hm, f2, g2) and (Hk, f1, g1) is well defined, and the result is a fully colored hypercube that satisfies
properties (1) and (2).

Proof. Let us first check if the edges between two vertices of the same color are colored either red or
blue and that the edges between two vertices of different colors are colored green, i.e., they satisfy
(1). We consider x, y ∈ V (Hm+k−1) such that x and y differ only at an index j, i.e., x ∼j y and
look at the following cases:

• j ∈ S1 \ {i}: In this case, both x and y correspond to the same vertex in the outer hypercube
which has been replaced by a half of the inner hypercube (Hk, f1, g1). Since both the vertex
and edge colors are inherited from the inner hypercube and since it was originally properly
colored, the coloring constraints (1) are satisfied in this case.

• j ∈ S2: In this case, if the vertices belong to different halves of the inner hypercube, i.e.,
f2(x2) ̸= f2(y2), the coloring constraints are satisfied since the outer edge is colored green,
and both the edge-coloring and the vertex-coloring are inherited from the inner hypercube.
If the two vertices belong to the same half of the hypercube, they are colored the same and
the edges between them are colored either red or blue in our construction.
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The only thing that is left to show is that each 4-cycle of (Hm+k−1, f, g) has an odd number of red
and an odd number of blue edges. Let C = xywz be a 4-cycle in this fully colored hypercube. Let
p and q be the indices corresponding to the edges of C. We consider three possibilities:

• p and q are both in S1 \ {i}: In this case, since the vertices and edges in C inherit their
colors from the inner hypercube (Hk, f1, g1) and C is a 4-cycle in it, property (2) holds.

• p is in S1 \ {i}, q is in S2: Without loss of generality, let us assume that y = xq. Here we
consider two cases: when the edge g2(x2, y2) corresponding to the outer hypercube is colored
green and when it is not colored green. If g2(x2, y2) = Green, C is a 4-cycle in an isomorphic
copy of (Hk, f1, g1) in this construction in which the number of red and blue edges remain
odd, and the green edges are even in number. If g2(x2, y2) ̸= Green, there is one red edge and
one blue edge in C corresponding to the index q. Since the edge corresponding to the outer
hypercube g2(x2, y2) is either red or blue, the end points x2 and y2 must be of the same color,
i.e., f2(x2) = f2(y2). The edges corresponding to index p have the same color since x2 and y2
have been replaced by the same copy of Hk−1. Property (2) is satisfied in this case as there
is an odd number of green and blue edges and the number of green edges is either 0 or 2.

• p and q are both in S2: The 4-cycle C corresponds to a 4-cycle C ′ with vertices x2, y2, w2

and z2 in (Hm, f2, g2). Since all the vertices in C are the same on all the coordinates labelled
by S1 \ {i}, the parity of their restriction onto S1 \ {i} is the same. The red and blue edges
in the 4-cycle C ′ remain the same as in C if the parity of their restriction onto S1 \ {i} is odd
and are swapped otherwise. In any case, the number of red and the number of blue edges
both remain odd. Note that for vertices x, y, w and z, only the coordinate at i changes and
remaining coordinates are the same. The green edges in the cycle C ′ contribute edges of the
same color in C since the colors of the edges are inherited from the same edge in (Hk, f1, g1).
Since the number of green edges in C ′ are even, the number of edges it contributes (of any
color) remains even.

This completes the proof.

We will now show an explicit construction of a fully colored hypercube of dimension k, denoted H̃k,
from a fully colored hypercube in 4 dimensions. Let us denote the fully colored hypercube given in
Figure 7 as H̃4. For each of the indices i ∈ [4] representing coordinates of vertices in H̃4, there are
4 green edges, 2 blue and 2 red edges.
From two copies of H̃4, using the construction described above, we get H̃7 in which the number of
green edges is 24 for four of the indices and 25 for the three other indices.
In general, we use H̃4 to build a fully colored hypercube H̃3l+1 using H̃3l−2 and H̃4 iteratively as
follows:

H̃3l+1 = H̃4 □ H̃3l−2

for l ≥ 2. In other words, each vertex of H̃4 is replaced by a half of H̃3l−2 depending on the color
of the vertex in H̃4.
For a fully colored hypercube H̃k constructed as above, let rk[j], bk[j] and gk[j] be the number of
edges colored red, blue and green, respectively for an index j. Let the total number of red, total
number of blue and total number of green edges in H̃k be denoted rk, bk and gk respectively. It
follows from the construction of H̃3l+1 = H̃4 □ H̃3l−2 that if the number of the red edges equals
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the number of the blue edges in every index of the constituent H̃4 and H̃3l−2, the same would hold
for the resulting H̃3l+1. Similarly, one can also see that if the constituent hypercubes H̃4 and H̃3l−2

have equal number of black and white vertices, then H̃3l+1 also has an equal number of black and
white vertices.

Observation 5.6. For the fully colored hypercube H̃3l+1 built using H̃3l−2 and H̃4:

1. The number of white vertices equals the number of black vertices.

2. Given any index j, the number of blue edges equals the number of red edges corresponding to
that index, i.e., b3l+1[j] = r3l+1[j].

This follows since fully colored hypercubes are constructed iteratively from H̃4 which has an equal
number of white and black vertices, and has an equal number of red and blue edges along every
coordinate.
Recall that all the edges of H̃k are colored either red, blue or green, and that there are 2k−1 edges
corresponding to any given index. Thus, calculating gk[j] would also determine rk[j] and bk[j] when
k = 3l + 1 for some integer l ≥ 1. The number of green edges in a fully colored hypercube using
the construction above is given by the following theorem.

Theorem 5.7. Given a fully colored hypercube H̃3l+1 there are two types of indices:

• indices in Ln each with 2n−⌈log4 n⌉−1 green edges and there are 4
3(n−4⌈log4 n⌉−1) many of them.

• indices in Mn each with 2n−⌈log4 n⌉ green edges and there are 1
3(4

⌈log4 n⌉ − n) many of them.

We prove this theorem by induction. The importance of the choice of the index i along which the
inner hypercube is split into two halves is illustrated by the following lemma.

Lemma 5.8. In the construction of a fully colored hypercube (Hm+k−1, f, g) = (Hm, f2, g2)□(Hk, f1, g1)
from two fully colored hypercubes H̃m and H̃k, if we choose to split the inner hypercube Hk along
an index i, the number of green edges in the new hypercube along an index j ∈ S1 ∪ S2 is given as
follows.

gm+k−1[j] =

{
2m−1 × gk[j], if j ∈ S1 \ {i}
gk[i]× gm[j] otherwise,

where gl[j] is the number of green edges in a hypercube H̃ l along an index j.

Proof. We consider two cases:

• For a j ∈ S1\{i}, all the edges along this coordinate inherit their colors from the corresponding
half of the fully colored hypercube H̃k by construction. Since there are an equal number of
white and black vertices in H̃m (by Observation 5.6), there are 2m−1 copies of H̃k split into
two which replace every vertex of H̃m. Thus the number of green edges corresponding to this
index is gm+k−1[j] = 2m−1 × gk[j].

• For a j ∈ S2, notice that a fully colored hypercube H̃m+k−1 can have a green edge along an
index j only if the corresponding edge in the outer hypercube (when restricted to indices in
S2) is colored green. If the outer edge is colored red or blue, the resulting edge could only
be of one of those colors. In the construction, the edges corresponding to a green outer edge
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inherit their colors from the edges along the index i of H̃k. Combined with the fact that every
green edge of the outer hypercube contributes to gk[i] green edges in H̃m+k−1, this gives that
the number of green edges along the index j is gm+k−1[j] = gk[i]× gm[j].

With the above lemma, we may now prove Theorem 5.7.

Proof of Theorem 5.7. Let us choose the outer hypercube to be H̃4 with 4 green edges along each
of its indices. The proof of the theorem is by induction on l where n = 3l + 1.

Base Case: When l = 1 (i.e., n = 4), we have shown an example of a fully colored hypercube
with 4 green edges along each index which trivially satisfies the theorem.

Induction Case: By induction hypothesis, let us assume that there exists a fully colored hyper-
cube H̃n such that there is a set of indices Ln of size 4

3(n−4⌈log4 n⌉−1) with 2n−⌈log4 n⌉−1 green

edges, and a set of indices Mn of size 1
3(4

⌈log4 n⌉−n) with 2n−⌈log4 n⌉ green edges. We will now

show that we can construct an H̃n′ where n′ = n + 3 from H̃n and H̃4. We pick H̃4 as the
outer hypercube and pick the index i from the inner hypercube H̃n such that it has a large
number of green edges. The set S2 is chosen to work for our choice of i, i.e., S1 = Ln ∪Mn

and S1 ∩ S2 = {i}. By Lemma 5.8, the number of green edges along an index j ∈ S1 \ {i}
equals 23 × gn[j] for our choice of outer and inner hypercubes and the index i. We also have
4× gn[i] green edges along an index j ∈ S2. We have the following cases:

Case 1: n is a power of 4.
In this case, H̃n has Mn = ∅ and |Ln| = n with each index in Ln having 2n−⌈log4 n⌉−1

green edges by induction hypothesis. We pick any one of the indices in Ln as the index
i to split H̃n into two halves. By Lemma 5.8, the number of green edges along an index
j ∈ S1 \ {i} (or equivalently j ∈ Ln \ {i}) is 2n−⌈log4 n⌉−1+3 = 2n+3−⌈log4 (n+3)⌉ since
⌈log4 n⌉ + 1 = ⌈log4(n + 3)⌉ when n is a power of 4. This gives n − 1 coordinates with
2n

′−⌈log4 n′⌉ green edges. Since 1
3(4

⌈log4 n′⌉−n′) = 1
3(4n−n− 3) = n− 1, we have a set of

indices Mn′ = S1 \ {i} with 2n
′−⌈log4 n′⌉ green edges. Note that in this case every index

in Ln except i is in Mn′ .
By Lemma 5.8, the number of green edges along each index j ∈ S2 is 4× 2n−⌈log4 n⌉−1 =
2n

′−⌈log4 n′⌉−1 and there are 4 indices in S2. Since
4
3(n

′−4⌈log4 n
′⌉−1) = 4

3(n+3−4⌈log4 n⌉) =

4, we have a set of indices Ln′ = S2 with 2n
′−⌈log4 n′⌉−1 green edges. This proves that

the induction case holds when n′ = n+ 3 is a power of 4. We note here that the chosen
index i now belongs to Ln′ .

Case 2: When n = 3l + 1 for some integer l > 1 but is not a power of 4.
In this case, we assume the induction hypothesis for n and show that the induction case
holds for n′ = n + 3. Since n is not a power of 4 and since powers of 4 are 1 modulo
3, we have ⌈log4 n⌉ = ⌈log4 n′⌉. We choose to split H̃n into two halves across an index
i ∈ Mn that has the largest number of green edges (which is 2n−⌈log4 n⌉). There are
1
3(4

⌈log4 n⌉ − n)− 1 = 1
3(4

⌈log4 n′⌉ − n′) indices in Mn \ {i} with 2n−⌈log4 n⌉ green edges in

H̃n. By Lemma 5.8, these indices have 2n−⌈log4 n⌉+3 = 2n
′−⌈log4 n′⌉ green edges and they

form Mn′ .
Since Ln has 4

3(n − 4⌈log4 n⌉−1) indices with 2n−⌈log4 n⌉−1 green edges and the index i
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chosen does not belong to Ln, these indices have 2n−⌈log4 n⌉−1+3 = 2n
′−⌈log4 n′⌉−1 green

edges in H̃n′ by Lemma 5.8. These indices now belong to Ln′ . We also have 4gn[i] =
2n−⌈log4 n⌉+2 = 2n

′−⌈log4 n′⌉−1 green edges along an index j ∈ S2 which are also in Ln′ .
In total, we have a set of indices Ln′ of size 4

3(n − 4⌈log4 n⌉−1) + 4 = 4
3(n

′ − 4⌈log4 n
′⌉−1)

with 2n
′−⌈log4 n′⌉−1 green edges and a set of indices Mn′ of size 1

3(4
⌈log4 n′⌉ − n′) with

2n
′−⌈log4 n′⌉ green edges which proves that the theorem holds for this case. We note that

the indices in Mn except the chosen index i are now in Mn′ and that the indices in Ln

and S2 form the set Ln′ . In particular, the chosen index i belongs to Ln′ .

This proves the theorem by induction for all n = 3l + 1 for an integer l ≥ 1.

We compile the following observations about the sets Ln′ and Mn′ made in the above proof that
will prove to be useful later to characterize the vertex-coloring of the fully colored hypercubes.

Observation 5.9. In a fully colored hypercube H̃n′ = H̃n□H̃4 constructed as in the proof of
Theorem 5.7, we have the following:

• The index i, chosen to split H̃n into two halves, belongs to Ln′.

• Every index j ∈ Mn except i belongs to Mn′.

• Every index j ∈ S2 belongs to Ln′.

• When n is a power of 4, the set S1 \ {i} belongs to Mn′.

We use Theorem 5.7 to obtain an upper bound on the frustration index of a signature that assigns
a negative sign to every 4-cycle in a hypercube.

Proof of Theorem 5.4. Since every 4-cycle in the fully colored hypercube constructed in Theo-
rem 5.7 has an odd number of red and blue edges, setting the signs of all the edges of a color,
say red, to negative and the rest to positive ensures that every 4-cycle will be negative under this
signature. Since the number of red edges equals the number of blue edges along each index as seen
in Observation 5.6, we will count the number of green edges to find the number of red edges. We
analysis this in various cases as below:

Case 1: n is a power of 4.
Let n = 4k for an integer k ≥ 1. From Theorem 5.7, we have n indices with 2n−k−1 green
edges each. Since

√
n = 2k, the total number of green edges is

√
n
(
2n−1

)
. Each of the edges

in a fully colored hypercube is colored green, red or blue and there are an equal number of red

and blue edges. Hence the total number of edges colored red is n2n−1−
√
n2n−1

2 . The frustration
index when n is a power of 4 is,

F (Hn, σ
∗) ≤ (n−

√
n) · 2n−2 .

By Theorem 5.2, in this case, F (Hn, σ
∗) = (n−

√
n) · 2n−2 .
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Case 2: n = 3l + 1 for an integer l ≥ 1.
Let 4k < n ≤ 4k+1. From Theorem 5.7, the number of green edges in H̃n is

gn =
4

3

(
n− 4k

)
2n−k−2 +

1

3

(
4k+1 − n

)
2n−k−1 =

2n−1

3 · 2k
(
n+ 2 · 4k

)
.

The number of red edges is

bn =
n · 2n−1 − 2n−1

3·2k
(
n+ 2 · 4k

)
2

= 2n−2

(
n−

(
n+ 2 · 4k

)
3 · 2k

)
.

Case 3: n ̸≡ 1 (mod 3).
In this case, we take the fully colored hypercube H̃n+m constructed as above such that
n+m = 3l+ 1 for an integer l ≥ 1 and m ∈ {1, 2}. The main idea is to remove all the edges
corresponding to m coordinates in H̃n+m, which results in 2m components and we choose the
component with the least number of blue edges. We will now formalize this intuition and
count the number of red edges.

Let n+m = 1 mod 3 be such that 4k < n+m ≤ 4k+1 for an m ∈ {1, 2}. From Theorem 5.7,
H̃n+m has 4

3(n+m−4k) indices with 2n+m−k−2 green edges and 1
3(4

k+1−n−m) indices with
2n+m−k−1 green edges. We delete all the edges from m indices that have 2n+m−k−2 green
edges. This is possible since 4

3(n+m− 4k) ≥ 4 > m. The total number of green edges along
n indices, after m coordinates have been deleted is

1

3

(
4n+m− 4k+1

)
2n+m−k−2 +

1

3

(
4k+1 − n−m

)
2n+m−k−1 =

2n+m−k−2

3

(
2n−m+ 4k+1

)
.

This subgraph of H̃n+m, formed after deleting all the edges in m indices, consists of 2m

components each of which is a fully colored hypercube of dimension n. We pick a component
of this subgraph with the largest number of green edges which is at least

gn ≥ 1

2m

(
2n+m−k−2

3

(
2n−m+ 4k+1

))
=

2n−k−2

3

(
2n−m+ 4k+1

)
.

The number of red edges is bounded as follows:

bn ≤
n · 2n−1 − 2n−k−2

3

(
2n−m+ 4k+1

)
2

= 2n−2

(
n−

(
n+ 2 · 4k − m

2

)
3 · 2k

)
.

We now turn our attention to the function that is used for vertex-coloring in the construction of
H̃n. We see that this function corresponds to the well-studied Ambainis function [2, 14, 11] when
n = 4k.
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Figure 7: A fully colored H̃4 with vertices being colored according to Ambainis function

5.3 Ambainis function

We observe that the recursive function we used to determine the vertex-coloring in H̃3l+1 for any
integer l is an extension of the Ambainis function (which were only defined for powers of 4). This
is easy to see in H̃4 (Figure 7) where a vertex x is colored “white” if the corresponding string is
evaluated to 1 by the Ambainis function (Definition 2.5), i.e., fA(x) = 1.
We now show that the Ambainis function is composed with itself to get the vertex-coloring for fully
colored hypercubes with larger dimensions. Let the vertex-coloring of H̃k be denoted by fk. Recall
that a fully colored hypercube H̃3l+4 is constructed from H̃3l+1 and H̃4 for any integer l ≥ 1 by
splitting H̃3l+1 across an index i and replacing each vertex of H̃4 by a half of H̃n which depends
on the vertex-coloring f4. We get f3l+4 from f3l+1 after replacing the i-th input by an f4. This is
because f4 determines the half of the hypercube from which the vertex inherit colors and the two
halves differ only at the ith bit. We show that such a construction yields a vertex-coloring function
that can be represented by a 4-ary tree with each internal node replaced by the Ambainis function
fA which acts on its 4 input bits.

Theorem 5.10. For a fully colored hypercube H̃k of dimension k where k = 3l + 1 for an integer
l ≥ 1, the vertex-coloring function fk can be represented by a 4-ary tree whose leaves correspond to
input bits of the function. Every internal node in the tree corresponds to the Ambainis function fA
and has exactly 4 children. The leaves lie at either the last or the penultimate level and the height
of this tree is ⌈log4 k⌉+ 1.

This tree corresponds to the Ambainis function fd
A when k = 4d for any integer d ≥ 1. We denote

such a tree with k leaves by Tk. The tree T73 is given in Figure 8.

Proof of Theorem 5.10. Our proof is based on induction on l ≥ 1. The induction hypothesis is as
follows.

Induction Hypothesis: For a k = 3l + 1, the vertex-coloring of H̃k is represented by the tree
Tk. If the leaf corresponding to an index j lies in the last level of the tree Tk, j ∈ Lk and if
it lies in the penultimate level, j ∈ Mk.
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Figure 8: A vertex-coloring function for H̃73

Base Case: For the base case, the hypercube of dimension k = 4 when l = 1 is given in Figure 7
whose vertex-coloring is according to the Ambainis function fA on 4 bits. This is represented
by a T4 that takes as input 4 bits and outputs according to fA. In this case, all the leaves lie
in the same level and we also know that all the indices lie in L4 since k is a power of 4.

Induction Case: For the induction case, let us assume that the theorem holds for k = 3l+1. The
hypercube corresponding to 3l + 4 is constructed from H̃3l+1 and H̃4 where H̃3l+1 is split
into halves across an index i. The vertex-coloring f3l+4 is given by f3l+1 with the i-th input
bit replaced by an f4 by construction. By induction hypothesis, f3l+1 is given by a 4-ary tree
T3l+1 with the internal nodes being fA. By the construction of H̃3l+4, the tree corresponding
to f3l+4 is T3l+1 with the leaf corresponding to the i-th index replaced by an fA node with 4
children. We will make use of Observation 5.9 to show that the tree corresponding to f3l+4

increases in height from that of T3l+1 only if all the leaves of T3l+1 are at the same level, i.e.,
the last level. We consider the following two cases:

• 3l + 1 is a power of 4: all the indices in S1 lie in L3l+1 and are in the last level of T3l+1

by induction hypothesis and Observation 5.9. In the construction, one of these indices
is chosen as i and if T3l+1 is modified by changing the i-th leaf to fA, this tree matches
the description of T3l+4. Note that the new leaves of the fA node that replaced a leaf of
T3l+1 are now indices in S2. From Observation 5.9, we have that every index in S1 \ {i}
lies in the penultimate level and are in M3l+4. We also have that every index in S2 that
lies in the last level belongs to L3l+4, thus proving the induction case.

• 3l+1 is not a power of 4: the set M3l+1 is non-empty and by the induction hypothesis,
there are leaves in the penultimate level of T3l+1. In the construction of H̃3l+4, the tree
representing the vertex-coloring f3l+4 can be obtained by modifying T3l+1 by taking the
leaf corresponding to an index i ∈ M3l+1 and replacing it by a node fA with its leaves
now being labelled by S2. Such a tree is consistent with the description of T3l+4 as
the leaf being replaced lies in the penultimate level. Since all the other leaves in the
penultimate level remain at the same level and since the leaves corresponding to S2 now
lie in the last level, these are consistent with the new sets of indices M3l+4 and L3l+4

by Observation 5.9. This proves the induction case.

This shows that the tree Tk represents the vertex-coloring for H̃k and that the vertex-coloring is
given by the Ambainis function.
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6 Further discussion

In this section we look at some further implications of techniques developed in the previous sections.
We look at how they can be used to prove analogous results in weighted hypercubes and what they
imply for cases where the maximum degree of the subgraph is close to

√
n.

6.1 Weighted version

Let {ai} for i = 1, 2, . . . , n be a sequence of nonzero real values. Consider the following weight
assignment to the edges of Hn: if the edge (x, y) corresponds to the coordinate i (i.e., x and y
differ only at the coordinate i), then the edge (x, y) is assigned a weight ai. Furthermore, we
multiply the weight of the edge (x, y) to the signature of the edge σ(xy) which was defined in the
previous sections. The adjacency matrix of the corresponding signed weighted graphs has exactly
two eigenvalues: ±

√
a21 + a22 + . . .+ a2n. This would follow from Theorem 6.7 of [1] if one follows

the proof steps to complete the proof of Corollary 6.9 starting with K2. However, without the use
of this fact and with a modification of our proof of Theorem 1.1, we can give a proof of the following
weighted version of Huang’s theorem, first proved by Mathews[15] using Clifford algebras.

Theorem 6.1. Given a weighted hypercube Hn where the edges corresponding to coordinate i are
given a weight ai with ai ̸= 0, in the induced subgraph corresponding to any set of 2n−1+1 vertices,
there exists a vertex x whose sum of weights of incident edges is at least

√
a21 + a22 + . . .+ a2n.

Proof. Once the definitions of the vectors x+ and x− are modified, the rest of the proof is ex-
actly the same. The xth coordinate of x+ is set as

√
a21 + a22 + . . .+ a2n and that of x− is set as

−
√

a21 + a22 + . . .+ a2n. If y is adjacent to x and y = x+ ei, then the yth coordinate of both x+ and
x− is set as σ(xy)ai. All other coordinates are set to 0.

6.2 Tightness

To summarize our result, what we have proved here is that in a subgraph induced by a set of vertices
with a linear dependency, the maximum degree lies between n and

√
n, with both extremities being

tight. Furthermore, we proved that the closer we are to the lower bound the more vertices we must
have from the second and the third neighborhood of a vertex with maximum degree. However, this
is not the limit of our approach, it can imply more vertices from the fourth neighborhood and so
on. While we do not yet have the strongest claim to present, we have the following observation in
the case where the maximum degree is exactly

√
n (assuming that n is a perfect square).

Theorem 6.2. If U is a nontrivial linear dependency relation and Hn[U ] has maximum degree
exactly

√
n, then the vertices in Hn[U ] of degree

√
n induce a

√
n-regular subgraph.

This theorem is corollary of our proof of Lemma 4.1 and its details is left to the reader.

6.3 Linear dependency

We remark that the vectors x+ and x− were built by further investigating Huang’s proof using
eigenvalues. The set V + generated by {x+ | x ∈ V (Hn)} is the eigenspace corresponding to the
eigenvalues

√
n of the incidence matrix of the signed graph (Hn, σ) and the set V − generated by

{x− | x ∈ V (Hn)} is eigenspace corresponding to the eigenvalue −
√
n. This provides an alternate

proof for the fact that V + is orthogonal to V − and that each is of dimension (at most) 2n−1.
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Our approach to this problem suggests a strong connection between linear dependency of the vectors
x+i in the study of the sensitivity of a function. It is, therefore, intriguing to ask:

Problem 6.3. What are the (minimal) subsets of V + that are linearly dependent?

The smallest linear dependency is among a vertex and all its neighbors:

x+ =
1√
n

∑
y∼x

σ(xy)y+.

On the other hand for linearly independent sets, the easiest examples are sets I of vectors x+’s
where for every vector x+ ∈ I there exists a coordinate u ∈ V (Hn) such that x+ is the only vector
in I that is nonzero at u. We call such a linearly independent set a basic linearly independent set.
The main example of a basic linearly independent set is the set {u+ | u ∈ Uodd} or {v+ | v ∈ U even}.
Each of these sets provides an orthogonal basis for the V +.
Another example of basic linearly independent set is the set of all u+ where, for a fixed i, the ith

coordinate of u is 1. Then for each u+ of this set, the vector u+ is the only vector of the set that
is not 0 at the coordinate u+ ei. Thus taking all such vectors provides another basis for V +, but
this basis is no longer an orthogonal one. The proof of Huang’s result given by Knuth in [13] uses
one such basis with i = n.
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