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Abstract
Age is an important variable to describe the expected brain’s anatomy status across the normal aging
trajectory. The deviation from that normative aging trajectory may provide some insights into neurological
diseases. In neuroimaging, predicted brain age is widely used to analyze different diseases. However, using
only the brain age gap information (i.e., the difference between the chronological age and the estimated age)
can be not enough informative for disease classification problems. In this paper, we propose to extend the
notion of global brain age by estimating brain structure ages using structural magnetic resonance imaging. To
this end, an ensemble of deep learning models is first used to estimate a 3D aging map (i.e., voxel-wise age
estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages. This biomarker
can be used in several situations. First, it enables to accurately estimate the brain age for the purpose of
anomaly detection at the population level. In this situation, our approach outperforms several state-of-the-art
methods. Second, brain structure ages can be used to compute the deviation from the normal aging process of
each brain structure. This feature can be used in a multi-disease classification task for an accurate differential
diagnosis at the subject level. Finally, the brain structure age deviations of individuals can be visualized,
providing some insights about brain abnormality and helping clinicians in real medical contexts.

K E Y W O R D S

Brain Structure Ages, Age prediction, Deep learning, Multi-disease Classification, Alzheimer’s disease,

Frontotemporal dementia, Multiple sclerosis, Parkinson’s disease, Schizophrenia

1 INTRODUCTION

In the medical field, chronological age is widely used as an indicator to describe people. It depicts a reference curve that healthy
organs should follow. The deviation from that reference may be associated with different factors such as the interaction of genes,
environment, lifestyle, and diseases1. To measure this deviation, the concept of biological age (BA) has been created. It is an
estimation of individual’s age based on various advanced strategies2,3,4 and is expected to be able to take into account all the
factors mentioned above. Consequently, an accelerated (or delayed) aging process results in a higher (or lower) value of BA with
respect to chronological age.

The analysis of BA can be associated with a whole-body system or a specific organ. The whole-body evaluation approaches
typically use non-imaging data (e.g., DNA methylation patterns5, protein6) but often struggle to account for variations in
aging among individual organs7. To this end, Tian et al. recently proposed a novel approach employing multimodal brain
imaging, physiological measurements, and blood phenotypes to construct a multiorgan aging network8. Their research unveiled
the heterogeneous nature of organ aging, and the multiorgan aging network could potentially facilitate early identification of
individuals at risk of age-related morbidity. Besides, investigations focused on BA for specific organs are also of great interest.
Le Goallec et al. proposed to use the prediction of liver and pancreas ages based on imaging data to improve the estimation
of abdominal age9. In another study, Mauer et al. employed 3D knee imaging to estimate age and used it to achieve accurate
majority classification (individuals older than 18 years of age)10.
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Among the various organs studied, the brain emerges as a prominent subject of research. Brain structure changes are demon-
strated to be mutually caused by the natural aging process and neurodegenerative diseases11,12,13,14,15,16. Cole et al. demonstrated
that biological brain age can enable the development of treatment plans and a better understanding of disease processes17. The
authors emphasized that the difference between the predicted brain age and the chronological age is a valuable bio-marker since
it shows a correlation with aging as well as with diseases. This difference is denoted as BrainAGE for Brain Age Gap Estimation.
Since its introduction, this new bio-marker has been widely used in many studies to analyze various diseases1. Generally, a
model is trained with brain images from a healthy population and then used to estimate the age of patients with diseases.

In BrainAGE, structural magnetic resonance imaging (sMRI) is the most used modality (about 88% of studies18). It has
been shown that reasonable prediction error can be achieved using this modality. Moreover, sMRI is commonly available in
medical environments18. Initially, sMRI was used with some traditional machine learning algorithms such as relevance vector
regression19, support vector regression20, and Gaussian process regression21 to perform BrainAGE. The prediction error of
these methods ranges from 4.29 to 5.02 years for the mean absolute error (MAE) metric. Since the success of deep learning in
many natural image processing applications, it has also become a useful technique in various medical imaging studies. Recent
studies show the capacity of deep learning algorithms in the brain age estimation task based on sMRI with an MAE ranging
from 1.96 to 4.16 years7,22,23,24,25. These promising results suggest using deep learning to estimate brain age for further analysis.

These deep learning-based methods adapt famous convolutional neural network (CNN) architectures to estimate brain age.
When employing a VGG-like architecture, Ueda et al. demonstrated that using 3D CNN can lead to better accuracy than 2D CNN
for age prediction26. In another work, Cole et al. also used a VGG-like architecture and found that the grey matter extracted from
3D sMRI is better than white matter and raw image for age prediction17. Using a similar architecture, Bermudez et al. suggested
additionally taking advantage of brain structure volume to improve the model performance25. Bintsi et al. employed ResNet
architecture to predict age on several sub-volumes of brain image27. The final prediction was aggregated using a linear regression
model. Armanious et al. proposed to use the inception module with squeeze-and-excitation module to accurately predict healthy
brain age7. Bashyam et al. customized the inception-resnetv2 to build their model and trained it on 11729 healthy subjects.

After training a brain age prediction model, the next step is to apply it to a population of interest to compare healthy and
diseased groups (i.e., analysis at the population level). For example, Franke et al. analyzed brain maturation during childhood
and adolescence28. By applying a trained model on subjects being born before the 28th and after the 29th week of gestation, they
found that the BrainAGE of the first group was significantly lower than the second group, showing a delayed structural brain
maturation of the first group. Applying the same technique, Koutsouleris et al. demonstrated an accelerated aging of 5.5 years in
schizophrenia and 4.0 years in major depression patients compared to normal aging29. In another study dedicated to Alzheimer’s
Disease (AD), the BrainAGE was estimated at about +10 years in AD patients, implying accelerated aging of this population19.

Although BrainAGE can provide a description of a specific population, its application in individual diagnosis is still limited.
Only a few works suggested performing disease detection or differential diagnosis using BrainAGE at the subject level. For
instance, the BrainAGE was used as a biomarker to perform differential diagnosis between mild cognitive impairment and
AD in30 and to diagnose AD (i.e., AD patients vs. healthy controls) in31,32. More recently, Cheng et al. used deep learning to
accurately predict brain age and they use BrainAGE as the only feature for various binary diagnosis tasks (i.e., diseased subjects
vs. healthy subjects)33. Although encouraging results were obtained, these works performed only binary classification tasks but
not multi-class classification. The reason for this may be due to the coarse description of the brain’s state provided by the global
BrainAGE. Indeed, BrainAGE can only describe the aging process of the whole brain but does not provide any details about
brain structures’ state. Therefore, it is difficult to use BrainAGE for involved tasks such as the differential diagnosis of multiple
pathologies.

Since global age estimation, several approaches have proposed voxel-wise estimations. Beheshti et al. introduced a methodol-
ogy that estimates brain age at the voxel level based on patch similarity34. The global brain age was subsequently deduced using
a weighted average of the predicted voxels, achieving an MAE of 1.66 years. This method highlights the potential of voxel-wise
age prediction. In another study, Popescu et al. employed a U-Net model to estimate brain age at the voxel level, using data from
gray and white matter in sMRI scans35. Although their technique did not surpass other models in age estimation accuracy, this
approach did reveal significant differences in local brain ages between healthy individuals and dementia patients, presenting a
promising avenue for future research in brain disease diagnosis.

In this paper, we propose to extend the notion of the global brain age to local brain structure ages. Our main hypothesis is
that the aging process is heterogeneous over the brain and specifically, different brain structures may present different ages.
While voxel-wise age estimation methods might be valuable markers, our paper introduces a novel structure age estimation as a
complementary method dedicated to interpretable computer-aided diagnosis. Structure age summarizes the brain’s state into a
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vector of apparent ages for multiple anatomical structures, which is easier to interpret than voxel-wise ages. This summary not
only provides a quick comparative assessment of the structural impacts of diseases but also reduces the complexity of data analysis.
By doing so, it helps prevent model overfitting, facilitates the integration with other structure-based biomarkers (e.g., volume) in
disease classification, and provides more robust estimates by averaging noisy voxel-level estimations. Consequently, we first
estimate the brain age at the voxel level. This results in a 3D aging map of voxelwise brain ages. By averaging predicted brain
ages by brain structure, we obtain the Brain Structure Ages, denoted as BSA. This local BSA is expected to provide more
information about the subject’s condition than a global age prediction of a whole subject’s brain. As shown later, this novel
biomarker can be used as input of a support vector regressor (SVR) to accurately estimate the subject’s age. During validation,
our framework showed competitive results compared to state-of-the-art methods. Furthermore, the difference between BSA and
the subject’s chronological age, denoted as BSAGE for Brain Structure Age Gap Estimation, can be also used with a support
vector machine classifier (SVM) for multi-class classification (i.e., Cognitively Normal (CN) vs. AD vs. Frontotemporal Disease
(FTD) vs. Multiple Sclerosis (MS) vs. Parkinson’s disease (PD) vs. Schizophrenia (SZ)). In our experiments, we demonstrated
the important gain of using BSAGE compared to BrainAGE for the multi-disease classification task. Finally, by projecting the
BSAGE on a brain atlas, we can visually observe the brain regions affected by different diseases.

2 MATERIALS

2.1 Datasets

The data used in this study comprise 39255 images from various datasets: the Autism Brain Imaging Data Exchange (ABIDE)36,37,
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)38, the Australian Imaging Biomarkers and Lifestyle Study of aging
(AIBL)39, the International Consortium for Brain Mapping (ICBM)40, the Information eXtraction from Images (IXI) ‡, the
National Database for Autism Research (NDAR)41, the Open Access Series of Imaging Studies (OASIS)42, Cincinnati MR
Imaging of Neurodevelopment (C-MIND) §, UKBioBank43, the Strategic Research Program for Brain Sciences (SRPBS)44, the
Center for Biomedical Research Excellence (COBRE) ¶, the Cambridge Centre for aging and Neuroscience (CamCAN)45, the
Parkinson’s Progression Markers Initiative (PPMI)46, the Frontotemporal Lobar Degeneration Neuroimaging Initiative (NIFD)
#, the Observatoire Français de la Sclérose en Plaques (OFSEP)47, the National Alzheimer’s Coordinating Center (NACC)48,
the Dallas Lifespan Brain Study (DLBS) ∥, the Minimal Interval Resonance Imaging in Alzheimer’s Disease49, the Minimal
Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD)49, and a study on schizophrenia (BrainGluSchi)50. All the T1
weighted images at the baseline were used.

2.1.1 Chronological age prediction

Among available data, 32718 images were used to study the accuracy of our chronological age predictor. First, eight datasets
including 2887 images (i.e., ABIDE I, ADNI, AIBL, ICBM, C-MIND, IXI, NDAR, OASIS1) were used in training/validation.
Second, two external datasets (i.e., out-of-domain) were used for testing. Concretely, CN subjects of ABIDE II (i.e., 580 images)
were used to estimate the model accuracy on a young population and CN from UKBioBank (i.e., 29251 images) were used
to estimate the model accuracy on an older population (see Table 1). For ABIDE, we ensured that no subject in phase I was
presented in phase II.

2.1.2 Multiple pathologies classification

Besides, we assessed the classification performance using BSAGE on 6537 images composed of 6 classes (i.e., CN, AD, FTD,
MS, PD and SZ). Eight datasets including 1992 images (ADNI, AIBL, SRPBS, COBRE, CamCAN, PPMI phase 1, NIFD and
OFSEP centers 1-2) were used to perform a 10-fold cross validation (in-domain validation) (see Table 2). Then, we constructed

‡ https://brain-development.org/ixi-dataset/
§ https://nda.nih.gov/edit_collection.html?id=2329
¶ http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
# https://ida.loni.usc.edu/collaboration/access/appLicense.jsp
∥ https://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html

https://brain-development.org/ixi-dataset/
https://nda.nih.gov/edit_collection.html?id=2329
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
https://ida.loni.usc.edu/collaboration/access/appLicense.jsp
https://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html
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an out-of-domain dataset including 4545 images using seven cohorts (i.e., NACC, DLBS, MIRIAD, OASIS3, BrainGluShi,
PPMI phase 2 and OFSEP-other-centers) to assess the generalization capacity of such models. For the OFSEP, we used the
acquisition sites to split this global dataset into two non-overlapping domains. For PPMI, we ensured that no subject in phase I
was presented in phase II.

T A B L E 1 On top, summary of participants used for training age predictor. On bottom, description of the external datasets used for testing.

Usage Dataset Male/Female Age (Mean ± Std)

Age prediction
training

ABIDE I 408/84 17.5 ± 7.8

ADNI 201/203 74.8 ± 5.8

AIBL 112/120 72.3 ± 6.7

ICBM 112/182 33.7 ± 14.3

C-MIND 107/129 8.4 ± 4.3

IXI 242/307 48.8 ± 16.5

NDAR 208/174 12.4 ± 6.0

OASIS1 111/187 45.3 ± 23.8

Young population
testing

ABIDE II 403/177 14.8 ± 9.3

Older population
testing

UKBioBank 14917/14334 64.2 ± 7.9

Total 16821/15897 14.8 ± 9.3

F I G U R E 1 An overview of the proposed method. The T1w image, its segmentation and the age map are taken from a 71 years old healthy person.

2.2 Preprocessing

The preprocessing procedure is composed of five steps: (1) denoising image51, (2) inhomogeneity correction52, (3) affine
registration into the MNI152 space (181 × 217 × 181 voxels at 1mm × 1mm × 1mm)53, (4) intensity standardization54 and (5)
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T A B L E 2 Number of participants (Male/Female) used for multi-class classification.

Usage Dataset CN AD FTD MS PD SZ

ADNI 181/150

AIBL 18/28

In-domain:
10-fold
cross-validation
training set

SRPBS 88/60 84/58

COBRE 11/7 54/14

CamCAN 75/85

PPMI
phase 1

35/13 228/131

NIFD 15/15 87/56

OFSEP
centers 1-2

161/338

NACC 47/104 318/419 22/23

DLBS 117/196

Out-of-domain:
independant
testset

MIRIAD 12/11 19/27

OASIS3 270/385 46/46

Brain-
GluSchi

61/25 71/11

PPMI
phase 2

74/58

OFSEP
other

centers
585/1598

Total 731/901 582/670 109/79 746/1936 302/189 209/83

intracranial cavity (ICC) extraction55. After preprocessing, we used AssemblyNet ∗∗ 56 to get the parcellation of the brain into
133 structures (see Figure 1). This brain structure segmentation is then used to compute the BSA for further analysis.

3 METHOD

3.1 Method overview

Figure 1 provides an overview of our method. First, we estimate the brain ages map at voxel level from a preprocessed T1 image
using a large number of U-Nets. Then, this 3D map is used with a segmentation mask to compute the BSA features (Section
3.1.1). Finally, the BSA features can be employed to estimate the chronological age using an SVR model or combined with brain
structure volumes to perform multi-disease classification using an SVM classifier (Section 3.1.2).

3.1.1 Brain structure age estimation

In order to produce the 3D aging map, we extracted m = k3 overlapping 3D sub-volumes of the same size for each T1w MRI.
Next, we trained m U-Nets to predict age at voxel level with these m 3D sub-volumes. The goal of this training strategy is dual.
First, as the size of a sub-volume is relatively small compared to the original image, it can be trained with a lighter weight model
and thus, require only a low computation capacity. Second, we limit the receptive field of each model to a local brain region in
order to force it to locally describe the brain age. The outputs were then used to reconstruct a 3D brain age map. Finally, the

∗∗ Available at https://github.com/volBrain/AssemblyNet

https://github.com/volBrain/AssemblyNet
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F I G U R E 2 Architecture of an unit U-Net used for voxel-level age prediction. The number above each block is the number of channel.

BSA was computed with the help of an AssemblyNet-based brain segmentation56. In practice, we estimated the mean value of
voxel-wise age estimation for each structure segmentation.

3.1.2 Application to chronological age prediction and multi-disease classification

To demonstrate different use cases of the BSA, we performed two experiments using this biomarker: chronological age prediction
which can help to briefly describe a population and multi-disease classification which can guide clinicians to focus on certain
pathologies.

To predict the chronological age of healthy people, we employed a classical SVR and used the predicted BSA as its input. For
the multi-disease classification, we first computed the BSAGE (i.e., the difference between BSA and the subject’s chronological
age) and then used it as input of an SVM classifier to address the 6-class problem CN vs. AD vs. FTD vs. MS vs. PD vs. SZ.
Moreover, structure volume is used as additional feature of BSAGE for SVM-based classification.

3.2 Implementation details

First, a preprocessed T1w MRI in the MNI space of size 181 × 217 × 181 voxels at 1mm3 was downscaled with a factor of 2 to
the size of 91 × 109 × 91 voxels. After that, we extract k3 (i.e., k = 5) overlapping sub-volumes of the same size 32 × 48 × 32
voxels and evenly distributed along the 3 image’s dimensions from the downscale image. We trained m = k3 (i.e., m = 125)
U-Nets to predict age at voxel level with these m sub-volumes. Figure 2 shows the architecture of our unit U-Net used for
voxel-level age prediction. The m outputs were then used to reconstruct a 3D age map of size 91 × 109 × 91 voxels. Of note, the
predicted brain age located at overlapping voxel positions of more than 1 sub-volume was averaged. The reconstructed image
was upscaled using trilinear interpolation to the same spatial size as the original input. This 3D map was used to compute BSA
and then BSAGE features.

For training the U-Nets, each voxel inside the ICC is assigned the subject’s chronological age as its ground truth value, while
all other voxels are set to zero. During training, we use the mean absolute error (MAE) as loss function and SGD optimizer.
The batch size is set to 8 and the training was terminated after 20 epochs without any improvement on validation loss. The
first U-Net was trained from scratch and other U-Nets were trained with transfer learning from their adjacent U-Net (see56 for
more details). The training data is split into training/validation sets with a ratio of 80%/20% (see Table 1). In addition, when a
new U-Net was trained, the training and validation data were gathered and re-split to exploit the maximum information from
available data. Finally, we employed different data augmentation techniques to alleviate the overfitting problem. Concretely, we
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randomly shifted a patch by t ∈ {–1, 0, 1} voxel in each dimension (denoted as random shift technique) and then applyed mixup
data augmentation57.

Before using BSA features, we applied an age correction technique for each of their elements. We followed a simple method
of Smith et al.58 to eliminate bias in each structure brain age. Concretely, we denoted the actual age as Y (an Nsubjects × 1
vector), the brain age as YB, a brain structure age as Xs (an Nsubjects × 1 vector) and the bias term δ. So, we predicted YB

from Xs: YB = Y + δ = Xsβ. This is equivalent to Y = Xsβ – δ. This regression can be solved with β = (XT
s X)–1XT

s Y . Finally,
YB = Xs(XT

s XS)–1XT
s Y .

When training the SVR to estimate chronological age, three kernels were used to select the best model through our cross-
validation: linear, polynomial and radial basis function. Five values of C and epsilon in [0.1, 1, 10, 100, 1000] were used in the
hyper-parameter search. We performed a grid-search for the kernel and the hyper-parameters C, epsilon.

When training the SVM for multi-disease classification, "one vs rest" was used as the decision function shape, three kernels
were used to select the best model through our cross-validation: linear, polynomial and radial basis function. One hundred values
of C in the log-space [–1.5; 0.5] were used in the hyper-parameter search. We performed a grid-search for the kernel and the
hyper-parameter C.

3.3 Validation Framework

For chronological age prediction, we compute the BSA features of U-Nets’ training subjects. This data is used to train the
SVR-based regression (10-fold cross-validation). This results in 10 SVR models. We used two separate out-of-domain datasets
to assess our method accuracy (see Table 1). When evaluating the framework for this data (young and old populations), we
used these 10 models to predict the individual chronological age and then averaged the 10 obtained results to make only one
prediction per subject.

For multi-disease classification, we employed a 10-fold cross-validation for training our SVM classifier, as outlined in Table 2.
Each of the 10 models was evaluated using its corresponding test fold. Consequently, each test sample was assessed once,
yielding a single global final prediction. We concatenated the results across 10 test folds to determine the in-domain performance
of our model. Furthermore, we examined the model’s generalizability by testing it on an out-of-domain dataset, also detailed in
Table 2. For this external data set, each test sample was evaluated using all 10 cross-validated models, and their outputs were
averaged to enhance model generalization. This resulted in one final prediction for each test sample in the out-of-domain dataset.

4 EXPERIMENTAL RESULTS

4.1 Chronological age estimation

4.1.1 Ablation study

In this part, we aim at studying different factors influencing the model performance: Data amount, different augmentation
strategies (e.g., random shift, mixup57), age correction technique (see Section 3.2) and regressor (e.g., Multi-Layer Perceptron
(MLP), SVR). Table 3 shows the comparison results. The regression lines are provided in the Annexes.

First, we can observe that increasing the data amount (exp. 1, 2, 3) consistently improve the model accuracy on both young
and old population in all metrics (i.e., MAE, R2 and their corresponding CI). Second, applying different data augmentation
techniques (i.e., random shift, mixup in exp. 4, 5) can slightly improve the mentioned metrics and their CI. This is in line with the
finding of59. Third, many studies have shown the advantages of using age correction techniques. In our case, the implemented
technique does not show improvements (exp. 6). However, this technique can enhance the discriminative capacity of BSA for
better disease classification (see Section 4.2.1). Finally, using SVR improves our model accuracy over MLP (exp. 7). Overall,
each factor contributes to our model accuracy. In the rest of the paper, BSA is computed using 100% data, random shift, mixup,
structural age correction techniques, and SVR regressor unless otherwise specified.
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T A B L E 3 Ablation study for the chronological age estimation. Red: best result, Blue: second best result. Text or symbols in
black: Changes compared to the previous experiment. Text or symbols in gray: No change compared to the previous experiment.
The model performance is estimated by different metrics: Mean absolute error (MAE) and the coefficient of determination (R2).
The validation procedure is presented in Section 3.3. We denote MLP, SVR and CI for Multi-layer perceptron, Support Vector
Regressor and Confidence Interval. The CI is estimated at 95% confidence level using boostraping.
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Young population Old population
MAE CI R2 CI MAE CI R2 CI

1 50% ✗ ✗ ✗ MLP 4.59 [4.08, 5.16] 0.26 [-0.09, 0.50] 8.27 [8.20, 8.35] -0.84 [-0.88, -0.80]
2 75% ✗ ✗ ✗ MLP 3.44 [3.04, 3.76] 0.64 [0.50, 0.74] 7.72 [7.60, 7.74] -0.62 [-0.69, -0.61]
3 100% ✗ ✗ ✗ MLP 2.38 [2.15, 2.59] 0.85 [0.80, 0.89] 4.60 [4.54, 4.63] 0.41 [0.40, 0.43]
4 100% ✓ ✗ ✗ MLP 2.11 [1.92, 2.29] 0.89 [0.86, 0.92] 3.98 [3.92, 3.99] 0.58 [0.57, 0.59]
5 100% ✓ ✓ ✗ MLP 1.92 [1.75, 2.08] 0.91 [0.88, 0.93] 3.89 [3.83, 3.90] 0.60 [0.60, 0.61]
6 100% ✓ ✓ ✓ MLP 1.91 [1.75, 2.08] 0.91 [0.88, 0.93] 3.87 [3.85, 3.92] 0.61 [0.59, 0.61]

7 100% ✓ ✓ ✓ SVR 1.88 [1.72, 2.05] 0.91 [0.88, 0.93] 3.83 [3.80, 3.87] 0.62 [0.61, 0.62]

4.1.2 Comparison with state-of-the-art methods

In this part, we compare our method with different state-of-the-art methods. For each method below, we used the code available
†† ‡‡ and retrained the model using the same data split as in our training process. The first method by Jonsson et al. uses
a ResNet-like architecture and demonstrated promising results in age prediction24. More recently, Peng et al. presented a
lightweight architecture named Simple Fully Convolutional Network (SFCN) for this problem59. They considered age prediction
as a classification problem. To introduce a relationship between close classes, they used a soft label during training. The soft
label is a probability distribution centered around the ground-truth age. In another work, Leonardsen et al. reused the SFCN
backbone and demonstrated that the soft label can lead to better accuracy with in-domain data but the regression version presents
a better generalization capacity on out-of-domain data60. Table 4 shows the results of the comparison. For the young population,
we can remark that our method presents a very low MAE (1.88 years) and very high R2 (0.91) compared to other state-of-the-art
methods. For the older population, all methods present a drop in performance. In this case, our method shows MAE = 3.83 years
and R2 = 0.62, presenting the best prediction error over all methods. Finally, our method shows better and non-overlapping CI
compared to other methods, demonstrating superior performance on chronological age estimation.

4.2 Disease classification

4.2.1 Ablation study for binary classification tasks

In this part, we aim at assessing the BSAGE (i.e., the difference between BSA and the chronological subject’s age) feature in the
context of specific disease detection (binary classification). To do it, we compare this feature with the brain structure volume
feature (denoted as V). We denote BSAGEnc as the BSAGE without age correction (see Section 3.2). Finally, we propose to take
advantage of both BSAGE and structure volume biomarker to improve the discriminative capacity of our model.

Table 5 shows the results of the comparison between different features for different classification problems. The balanced
accuracy (BACC) is presented. Other metrics are provided in the appendix. First, we can remark that BSAGE (exp. 2, 6) shows
better results in BACC and the CI associated than the non corrected version BSAGEnc (exp. 1, 5) in most classification problems
(i.e., AD, FTD and MS detection). Only in case of PD detection, the version without age correction shows better results than the

†† https://github.com/ha-ha-ha-han/UKBiobank_deep_pretrain
‡‡ https://github.com/benniatli/BrainAgePredictionResNet

https://github.com/ha-ha-ha-han/UKBiobank_deep_pretrain
https://github.com/benniatli/BrainAgePredictionResNet
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T A B L E 4 Comparison with state-of-the-art methods. Red: best result, Blue: second best result. The model performance is
estimated by different metric: Mean absolute error (MAE) and the coefficient of determination (R2). For each method, ten cross-
validated models were used to predict the chronological age and the 10 outputs were averaged to make the final prediction. We
denote CI for Confidence Interval. The CI is estimated at 95% confidence level using boostraping. The age for each population
is under the form: mean ± std.

No. Method
Young population Older population
Age: 14.8 ± 9.3 Age: 64.2 ± 7.9

MAE CI R2 CI MAE CI R2 CI

1 ResNet-like 24 2.84 [2.53, 3.21] 0.71 [0.59, 0.79] 4.14 [4.10, 4.18] 0.54 [0.53, 0.55]
2 SFCN soft label 59 2.78 [2.52, 3.20] 0.71 [0.59, 0.79] 4.92 [4.88, 4.97] 0.32 [0.35, 0.37]
3 SFCN regression 60 2.89 [2.54, 3.26] 0.68 [0.53, 0.78] 4.60 [4.56, 4.64] 0.46 [0.45, 0.47]

4 Our method 1.88 [1.72, 2.05] 0.91 [0.88, 0.93] 3.83 [3.80, 3.87] 0.62 [0.61, 0.62]

T A B L E 5 Ablation study for binary classification tasks. Red: best result, Blue: second best result. The balanced accuracy
(BACC) is used to assess the model performance (presented in %). We denote BSAGEnc, BSAGE , V and CI for respectively
BSAGE with no age correction, BSAGE with age correction, structure volume and Confidence Interval. The CI is estimated at
95% confidence level using boostraping. The validation procedure is presented in Section 3.3.

AD vs. CN FTD vs. CN MS vs. CN PD vs. CN SZ vs. CN
No. Features BACC CI BACC CI BACC CI BACC CI BACC CI

In
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n N = 781 N = 547 N = 903 N = 763 N = 614
1 BSAGEnc 76.3 [73.6, 79.1] 71.4 [66.8, 75.8] 70.2 [67.2, 73.2] 71.8 [68.6, 74.9] 63.9 [60.0, 67.8]
2 BSAGE 88.2 [85.9, 90.4] 86.3 [82.7, 89.8] 83.7 [81.2, 86.1] 73.5 [70.4, 76.6] 77.3 [73.6, 80.8]
3 V 89.1 [86.8, 91.3] 89.4 [86.1, 92.6] 79.4 [76.7, 82.0] 64.8 [61.4, 68.1] 78.2 [74.6, 81.6]
4 BSAGE + V 91.8 [89.8, 93.6] 91.3 [88.2, 94.2] 84.6 [82.1, 86.9] 65.7 [62.4, 69.0] 81.0 [77.5, 84.4]
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N = 2103 N = 1273 N = 3411 N = 1360 N = 1310
5 BSAGEnc 62.3 [60.4, 64.3] 63.6 [56.2, 70.9] 79.3 [77.9, 80.6] 63.3 [60.3, 66.2] 73.1 [67.7, 78.7]
6 BSAGE 78.5 [76.8, 80.3] 90.6 [85.2, 95.2] 84.3 [83.1, 85.5] 52.8 [48.3, 57.2] 69.0 [63.7, 74.5]
7 V 86.3 [84.8, 87.7] 90.1 [84.5, 95.1] 71.1 [69.5, 72.7] 58.3 [54.0, 62.4] 76.6 [71.0, 81.8]
8 BSAGE + V 86.0 [84.4, 87.5] 91.0 [85.6, 95.6] 83.0 [81.7, 84.3] 59.8 [55.6, 64.3] 83.2 [78.1, 88.1]

corrected version in the out-of-domain dataset. Second, we observe that BSAGE (exp. 2, 6) shows high BACC in FTD detection
and MS detection while the results of structure volume shows its effectiveness in AD detection, FTD detection and SZ detection.
In other cases (i.e., PD detection), both features moderately perform on in-domain data and poorly perform on out-of-domain
data. From this observation, both the BSAGE and the structure volumes demonstrate discriminative power for different disease
detection tasks. Thus, it should be beneficial to combine them for a better discriminative capacity. As a result, the combination
of BSAGE and structure volume (exp. 4, 8) shows most of the time the best or the second best BACC.

4.2.2 Multi-disease classification

Table 6 shows the results for the multi-disease classification problem. We estimated the balanced accuracy (BACC), accuracy
(ACC) and area under curve (AUC) of our model. We performed classification using the true age (exp. 1, 7) and the predicted
subject’s age (exp. 2, 8) to confirm that estimating brain age at structure level provides better results than using a global age
estimation with real or estimated values. Moreover, these baseline methods enable to estimate the biases present between
populations in terms of age. Indeed, there was some bias in age distribution between diseases since for instance the SZ patients
were young while compared to the AD patients. Thanks to this analysis, we can observe that BSAGE (exp. 4, 10) and V feature
(exp. 5, 11) presents far higher performances and better CIs than the true age and the predicted subject’s age. This suggests that
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the structure-related information is valuable in classification context. Furthermore, we compared BSAGE with the BrainAGE
(i.e., the difference between the predicted subject’s age and the true age) for multi-disease diagnosis (exp. 3, 9). Experimental
results suggested that using local brain ages gap estimation (i.e., BSAGE ) is more beneficial than the global BrainAGE in multi-
disease detection. Besides, although the BSAGE (exp. 4, 10) presents lower performance than the V feature (exp. 5, 11), the two
biomarkers can be mutually used to achieve better classification performance. Indeed, their combination (exp. 6, 12) shows the
best performance and CI for all proposed metrics. Finally, we included in the Appendix another multi-disease classification
performance of CN vs. AD vs. FTD. This is presented alongside results from state-of-the-art methods, demonstrating the
efficiency of our framework in varied diagnostic scenarios.

T A B L E 6 Multi-disease classification results. Red: best result, Blue: second best result. The results are presented in %. We
denote BrainAGE for the difference between the predicted age and the true age, BSAGE , V and CI for BSAGE with correction,
structure volume and Confidence Interval. The CI is estimated at 95% confidence level using boostraping. The validation
procedure is presented in Section 3.3.

No. Features BACC CIBACC ACC CIACC AUC CIAUC
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n 1 True age 36.8 [35.5, 38.0] 46.4 [44.3, 48.5] 76.8 [75.8, 77.8]
2 Predicted age 33.3 [31.9, 34.7] 40.6 [38.6, 42.7] 74.7 [73.2, 75.4]
3 BrainAGE 26.9 [25.4, 28.4] 34.4 [32.3, 36.5] 66.2 [63.9, 67.1]
4 BSAGE 58.5 [56.1, 60.9] 61.7 [59.6, 63.9] 88.0 [87.0, 89.0]
5 V 64.5 [62.2, 66.8] 65.1 [63.0, 67.2] 90.2 [89.3, 91.1]
6 BSAGE + V 68.7 [66.4, 70.9] 69.6 [67.7, 71.6] 93.2 [92.4, 93.9]
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7 True age 34.0 [32.4, 35.5] 51.4 [50.0, 52.8] 74.3 [73.0, 75.6]
8 Predicted age 31.7 [30.4, 33.4] 41.8 [40.9, 43.8] 71.8 [70.4, 73.1]
9 BrainAGE 27.5 [26.8, 28.2] 50.8 [53.9, 56.7] 70.5 [68.9, 72.4]

10 BSAGE 44.7 [41.6, 48.0] 57.0 [55.6, 58.4] 82.6 [80.9, 84.3]
11 V 58.7 [55.4, 61.9] 59.4 [58.0, 60.8] 86.8 [85.6, 87.9]
12 BSAGE + V 63.3 [60.1, 66.5] 66.1 [64.8, 67.5] 90.6 [89.4, 91.8]

To better confirm the advantages of BSAGE over BrainAGE, we conducted an analysis of their respective confusion matrices
using out-of-domain data (independent testset). These matrices are presented in Figure 3. Notably, when employing BSAGE
features, the SVM classifier is capable of generating predictions for all classes. Although the precision for certain classes, such as
PD and SZ, may not be ideal, it is still better BrainAGE features, where the SVM fails to generate predictions for the FTD, PD,
and SZ classes. Instead, these classes are frequently misclassified as CN, AD, or MS. This misclassification may be attributed to
a overlap in the BrainAGE distribution between the (FTD, PD, SZ) and (CN, AD, MS) classes (see Section 4.3).

4.3 Predicted brain age gap of different populations

In this section, we compare the predicted brain age gap between different populations (i.e., CN, AD, FTD, MS, PD and SZ).
Figure 4 summarizes the distribution of predicted brain age gap for six considered populations. The median and mean predicted
brain ages of CN, AD, FTD, MS, PD and SZ are respectively (-1.1, -1.0), (3.3, 3.4), (8.3, 9.2), (11.2, 11.8), (1.0, 1.0) and (6.2,
6.1). First, we observe that the CN class has the mean and median closest to 0 as expected. Second, the BrainAGE of all patient
groups is significantly higher than the cognitively normal group (p < 0.0001 with T-test). Third, PD pathology seems to be
closest to healthy people. Indeed, although T1 weighted MRI presents high contrast of grey/white matter, poor contrast may be
found in structures related to PD (e.g., subthalamic nuclei)61. This may explain the proximity of this class with CN class and the
poor performance in PD detection (see Table 5). Fourth, the FTD group presents a more advanced aging process than AD group
which is in line with the finding of Lee et al.62. Finally, we found the same magnitude of BSAGE for MS (11.2 years) as Cole et
al. (about 10.8 years)63, for AD (3.3 years) as Sendi et al. (2.1 years)64 and for SZ (6.2 years) as Koutsouleris et al. (5.5 years)29.
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F I G U R E 3 Confusion matrix associated with BSAGE features (left) and BrainAGE features (right) computed on out-of-
domain data (independent testset).

F I G U R E 4 Predicted brain age of different populations in out-of-domain data (independant testset). The white point presents
the position of the mean value.

4.4 Interpretation of brain structure age gap estimation

In this section, we propose to visualize the variation of the age gap between brain structures. The presented results in Figure 5
correspond to the average BSAGE value for each structure on different populations of our out-of-domain datasets. We use the
same color bar for all populations to compare the impact of each disease on the aging process.

For the AD group, the region surrounding the hippocampus is highlighted as the most accelerated aging area. This region is
well-known to be related to AD65,66,67,68. For the FTD group, the accelerated aging pattern is mainly located in the temporal and
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F I G U R E 5 BSAGE of different populations in out-of-domain data (independant testset).

frontal lobes which are in line with current literature69,70. For the MS group, the area with the highest accelerated aging pattern
is similar to the finding of Cortese et al. (i.e., thalamus and global cortical grey matter)71. For the PD group, all regions seem to
be close to healthy people as discussed in Section 4.3. Finally, for the SZ group, the prefrontal and medial temporal lobe regions
are highlighted which is coherent with several studies72,73.

We further analyzed the brain structures showing the most significant age differences for each disease, as outlined in Table 7.
Firstly, many of the brain structures we previously mentioned also appear on this list, which is consistent with our expectations.
Secondly, there’s a variation in the ranking of brain structures based on their mean age differences across diseases. This distinction
highlights the reason our BSAGE features are more insightful than the overall brain age gap (BrainAGE) for multi-disease
diagnosis.

5 DISCUSSION

In this work, we proposed an approach to estimate brain age at structure level. We showed that this feature can be used for
different purposes. First, it can be directly used to accurately estimate the chronological age. Second, this can be used to compute
the BSAGE (i.e., the difference between brain structure ages and the chronological age). This biomarker presents discriminative
patterns which are useful for the multi-disease classification problem (i.e., CN vs. AD vs. FTD vs. MS vs. PD vs. SZ).

For the problem of chronological age estimation, we observed that the model accuracy was heavily influenced by different
factors: data amount and data augmentation techniques. In our experiments, the model accuracy was consistently improved when
the data amount was increased and we did not observe saturation. This suggests that training our framework on more data could
yield higher accuracy. In this study, due to the limited training data, we instead applied several data augmentation techniques to
improve the generalization capacity of our model. Experimental results showed that the random shift and mixup techniques have
a huge impact on our model performance (see Table 3). Moreover, the resulting BSA can enable a more accurate subject’s age
prediction. While our framework was training over a large range of ages (i.e., 0 to 95 years old), it achieved higher accuracy
when predicting on young population (i.e., ABIDE dataset MAE = 1.88 years) than on older population (i.e., UKBioBank
dataset MAE = 3.83 years). Our approach outperformed other state-of-the-art methods with 1.20 years MAE lower on the young
population and 0.99 year MAE lower on the old population. When evaluating our approach on different disease populations
(i.e., AD, FTD, MS, PD, SZ), our findings were in line with current knowledge in the literature (see Section 4.3 for more details).
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T A B L E 7 Ten brain structures with highest age gap for each disease. We denote L. for Left, R. for Right. The full table is provided in Appendix.

AD FTD MS
Structure Mean age gap Structure Mean age gap Structure Mean age gap

L. Temporal Pole 5.23 L. Temporal Pole 16.11 L. Superior Occipital Gyrus 16.59
L. Amygdala 5.20 L. Medial Orbital Gyrus 15.62 L. Cuneus 16.55
L. Posterior Orbital Gyrus 5.13 L. Gyrus Rectus 15.49 L. Precuneus 16.42
L. Entorhinal Area 5.05 L. Posterior Orbital Gyrus 15.42 R. Superior Occipital Gyrus 16.37
L. Parahippocampal Gyrus 4.98 R. Gyrus Rectus 15.21 R. Postcentral Gyrus Medial Segment 16.33
L. Planum Polare 4.97 L. Entorhinal Area 15.03 R. Superior Frontal Gyrus 16.23
L. Inferior Temporal Gyrus 4.96 L. Anterior Orbital Gyrus 14.94 R. Supplementary Motor Cortex 16.23
L. Hippocampus 4.90 R. Anterior Orbital Gyrus 14.76 L. Supplementary Motor Cortex 16.22
L. Anterior Insula 4.89 R. Medial Orbital Gyrus 14.71 R. Supramarginal Gyrus 16.19
L. Basal Forebrain 4.88 L. Medial Frontal Cortex 14.68 R. Cuneus 16.18

PD SZ
Structure Mean age gap Structure Mean age gap

R. Lateral Orbital Gyrus 2.58 L. Lateral Orbital Gyrus 13.09
R. Frontal Pole 2.56 L. Anterior Orbital Gyrus 12.46
R. Anterior Orbital Gyrus 2.39 L. Temporal Pole 11.97
R. Orbital of Inferior Frontal Gyrus 2.25 L. Frontal Pole 11.79
R. Medial Orbital Gyrus 2.24 L. Orbital of Inferior Frontal Gyrus 11.55
R. Middle Frontal Gyrus 2.17 L. Gyrus Rectus 11.40
R. Triangular of Inferior Frontal Gyrus 2.15 L. Posterior Orbital Gyrus 11.29
R. Superior Frontal Gyrus 2.15 R. Frontal Pole 11.26
R. Medial Frontal Cortex 2.06 L. Medial Orbital Gyrus 11.13
R. Gyrus Rectus 1.97 R. Anterior Orbital Gyrus 11.13

Finally, we observed that the predicted age distributions are different between diseases, suggesting a discriminative power of our
BSA feature.

While most papers used the global BrainAGE to show that a disease can present an accelerated or delayed aging process on a
population28,29,19, only a few approaches have proposed to use it for classification30,31,32,33. Moreover, these studies dedicated to
classification had a common limitation. Indeed, it might exist a range of global BrainAGE values that is presented in different
populations. In our case, all populations had global BrainAGE values in range [-5, 10] (see Figure 4). When the number of
classes is increased, this limitation becomes more challenging. This might explain why existing BrainAGE-based algorithms only
address classification problems with a low number of class (e.g., binary classification). This raises the need for other features
better describing the brain aging process for classification. Thus, we propose to extend the notion of BrainAGE to BSAGE .
This local feature offers a richer representation of the brain aging process than global BrainAGE estimation. Consequently, this
information is important for improving the multi-disease classification as analyzed in Section 4.4.

In addition to improve classification performance, BSAGE can be projected into a brain segmentation for visualization purpose.
Principal remarks for each population were discussed in Section 4.4. Overall, it gives some insights about the specific structures
impacted by each disease. The main patterns of each disease highlighted by our color maps are coherent with current literature
(as discussed in Section 4.4). This presents an important clinical value of our framework in a real medical context.

Based on brain age prediction, several methods have been developed that can potentially identify brain regions affected by
diseases. For example, Levakov et al. proposed using Explainable AI maps of CNNs to emphasize brain regions that significantly
contribute to brain age prediction74. Hypothetically, if such techniques were applied to populations with brain disorders, they
might uncover regions associated with signs of either accelerated or delayed brain aging due to the disorder. In our method, the
BSAGE maps exhibit other interesting properties. Specifically, our BSAGE maps offer a quantitative measure that captures
the abnormality of brain structure at the subject level. In contrast, explanation maps present a more qualitative insight into the
relative significance of each feature during the decision-making phase. For instance, within an explanation map of an AD patient,
it remains uncertain whether the non-emphasized regions (areas the models did not consider important for their decision) are
in a healthy state or just non-informative (either redundant with other structures, or possibly too noisy across subjects, etc.).
Additionally, explanation maps typically normalize values within a same range of values, making any comparison between two
maps purely qualitative.

One limitation of our study is the lack of an independent in-domain testset for evaluating multi-disease classification. Typically,
leveraging a separate in-domain testset would enable a more rigorous analysis of performance differences between in-domain
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and out-of-domain settings. In our case, however, the use of a small testset could compromise the representativeness of the
data, affecting the reliability of performance estimates. Conversely, using a large portion of the data for testing could reduce the
amount of data available for effective model training. To balance these competing needs, we proposed to use a cross-validation
strategy. While this approach offers a reasonable compromise between performance estimation and training robustness, it
admittedly limits our ability to investigate performance disparities between in-domain and out-of-domain scenarios explicitly.

Finally, some diseases such as Parkinson’s Disease cannot be easily detected using T1 weighted MRI. Future works should
focus on the multi-modal input to either accurately estimate brain age or produce a more discriminative BSAGE feature. In
addition, we use the same CNN architecture to analyze different brain locations. This can be not optimal due to the fact that
different brain locations may have a specific set of patterns. An auto-search algorithm to select an optimal architecture for each
brain region would be beneficial for further analysis.

6 CONCLUSION

In this paper, we propose to extend the notion of brain age by estimating the brain age at voxel level. This voxelwise brain
age map is then used to compute BSA. This biomarker can be used for different purposes. First, it can be used to predict the
chronological age of people. The deviation of the predicted age from the subject’s age can provide insight about the individual
brain status. Second, by subtracting the subject’s age from the BSA, we obtain a BSA gap estimation (i.e., BSAGE ). This
feature can be mutually used with other biomarkers such as structure volume for disease detection. Finally, this feature can be
also visualized to detect brain abnormality in MRI. Such a tool can help clinicians in making more informed decisions.

ACKNOWLEDGMENTS
This work benefited from the support of the project DeepvolBrain of the French National Research Agency (ANR-18-CE45-0013).
This study was achieved within the context of the Laboratory of Excellence TRAIL ANR-10-LABX-57 for the BigDataBrain
project. Moreover, we thank the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02 and RRI "IMPACT"),
the French Ministry of Education and Research, and the CNRS for DeepMultiBrain project.

The ADNI data used in the preparation of this manuscript were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (National Institutes of Health Grant U01 AG024904). The ADNI is funded by the National Institute on Aging and
the National Institute of Biomedical Imaging and Bioengineering and through generous contributions from private partners as
well as nonprofit partners listed at: https://ida.loni.usc.edu/collaboration/access/appLicense.jsp. Private sector contributions
to the ADNI are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization
is the Northern California Institute for Research and Education, and the study was coordinated by the Alzheimer’s Disease
Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for NeuroImaging
at the University of California, Los Angeles. This research was also supported by NIH grants P30AG010129, K01 AG030514
and the Dana Foundation.

The NDAR data used in the preparation of this manuscript were obtained from the NIH-supported National Database for
Autism Research (NDAR). This is supported by the National Institute of Child Health and Human Development, the National
Institute on Drug Abuse, the National Institute of Mental Health, and the National Institute of Neurological Disorders and Stroke.
A listing of the participating sites and a complete listing of the study investigators can be found at http://pediatricmri.nih.gov/
nihpd/info/participating_centers.html.

The ICBM data used in the preparation of this manuscript were supported by Human Brain Project grant PO1MHO52176-11
and Canadian Institutes of Health Research grant MOP- 34996.

The IXI data used in the preparation of this manuscript were supported by the U.K. Engineering and Physical Sciences
Research Council (EPSRC) GR/S21533/02 - http://www.brain-development.org/.

The ABIDE data used in the preparation of this manuscript were supported by ABIDE funding resources listed at http:
//fcon_1000.projects.nitrc.org/indi/abide/.

The AIBL data used in the preparation of this manuscript were obtained from the AIBL study of ageing funded by the Common-
wealth Scientific Industrial Research Organization (CSIRO; a publicly funded government research organization), Science
Industry Endowment Fund, National Health and Medical Research Council of Australia (project grant 1011689), Alzheimer’s
Association, Alzheimer’s Drug Discovery Foundation, and an anonymous foundation. See www.aibl.csiro.au for further details.

The ADHAD, DLBS and SALD data used in the preparation of this article were obtained from http://fcon_1000.projects.nitrc.
org (Mennes M et al., NeuroImage, 2013; Wei D et al., bioRxiv 2017).

https://ida.loni.usc.edu/collaboration/access/appLicense.jsp
www.fnih.org
http://pediatricmri.nih.gov/nihpd/info/participating_centers.html
http://pediatricmri.nih.gov/nihpd/info/participating_centers.html
http://www.brain-development.org/
http://fcon_1000.projects.nitrc.org/indi/abide/
http://fcon_1000.projects.nitrc.org/indi/abide/
www.aibl.csiro.au
http://fcon_1000.projects.nitrc.org
http://fcon_1000.projects.nitrc.org


Brain Structure Ages - A new biomarker for multi-disease classification 15

Data used in the preparation of this article were also obtained from the MIRIAD database (Malone IB et al., NeuroImage, 2012)
The MIRIAD investigators did not participate in analysis or writing of this report. The MIRIAD dataset is made available through
the support of the UK Alzheimer’s Society (Grant RF116). The original data collection was funded through an unrestricted
educational grant from GlaxoSmithKline (Grant 6GKC).

Data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database
(www.ppmi-info.org). PPMI – a public-private partnership – was funded by The Michael J. Fox Foundation for Parkinson’s
Research and funding partners that can be found at https://www.ppmi-info.org/about-ppmi/who-we-are/study-sponsor

Data collection and sharing for this project was provided by the Cambridge Centre for Ageing and Neuroscience (CamCAN,
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/). CamCAN funding was provided by the UK Biotechnology and Biologi-
cal Sciences Research Council (grant number BB/H008217/1), together with support from the UK Medical Research Council
and University of Cambridge, UK.

Data used in the preparation of this work were obtained from the DecNef Project Brain Data Repository (https://bicr-resource.
atr.jp/srpbsopen/) gathered by a consortium as Of Japanese Strategic Research Program for the Promotion of Brain Science
(SRPBS) supported by the Japanese Advanced Research and Development Programs for Medical Innovation (AMED, Tanaka
SC et al., Scientific data, 2021).

TLDNI was funded through the National Institute of Aging, and started in 2010. The primary goals of FTLDNI were to
identify neuroimaging modalities and methods of analysis for tracking frontotemporal lobar degeneration (FTLD) and to assess
the value of imaging versus other biomarkers in diagnostic roles. The Principal Investigator of NIFD was Dr. Howard Rosen, MD
at the University of California, San Francisco. The data are the result of collaborative efforts at three sites in North America. For
up-to-date information on participation and protocol, please visit http://memory.ucsf.edu/research/studies/nifd. Data collection
and sharing for this project was funded by the Frontotemporal Lobar Degeneration Neuroimaging Initiative (National Institutes
of Health Grant R01 AG032306). The study is coordinated through the University of California, San Francisco, Memory and
Aging Center. FTLDNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

The C-MIND data used in the preparation of this article were obtained from the C-MIND Data Repository (accessed in Feb
2015) created by the C-MIND study of Normal Brain Development. This is a multisite, longitudinal study of typically developing
children from ages newborn through young adulthood conducted by Cincinnati Children’s Hospital Medical Center and UCLA
and supported by the National Institute of Child Health and Human Development (Contract #s HHSN275200900018C). A listing
of the participating sites and a complete listing of the study investigators can be found at https://research.cchmc.org/c-mind. The
NDAR data used in the preparation of this manuscript were obtained from the NIH-supported National Database for Autism
Research (NDAR). NDAR is a collaborative informatics system created by the National Institutes of Health to provide a national
resource to support and accelerate research in autism. The NDAR dataset includes data from the NIH Pediatric MRI Data
Repository created by the NIH MRI Study of Normal Brain Development. This is a multisite, longitudinal study of typically
developing hildren from ages newborn through young adulthood conducted by the Brain Development Cooperative Group and
supported by the National Institute of Child Health and Human Development, the National Institute on Drug Abuse, the National
Institute of Mental Health, and the National Institute of Neurological Disorders and Stroke (Contract #s N01- HD02-3343,
N01-MH9-0002, and N01-NS-9-2314, -2315, -2316, -2317, - 2319 and -2320). A listing of the participating sites and a complete
listing of the study investigators can be found at http://pediatricmri.nih.gov/nihpd/info/participating_centers.html.

The NACC database was funded by NIA/NIH Grants listed at https://naccdata.org/publish-project/authors-checklist#
acknowledgment.

This research has been conducted using data from UK Biobank, a major biomedical database. . See https://www.ukbiobank.ac.
uk/ for further details.

Data collection has been supported by a grant provided by the French State and handled by the "Agence Nationale de la
Recherche," within the framework of the "Investments for the Future" programme, under the reference ANR-10-COHO-002,
Observatoire Français de la Sclérose en Plaques (OFSEP)" & "Eugène Devic EDMUS Foundation against multiple sclerosis".

Data was downloaded from the COllaborative Informatics and Neuroimaging Suite Data Exchange tool (COINS; http:
//coins.mrn.org/dx) and data collection was funded by NIMH R01MH084898-01A1, “Brain Glutamate and Outcome in
Schizophrenia”, PI: J. Bustillo.

Data were provided in part by OASIS : OASIS-1: Cross-Sectional: Principal Investigators: D. Marcus, R, Buckner, J,
Csernansky J. Morris; P50 AG05681, P01 AG03991, P01 AG026276, R01 AG021910, P20 MH071616, U24 RR021382

FINANCIAL DISCLOSURE
None reported.

www.ppmi-info.org
https://www.ppmi-info.org/about-ppmi/who-we- are/study-sponsor
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://bicr-resource.atr.jp/srpbsopen/
https://bicr-resource.atr.jp/srpbsopen/
http://memory.ucsf.edu/research/studies/nifd
https://research.cchmc.org/c-mind
http://pediatricmri.nih.gov/nihpd/info/participating_centers.html
https://naccdata.org/publish-project/authors-checklist#acknowledgment
https://naccdata.org/publish-project/authors-checklist#acknowledgment
https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
http://coins.mrn.org/dx
http://coins.mrn.org/dx


16 HD Nguyen ET AL.

CONFLICT OF INTEREST
The authors declare no potential conflict of interests.

REFERENCES
1. Franke K, Gaser C. Ten Years of BrainAGE as a Neuroimaging Biomarker of Brain Aging: What Insights Have We Gained?. Frontiers in Neurology.

2019;10:789.
2. Chang CH, Lin CS, Luo YS, Lee YT, Lin C. Electrocardiogram-Based Heart Age Estimation by a Deep Learning Model Provides More Information

on the Incidence of Cardiovascular Disorders. Frontiers in Cardiovascular Medicine. 2022;9:754909.
3. Raghu VK, Weiss J, Hoffmann U, Aerts HJWL, Lu MT. Deep Learning to Estimate Biological Age From Chest Radiographs. JACC: Cardiovascular

Imaging. 2021;14:2226–2236.
4. Nakamura E, Miyao K. A Method for Identifying Biomarkers of Aging and Constructing an Index of Biological Age in Humans. The Journals of

Gerontology Series A: Biological Sciences and Medical Sciences. 2007;62:1096–1105.
5. Chen BH, Marioni RE, Colicino E, et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging.

2016;8:1844–1865.
6. Ignjatovic V, Lai C, Summerhayes R, et al. Age-Related Differences in Plasma Proteins: How Plasma Proteins Change from Neonates to Adults.

PLoS ONE. 2011;6:17213.
7. Armanious K, Abdulatif S, Shi W, et al. Age-Net: An MRI-Based Iterative Framework for Brain Biological Age Estimation. IEEE Transactions on

Medical Imaging. 2021;40:1778–1791.
8. Tian YE, Cropley V, Maier AB, Lautenschlager NT, Breakspear M, Zalesky A. Heterogeneous aging across multiple organ systems and prediction

of chronic disease and mortality. medRxiv. 2023. doi: 10.1101/2022.09.03.22279337
9. Le Goallec A, Diai S, Collin Sea. Using deep learning to predict abdominal age from liver and pancreas magnetic resonance images. Nature

Communications. 2022;13:1979. doi: 10.1038/s41467-022-29525-9
10. Mauer MA, Well EJ, Herrmann J, et al. Automated age estimation of young individuals based on 3D knee MRI using deep learning. International

Journal of Legal Medicine. 2021;135(2):649–663. doi: 10.1007/s00414-020-02465-z
11. Peters R. Aging and the brain. Postgraduate Medical Journal. 2006;82:84–88.
12. Huizinga W, Poot DHJ, Vernooij MW, et al. A spatio-temporal reference model of the aging brain. NeuroImage. 2018;169:11–22.
13. Jia X, Liang P, Li Y, Shi L, Wang D, Li K. Longitudinal Study of Gray Matter Changes in Parkinson Disease. American Journal of Neuroradiology.

2015;36:2219–2226.
14. Tisserand DJ, Boxtel vMPJ, Pruessner JC, Hofman P, Evans AC, Jolles J. A Voxel-based Morphometric Study to Determine Individual Differences

in Gray Matter Density Associated with Age and Cognitive Change Over Time. Cerebral Cortex. 2004;14:966–973.
15. Coupé P, Manjón JV, Lanuza E, Catheline G. Lifespan Changes of the Human Brain In Alzheimer’s Disease. Scientific Reports. 2019;9:3998.
16. Coupé P, Manjón JV, Mansencal B, Tourdias T, Catheline G, Planche V. Hippocampal-amygdalo-ventricular atrophy score: Alzheimer disease

detection using normative and pathological lifespan models. Human Brain Mapping. 2022;43:3270–3282.
17. Cole JH, Franke K. Predicting Age Using Neuroimaging: Innovative Brain aging Biomarkers. Trends in Neurosciences. 2017;40:681–690.
18. Mishra S, Beheshti I, Khanna P. A Review of Neuroimaging-driven Brain Age Estimation for identification of Brain Disorders and Health

Conditions. IEEE Reviews in Biomedical Engineering. 2021:1–1.
19. Franke K, Ziegler G, Klöppel S, Gaser C. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the

influence of various parameters. NeuroImage. 2010;50:883–892.
20. Liem F, Varoquaux G, Kynast J, et al. Predicting brain-age from multimodal imaging data captures cognitive impairment. NeuroImage.

2017;148:179–188.
21. Cole JH, Ritchie SJ, Bastin ME, et al. Brain age predicts mortality. Molecular Psychiatry. 2018;23:1385–1392.
22. Bintsi KM, Baltatzis V, Kolbeinsson A, Hammers A, Rueckert D. Patch-based brain age estimation from mr images. In: , , Springer, 2020:98–107.
23. Cole JH, Poudel RPK, Tsagkrasoulis D, et al. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable

biomarker. NeuroImage. 2017;163:115–124.
24. Jonsson BA, Bjornsdottir G, Thorgeirsson TE, et al. Brain age prediction using deep learning uncovers associated sequence variants. Nature

Communications. 2019;10:5409.
25. Bermudez C, Plassard AJ, Chaganti S, et al. Anatomical context improves deep learning on the brain age estimation task. Magnetic Resonance

Imaging. 2019;62:70–77.
26. Ueda M, Ito K, Wu K, et al. An Age Estimation Method Using 3D-CNN From Brain MRI Images. In: IEEE. 2019:380–383.
27. Bintsi KM, Baltatzis V, Kolbeinsson A, Hammers A, Rueckert D. Patch-Based Brain Age Estimation from MR Images. In: , , . 12449. , 2020:98–107.
28. Franke K, Luders E, May A, Wilke M, Gaser C. Brain maturation: Predicting individual BrainAGE in children and adolescents using structural

MRI. NeuroImage. 2012;63:1305–1312.
29. Koutsouleris N, Davatzikos C, Borgwardt S, et al. Accelerated Brain Aging in Schizophrenia and Beyond: A Neuroanatomical Marker of Psychiatric

Disorders. Schizophrenia Bulletin. 2014;40:1140–1153.
30. Gaser C, Franke K, Klöppel S, Koutsouleris N, Sauer H. BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer’s

Disease. PLoS ONE. 2013;8:67346.
31. Franke K, Gaser C. Dementia classification based on brain age estimation. In: aws. 2014:48–54.
32. Varzandian A, Razo MAS, Sanders MR, Atmakuru A, Fatta GD. Classification-Biased Apparent Brain Age for the Prediction of Alzheimer’s

Disease. Frontiers in Neuroscience. 2021;15:673120.
33. Cheng J, Liu Z, Guan H, et al. Brain Age Estimation From MRI Using Cascade Networks With Ranking Loss. IEEE Transactions on Medical

Imaging. 2021;40:3400–3412.
34. Beheshti I, Gravel P, Potvin O, Dieumegarde L, Duchesne S. A novel patch-based procedure for estimating brain age across adulthood. NeuroImage.

2019;197:618–624. doi: 10.1016/j.neuroimage.2019.05.025
35. Popescu SG, Glocker B, Sharp DJ, Cole JH. Local Brain-Age: A U-Net Model. Frontiers in Aging Neuroscience. 2021;13:761954. doi:

10.3389/fnagi.2021.761954

http://dx.doi.org/10.1101/2022.09.03.22279337
http://dx.doi.org/10.1038/s41467-022-29525-9
http://dx.doi.org/10.1007/s00414-020-02465-z
http://dx.doi.org/10.1016/j.neuroimage.2019.05.025
http://dx.doi.org/10.3389/fnagi.2021.761954
http://dx.doi.org/10.3389/fnagi.2021.761954


Brain Structure Ages - A new biomarker for multi-disease classification 17

36. Martino AD, Yan CG, Li Q, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in
autism. Molecular Psychiatry. 2014;19:659–667.

37. Martino AD, O’Connor D, Chen B, et al. Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific
Data. 2017;4:170010.

38. Jr CRJ, Bernstein MA, Fox NC, et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance
Imaging. 2008;27:685–691.

39. Ellis KA, Bush AI, Darby D, et al. The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline
characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. International Psychogeriatrics. 2009;21:672–687.

40. Mazziotta J, Toga A, Evans A, et al. A Probabilistic Atlas and Reference System for the Human Brain: International Consortium for Brain Mapping
(ICBM). Philosophical Transactions: Biological Sciences. 2001;356:1293–1322.

41. Payakachat N, Tilford JM, Ungar WJ. National Database for Autism Research (NDAR): Big Data Opportunities for Health Services Research and
Health Technology Assessment. PharmacoEconomics. 2016;34:127–138.

42. LaMontagne PJ, Benzinger TL, Morris JC, et al. OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and
Alzheimer Disease. medrxiv. 2019. doi: 10.1101/2019.12.13.19014902

43. Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–209.
44. Tanaka SC, Yamashita A, Yahata N, et al. A multi-site, multi-disorder resting-state magnetic resonance image database. Scientific Data. 2021;8:227.
45. Taylor JR, Williams N, Cusack R, et al. The Cambridge Centre for aging and Neuroscience (Cam-CAN) data repository: Structural and functional

MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. NeuroImage. 2017;144:262–269.
46. Parkinson Progression Marker Initiative . The Parkinson Progression Marker Initiative (PPMI). Progress in Neurobiology. 2011;95:629–635.
47. Vukusic S, Casey R, Rollot F, et al. Observatoire Français de la Sclérose en Plaques (OFSEP): A unique multimodal nationwide MS registry in

France. Multiple Sclerosis Journal. 2020;26:118–122.
48. Beekly DL, Ramos EM, Lee WW, et al. The National Alzheimer’s Coordinating Center (NACC) Database: The Uniform Data Set. Alzheimer

Disease & Associated Disorders. 2007;21:249–258.
49. Malone IB, Cash D, Ridgway GR, et al. MIRIAD—Public release of a multiple time point Alzheimer’s MR imaging dataset. NeuroImage.

2013;70:33–36.
50. Bustillo JR, Jones T, Chen H, et al. Glutamatergic and Neuronal Dysfunction in Gray and White Matter: A Spectroscopic Imaging Study in a Large

Schizophrenia Sample. Schizophrenia Bulletin. 2016:122.
51. Manjón JV, Coupé P, Martí-Bonmatí L, Collins DL, Robles M. Adaptive non-local means denoising of MR images with spatially varying noise

levels: Spatially Adaptive Nonlocal Denoising. Journal of Magnetic Resonance Imaging. 2010;31:192–203.
52. Tustison NJ, Avants BB, Cook PA, et al. N4ITK: Improved N3 Bias Correction. IEEE Transactions on Medical Imaging. 2010;29:1310–1320.
53. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image

registration. NeuroImage. 2011;54:2033–2044.
54. Manjón JV, Tohka J, García-Martí G, et al. Robust MRI brain tissue parameter estimation by multistage outlier rejection. Magnetic Resonance in

Medicine. 2008;59:866–873.
55. Manjón JV, Eskildsen SF, Coupé P, Romero JE, Collins DL, Robles M. Nonlocal Intracranial Cavity Extraction. International Journal of Biomedical

Imaging. 2014;2014:1–11.
56. Coupé P, Mansencal B, Clément M, et al. AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation. NeuroImage.

2020;219:117026.
57. Zhang H, Cisse M, Dauphin YN, Lopez-Paz D. mixup: Beyond Empirical Risk Minimization. arXiv:1710.09412 [cs, stat]. 2018.
58. Smith SM, Vidaurre D, Alfaro-Almagro F, Nichols TE, Miller KL. Estimation of brain age delta from brain imaging. NeuroImage. 2019;200:528–

539.
59. Peng H, Gong W, Beckmann CF, Vedaldi A, Smith SM. Accurate brain age prediction with lightweight deep neural networks. Medical Image

Analysis. 2021;68:101871.
60. Leonardsen EH, Peng H, Kaufmann T, et al. Deep neural networks learn general and clinically relevant representations of the aging brain.

NeuroImage. 2022;256:119210.
61. Mortezazadeh T, Seyedarabi H, Mahmoudian B, Islamian JP. Imaging modalities in differential diagnosis of Parkinson’s disease: opportunities and

challenges. Egyptian Journal of Radiology and Nuclear Medicine. 2021;52:79.
62. Lee J, Burkett BJ, Min HK, et al. Deep learning-based brain age prediction in normal aging and dementia. Nature Aging. 2022;2:412–424.
63. Cole JH, Raffel J, Friede T, et al. Longitudinal Assessment of Multiple Sclerosis with the Brain-Age Paradigm. Annals of Neurology. 2020;88:93–

105.
64. Sendi MS, Salat DH, Calhoun VD. Brain age acceleration as biomarker of Alzheimer’s disease progression: Functional network connectivity

analysis. Alzheimer’s & Dementia. 2021;17.
65. Frisoni GB, Fox NC, Jr CRJ, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology.

2010;6:67–77.
66. Mu Y, Gage FH. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Molecular Neurodegeneration. 2011;6:85.
67. Jin K, Peel AL, Mao XO, et al. Increased hippocampal neurogenesis in Alzheimer’s disease. Proceedings of the National Academy of Sciences.

2004;101:343–347.
68. Hyman BT, Hoesen GWV, Damasio AR, Barnes CL. Alzheimer’s Disease: Cell-Specific Pathology Isolates the Hippocampal Formation. Science.

1984;225:1168–1170.
69. Whitwell JL, Przybelski SA, Weigand SD, et al. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster

analysis study. Brain. 2009;132:2932–2946.
70. Boeve BF, Boxer AL, Kumfor F, Pijnenburg Y, Rohrer JD. Advances and controversies in frontotemporal dementia: diagnosis, biomarkers, and

therapeutic considerations. The Lancet Neurology. 2022;21:258–272.
71. Cortese R, Collorone S, Ciccarelli O, Toosy AT. Advances in brain imaging in multiple sclerosis. Therapeutic Advances in Neurological Disorders.

2019;12:175628641985972.
72. Karlsgodt KH, Sun D, Cannon TD. Structural and Functional Brain Abnormalities in Schizophrenia. Current Directions in Psychological Science.

2010;19:226–231.

http://dx.doi.org/10.1101/2019.12.13.19014902


18 HD Nguyen ET AL.

73. DeLisi LE, Szulc KU, Bertisch HC, Majcher M, Brown K. Understanding structural brain changes in schizophrenia. Dialogues in Clinical
Neuroscience. 2006;8:71–78.

74. Levakov G, Rosenthal G, Shelef I, Raviv TR, Avidan G. From a deep learning model back to the brain-Identifying regional predictors and their
relation to aging. Human Brain Mapping. 2020;41(12):3235–3252. doi: 10.1002/hbm.25011

75. Nguyen HD, Clément M, Planche V, Mansencal B, Coupé P. Deep grading for MRI-based differential diagnosis of Alzheimer’s disease and
Frontotemporal dementia. Artificial Intelligence in Medicine. 2023;144:102636.

http://dx.doi.org/10.1002/hbm.25011


Brain Structure Ages - A new biomarker for multi-disease classification 19

Appendix

F I G U R E A1 Our regression lines in young and old population.

T A B L E A1: Ablation study for binary classification tasks. Red: best result, Blue: second best result. The accuracy (ACC) is used to assess the model
performance (presented in %). We denote BSAGEnc, BSAGE and V for respectively BSAGE with no age correction, BSAGE with age correction and
structure volume. The validation procedure is presented in Section 3.3.

No. Features AD vs. CN FTD vs. CN MS vs. CN PD vs. CN SZ vs. CN

In
-d

om
ai

n
cr

os
s-

va
lid

at
io

n N = 781 N = 547 N = 903 N = 763 N = 614
1 BSAGEnc 75.8 76.4 70.9 71.3 68.9
2 BSAGE 77.1 89.8 83.5 73.8 81.3
3 V 89.1 93.1 79.8 65.0 81.8
4 BSAGE + V 91.8 93.8 84.6 66.1 83.9

O
ut

-o
f-

do
m

ai
n

in
de

pe
nd

en
tt

es
ts

et

N = 2103 N = 1273 N = 3411 N = 1360 N = 1310
5 BSAGEnc 59.4 69.0 78.3 42.9 90.1
6 BSAGE 57.6 94.3 83.1 58.2 93.1
7 V 86.2 95.4 73.4 51.6 91.3
8 BSAGE + V 86.3 95.0 83.5 54.9 94.0

T A B L E A2: Ablation study for binary classification tasks. Red: best result, Blue: second best result. The area under curve (AUC) is used to assess
the model performance (presented in %). We denote BSAGEnc, BSAGE and V for respectively BSAGE with no age correction, BSAGE with age
correction and structure volume. The validation procedure is presented in Section 3.3.
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No. Features AD vs. CN FTD vs. CN MS vs. CN PD vs. CN SZ vs. CN
In

-d
om

ai
n

cr
os

s-
va

lid
at

io
n N = 781 N = 547 N = 903 N = 763 N = 614

1 BSAGEnc 80.8 82.3 78.0 75.7 78.8
2 BSAGE 94.8 94.6 91.5 79.0 88.0
3 V 95.6 95.2 87.1 71.6 88.3
4 BSAGE + V 96.6 97.2 93.0 72.2 91.4

O
ut

-o
f-

do
m

ai
n

in
de

pe
nd

en
tt

es
ts

et

N = 2103 N = 1273 N = 3411 N = 1360 N = 1310
5 BSAGEnc 70.1 69.5 87.3 64.9 89.8
6 BSAGE 85.2 94.0 91.0 53.2 84.7
7 V 94.0 93.9 78.9 61.8 88.9
8 BSAGE + V 93.5 94.6 91.2 63.3 94.2

T A B L E A3: Comparison of our model performance with the state-of-the-art methods for the classification CN vs. AD vs. FTD. Red: best result,
Blue: second best result. The results are presented in %. The performance of the state-of-the-art methods is sourced from 75. It is important to note that
the in-domain data used by these methods differs from ours. Specifically, they employed the ADNI2 and NIFD datasets for training their classifiers,
whereas we used CN subjects from ADNI2 for training our age prediction models. For training our classifiers, we used all available CN, AD, and
FTD samples from our in-domain data. For out-of-domain data, the same dataset (i.e., NACC) with the same subjects as 75 is employed to ensure a
more equitable comparison. It is also worth noting that the table that follows is only presented to offer an overview of the classification efficacy of our
framework for CN vs. AD vs. FTD.

No. Methods BACC ACC AUC

In-domain
cross-validation

1 Hu et al. 2021 72.5 76.3 90.0
2 Ma et al. 2020 75.9 77.1 86.4
3 Nguyen et al. 2023 84.4 86.0 93.8
4 Our method 85.3 88.0 95.6

Out-of-domain
independent testset

5 Hu et al. 2021 68.8 85.2 86.5
6 Ma et al. 2020 74.6 69.1 87.5
7 Nguyen et al. 2023 81.6 87.1 91.6
8 Our method 82.3 84.0 91.8

T A B L E A4: All brain structures with decreasing age gap for each disease. We denote L. for Left, R. for Right.

AD FTD MS
Structure Mean age gap Structure Mean age gap Structure Mean age gap

L. Temporal Pole 5.23 L. Temporal Pole 16.11 L. Superior Occipital Gyrus 16.59
L. Amygdala 5.20 L. Medial Orbital Gyrus 15.62 L. Cun Cuneus 16.55
L. Posterior Orbital Gyrus 5.13 L. Gyrus Rectus 15.49 L. Precuneus 16.42
L. Ent Entorhinal Area 5.05 L. Posterior Orbital Gyrus 15.42 R. Superior Occipital Gyrus 16.37
L. Parahippocampal Gyrus 4.98 R. Gyrus Rectus 15.21 R. Postcentral Gyrus Medial Segment 16.33
L. Planum Polare 4.97 L. Ent Entorhinal Area 15.03 R. Superior Frontal Gyrus 16.23
L. Inferior Temporal Gyrus 4.96 L. Anterior Orbital Gyrus 14.94 R. Supplementary Motor Cortex 16.23
L. Hippocampus 4.90 R. Anterior Orbital Gyrus 14.76 L. Supplementary Motor Cortex 16.22
L. Anterior Insula 4.89 R. Medial Orbital Gyrus 14.71 R. Supramarginal Gyrus 16.19
L. Basal Forebrain 4.88 L. Medial Frontal Cortex 14.68 R. Cun Cuneus 16.18
L. Middle Temporal Gyrus 4.84 L. Lateral Orbital Gyrus 14.65 L. Precentral Gyrus Medial Segment 16.15
L. Medial Orbital Gyrus 4.81 L. Amygdala 14.63 R. Planum Temporale 16.14
L. Fusiform Gyrus 4.68 R. Frontal Pole 14.62 R. Precentral Gyrus 16.14
R. Fusiform Gyrus 4.68 R. Medial Frontal Cortex 14.62 R. Postcentral Gyrus 16.13
R. Parahippocampal Gyrus 4.66 L. Subcallosal Area 14.41 R. Precuneus 16.13
L. Putamen 4.65 L. Basal Forebrain 14.39 L. Postcentral Gyrus Medial Segment 16.12
R. Temporal Pole 4.62 L. Orbital Part Of The Inferior Frontal Gyrus 14.36 L. Posterior Cingulate Gyrus 16.12
L. Ventral Dc 4.59 L. Planum Polare 14.21 R. Middle Occipital Gyrus 16.11
R. Inferior Temporal Gyrus 4.59 L. Accumbens Area 14.19 R. Superior Parietal Lobule 16.09
R. Amygdala 4.57 R. Temporal Pole 14.19 R. Precentral Gyrus Medial Segment 16.09
L. Posterior Insula 4.52 R. Subcallosal Area 14.12 R. Angular Gyrus 16.07
L. Superior Temporal Gyrus 4.52 L. Anterior Insula 13.96 L. Superior Frontal Gyrus 16.07
L. Frontal Operculum 4.52 R. Basal Forebrain 13.88 L. Superior Parietal Lobule 16.02
R. Middle Temporal Gyrus 4.50 R. Ent Entorhinal Area 13.85 L. Angular Gyrus 16.00
R. Planum Polare 4.46 R. Lateral Orbital Gyrus 13.76 L. Precentral Gyrus 16.00
External 4.46 R. Posterior Orbital Gyrus 13.69 L. Middle Cingulate Gyrus 15.99
R. Hippocampus 4.45 L. Inferior Temporal Gyrus 13.63 R. Parietal Operculum 15.94
L. Accumbens Area 4.44 L. Frontal Pole 13.63 L. Postcentral Gyrus 15.92
R. Basal Forebrain 4.42 L. Frontal Operculum 13.59 L. Supramarginal Gyrus 15.87
L. Inf Lat Vent 4.39 L. Putamen 13.54 L. Parietal Operculum 15.86
L. Pallidum 4.36 R. Anterior Cingulate Gyrus 13.51 L. Middle Occipital Gyrus 15.80
4th Ventricle 4.35 R. Amygdala 13.49 R. Posterior Cingulate Gyrus 15.80
R. Ent Entorhinal Area 4.34 L. Middle Temporal Gyrus 13.44 R. Middle Frontal Gyrus 15.75
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R. Posterior Insula 4.33 L. Anterior Cingulate Gyrus 13.39 L. Middle Frontal Gyrus 15.73
L. Orbital Part Of The Inferior Frontal Gyrus 4.33 L. Superior Temporal Gyrus 13.25 R. Middle Cingulate Gyrus 15.73
R. Superior Temporal Gyrus 4.33 R. Superior Frontal Gyrus Medial Segment 13.18 L. Superior Frontal Gyrus Medial Segment 15.71
R. Anterior Insula 4.32 L. Parahippocampal Gyrus 13.18 L. Lateral Ventricle 15.61
Brainstem 4.31 L. Pallidum 13.11 R. Superior Temporal Gyrus 15.60
L. Transverse Temporal Gyrus 4.30 L. Hippocampus 13.11 R. Occipital Pole 15.59
R. Posterior Orbital Gyrus 4.27 L. Triangular Part Of The Inferior Frontal Gyrus 13.10 L. Opercular Part Of The Inferior Frontal Gyrus 15.51
R. Ventral Dc 4.27 L. Inf Lat Vent 13.04 R. Opercular Part Of The Inferior Frontal Gyrus 15.48
L. Inferior Occipital Gyrus 4.26 L. Posterior Insula 12.99 R. Superior Frontal Gyrus Medial Segment 15.41
R. Transverse Temporal Gyrus 4.26 L. Ventral Dc 12.92 L. Central Operculum 15.41
R. Inf Lat Vent 4.23 L. Superior Frontal Gyrus Medial Segment 12.91 L. Calc Calcarine Cortex 15.39
R. Central Operculum 4.20 R. Orbital Part Of The Inferior Frontal Gyrus 12.85 L. Cerebral White Matter 15.39
L. Subcallosal Area 4.20 L. Opercular Part Of The Inferior Frontal Gyrus 12.81 L. Transverse Temporal Gyrus 15.37
3rd Ventricle 4.19 L. Central Operculum 12.64 R. Calc Calcarine Cortex 15.35
R. Planum Temporale 4.19 L. Caudate 12.62 L. Planum Temporale 15.34
R. Anterior Cingulate Gyrus 4.17 3rd Ventricle 12.60 R. Central Operculum 15.29
L. Central Operculum 4.16 R. Pallidum 12.58 R. Cerebral White Matter 15.27
R. Anterior Orbital Gyrus 4.16 L. Fusiform Gyrus 12.47 R. Transverse Temporal Gyrus 15.27
R. Putamen 4.11 L. Transverse Temporal Gyrus 12.44 R. Inferior Occipital Gyrus 15.25
L. Thalamus Proper 4.10 R. Anterior Insula 12.41 R. Middle Temporal Gyrus 15.24
R. Pallidum 4.09 R. Putamen 12.41 R. Lateral Ventricle 15.14
R. Frontal Operculum 4.07 R. Ventral Dc 12.40 L. Triangular Part Of The Inferior Frontal Gyrus 15.08
R. Opercular Part Of The Inferior Frontal Gyrus 4.07 External 12.38 L. Thalamus Proper 15.03
L. Gyrus Rectus 4.06 R. Planum Polare 12.15 L. Posterior Insula 15.00
R. Subcallosal Area 4.06 R. Superior Frontal Gyrus 12.14 L. Caudate 15.00
L. Opercular Part Of The Inferior Frontal Gyrus 4.05 R. Parahippocampal Gyrus 12.09 L. Frontal Operculum 14.91
L. Anterior Orbital Gyrus 4.05 L. Lateral Ventricle 12.09 L. Anterior Cingulate Gyrus 14.90
L. Anterior Cingulate Gyrus 4.04 L. Middle Frontal Gyrus 12.08 L. Occipital Pole 14.85
R. Cerebellum White Matter 4.03 L. Planum Temporale 12.07 L. Frontal Pole 14.79
L. Planum Temporale 4.02 L. Superior Frontal Gyrus 12.04 R. Posterior Insula 14.79
R. Lateral Ventricle 4.01 R. Triangular Part Of The Inferior Frontal Gyrus 12.02 L. Putamen 14.74
R. Parietal Operculum 4.01 R. Middle Frontal Gyrus 12.00 External 14.72
R. Thalamus Proper 4.00 R. Middle Cingulate Gyrus 11.96 L. Pallidum 14.63
R. Superior Frontal Gyrus Medial Segment 3.99 Brainstem 11.89 R. Triangular Part Of The Inferior Frontal Gyrus 14.61
R. Cerebral White Matter 3.98 R. Frontal Operculum 11.86 L. Anterior Insula 14.58
L. Cerebellum White Matter 3.97 L. Thalamus Proper 11.81 L. Orbital Part Of The Inferior Frontal Gyrus 14.57
R. Cerebellum Exterior 3.95 L. Middle Cingulate Gyrus 11.80 L. Superior Temporal Gyrus 14.56
L. Lateral Ventricle 3.95 R. Supplementary Motor Cortex 11.77 R. Frontal Operculum 14.54
R. Inferior Occipital Gyrus 3.95 L. Cerebral White Matter 11.76 L. Lateral Orbital Gyrus 14.52
R. Medial Orbital Gyrus 3.94 R. Lateral Ventricle 11.76 R. Anterior Cingulate Gyrus 14.48
L. Medial Frontal Cortex 3.94 R. Hippocampus 11.73 R. Anterior Insula 14.40
R. Occipital Fusiform Gyrus 3.92 R. Accumbens Area 11.70 R. Frontal Pole 14.38
R. Medial Frontal Cortex 3.92 R. Opercular Part Of The Inferior Frontal Gyrus 11.67 L. Anterior Orbital Gyrus 14.36
R. Orbital Part Of The Inferior Frontal Gyrus 3.92 R. Inferior Temporal Gyrus 11.60 L. Planum Polare 14.35
Cerebellar Vermal Lobules I-v 3.91 L. Supplementary Motor Cortex 11.53 R. Planum Polare 14.35
L. Triangular Part Of The Inferior Frontal Gyrus 3.90 R. Thalamus Proper 11.53 R. Putamen 14.28
L. Caudate 3.89 L. Parietal Operculum 11.46 R. Caudate 14.24
R. Gyrus Rectus 3.89 R. Posterior Insula 11.37 R. Lingual Gyrus 14.18
R. Accumbens Area 3.86 R. Fusiform Gyrus 11.37 R. Thalamus Proper 14.18
R. Caudate 3.86 L. Precentral Gyrus 11.36 R. Pallidum 14.05
R. Middle Cingulate Gyrus 3.86 R. Inf Lat Vent 11.29 R. Orbital Part Of The Inferior Frontal Gyrus 14.02
L. Lateral Orbital Gyrus 3.85 R. Cerebral White Matter 11.24 L. Lingual Gyrus 13.96
R. Lateral Orbital Gyrus 3.84 R. Central Operculum 11.18 L. Medial Orbital Gyrus 13.94
L. Cerebral White Matter 3.83 R. Middle Temporal Gyrus 11.05 L. Medial Frontal Cortex 13.92
Cerebellar Vermal Lobules Viii-x 3.80 L. Cerebellum White Matter 11.05 L. Gyrus Rectus 13.91
R. Middle Frontal Gyrus 3.79 R. Precentral Gyrus 10.93 L. Accumbens Area 13.87
R. Lingual Gyrus 3.77 4th Ventricle 10.86 R. Inferior Temporal Gyrus 13.83
Cerebellar Vermal Lobules Vi-vii 3.76 L. Inferior Occipital Gyrus 10.84 L. Middle Temporal Gyrus 13.82
L. Parietal Operculum 3.75 R. Precentral Gyrus Medial Segment 10.82 R. Temporal Pole 13.81
R. Triangular Part Of The Inferior Frontal Gyrus 3.74 L. Supramarginal Gyrus 10.80 R. Lateral Orbital Gyrus 13.79
L. Superior Frontal Gyrus Medial Segment 3.72 R. Superior Temporal Gyrus 10.79 3rd Ventricle 13.74
L. Middle Cingulate Gyrus 3.71 L. Postcentral Gyrus 10.74 R. Posterior Orbital Gyrus 13.70
R. Middle Occipital Gyrus 3.69 R. Transverse Temporal Gyrus 10.69 R. Occipital Fusiform Gyrus 13.67
L. Middle Occipital Gyrus 3.68 L. Precentral Gyrus Medial Segment 10.64 L. Posterior Orbital Gyrus 13.64
R. Calc Calcarine Cortex 3.65 L. Cerebellum Exterior 10.49 L. Temporal Pole 13.62
L. Occipital Fusiform Gyrus 3.63 L. Posterior Cingulate Gyrus 10.47 R. Anterior Orbital Gyrus 13.61
R. Frontal Pole 3.61 R. Posterior Cingulate Gyrus 10.43 R. Medial Frontal Cortex 13.58
L. Cerebellum Exterior 3.60 L. Middle Occipital Gyrus 10.35 L. Inferior Occipital Gyrus 13.53
R. Precentral Gyrus 3.60 L. Angular Gyrus 10.34 R. Gyrus Rectus 13.53
L. Lingual Gyrus 3.57 R. Caudate 10.32 R. Inf Lat Vent 13.44
R. Supramarginal Gyrus 3.56 L. Occipital Fusiform Gyrus 10.30 L. Hippocampus 13.40
R. Posterior Cingulate Gyrus 3.53 R. Parietal Operculum 10.28 R. Hippocampus 13.40
R. Angular Gyrus 3.49 R. Cerebellum White Matter 10.27 L. Ventral Dc 13.37
R. Supplementary Motor Cortex 3.47 Cerebellar Vermal Lobules I-v 10.23 R. Medial Orbital Gyrus 13.33
R. Superior Frontal Gyrus 3.46 R. Planum Temporale 10.17 L. Inf Lat Vent 13.33
R. Precentral Gyrus Medial Segment 3.38 R. Postcentral Gyrus 10.11 L. Subcallosal Area 13.32
L. Posterior Cingulate Gyrus 3.31 Cerebellar Vermal Lobules Viii-x 10.08 L. Basal Forebrain 13.29
R. Cun Cuneus 3.29 R. Postcentral Gyrus Medial Segment 10.07 R. Fusiform Gyrus 13.29
L. Calc Calcarine Cortex 3.26 L. Postcentral Gyrus Medial Segment 10.04 R. Ent Entorhinal Area 13.20
R. Postcentral Gyrus 3.25 L. Superior Parietal Lobule 10.03 R. Accumbens Area 13.16
L. Middle Frontal Gyrus 3.18 R. Cerebellum Exterior 9.93 R. Subcallosal Area 13.06
L. Supplementary Motor Cortex 3.17 L. Precuneus 9.91 L. Amygdala 13.01
R. Precuneus 3.16 L. Lingual Gyrus 9.89 L. Ent Entorhinal Area 12.99
R. Superior Occipital Gyrus 3.14 R. Precuneus 9.85 R. Parahippocampal Gyrus 12.98
L. Superior Frontal Gyrus 3.11 R. Supramarginal Gyrus 9.82 R. Basal Forebrain 12.93
L. Frontal Pole 3.01 Cerebellar Vermal Lobules Vi-vii 9.57 Cerebellar Vermal Lobules I-v 12.90
L. Supramarginal Gyrus 2.94 R. Angular Gyrus 9.53 R. Ventral Dc 12.89
L. Precentral Gyrus Medial Segment 2.94 R. Inferior Occipital Gyrus 9.52 R. Amygdala 12.82
L. Angular Gyrus 2.94 R. Occipital Fusiform Gyrus 9.46 L. Parahippocampal Gyrus 12.72
L. Cun Cuneus 2.88 R. Lingual Gyrus 9.43 L. Inferior Temporal Gyrus 12.54
R. Postcentral Gyrus Medial Segment 2.86 R. Superior Parietal Lobule 9.35 L. Fusiform Gyrus 12.23
L. Precuneus 2.86 L. Calc Calcarine Cortex 9.34 R. Cerebellum White Matter 12.22
L. Superior Occipital Gyrus 2.85 R. Calc Calcarine Cortex 9.16 R. Cerebellum Exterior 12.12
L. Precentral Gyrus 2.83 R. Middle Occipital Gyrus 9.16 L. Occipital Fusiform Gyrus 12.11
R. Superior Parietal Lobule 2.60 L. Superior Occipital Gyrus 9.14 Brainstem 12.08
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L. Occipital Pole 2.59 R. Cun Cuneus 9.05 Cerebellar Vermal Lobules Vi-vii 11.94
L. Postcentral Gyrus 2.58 L. Cun Cuneus 8.99 Cerebellar Vermal Lobules Viii-x 11.56
L. Postcentral Gyrus Medial Segment 2.51 R. Superior Occipital Gyrus 8.53 L. Cerebellum White Matter 11.47
L. Superior Parietal Lobule 2.33 L. Occipital Pole 7.78 4th Ventricle 11.37
R. Occipital Pole 2.21 R. Occipital Pole 7.59 L. Cerebellum Exterior 10.88

PD SZ
Structure Mean age gap Structure Mean age gap

R. Lateral Orbital Gyrus 2.58 L. Lateral Orbital Gyrus 13.09
R. Frontal Pole 2.56 L. Anterior Orbital Gyrus 12.46
R. Anterior Orbital Gyrus 2.39 L. Temporal Pole 11.97
R. Orbital Part Of The Inferior Frontal Gyrus 2.25 L. Frontal Pole 11.79
R. Medial Orbital Gyrus 2.24 L. Orbital Part Of The Inferior Frontal Gyrus 11.55
R. Middle Frontal Gyrus 2.17 L. Gyrus Rectus 11.40
R. Triangular Part Of The Inferior Frontal Gyrus 2.15 L. Posterior Orbital Gyrus 11.29
R. Superior Frontal Gyrus 2.15 R. Frontal Pole 11.26
R. Medial Frontal Cortex 2.06 L. Medial Orbital Gyrus 11.13
R. Gyrus Rectus 1.97 R. Anterior Orbital Gyrus 11.13
R. Postcentral Gyrus Medial Segment 1.96 L. Middle Frontal Gyrus 11.03
R. Precentral Gyrus Medial Segment 1.93 R. Lateral Orbital Gyrus 10.97
R. Precentral Gyrus 1.92 R. Gyrus Rectus 10.80
L. Gyrus Rectus 1.91 R. Temporal Pole 10.63
R. Posterior Orbital Gyrus 1.91 L. Medial Frontal Cortex 10.59
R. Supplementary Motor Cortex 1.88 L. Triangular Part Of The Inferior Frontal Gyrus 10.54
R. Temporal Pole 1.86 L. Ent Entorhinal Area 10.39
L. Frontal Pole 1.84 R. Medial Orbital Gyrus 10.20
R. Opercular Part Of The Inferior Frontal Gyrus 1.84 R. Posterior Orbital Gyrus 10.17
R. Superior Frontal Gyrus Medial Segment 1.84 L. Opercular Part Of The Inferior Frontal Gyrus 10.11
R. Anterior Cingulate Gyrus 1.81 L. Supramarginal Gyrus 10.05
L. Medial Frontal Cortex 1.78 L. Precentral Gyrus 10.04
L. Superior Frontal Gyrus Medial Segment 1.77 L. Superior Frontal Gyrus 10.00
R. Postcentral Gyrus 1.77 R. Medial Frontal Cortex 9.96
R. Subcallosal Area 1.77 L. Planum Polare 9.94
R. Caudate 1.70 L. Anterior Insula 9.89
R. Frontal Operculum 1.70 L. Angular Gyrus 9.86
R. Accumbens Area 1.66 L. Postcentral Gyrus 9.83
L. Anterior Cingulate Gyrus 1.64 R. Orbital Part Of The Inferior Frontal Gyrus 9.82
R. Anterior Insula 1.64 L. Frontal Operculum 9.76
R. Basal Forebrain 1.61 R. Ent Entorhinal Area 9.69
L. Middle Frontal Gyrus 1.59 R. Middle Frontal Gyrus 9.67
L. Supplementary Motor Cortex 1.58 R. Superior Frontal Gyrus 9.66
R. Superior Parietal Lobule 1.54 L. Basal Forebrain 9.48
L. Superior Frontal Gyrus 1.53 L. Parietal Operculum 9.48
R. Ent Entorhinal Area 1.52 L. Amygdala 9.46
L. Precentral Gyrus Medial Segment 1.51 External 9.45
R. Pallidum 1.51 L. Superior Temporal Gyrus 9.39
R. Putamen 1.47 L. Middle Temporal Gyrus 9.37
R. Middle Cingulate Gyrus 1.44 R. Inferior Temporal Gyrus 9.35
R. Amygdala 1.43 L. Central Operculum 9.32
R. Planum Polare 1.43 L. Subcallosal Area 9.29
L. Medial Orbital Gyrus 1.38 L. Inferior Temporal Gyrus 9.26
External 1.36 L. Posterior Insula 9.24
L. Anterior Orbital Gyrus 1.36 L. Superior Frontal Gyrus Medial Segment 9.20
R. Cerebral White Matter 1.36 L. Supplementary Motor Cortex 9.20
L. Postcentral Gyrus Medial Segment 1.35 L. Planum Temporale 9.20
L. Triangular Part Of The Inferior Frontal Gyrus 1.33 L. Middle Occipital Gyrus 9.07
R. Central Operculum 1.32 R. Triangular Part Of The Inferior Frontal Gyrus 9.07
L. Subcallosal Area 1.30 R. Middle Temporal Gyrus 9.06
L. Middle Cingulate Gyrus 1.28 L. Superior Parietal Lobule 9.05
L. Orbital Part Of The Inferior Frontal Gyrus 1.27 L. Transverse Temporal Gyrus 8.91
L. Lateral Orbital Gyrus 1.25 R. Opercular Part Of The Inferior Frontal Gyrus 8.87
L. Accumbens Area 1.24 L. Inf Lat Vent 8.85
R. Posterior Insula 1.24 L. Cerebral White Matter 8.81
L. Basal Forebrain 1.24 R. Subcallosal Area 8.76
R. Precuneus 1.23 R. Superior Temporal Gyrus 8.75
R. Lateral Ventricle 1.21 R. Planum Polare 8.74
L. Caudate 1.19 L. Postcentral Gyrus Medial Segment 8.74
3rd Ventricle 1.19 R. Supplementary Motor Cortex 8.70
R. Inf Lat Vent 1.17 R. Amygdala 8.70
L. Frontal Operculum 1.15 R. Anterior Insula 8.66
R. Ventral Dc 1.11 R. Precentral Gyrus 8.65
L. Temporal Pole 1.08 L. Precentral Gyrus Medial Segment 8.65
L. Opercular Part Of The Inferior Frontal Gyrus 1.08 L. Superior Occipital Gyrus 8.64
R. Thalamus Proper 1.07 L. Accumbens Area 8.63
L. Anterior Insula 1.05 R. Occipital Pole 8.49
L. Pallidum 1.03 R. Superior Frontal Gyrus Medial Segment 8.45
L. Posterior Orbital Gyrus 1.02 R. Superior Occipital Gyrus 8.42
R. Posterior Cingulate Gyrus 1.02 L. Parahippocampal Gyrus 8.41
R. Parahippocampal Gyrus 1.01 R. Basal Forebrain 8.38
R. Transverse Temporal Gyrus 0.97 R. Fusiform Gyrus 8.37
L. Amygdala 0.96 R. Frontal Operculum 8.36
L. Putamen 0.95 L. Putamen 8.31
R. Hippocampus 0.95 L. Anterior Cingulate Gyrus 8.31
R. Parietal Operculum 0.94 L. Hippocampus 8.30
L. Precentral Gyrus 0.94 R. Inf Lat Vent 8.26
R. Inferior Temporal Gyrus 0.92 L. Cun Cuneus 8.20
L. Ventral Dc 0.89 R. Inferior Occipital Gyrus 8.17
L. Ent Entorhinal Area 0.88 R. Planum Temporale 8.13
R. Supramarginal Gyrus 0.86 R. Postcentral Gyrus 8.08
R. Superior Temporal Gyrus 0.83 L. Fusiform Gyrus 8.07
L. Lateral Ventricle 0.83 R. Central Operculum 8.05
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L. Precuneus 0.81 R. Precentral Gyrus Medial Segment 8.03
L. Planum Polare 0.75 R. Postcentral Gyrus Medial Segment 7.96
Brainstem 0.73 L. Precuneus 7.95
L. Thalamus Proper 0.71 R. Middle Occipital Gyrus 7.91
R. Middle Temporal Gyrus 0.71 R. Posterior Insula 7.84
R. Planum Temporale 0.69 R. Cerebral White Matter 7.80
L. Superior Parietal Lobule 0.68 R. Parietal Operculum 7.80
L. Posterior Cingulate Gyrus 0.68 R. Parahippocampal Gyrus 7.76
L. Cerebral White Matter 0.68 R. Cun Cuneus 7.68
R. Angular Gyrus 0.62 R. Hippocampus 7.65
L. Parahippocampal Gyrus 0.61 R. Occipital Fusiform Gyrus 7.63
R. Cun Cuneus 0.59 R. Anterior Cingulate Gyrus 7.62
L. Postcentral Gyrus 0.56 R. Supramarginal Gyrus 7.60
L. Central Operculum 0.54 R. Superior Parietal Lobule 7.55
L. Posterior Insula 0.51 R. Cerebellum Exterior 7.55
R. Fusiform Gyrus 0.50 L. Occipital Pole 7.52
L. Inf Lat Vent 0.50 R. Accumbens Area 7.51
L. Hippocampus 0.50 R. Putamen 7.49
R. Calc Calcarine Cortex 0.37 L. Pallidum 7.46
R. Cerebellum White Matter 0.35 L. Middle Cingulate Gyrus 7.42
4th Ventricle 0.34 Brainstem 7.35
Cerebellar Vermal Lobules I-v 0.28 L. Caudate 7.33
R. Lingual Gyrus 0.25 R. Transverse Temporal Gyrus 7.32
R. Superior Occipital Gyrus 0.21 L. Ventral Dc 7.30
L. Cun Cuneus 0.20 L. Inferior Occipital Gyrus 7.24
L. Transverse Temporal Gyrus 0.14 L. Posterior Cingulate Gyrus 7.20
Cerebellar Vermal Lobules Viii-x 0.14 R. Angular Gyrus 7.19
L. Inferior Temporal Gyrus 0.13 R. Precuneus 7.19
R. Cerebellum Exterior 0.06 R. Cerebellum White Matter 7.17
R. Middle Occipital Gyrus 0.00 L. Calc Calcarine Cortex 7.16
R. Inferior Occipital Gyrus -0.02 L. Lateral Ventricle 7.09
R. Occipital Pole -0.03 4th Ventricle 7.02
L. Cerebellum White Matter -0.04 L. Cerebellum White Matter 6.99
R. Occipital Fusiform Gyrus -0.04 R. Middle Cingulate Gyrus 6.97
L. Superior Temporal Gyrus -0.04 R. Calc Calcarine Cortex 6.96
L. Fusiform Gyrus -0.08 R. Pallidum 6.75
Cerebellar Vermal Lobules Vi-vii -0.12 3rd Ventricle 6.72
L. Middle Temporal Gyrus -0.14 L. Lingual Gyrus 6.71
L. Calc Calcarine Cortex -0.18 R. Posterior Cingulate Gyrus 6.67
L. Lingual Gyrus -0.19 Cerebellar Vermal Lobules Viii-x 6.65
L. Parietal Operculum -0.22 R. Ventral Dc 6.64
L. Planum Temporale -0.24 L. Cerebellum Exterior 6.63
L. Supramarginal Gyrus -0.35 R. Lingual Gyrus 6.59
L. Superior Occipital Gyrus -0.38 Cerebellar Vermal Lobules I-v 6.54
L. Angular Gyrus -0.42 R. Lateral Ventricle 6.41
L. Cerebellum Exterior -0.48 R. Caudate 6.34
L. Occipital Pole -0.78 L. Thalamus Proper 6.26
L. Middle Occipital Gyrus -0.92 Cerebellar Vermal Lobules Vi-vii 6.20
L. Occipital Fusiform Gyrus -1.01 L. Occipital Fusiform Gyrus 5.88
L. Inferior Occipital Gyrus -1.30 R. Thalamus Proper 5.51
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