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A B S T R A C T

Age is an important variable to describe the expected brain’s anatomy status across the normal
aging trajectory. The deviation from that normative aging trajectory may provide some insights
into neurological diseases. In neuroimaging, predicted brain age is widely used to analyze
different diseases. However, using only the brain age gap information (i.e., the difference
between the chronological age and the estimated age) can be not enough informative for disease
classification problems. In this paper, we propose to extend the notion of global brain age by
estimating brain structure ages using structural magnetic resonance imaging. To this end, an
ensemble of deep learning models is first used to estimate a 3D aging map (i.e., voxel-wise
age estimation). Then, a 3D segmentation mask is used to obtain the final brain structure ages.
This biomarker can be used in several situations. First, it enables to accurately estimate the
brain age for the purpose of anomaly detection at the population level. In this situation, our
approach outperforms several state-of-the-art methods. Second, brain structure ages can be used
to compute the deviation from the normal aging process of each brain structure. This feature can
be used in a multi-disease classification task for an accurate differential diagnosis at the subject
level. Finally, the brain structure age deviations of individuals can be visualized, providing some
insights about brain abnormality and helping clinicians in real medical contexts.

1. Introduction
In the medical field, chronological age is widely used as an indicator to describe people. It depicts a reference curve

that healthy organs should follow. The deviation from that reference may be associated with different factors such as
the interaction of genes, environment, lifestyle and diseases [1]. To measure this deviation, the concept of biological
age (BA) has been created. It is an estimation of individual’s age based on various advanced strategies [2, 3, 4] and
is expected to be able to take into account all the factors mentioned above. Consequently, an accelerated (or delayed)
aging process results in a higher (or lower) value of BA with respect to the chronological age.

The analysis of BA can be associated with a whole-body system or a specific organ. On the one hand, the whole-
body evaluation approaches typically use non-imaging data (e.g., DNA methylation patterns [5], protein [6]) and are
unable to account for the variations in aging between individual organs [7]. Such global information might be difficult
to use in clinical practice. On the other hand, imaging studies of BA dedicated to a particular organ may provide
important details about that organ’s condition, and the brain is one of the most commonly studied organs. Brain
structure changes are demonstrated to be mutually caused by the natural aging process and neurodegenerative diseases
[8, 9, 10, 11, 12, 13]. Cole et al. demonstrated that biological brain age can enable the development of treatment
plans and a better understanding of disease processes [14]. The authors emphasized that the difference between the
predicted brain age and the chronological age is a valuable bio-marker since it shows a correlation with aging as well
as with diseases. This difference is denoted as BrainAGE for Brain Age Gap Estimation. Since its introduction, this
new bio-marker has been widely used in many studies to analyze various diseases [1]. Generally, a model is trained
with brain images from a healthy population and then used to estimate the age of patients with diseases.

In BrainAGE, structural magnetic resonance imaging (sMRI) is the most used modality (about 88% of studies [15]).
It has been shown that reasonable prediction error can be achieved using this modality. Moreover, sMRI is commonly
available in medical environments [15]. Initially, sMRI was used with some traditional machine learning algorithms
such as relevance vector regression [16], support vector regression [17] and Gaussian process regression [18] to perform
BrainAGE. The prediction error of these methods ranges from 4.29 to 5.02 years for the mean absolute error (MAE)
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metric. Since the success of deep learning in many natural image processing applications, it has also become a useful
technique in various medical imaging studies. Recent studies show the capacity of deep learning algorithms in the brain
age estimation task based on sMRI with an MAE ranging from 1.96 to 4.16 years [7, 19, 20, 21, 22]. These promising
results suggest using deep learning to estimate brain age for further analysis.

These deep learning based methods adapt famous convolutional neural network (CNN) architectures to estimate the
brain age. When employing a VGG-like architecture, Ueda et al. demonstrated that using 3D CNN can lead to better
accuracy than 2D CNN for age prediction [23]. In another work, Cole et al. also used a VGG-like architecture and
found that the grey matter extracted from 3D sMRI is better than white matter and raw image for age prediction [14].
Using a similar architecture, Bermudez et al. suggested to additionally take advantage of brain structure volume to
improve the model performance [22]. Bintsi et al. employed ResNet architecture to predict age on several sub-volumes
of brain image [24]. The final prediction was aggregated using a linear regression model. Armanious et al. proposed
to use the inception module with squeeze-and-excitation module to accurately predict healthy brain age [7]. Bashyam
et al. customized the inception-resnetv2 to build their model and trained it on 11729 healthy subjects.

After training a brain age prediction model, the next step is to apply it to a population of interest to compare
healthy and diseased groups (i.e., analysis at population level). For example, Franke et al. analyzed the brain maturation
during childhood and adolescence [25]. By applying a trained model on subjects being born before the 28th and after
the 29th week of gestation, they found that the BrainAGE of the first group was significantly lower than the second
group, showing a delayed structural brain maturation of the first group. Applying the same technique, Koutsouleris et
al. demonstrated an accelerated aging of 5.5 years in schizophrenia and 4.0 years in major depression patients compared
to normal aging [26]. In another study dedicated to Alzheimer’s Disease (AD), the BrainAGE was estimated about +10
years in AD patients, implying accelerated aging of this population [16].

Although the BrainAGE can provide a description of a specific population, its application in individual diagnosis
is still limited. Only a few works suggested performing disease detection or differential diagnosis using BrainAGE
at subject level. For instance, the BrainAGE was used as a biomarker to perform differential diagnosis between mild
cognitive impairment and AD in [27] and to diagnose AD (i.e., AD patients vs. healthy controls) in [28, 29]. More
recently, Cheng et al. used deep learning to accurately predict brain age and they use BrainAGE as the only feature
for various binary diagnosis tasks (i.e., diseased subjects vs. healthy subjects) [30]. Although encouraging results were
obtained, these works performed only binary classification tasks but not multi-class classification. The reason for this
may be due to the coarse description of brain’s state provided by the global BrainAGE. Indeed, BrainAGE can only
describe the aging process of the whole brain but does not provide any details about brain structures’ state. Therefore,
it is difficult to use BrainAGE for involved tasks such as the differential diagnosis of multiple pathologies.

In this paper, we propose to extend the notion of the global brain age to local brain structure ages. Our main
hypothesis is that the aging process is heterogeneous over the brain and specifically, different brain structures may
present different ages. Consequently, we first estimate the brain age at the voxel level. This results in a 3D aging
map of voxelwise brain ages. By averaging predicted brain ages by brain structure, we obtain the Brain Structure
Ages, denoted as BSA. This local BSA is expected to provide more information about the subject’s condition than
a global age prediction of a whole subject’s brain. As shown later, this novel biomarker can be used as input of
a multi-layer perceptron (MLP) to accurately estimate the subject’s age. During validation, our framework showed
competitive results compared to state-of-the-art methods. Furthermore, the difference between BSA and the subject’s
chronological age, denoted as BSAGE for Brain Structure Age Gap Estimation, can be also used with a support vector
machine classifier (SVM) for multi-class classification (i.e., Cognitively Normal (CN) vs. AD vs. Frontotemporal
Disease (FTD) vs. Multiple Sclerosis (MS) vs. Parkinson’s disease (PD) vs. Schizophrenia (SZ)). In our experiments,
we demonstrated the important gain of using BSAGE compared to BrainAGE for the multi-disease classification task.
Finally, by projecting the BSAGE on a brain atlas, we can visually observe the brain regions affected by different
diseases.

2. Materials
2.1. Datasets

The data used in this study comprise 39255 images from various datasets: the Autism Brain Imaging Data
Exchange (ABIDE) [31, 32], the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [33], the Australian Imaging
Biomarkers and Lifestyle Study of aging (AIBL) [34], the International Consortium for Brain Mapping (ICBM)
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[35], the Information eXtraction from Images (IXI) 1, the National Database for Autism Research (NDAR) [36],
the Open Access Series of Imaging Studies (OASIS) [37], Cincinnati MR Imaging of Neurodevelopment (C-MIND)
2, UKBioBank [38], the Strategic Research Program for Brain Sciences (SRPBS) [39], the Center for Biomedical
Research Excellence (COBRE) 3, the Cambridge Centre for aging and Neuroscience (CamCAN) [40], the Parkinson’s
Progression Markers Initiative (PPMI) [41], the Frontotemporal Lobar Degeneration Neuroimaging Initiative (NIFD)
4, the Observatoire Français de la Sclérose en Plaques (OFSEP) [42], the National Alzheimer’s Coordinating Center
(NACC) [43], the Dallas Lifespan Brain Study (DLBS) 5, the Minimal Interval Resonance Imaging in Alzheimer’s
Disease [44], the Minimal Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD) [44], and a study on
schizophrenia (BrainGluSchi) [45]. All the T1 weighted images at the baseline were used.

2.1.1. Chronological age prediction
Among available data, 32718 images were used to study the accuracy of our chronological age predictor. First,

eight datasets including 2887 images (i.e., ABIDE I, ADNI, AIBL, ICBM, C-MIND, IXI, NDAR, OASIS1) were
used in training/validation. Second, two external datasets (i.e., out-of-domain) were used for testing. Concretely, CN
subjects of ABIDE II (i.e., 580 images) were used to estimate the model accuracy on a young population and CN from
UKBioBank (i.e., 29251 images) were used to estimate the model accuracy on an older population (see Table 1). For
ABIDE, we ensured that no subject in phase I was presented in phase II.

2.1.2. Multiple pathologies classification
Besides, we assessed the classification performance using BSAGE on 6537 images composed of 6 classes (i.e., CN,

AD, FTD, MS, PD and SZ). Eight datasets including 1992 images (ADNI, AIBL, SRPBS, COBRE, CamCAN,
PPMI phase 1, NIFD and OFSEP centers 1-2) were used to perform a 10-fold cross validation (in-domain validation)
(see Table 2). Then, we constructed an out-of-domain dataset including 4545 images using seven cohorts (i.e., NACC,
DLBS, MIRIAD, OASIS3, BrainGluShi, PPMI phase 2 and OFSEP-other-centers) to assess the generalization capacity
of such models. For the OFSEP, we used the acquisition sites to split this global dataset into two non-overlapping
domains. For PPMI, we ensured that no subject in phase I was presented in phase II.

Figure 1: An overview of the proposed method. The T1w image, its segmentation and the age map are taken from a 71
years old healthy person.

1https://brain-development.org/ixi-dataset/
2https://nda.nih.gov/edit_collection.html?id=2329
3http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
4https://ida.loni.usc.edu/collaboration/access/appLicense.jsp
5https://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html
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Table 1
On top, summary of participants used for training age predictor. On bottom, description of the external datasets used for
testing.

Usage Dataset Male/Female Age (Mean ± Std)

Age prediction
training

ABIDE I 408/84 17.5 ± 7.8

ADNI 201/203 74.8 ± 5.8

AIBL 112/120 72.3 ± 6.7

ICBM 112/182 33.7 ± 14.3

C-MIND 107/129 8.4 ± 4.3

IXI 242/307 48.8 ± 16.5

NDAR 208/174 12.4 ± 6.0

OASIS1 111/187 45.3 ± 23.8

Young population
testing ABIDE II 403/177 14.8 ± 9.3

Older population
testing UKBioBank 14917/14334 64.2 ± 7.9

Total 16821/15897 14.8 ± 9.3

2.2. Preprocessing
The preprocessing procedure is composed of five steps: (1) denoising image [46], (2) inhomogeneity correction

[47], (3) affine registration into the MNI152 space (181 × 217 × 181 voxels at 1𝑚𝑚 × 1𝑚𝑚 × 1𝑚𝑚) [48], (4) intensity
standardization [49] and (5) intracranial cavity (ICC) extraction [50]. After preprocessing, we used AssemblyNet 6

[51] to get the parcellation of the brain into 133 structures (see Figure 1). This brain structure segmentation is then
used to compute the BSA for further analysis.

3. Method
3.1. Method overview

Figure 1 provides an overview of our method. First, we estimate the brain ages map at voxel level from a
preprocessed T1 image using a large number of U-Nets. Then, this 3D map is used with a segmentation mask to
compute the BSA features (Section 3.1.1). Finally, the BSA features can be employed to estimate the chronological
age using a MLP model or combined with brain structure volumes to perform multi-disease classification using an
SVM classifier (Section 3.1.2).

3.1.1. Brain structure age estimation
In order to produce the 3D aging map, we extracted 𝑚 = 𝑘3 overlapping 3D sub-volumes of the same size for each

T1w MRI. Next, we trained 𝑚 U-Nets to predict age at voxel level with these 𝑚 3D sub-volumes. The goal of this
training strategy is dual. First, as the size of a sub-volume is relatively small compared to the original image, it can be
trained with a lighter weight model and thus, require only a low computation capacity. Second, we limit the receptive
field of each model to a local brain region in order to force it to locally describe the brain age. The outputs were
then used to reconstruct a 3D brain age map. Finally, the BSA was computed with the help of an AssemblyNet-based
brain segmentation [51]. In practice, we estimated the mean value of voxel-wise age estimation for each structure
segmentation.

6Available at https://github.com/volBrain/AssemblyNet
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Table 2
Number of participants (Male/Female) used for multi-class classification.

Usage Dataset CN AD FTD MS PD SZ

ADNI 181/150

AIBL 18/28

10-fold
cross
validation
training

SRPBS 88/60 84/58

COBRE 11/7 54/14

CamCAN 75/85

PPMI
phase 1 35/13 228/131

NIFD 15/15 87/56

OFSEP
centers 1-2 161/338

NACC 47/104 318/419 22/23

DLBS 117/196

Out-of
-domain
testing

MIRIAD 12/11 19/27

OASIS3 270/385 46/46

Brain-
GluSchi 61/25 71/11

PPMI
phase 2 74/58

OFSEP
other

centers
585/1598

Total 731/901 582/670 109/79 746/1936 302/189 209/83

3.1.2. Application to chronological age prediction and multi-disease classification
To demonstrate different use cases of the BSA, we performed two experiments using this biomarker: chronological

age prediction which can help to briefly describe a population and multi-disease classification which can guide
clinicians to focus on certain pathologies.

To predict the chronological age of healthy people, we employed a classical MLP and used the predicted BSA as
its input. For the multi-disease classification, we first computed the BSAGE (i.e., the difference between BSA and the
subject’s chronological age) and then used it as input of an SVM classifier to address the 6-class problem CN vs. AD
vs. FTD vs. MS vs. PD vs. SZ. Moreover, structure volume is used as additional feature of BSAGE for SVM-based
classification.

3.2. Implementation details
First, a preprocessed T1w MRI in the MNI space of size 181 × 217 × 181 voxels at 1𝑚𝑚3 was downscaled with

a factor of 2 to the size of 91 × 109 × 91 voxels. After that, we extract 𝑘3 (i.e., 𝑘 = 5) overlapping sub-volumes of
the same size 32 × 48 × 32 voxels and evenly distributed along the 3 image’s dimensions from the downscale image.
We trained 𝑚 = 𝑘3 (i.e., 𝑚 = 125) U-Nets to predict age at voxel level with these 𝑚 sub-volumes. Figure 2 shows
the architecture of our unit U-Net used for voxel-level age prediction. The 𝑚 outputs were then used to reconstruct a
3D age map of size 91 × 109 × 91 voxels. Of note, the predicted brain age located at overlapping voxel positions of
more than 1 sub-volume was averaged. The reconstructed image was upscaled using trilinear interpolation to the same
spatial size as the original input. This 3D map was used to compute BSA and then BSAGE features.

HD Nguyen: Preprint submitted to Elsevier Page 5 of 16
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Figure 2: Architecture of an unit U-Net used for voxel-level age prediction. The number above each block is the number
of channel.

To train the 125 U-Nets, we use the mean absolute error (MAE) as loss function and SGD optimizer. The batch
size is set to 8 and the training was terminated after 20 epochs without any improvement on validation loss. The first
U-Net was trained from scratch and other U-Nets were trained with transfer learning from their adjacent U-Net (see
[51] for more details). The training data is split into training/validation sets with a ratio of 80%/20% (see Table 1).
In addition, when a new U-Net was trained, the training and validation data were gathered and re-split to exploit the
maximum information from available data. Finally, we employed different data augmentation techniques to alleviate
the overfitting problem. Concretely, we randomly shifted a patch by 𝑡 ∈ {−1, 0, 1} voxel in each dimension (denoted
as random shift technique) and then applyed mixup data augmentation [52].

Before using BSA features, we applied an age correction technique for each of their elements. We followed a simple
method of Smith et al. [53] to eliminate bias in each structure brain age. Concretely, we denoted the actual age as Y
(an 𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 × 1 vector), the brain age as 𝑌𝐵 , a brain structure age as 𝑋𝑠 (an 𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 × 1 vector) and the bias term 𝛿.
So, we predicted 𝑌𝐵 from 𝑋𝑠: 𝑌𝐵 = 𝑌 + 𝛿 = 𝑋𝑠𝛽. This is equivalent to 𝑌 = 𝑋𝑠𝛽 − 𝛿. This regression can be solved
with 𝛽 = (𝑋𝑇

𝑠 𝑋)−1𝑋𝑇
𝑠 𝑌 . Finally, 𝑌𝐵 = 𝑋𝑠(𝑋𝑇

𝑠 𝑋)−1𝑋𝑇
𝑠 𝑌 .

The MLP used to estimate chronological age is composed of 4 layers with respectively 𝑠×4, 𝑠×2, 𝑠 and 1 neuron.
To train the MLP, we used the MAE as loss function and Adam optimizer. The batch size is set to 8 and the training
was terminated after 50 epochs without any improvement on validation loss.

When training the SVM for multi-disease classification, three kernels were used to select the best model through
our cross-validation: linear, polynomial and radial basis function. One hundred values of C in the log-space [−1.5; 0.5]
were used in the hyper-parameter search. We performed a grid-search for the kernel and the hyper-parameter C.

3.3. Validation Framework
For the chronological age prediction, we compute the BSA features of U-Nets’ training subjects. This data is used to

train the MLP-based regression (10-fold cross-validation). This results in 10 MLP models. At testing time, the outputs
of the 10 MLP models were averaged to make the final prediction. We used two separate out-of-domain datasets to
assess our method accuracy (see Table 1).

For the multi-disease classification, we also performed a 10-fold cross-validation to train the SVM classifier (see
Table 2). We denote the classification performance on this dataset as in-domain performance. In addition, we assessed
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Table 3
Ablation study for the chronological age estimation. Red: best result, Blue: second best result. Text or symbols in
black: Changes compared to the previous experiment. Text or symbols in gray: No change compared to the previous
experiment. The model performance is estimated by different metrics: Mean absolute error (MAE) and the coefficient of
determination (𝑅2).

No. D
at

a
am

ou
nt

R
an

do
m

Sh
ift

M
ix

U
p

St
ru

ct
ur

al
A

ge
C
or

re
ct

io
n

Young population Old population
MAE 𝑅2 MAE 𝑅2

1 50% ✗ ✗ ✗ 4.65 0.30 8.32 -0.89
2 75% ✗ ✗ ✗ 3.44 0.64 7.72 -0.62
3 100% ✗ ✗ ✗ 2.38 0.85 4.60 0.45
4 100% ✓ ✗ ✗ 2.11 0.89 3.98 0.58
5 100% ✓ ✓ ✗ 1.92 0.91 3.89 0.60

6 100% ✓ ✓ ✓ 1.91 0.91 3.87 0.61

the generalization capacity on an out-of-domain dataset (see Table 2). Similar to the chronological age prediction
problem, the outputs of 10 models were averaged to get the final prediction on these external dataset.

4. Experimental results
4.1. Chronological age estimation
4.1.1. Ablation study

In this part, we aim at studying different factors influencing the model performance: Data amount, different
augmentation strategies (e.g., random shift, mixup [52]) and an age correction technique (see Section 3.2). Table 3
shows the comparison results.

First, we can observe that increasing the data amount (exp. 1, 2, 3) consistently improve the model accuracy on both
young and old population in all metrics (i.e., MAE and 𝑅2). Second, applying different data augmentation techniques
(i.e., random shift, mixup in exp. 4, 5) is important in the application of age prediction. This is in line with the finding of
[54]. Finally, many studies have shown the advantages of using age correction techniques. In our case, the implemented
technique only slightly improves the result (exp. 6). However, this technique can enhance the discriminative capacity
of BSA for better disease classification (see Section 4.2.1). Overall, each factor contributes to our model accuracy. In
the rest of the paper, BSA is computed using 100% data, random shift, mixup and structural age correction techniques
unless otherwise specified.

4.1.2. Comparison with state-of-the-art methods
In this part, we compare our method with different state-of-the-art methods. For each method below, we used

the code available 7 8 and retrained the model using the same data split as in our training process. The first method by
Jonsson et al. uses a ResNet-like architecture and demonstrated promising results in age prediction [21]. More recently,
Peng et al. presented a lightweight architecture named Simple Fully Convolutional Network (SFCN) for this problem
[54]. They considered age prediction as a classification problem. To introduce a relationship between close classes,
they used a soft label during training. The soft label is a probability distribution centered around the ground-truth age.
In another work, Leonardsen et al. reused the SFCN backbone and demonstrated that the soft label can lead to better
accuracy with in-domain data but the regression version presents a better generalization capacity on out-of-domain
data [55]. Table 4 shows the results of the comparison. For the young population, we can remark that our method

7https://github.com/ha-ha-ha-han/UKBiobank_deep_pretrain
8https://github.com/benniatli/BrainAgePredictionResNet
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Table 4
Comparison with state-of-the-art methods. Red: best result, Blue: second best result. The model performance is estimated
by different metric: Mean absolute error (MAE) and the coefficient of determination (𝑅2). The results are the average
accuracy of 10-fold cross validation. The age for each population is under the form: mean ± std.

No. Method
Young population Older population
Age: 14.8 ± 9.3 Age: 64.2 ± 7.9

MAE 𝑅2 MAE 𝑅2

1 ResNet-like [21] 2.86 0.71 4.14 0.54
2 SFCN soft label [54] 2.78 0.71 5.12 0.32
3 SFCN regression [55] 2.87 0.69 4.88 0.40

4 Our method 1.91 0.91 3.87 0.61

presents a very low MAE (1.91 years) and very high 𝑅2 (0.91) compared to other state-of-the-art methods. For the
older population, all methods present a drop in performance. In this case, our method shows 𝑀𝐴𝐸 = 3.87 years and
𝑅2 = 0.61, presenting the best prediction error over all methods.

4.2. Disease classification
4.2.1. Ablation study for binary classification tasks

In this part, we aim at assessing the BSAGE (i.e., the difference between BSA and the chronological subject’s
age) feature in the context of specific disease detection (binary classification). To do it, we compare this feature with
the brain structure volume feature (denoted as 𝑉 ). We denote BSAGE𝑛𝑐 as the BSAGE without age correction (see
Section 3.2). Finally, we propose to take advantage of both BSAGE and structure volume biomarker to improve the
discriminative capacity of our model.

Table 5 shows the results of the comparison between different features for different classification problems. The
balanced accuracy (BACC) is presented. Other metrics are provided in the appendix. First, we can remark that
BSAGE (exp. 2, 6) is better than the non corrected version BSAGE𝑛𝑐 (exp. 1, 5) in most classification problems with
a large margin (i.e., AD, FTD and MS detection). Only in case of PD detection, the version without age correction is
better than the corrected version in both in-domain and out-of-domain dataset. Second, we observe that BSAGE (exp.
2, 6) is better than structure volume (exp. 3, 7) in MS detection while the structure volume is better in AD detection and
SZ detection. In other cases (i.e., FTD and PD detection), one feature is better than the other one on in-domain data and
worse on out-of-domain data. From this observation, both the apparent brain structure ages and the structure volumes
demonstrate discriminative power for different disease detection tasks. Thus, it should be beneficial to combine them
for a better discriminative capacity. As a result, the combination of BSAGE and structure volume (exp. 4, 8) shows
most of the time the best or the second best performance.

4.2.2. Multi-disease classification
Table 6 shows the results for the multi-disease classification problem. We estimated the balanced accuracy (BACC),

accuracy (ACC) and area under curve (AUC) of our model. We performed classification using the true age (exp. 1,
6) and the predicted subject’s age (exp. 2, 7) to confirm that estimating brain age at structure level provides better
results than using a global age estimation with real or estimated values. Moreover, these baseline methods enable
to estimate the biases present between populations in terms of age. Indeed, there was some bias in age distribution
between diseases since for instance the SZ patients were young while compared to the AD patients. Thanks to this
analysis, we can observe that BSAGE (exp. 3, 8) and V feature (exp. 4, 9) presents a far higher performance than the
true age and the predicted subject’s age. This suggests that the structure-related information is valuable in classification
context. Besides, although the BSAGE (exp. 3, 8) presents lower performance than the V feature (exp. 4, 9), the two
biomarkers can be mutually used to achieve better classification performance. Indeed, their combination (exp. 5, 10)
shows the best performance for all proposed metrics.
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Table 5
Ablation study for binary classification tasks. Red: best result, Blue: second best result. The balanced accuracy (BACC) is
used to assess the model performance. The results are the average accuracy of 10 repetitions and presented in percentage.
We denote BSAGE𝑛𝑐 , BSAGE and V for respectively BSAGE with no age correction, BSAGE with age correction and
structure volume.

No. Features AD vs. CN FTD vs. CN MS vs. CN PD vs. CN SZ vs. CN

In
-d

om
ai

n 𝑁 = 781 𝑁 = 547 𝑁 = 903 𝑁 = 763 𝑁 = 614
1 BSAGE𝑛𝑐 76.3 71.4 70.2 71.8 63.9
2 BSAGE 88.2 86.3 83.7 73.5 77.3
3 V 89.1 89.4 79.4 64.8 78.2
4 BSAGE + V 91.8 91.3 84.6 65.7 81.0

O
ut

-o
f-
do

m
ai

n

𝑁 = 2103 𝑁 = 1273 𝑁 = 3411 𝑁 = 1360 𝑁 = 1310
5 BSAGE𝑛𝑐 62.3 63.6 79.3 63.3 73.1
6 BSAGE 78.5 90.6 84.3 52.8 69.0
7 V 86.3 90.1 71.1 58.3 76.6
8 BSAGE + V 86.0 91.0 83.0 59.8 83.2

Table 6
Multi-disease classification results. Red: best result, Blue: second best result. The results are the average accuracy of 10
repetitions and presented in percentage. We denote BSAGE and V for BSAGE with correction and structure volume.

No. Features BACC ACC AUC

In
-d

om
ai

n 1 True age 36.8 46.4 76.8
2 Predicted age 32.8 39.9 74.9
3 BSAGE 58.5 61.7 88.0
4 V 64.5 65.1 90.2
5 BSAGE + V 68.7 69.6 93.2

O
ut

-o
f-
do

m
ai

n

6 True age 34.0 51.4 74.3
7 Predicted age 31.8 42.8 72.8
8 BSAGE 44.7 57.0 82.6
9 V 58.7 59.4 86.8
10 BSAGE + V 63.3 66.1 90.6

4.3. Predicted brain age of different populations
In this section, we compare the predicted brain age between different populations (i.e., CN, AD, FTD, MS, PD and

SZ). Figure 3 summarizes the distribution of predicted brain age for six considered populations. The median and mean
predicted brain ages of CN, AD, FTD, MS, PD and SZ are respectively (-1.2, -1.1), (3.0, 3.3), (9.7, 10.4), (10.7, 11.4),
(1.5, 1.3) and (5.2, 6.0). First, we observe that the CN class has the mean and median closest to 0 as expected. Second,
the BrainAGE of all patient groups is significantly higher than the cognitively normal group (𝑝 < 0.0001 with T-test).
Third, PD pathology seems to be closest to healthy people. Indeed, although T1 weighted MRI presents high contrast
of grey/white matter, poor contrast may be found in structures related to PD (e.g., subthalamic nuclei) [56]. This may
explain the proximity of this class with CN class and the poor performance in PD detection (see Table 5). Fourth, the
FTD group presents a more advanced aging process than AD group which is in line with the finding of Lee et al. [57].
Finally, we found the same magnitude of BSAGE for MS (10.7 years) as Cole et al. (about 10.8 years) [58], for AD
(3.0 years) as Sendi et al. (2.1 years) [59] and for SZ (5.2 years) as Koutsouleris et al. (5.5 years) [26].
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Figure 3: Predicted brain age of different populations in out-of-domain data. The white point presents the position of the
mean value.

4.4. Interpretation of brain structure age gap estimation
In this section, we propose to visualize the variation of the age gap between brain structures. The presented results

in Figure 4 correspond to the average BSAGE value for each structure on different populations of our out-of-domain
datasets. We use the same color bar for all populations to compare the impact of each disease to the aging process.

For the AD group, the region surrounding the hippocampus is highlighted as the most accelerated aging area.
This region is well-known to be related to AD [60, 61, 62, 63]. For the FTD group, the accelerated aging pattern is
mainly located in the temporal and frontal lobes which is in line with current literature [64, 65]. For the MS group,
the area with the highest accelerated aging pattern is similar to the finding of Cortese et al. (i.e., thalamus and global
cortical grey matter) [66]. For the PD group, all regions seem to be close to healthy people as discussed in Section
4.3. Finally, for the SZ group, the prefrontal and medial temporal lobe regions are highlighted which is coherent with
several studies [67, 68].

5. Discussion
In this work, we proposed an approach to estimate brain age at structure level. We showed that this feature can

be used for different purposes. First, it can be directly used to accurately estimate the chronological age. Second,
this can be used to compute the BSAGE (i.e., the difference between brain structure ages and the chronological age).
This biomarker presents discriminative patterns which are useful for the multi-disease classification problem (i.e., CN
vs. AD vs. FTD vs. MS vs. PD vs. SZ).

For the problem of chronological age estimation, we observed that the model accuracy was heavily influenced
by different factors: data amount and data augmentation techniques. In our experiments, the model accuracy was
consistently improved when the data amount was increased and we did not observe saturation. This suggests that
training our framework on more data could yield higher accuracy. In this study, due to the limited training data,
we instead applied several data augmentation techniques to improve the generalization capacity of our model.
Experimental results showed that the random shift and mixup techniques have a huge impact on our model performance
(see Table 3). Moreover, the resulting BSA can enable a more accurate subject’s age prediction. While our framework
was training over a large range of ages (i.e., 0 to 95 years old), it achieved higher accuracy when predicting on young
population (i.e., ABIDE dataset 𝑀𝐴𝐸 = 1.91 years) than on older population (i.e., UKBioBank dataset 𝑀𝐴𝐸 = 3.87
years). Our approach outperformed other state-of-the-art methods with 1.17 years MAE lower on the young population
and 0.95 year MAE lower on the old population. When evaluating our approach on different disease populations
(i.e., AD, FTD, MS, PD, SZ), our findings were in line with current knowledge in the literature (see Section 4.3
for more details). Finally, we observed that the predicted age distributions are different between diseases, suggesting a
discriminative power of our BSA feature.
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Figure 4: BSAGE of different populations in out-of-domain data.

While most papers used the global BrainAGE to show that a disease can present an accelerated or delayed aging
process on a population [25, 26, 16], only a few approaches have proposed to use it for classification [27, 28, 29, 30].
Moreover, these studies dedicated to classification had a common limitation. Indeed, it might exist a range of global
BrainAGE values that is presented in different populations. In our case, all populations had global BrainAGE values
in range [-5, 10] (see Figure 3). When the number of classes is increased, this limitation becomes more challenging.
This might explain why existing BrainAGE-based algorithms only address classification problems with a low number
of class (e.g., binary classification). This raises the need for other features better describing the brain aging process
for classification. Thus, we propose to extend the notion of BrainAGE to BSAGE . This local feature offers a richer
representation of the brain aging process than global BrainAGE estimation. Consequently, this information is important
for improving the multi-disease classification as demonstrated in Section 4.2.2.

In addition to improve classification performance, BSAGE can be projected into a brain segmentation for
visualization purpose. Principal remarks for each population were discussed in Section 4.4. Overall, it gives some
insights about the specific structures impacted by each disease. The main patterns of each disease highlighted by our
color maps are coherent with current literature (as discussed in Section 4.4). This presents an important clinical value
of our framework in a real medical context.

Finally, it still exists some limitations in this study. For example, some diseases such as Parkinson’s Disease cannot
be easily detected using T1 weighted MRI. Future works should focus on the multi-modal input to either accurately
estimate brain age or produce a more discriminative BSAGE feature. In addition, we use the same CNN architecture
to analyze different brain locations. This can be not optimal due to the fact that different brain locations may have
a specific set of patterns. An auto-search algorithm to select an optimal architecture for each brain region would be
beneficial for further analysis.

6. Conclusion
In this paper, we propose to extend the notion of brain age by estimating the brain age at voxel level. This voxelwise

brain age map is then used to compute BSA. This biomarker can be used for different purposes. First, it can be used
to predict the chronological age of people. The deviation of the predicted age from the subject’s age can provide
insight about the individual brain status. Second, by subtracting the subject’s age from the BSA, we obtain a BSA
gap estimation (i.e., BSAGE ). This feature can be mutually used with other biomarkers such as structure volume for
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disease detection. Finally, this feature can be also visualized to detect brain abnormality in MRI. Such a tool can help
clinicians in making more informed decisions.
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7. Annexes

Table 7: Ablation study for binary classification tasks. Red: best result, Blue: second best result. The accuracy (ACC)
is used to assess the model performance. The results are the average accuracy of 10 repetitions and presented in
percentage. We denote BSAGE𝑛𝑐 , BSAGE and V for BSAGE with no age correction, BSAGE with age correction
and structure volume.

No. Features AD vs. CN FTD vs. CN MS vs. CN PD vs. CN SZ vs. CN

In
-d

om
ai

n 𝑁 = 781 𝑁 = 547 𝑁 = 903 𝑁 = 763 𝑁 = 614
1 BSAGE𝑛𝑐 75.8 76.4 70.9 71.3 68.9
2 BSAGE 77.1 89.8 83.5 73.8 81.3
3 V 89.1 93.1 79.8 65.0 81.8
4 BSAGE + V 91.8 93.8 84.6 66.1 83.9

O
ut

-o
f-d

om
ai

n

𝑁 = 2103 𝑁 = 1273 𝑁 = 3411 𝑁 = 1360 𝑁 = 1310
5 BSAGE𝑛𝑐 59.4 69.0 78.3 42.9 90.1
6 BSAGE 57.6 94.3 83.1 58.2 93.1
7 V 86.2 95.4 73.4 51.6 91.3
8 BSAGE + V 86.3 95.0 83.5 54.9 94.0

Table 8: Ablation study for binary classification tasks. Red: best result, Blue: second best result. The area under curve
(AUC) is used to assess the model performance. The results are the average accuracy of 10 repetitions and presented
in percentage. We denote BSAGE𝑛𝑐 , BSAGE and V for BSAGE with no age correction, BSAGE with age correction
and structure volume.

No. Features AD vs. CN FTD vs. CN MS vs. CN PD vs. CN SZ vs. CN

In
-d

om
ai

n 𝑁 = 781 𝑁 = 547 𝑁 = 903 𝑁 = 763 𝑁 = 614
1 BSAGE𝑛𝑐 80.8 82.3 78.0 75.7 78.8
2 BSAGE 94.8 94.6 91.5 79.0 88.0
3 V 95.6 95.2 87.1 71.6 88.3
4 BSAGE + V 96.6 97.2 93.0 72.2 91.4

O
ut

-o
f-d

om
ai

n

𝑁 = 2103 𝑁 = 1273 𝑁 = 3411 𝑁 = 1360 𝑁 = 1310
5 BSAGE𝑛𝑐 70.1 69.5 87.3 64.9 89.8
6 BSAGE 85.2 94.0 91.0 53.2 84.7
7 V 94.0 93.9 78.9 61.8 88.9
8 BSAGE + V 93.5 94.6 91.2 63.3 94.2
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