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This study proposes a sampled-data-based practical consensus control method for heterogeneous multi- 

agent systems with gain fluctuations. First, the heterogeneous multi-agent system is formulated together

with randomly occurring nonlinear dynamics. Second, unlike the existing studies, a more general retarded

sampled-data control approach is designed, which involves the gain fluctuations along with the actual

sampling pattern and constant time delay, to achieve the practical consensus of the considered system.

By utilizing the aperiodic sampling information, and looped functional approach, a Wirtinger’s inequality- 

based discontinuous Lyapunov-Krasovskii functional is constructed to derive the delay-dependent stability

condition of the closed-loop system in the form of linear matrix inequality. Finally, numerical simulation

is presented to illustrate the derived theoretical results.

1. Introduction

A significant amount of research on a multi-agent system (MAS) 

can be found in the applications of formation control, an attitude 

of spacecraft alignment, and so on [4,10,26,28] . In the past decades, 

the cooperative control technique has been sufficiently developed 

for MAS. As in the cooperative control of MAS, one of the re- 

search topics is consensus [27] , which acquires a suitable proto- 

col for agents to reach an agreement on states. Towards this prob- 

lem, the distributed controller has been designed for each agent by 

utilizing the agent, and its neighbor’s local information only [30] . 

The leader-following consensus has considerable attention in re- 

cent years in which a leader is independent of the follower agents, 

and it has a significant impact on the information update of the 

follower agents [8,29] . For example, Shi and Shen [29] have inves- 
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tigated the leader-follower consensus problem for uncertain non- 

linear MAS. 

However, network connectivity also plays an essential role to 

achieve a consensus among the agents. In order to represent the 

network connectivity, the algebraic graph theory is employed in 

the literature under different topologies [13,21,25,32] . Further, var- 

ious assumptions on system topologies have been considered by 

the researchers to guarantee the consensus of MAS [1,6,20,32,34] . 

For example, Tong et al. [32] have investigated the average con- 

sensus problem for multiple integrators over fixed and switch- 

ing, undirected and connected network topologies. Cheng et al. 

[6] have studied the consensus problem under both fixed and 

switching topologies for leader-follower MAS with external distur- 

bances. Based on the switching topology, You et al. [34] have de- 

signed a consensus protocol for leader-follower MAS with actuator 

saturation and time-varying delay. From the above work, the con- 

sensus analysis of MAS under the switching topology has practical 

significance, and it is a more general case with fixed topology as a 

particular case. 

Nevertheless, the convergence of MAS may only attain a 

bounded region encompassing the equilibrium because of the ex- 
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istence of the physical restrictions and communication constraints, 

usually named the practical consensus of MAS [3,9] . For instance, 

in the work of Dong et al. [9] , the practical consensus problem 

has been established for linear time-invariant uncertain swarm 

systems. Recently, the practical consensus has been analyzed by 

Bernuau et al. [3] for homogeneous MAS with sampled-data in- 

formation. In the literature above, most of the researchers have 

taken identical dynamics for all agents. In reality, all the agents 

have different dynamics due to the parameter difference or uncer- 

tainty and model mismatch; such a system is called heterogeneous 

MAS [7,22,38] . Compared to the study of consensus for homoge- 

neous MAS, the heterogeneous MAS has a challenging problem 

since heterogeneity among the agents [7,18,23,31] . For instance, the 

heterogeneous MAS has proposed for linear cases in [35,36] . How- 

ever, the intrinsic nonlinearities are unavoidable when analyzing 

the consensus problem of heterogeneous MAS, and it made much 

effort in the literature (see, [2,7,24] and references therein). Also, 

the nonlinearities may undergo randomness under a specific form 

in the networked environment. In this case, Wang et al. [33] in- 

troduced the Bernoulli distributed random variable to model the 

randomly occurring nonlinearities for the synchronization problem 

of complex networks. Moreover, the randomly occurring nonlinear- 

ities have been modeled for MAS in existing studies [14,17] . There- 

fore, we consider the issue of randomly occurring nonlinearities for 

heterogeneous MAS in the present study. 

On the other hand, to obtain the consensus, the researchers 

have focused more on the sampled-data control for MAS due to 

the development of communication and digital technology, digital 

feedback and low-cost applications [3,5,11] . The results of the stud- 

ies, as mentioned earlier [3,5,11] , were considered MAS with iden- 

tical dynamics. Further, by using the sampled-data control (SDC) 

technique, the consensus problem has been studied for heteroge- 

neous MAS in the works of Zhang et al. [35] . Recently, the SDC has 

been designed for obtaining the practical consensus of heteroge- 

neous MAS in the works of Ding and Zheng et al. [7] . Besides that, 

the fluctuation in control gain may appear for the physical sys- 

tems, which leads to realizing the consensus difficulty. To mitigate 

the effect of fluctuation in control gain, the non-fragile(resilient) 

control has been designed in the works of [12,15,16] . For exam- 

ple, non-fragile control has been designed for the consensus of 

MAS with nonlinear dynamics via switching topology in the works 

of Kaviarasan et al. [16] . Moreover, the non-fragile control with 

sampled-data information has been designed for consensus of non- 

linear MAS in Jiang et al. [15] . Until now, to the best of our knowl- 

edge, the practical consensus of nonlinear heterogeneous MAS has 

not yet been fully investigated in the literature via sampled-data- 

based resilient control, which is the overarching motivation of this 

work. 

Motivated by the above literature, this paper investigates the 

practical consensus problem of heterogeneous MAS with nonlin- 

ear dynamics via resilient retarded sampled-data control (RRSDC). 

Unlike the previous studies, the randomly occurring nonlineari- 

ties, gain fluctuations, and constant signal transmission delay are 

taken into consideration to study the practical consensus of het- 

erogeneous MAS. Initially, the practical consensus of heterogeneous 

MAS is studied via fixed topology. Then, these results are extended 

into the switching topology case. In order to achieve the practical 

consensus for heterogeneous MAS, sufficient conditions are derived 

in the form of linear matrix inequalities (LMIs) via Wirtinger’s 

inequality-based discontinuous (WIBD) Lyapunov-Krasovskii func- 

tional (LKF). Finally, numerical examples are provided to demon- 

strate the proposed methods. 

The remainder of this paper is organized as follows: 

Section 2 formulates the heterogeneous nonlinear MAS. 

Section 3 presents the practical consensus results of the pro- 

posed system. In Section 4 , the validity of the presented method 

is verified by the simulation results. Section 5 concludes the 

paper. 

2. Preliminaries and problem formulation

2.1. Notations and preliminaries 

Throughout this paper, R n ×n and R n represents the n × n real 

matrix and the n -dimensional Euclidean space, respectively. S > 

0 (< 0) means that S is a positive (negative) definite matrix. I de- 

notes the identity matrix and diag { · · · } is a block diagonal matrix. 

Z = col { z 1 , z 2 , z 3 } indicates the column vector of Z. col { A i } N and
diag { B i } N represent the col { A 1 , A 2 , . . . , A N } and diag { B 1 , B 2 , . . . , B N } ,
respectively. The sign � represents the Kronecker product of the 

matrix. The transpose and inverse of a matrix is represented by 

the superscripts “T ” and “−1 ”, respectively. Sym { A } = A + A T and 

‖ · ‖ is the Euclidean norm for given vector. The notation ∗ is used 

to denote the symmetric term in a symmetric matrix. 

G = {V, E, W } represents a directed weighted graph of order N, 

with the set of nodes V = { v 1 , v 2 , . . . , v N } and edges E ⊆ V × V . An

edge defined as (v i , v j ) implies that node v i can receive infor- 

mation from node v j . The neighbors of node v i represented as 

N i = { v j ∈ V| (v i , v j ) ∈ E, i � = j} . Here, W ∈ R N×N denotes the adja- 

cency matrix with the entries w ii = 0 if any i and w i j � = 0 if i re- 

ceives information from j. � = diag { ̄w 1 , w̄ 2 , . . . , w̄ N } is a degree
matrix of G with w̄ i = 

∑ 
w i j . The Laplacian matrix of G is defined

as L = � −W . A directed graph G is a directed spanning tree if 

there exists an agent, called the root, with directed paths to all 

other agents. 

2.2. Problem formulation 

Consider a heterogeneous MAS with N agents, where the dy- 

namics of i th agent is 

˙ x i (t) = A i x i (t) + β(t) B i f (x i (t ) , t ) 

+ (1 − β(t)) C i g(x i (t ) , t ) + u i (t) , (i = 1 , 2 , . . . , N) , (1) 

where A i , B i and C i are n × n constant matrices; x i (t) = 

(x i 1 (t) , x i 2 (t) , . . . , x in (t)) 
T ∈ R n is the state vector with x i (0) = x 0 

i 
for i = 1 , 2 , . . . , N; u i (t) ∈ R n is the control input for all t ≥ 0 . The 

Bernoulli stochastic variable β(t) represents the following random 

events of system (1) , for all t ≥ 0 

β(t) = 

{
1 if f (x i (t ) , t ) occurs , 
0 if g(x i (t ) , t ) occurs , 

it follows that 

Prob { β(t) = 1 } = E { β(t) } = β0 ,

Prob { β(t) = 0 } = 1 − E { β(t) } = 1 − β0 ,

where β0 ∈ [0 , 1] denotes the probability occurrence of nonlinear 

functions f (x i (t ) , t ) and g(x i (t ) , t ) . 

Assumption 1. For any y 1 , y 2 , z 1 , z 2 ∈ R n , the nonlinear functions 

f, g : R n × [0 , ∞ ) → R n satisfies the conditions as follows: 

‖ f (y 1 , t) − f (y 2 , t) ‖ ≤ ‖ Ŵ(y 1 − y 2 ) ‖

and ‖ g(z 1 , t) − g(z 2 , t) ‖ ≤ ‖ ϒ(z 1 − z 2 ) ‖ , ∀ t ≥ 0 (2) 

where Ŵ and ϒ are known constant matrices. 

The leader agent dynamics labeled as i = 0 is given by 

˙ x 0 (t) = Ax 0 (t) + β(t ) B f (x 0 (t ) , t ) + (1 − β(t )) Cg(x 0 (t ) , t ) , (3) 

where A, B, C are n × n constant matrices and x 0 (t) ∈ R n is the state 

vector with x 0 (0) = x 0 
0 . Let the graph G includes the graph G and a 

leader which has no neighbors. The adjacency matrix of the leader 

is M = diag { m 1 , m 2 , . . . , m N } with m i ≥ 0 for any i . If the leader is
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a neighbor of node v i , then m i > 0 ; otherwise, m i = 0 . Thus the 

Laplacian matrix of the graph G represented as L = 

[
0 0 1 ×N 

L 1 H 

]
, 

where L 1 = [ m 1 , m 2 , . . . , m N ] 
T ∈ R N×1 and H = L + M ∈ R N×N . 

Assumption 2. The leader is a root of a directed spanning tree in 

G. 

Assumption 3. The state x 0 (t) in (3) is bounded, i.e., ‖ x 0 (t) ‖ ≤ γ
for any initial condition with the constant γ > 0 . 

As in the SDC input, the sequence of holding times are 0 = t 0 < 

t 1 < · · · < t k < · · · , lim 
k →∞

t k = + ∞ . Then, the following non-fragile 

retarded SDC input is proposed via zero-order hold function 

u i (t) = (K 1 i + �K 1 i (t)) 

[
N ∑

j=1

w i j [ x i (t − q (t)) − x j (t − q (t))] 

+ m i [ x i (t − q (t)) − x 0 (t − q (t))] 

]

+ (K 2 i + �K 2 i (t)) 

[
N ∑ 

j=1

w i j 
[
x i (t − q (t) − ρ) − x j (t − q (t) − ρ) 

]

+ m i 
[
x i (t − q (t) − ρ) − x 0 (t − q (t) − ρ) 

]]
, (4) 

where i = 1 , 2 , . . . , N, q (t) = t − t k for t ∈ [ t k , t k +1 ) and the sam- 

pling interval can be defined as t k +1 − t k = q k ≤ ̂ q . Here ̂ q is the

largest sampling interval and ρ is a constant signal transmission 

delay. K 1 i , K 2 i are the control gain matrices. The controller gain 

fluctuations �K 1 i (t) , �K 2 i (t) are assumed to satisfy the following 

form: 

[�K 1 i (t) , �K 2 i (t)] = N i F i (t)[ M 
(1) 
i 

, M 
(2) 
i 

] , 

where N i , M 
(1) 
i 

and M 
(2) 
i

are known constant matrices and F i (t) 

denotes the unknown matrix, which satisfies F T 
i (t) F i (t) ≤ I. Sub- 

stituting (4) into (1) yields 

˙ x i (t) = A i x i (t) + β(t) B i f (x i (t ) , t ) + (1 − β(t)) C i g(x i (t ) , t ) 

+ (K 1 i + �K 1 i (t)) 

[
N ∑

j=1

w i j [ x i (t − q (t)) 

− x j (t − q (t))] + m i [ x i (t − q (t)) − x 0 (t − q (t))] 

]

+ (K 2 i + �K 2 i (t)) 

[
N ∑

j=1

w i j [ x i (t − q (t) − ρ) − x j (t − q (t) − ρ)] 

+ m i [ x i (t − q (t) − ρ) − x 0 (t − q (t) − ρ)] 

]
, t k ≤ t < t k +1 . (5) 

Remark 1. The SDC techniques for consensus analysis of MAS 

are widely established in the literature [5,11] . In the real world, 

it is challenging to accurately acquire the control gain param- 

eter for MAS because of the equipment limitations and the 

influence of uncertain factors. In the works of [15] , a non- 

fragile sampled-data control scheme is used to track the con- 

sensus for nonlinear MAS. Further, the RRSDC scheme has 

been utilized only for homogeneous MAS in [12,16] . It is 

worth mentioning that the RRSDC in (4) has been considered 

for heterogeneous MAS for the first time. When K 2 i = 0 and 

�K 2 i (t) = 0 or ρ = 0 in equation (4), the proposed resilient re- 

tarded sampled-data control scheme can be modified to resilient 

SDC as given by u i (t) = (K i + �K i (t))[ 
∑ N 

j=1 w i j [ x i (t − q (t)) − x j (t −

q (t))] + m i [ x i (t − q (t)) − x 0 (t − q (t))]] . Therefore, the traditional, 

resilient and memory SDC are the particular cases of the proposed 

RRSDC. 

Defining the error variable as ˜ x i (t) = x i (t) − x 0 (t) , for each

agent i = 1 , 2 , . . . , N, we obtain the following from (5) : 

˙ ̃ x i (t) = A i ̃  x i (t) + β(t ) B i ̃
 f ( ̃  x i (t ) , t ) + (1 − β(t )) C i ̃  g ( ̃  x i (t ) , t ) + (K 1i

+ �K 1 i (t)) 
[ N ∑

j=1

w i j [ ̃  x i (t − q (t)) 

−˜ x j (t − q (t))] + m i ̃  x i (t − q (t)) 
] 

+ (K 2 i + �K 2 i (t)) 

[
N ∑

j=1

w i j [ ̃  x i (t − q (t) − ρ) − ˜ x j (t − q (t) − ρ)] 

+ m i ̃  x i (t − q (t) − ρ) 

]
+ h i (x 0 (t)) 

with ˜ f ( ̃  x i (t ) , t ) = f (x i (t ) , t ) − f (x 0 (t ) , t ) , ˜ g ( ̃  x i (t ) , t ) = g(x i (t ) , t ) −

g(x 0 (t ) , t ) , and 

h i (x 0 (t)) = (A i − A ) x 0 (t) + β(t)(B i − B ) f (x 0 (t ) , t ) 

+ (1 − β(t))(C i −C) g(x 0 (t ) , t ) . 

From the above h i (x 0 (t k )) denotes the unmatched terms between 

follower and leader agents. 

Now, let us define the vectors, 

˜ x (t) � col { ̃  x 1 (t) , ̃  x 2 (t) , . . . , ̃  x N (t) } ,

˜ f ( ̃  x (t ) , t ) � col { ̃  f ( ̃  x 1 (t ) , t ) , ̃
 f ( ̃  x 2 (t ) , t ) , . . . , ̃

 f ( ̃  x N (t ) , t ) } ,

˜ g ( ̃  x (t ) , t ) � col { ̃  g ( ̃  x 1 (t ) , t ) , ̃  g ( ̃  x 2 (t ) , t ) , . . . , ̃  g ( ̃  x N (t ) , t ) } ,

h (x 0 (t)) � col { h 1 (x 0 (t)) , h 2 (x 0 (t)) , . . . , h N (x 0 (t)) } ,

then we get 

˙ ̃ x (t) = Ā ̃  x (t) + β(t ) ̄B ̃  f ( ̃  x (t ) , t ) + (1 − β(t )) ̄C ̃  g ( ̃  x (t ) , t )

+ K 1 ̄H ̃  x (t − q (t)) + K 2 ̄H ̃  x (t − q (t) − ρ)

+ N F(t) 
[
M 

(1) ̄H ̃  x (t − q (t)) + M 
(2) ̄H ̃  x (t − q (t) − ρ) 

]

+ h (x 0 (t)) , (6) 

where Ā = diag { A i } N , B̄ = diag { B i } N , C̄ = diag { C i } N , K 1 = diag { K 1 i } N ,
K 2 = diag { K 2 i } N , N = diag {N i } N , F(t) = diag {F i (t) } N , M (1) =

diag {M 
(1) 
i 

} N , M (2) = diag {M 
(2) 
i 

} N , and H̄ = H � I n .

From (6) the error system with the initial condition can be 

written as 

˙ ̃ x (t) = Ā ̃  x (t) + β0 ̄B ̃
 f ( ̃  x (t ) , t ) + (1 − β0 ) ̄C ̃  g ( ̃  x (t ) , t )

+ (β(t) − β0 )[ ̄B ̃
 f ( ̃  x (t ) , t ) − C̄ ̃  g ( ̃  x (t ) , t )] + h (x 0 (t))

+ K 1 ̄H ̃  x (t − q (t)) + K 2 ̄H ̃  x (t − q (t) − ρ)

+ N F(t) 
[
M 

(1) ̄H ̃  x (t − q (t)) + M 
(2) ̄H ̃  x (t − q (t) − ρ) 

]

˜ x (θ ) = φ(θ ) , θ ∈ [ −q ⋆ , 0] , t k ≤ t < t k +1 , (7) 

where q ⋆ = max { ̂  q , ρ} and φ(θ ) be the difference between the ini- 

tial conditions in (1) and (3) in the interval [ −q ⋆ , 0] . Based on 

h i (x 0 (t)) , we have 

h (x 0 (t)) = ̃  A x 0 (t) + β(t ) ̃  B f (x 0 (t ) , t ) + (1 − β(t )) ̃  C g(x 0 (t ) , t ) ,

where ˜ A = col { ̃  A i } N , 
˜ B = col { ̃  B i } N , and 

˜ C = col { ̃  C i } N with ˜ A i = A i − A ,
˜ B i = B i − B , and ˜ C i = C i −C. The following can be obtained from

Assumptions 1 and 3 , 

‖ h (x 0 (t)) ‖ ≤ ‖ ̃  A x 0 (t) ‖ + ‖ β(t ) ̃  B f (x 0 (t ) , t ) ‖

+ ‖ (1 − β(t )) ̃  C g(x 0 (t ) , t ) ‖

≤

(
‖ ̃  A ‖ + ‖ β(t) ‖‖ ̃  B ‖‖ Ŵ‖ + ‖ (1 − β(t)) ‖‖ ̃  C ‖‖ ϒ‖

)
γ

+ ‖ β(t) ‖‖ ̃  B ‖‖ f (x 0 (0) , 0) ‖

+ ‖ (1 − β(t)) ‖‖ ̃  C ‖‖ g(x 0 (0) , 0) ‖ � δ.
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Definition 1. [7] For a given scalar τ > 0 , the heterogeneous MAS 

(1) and (3) are said to achieve the practical consensus in the mean 

square sense via the RRSDC (4) if the following condition is satis- 

fied: 

lim 
t→∞

d( ̃  x (t, ̃  x 0 ) , E(P, τ )) = 0 ,

where ˜ x (t, ̃  x 0 ) represents the error trajectory (6) with an initial 

condition ˜ x 0 ∈ R Nn ; and d( ̃  x (t, ̃  x 0 ) , E(P, τ )) = inf 
z ∈ E(P,τ )

‖ ̃  x (t, ̃  x 0 ) − z‖

represents the distance from ˜ x (t, ̃  x 0 ) to E (P, τ ) . Here, E (P, τ ) de- 

notes an ellipsoid which defined as 

E(P, τ ) �

{ 

˜ x (t) ∈ R 
Nn : ̃  x T (t ) P ̃  x (t ) ≤ τ

}

with the matrix P > 0 . 

Lemma 1. [19] For a given matrix R ∈ R n ×n , R = R T > 0 , and a con- 

tinuously differentiable function ω : [ a, b] → R n , the following in- 

equality holds: 
∫ b

a

˙ ω 
T (s ) R ˙ ω (s ) ds ≥

1

b − a 
(�T 

1 R �1 + 3�T 
2 R �2 ) , 

where �1 = ω(b) − ω(a ) , and �2 = ω(b) + ω(a ) − 2 
b−a

∫ b 
a ω(s ) ds. 

Lemma 2. [37] For any vectors x, y ∈ R n , matrices D , E, and F that 

are real appropriate dimensional matrices with F T F ≤ I, and a scalar 

μ > 0 , the following inequality holds: 

2 x T DF Ey ≤ μ−1 x T DD 
T x + μ y T E T Ey. 

3. Main results

In this part, we will investigate the practical consensus of 

heterogeneous MAS with randomly occurring nonlinear dynamics 

(1) and (3) under a fixed and switched topology through the de- 

signed RRSDC. 

For our convenience, the following notations are defined I l = 

[0 n, (l−1) n I n 0 n, (12 −l) n ] , (l = 1 , 2 , . . . , 12) as a block entry matrices 

and the other notations are defined as follows: 

η1 (t) = 

[
˜ x T (t) , ˜ x T (t k ) ,

∫ t

t k

˜ x T (s ) ds 

]T

,

η2 (t) = 

[
˜ x T (t k ) , ˙ ̃ x 

T 
(t) , ˜ x T (t k − ρ)

] T
,

η3 (t) = ̃  x T (t) − ˜ x T (t k ) , η4 (t) =

[
˙ ̃ x 
T 
(t ) , 0 , ˜ x T (t )

] T
,

η5 (t) = 
[
˜ x T (t k ) , 0 , ˜ x T (t k − ρ)

]T
,

η6 (t) = ̃  x T (t)+ ̃  x T (t k )− 2 z(t) , η7 (t) = ̃  x T (t − ρ)− ˜ x T (t k − ρ) ,

η8 (t) = ̃  x T (t − ρ)+ ̃  x T (t k − ρ)− 2 ̄z (t) ,

z(t) = 

{
1

t−t k 

∫ t
t k ̃

 x (s ) ds, t � = t k
˜ x (t k ) , t = t k , 

z̄ (t) = 

{
1

t−t k 

∫ t−ρ
t k −ρ

˜ x (s ) ds, t � = t k
˜ x (t k − ρ) , t = t k , 

� = 

⎡
⎣

X T 1 + X 1 −X T 2 −X 2 
2

X 2 X 3 

∗
−X T 1 −X 1 −X T 2 −X 2 

2
X 4 

∗ ∗ X T 5 + X 5 

⎤
⎦ .

3.1. Fixed topology 

In order to derive the practical consensus of the system (7) , we 

consider the following LKF including WIBD term V w (t) 

V (t) = V c (t) + V w (t) , t k ≤ t < t k +1 , (8) 

where 

V c (t) = 

4 ∑ 

l=1

V l (t ) and V w (t ) = V 5 (t) + V 6 (t) 

with 

V 1 (t) = ̃  x T (t) P ̃  x (t) ,

V 2 (t) = (t k +1 − t) ηT 
1 (t)�η1 (t) + (q k − q (t )) q (t )

[
z(t ) 
z̄ (t ) 

]T

U 

[
z(t ) 
z̄ (t ) 

]
,

V 3 (t) = 

∫ t 

t k

e a (s −t) ηT 
2 (s ) Qη2 (s ) ds +

∫ t

t−ρ
e a (s −t) ̇ ̃ x 

T 
(s ) Y ˙ ̃ x (s ) ds,

V 4 (t) = 

∫ t

t k

e a (s −t) ̃  x T (s ) R 1 ̃  x (s ) ds +

∫ t

t−ρ
e a (s −t) ̃  x T (s ) R 2 ̃  x (s ) ds

+ ρ

∫ 0 

−ρ

∫ t

t+ θ
e a (s −t) ̇ ̃ x 

T 
(s ) R 3 ̇ ̃ x (s ) d sd θ ,

V 5 (t) = ̂  q 2
∫ t

t k

e a (s −t) ̇ ̃ x 
T 
(s ) R 4 ̇ ̃ x (s ) ds − q (t) ηT 

3 (t) R 4 η3 (t)

− 3 q (t) ηT 
6 (t) R 4 η6 (t) ,

V 6 (t) = ̂  q 2
∫ t−ρ

t k −ρ
e a (s −t) ̇ ̃ x 

T 
(s ) R 5 ̇ ̃ x (s ) ds − q (t) ηT 

7 (t) R 5 η7 (t)

− 3 q (t) ηT 
8 (t) R 5 η8 (t) .

The following lemma is very useful for finding the practical con- 

sensus for the proposed system. 

Lemma 3. If there exist scalars a > 0 , b > 0 , and symmetric ma- 

trices P > 0 , Y > 0 , R 1 > 0 , R 2 > 0 , R 3 > 0 , R 4 > 0 , R 5 > 0 , Q 22 > 0 ,

Q = 

[ 
Q 11 Q 12 Q 13 

∗ Q 22 Q 23 

∗ ∗ Q 33 

] 

, U = 

[
U 11 U 12 

∗ U 22 

]
, and any matrices X l (l = 

1 , 2 , . . . , 5) such that the LKF (8) along the trajectories of (7) satisfies 

W(t) � L V (t) + a V (t) − bh T (x 0 (t)) h (x 0 (t)) ≤ 0 , (9)

then the system (7) will exponentially converge to the following ellip- 

soid 

E ∞ �

{ 

˜ x (t) ∈ R 
Nn : ̃  x T (t ) P ̃  x (t ) ≤

b 

a 
δ2 

}

with a decay rate a/ 2 . 

Proof. Multiply e at on both sides of (9) , we get 

L (e at V (t)) = e at L V (t) + ae at V (t) ≤ be at h T (x 0 (t)) h (x 0 (t)) . (10) 

Integrating (10) from 0 to t > 0 , we have 

V (t) ≤ e −at 
(
V (0) + 

∫ t

0

be as h T (x 0 (t)) h (x 0 (t)) ds 

)

≤ e −at 
(
V (0) + b δ2 

∫ t 

0

e as ds 

)

= 
bδ2 

a 
(1 − e −at ) + e −at V (0) . (11) 

Since ˜ x T (t) P ̃  x (t) ≤ V (t) and (11) , we have lim 
t→∞ 

˜ x T (t) P ̃  x (t) ≤ b 
a δ

2 . It 

ensures that the system (7) exponentially converges to the ellip- 

soid E ∞ with the decay of a/ 2 . �

Theorem 1. Given positive scalars a , β0 , ̂ q , ρ and under Assump- 

tions 1 –3 , the MASs (1) and (3) together with RRSDC (4) is expo- 

nentially achieved the practical leader-following consensus in the con- 

verging area E ∞ at a decay rate a/ 2 , if there exist positive scalars b, 

μ, symmetric matrices P > 0 , Y > 0 , R l > 0 (l = 1 , 2 , . . . , 5) , Q 22 > 0 ,

Q = 

[ 
Q 11 Q 12 Q 13 

∗ Q 22 Q 23 

∗ ∗ Q 33 

] 

, U = 

[
U 11 U 12 

∗ U 22 

]
and any matrices X l (l = 
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1 , 2 , . . . , 5) , S, diagonal real matrices �, �̄ > 0 , Ǩ 1 = diag { ̌K 1 i } N , Ǩ 2 = 

diag { ̌K 2 i } N such that the following inequalities hold:[
�̄1 + ̂  q �2 �N

∗ −μI 

]
< 0 , (12) 

[
�̄1 + ̂  q �3 �N

∗ −μI 

]
< 0 , (13) 

where � = I T 
1 S 

T + I T 
8 S 

T , 

�̄1 = Sym 

{
I T 1 P I 8 

}
+ I T 1 (aP + R 1 + R 2 + I N � Ŵ�Ŵ + I N � ϒ�̄ϒ) I 1 

− [ I 1 , I 2 , I 3 ] 
T �[ I 1 , I 2 , I 3 ] + [ I 2 , I 8 , I 6 ] 

T Q[ I 2 , I 8 , I 6 ] 

− e −aρI T 5 R 2 I 5 + I T 8 (ρ
2 R 3 + ̂  q 2 R 4 + Y ) I 8 − bI T 12 I 12 

− e −aρ (I T 9 Y I 9 − ̂ q 2 I T 9 R 5 I 9 )− I T 10 (I N � �) I 10 − I T 11 (I N � �̄) I 11 

− e −aρ [ I 1 − I 5 ] 
T R 3 [ I 1 − I 5 ]

− 3[ I 1 + I 2 − 2 I 4 ] 
T R 4 [ I 1 + I 2 − 2 I 4 ] 

− 6 Sym 

{
[ I 1 + I 2 − 2 I 4 ] 

T R 4 [ I 4 − I 1 ] 

}

− [ I 5 − I 6 ] 
T R 5 [ I 5 − I 6 ] − [ I 1 − I 2 ] 

T R 4 [ I 1 − I 2 ] 

− 3[ I 5 + I 6 − 2 I 7 ] 
T R 5 [ I 5 + I 6 − 2 I 7 ] 

− 6 Sym { [ I 5 + I 6 − 2 I 7 ] 
T R 5 [ I 7 − I 5 ] }

+ μ[ M 
(1) ̄H I 2 + M 

(2) ̄H I 6 ] 
T [ M 

(1) ̄H I 2 + M 
(2) ̄H I 6 ] 

+ Sym {−�I 8 + �Ā I 1 + β0 �B̄ I 10 + (1 − β0 )�C̄ I 11

+ �I 12 + (I T 1 + I T 8 )( ̌K 1 ̄H I 2 + Ǩ 2 ̄H I 6 ) } ,

�2 = 2 

[ 
I 1
I 2 
I 3 

] T

�

[ 
I 8
0 
I 1 

]
+ a 

[ 
I 1
I 2 
I 3 

] T

�

[ 
I 1
I 2 
I 3 

]
+ 

[
I 4 
I 7 

]T

U 

[
I 4 
I 7 

]

+ 2 

[
I 4 
I 7 

]T

U 

[
−I 4 + I 1 
−I 7 + I 5 

]
+ a ̂  q 

[
I 4 
I 7 

]T

U 

[
I 4 
I 7 

]
,

�3 = − Sym 

{
[ I 1 − I 2 ] 

T R 4 I 8 

}
− Sym 

{
[ I 5 − I 7 ] 

T R 5 I 9 

}

− 3 Sym 

{
[ I 1 + I 2 − 2 I 4 ] 

T R 4 I 8 

}

− [ I 4 , I 7 ] 
T U[ I 4 , I 7 ] −3 Sym 

{
[ I 5 + I 6 −2 I 7 ] 

T R 5 I 9 

}

− a 

{
3[ I 5 + I 6 − 2 I 7 ] 

T R 5 [ I 5 + I 6 −2 I 7 ] 

+ [ I 1 − I 2 ] 
T R 4 [ I 1 − I 2 ] + [ I 5 − I 6 ] 

T R 5 [ I 5 − I 6 ] 

+ 3[ I 1 + I 2 − 2 I 4 ] 
T R 4 [ I 1 + I 2 − 2 I 4 ] 

}
. 

Moreover, the RRSDC gain matrices are given by K 1 = S −T Ǩ 1 , K 2 = 

S −T Ǩ 2 . 

Proof. For t k ≤ t < t k +1 , taking the infinitesimal operator L [17] of 

V (t) in (8) along the state trajectories of the system (7) , we get 

E {L V 1 (t) } = 2 ̃  x T (t) P ̇ ̃ x (t) , (14) 

E {L V 2 (t) } = (t k +1 − t) ηT 
1 (t)(2�η4 (t) + �η1 (t))

− ηT 
1 (t)�η1 (t) + (q k − 2 q (t ))

[
z(t ) 
z̄ (t ) 

]T

U 

[
z(t ) 
z̄ (t ) 

]

+ 2(q k − q (t )) 

[
z(t ) 
z̄ (t ) 

]T

U 

[
−z(t ) + ̃  x (t) 

−z̄ (t ) + ̃  x (t − ρ) 

]
, (15) 

E {L V 3 (t) } = − a

∫ t

t k

e a (s −t) ηT 
2 (s ) Qη2 (s ) ds + ηT 

2 (t) Q η2 (t)

− a 

∫ t

t−ρ
e a (s −t) ̇ ̃ x 

T 
(s ) Y ˙ ̃ x (s ) ds + ˙ ̃ x 

T 
(t) Y ˙ ̃ x (t)

− e −aρ ˙ ̃ x 
T 
(t −ρ) Y ˙ ̃ x (t −ρ) , (16) 

E {L V 4 (t) } = − a

∫ t

t k

e a (s −t) ̃  x T (s ) R 1 ̃  x (s ) ds + ̃  x T (t)(R 1 + R 2 ) ̃  x (t)

− aρ

∫ 0 

−ρ

∫ t

t+ θ
e a (s −t) ̇ ̃ x 

T 
(s ) R 3 ̇ ̃ x (s ) d sd θ

−

∫ t

t−ρ
e a (s −t) 

(
a ̃  x T (s ) R 2 ̃  x (s ) + ρ ˙ ̃ x 

T 
(s ) R 3 ̇ ̃ x (s )

)
ds 

− e −aρ˜ x T (t − ρ) R 2 ̃  x (t − ρ)

+ ρ2 ̇ ̃ x 
T 
(t) R 3 ̇ ̃ x (t) , (17) 

E {L V 5 (t) } = − ̂ q 2 a

∫ t

t k

e a (s −t) ̇ ̃ x 
T 
(s ) R 4 ̇ ̃ x (s ) ds + ̂  q 2 ̇ ̃ x 

T 
(t) R 4 ̇ ̃ x (t)

− ηT 
3 (t) R 4 η3 (t) − 2 q (t ) ηT 

3 (t ) R 4 ̇
 ̃ x (t )

− 3 ηT 
6 (t) R 4 η6 (t) − 6 ηT 

6 (t ) R 4 [ q (t ) ̇
 ̃ x (t )

+ 2 z(t) − 2 ̃  x (t)] , (18) 

E {L V 6 (t) } = − ̂ q 2 a

∫ t−ρ

t k −ρ
e a (s −t) ̇ ̃ x 

T 
(s ) R 5 ̇ ̃ x (s ) ds − ηT 

7 (t) R 5 η7 (t)

+ ̂  q 2 e −aρ ˙ ̃ x 
T 
(t − ρ) R 5 ̇ ̃ x (t − ρ)

− 2 q (t) ηT 
7 (t) R 5 ̇

 ̃ x (t − ρ)− 3 ηT 
8 (t) R 5 η8 (t)

− 6 ηT 
8 (t) R 5 

[
q (t) ̇ ̃ x (t − ρ)+ 2 ̄z (t)− 2 ̃  x (t − ρ) 

]
. (19) 

Substituting the above-obtained derivatives of V (t) to inequality 

(9) , we get 

E {W(t) } ≤2 ̃  x T (t) P ̇ ̃ x (t) + ̃  x T (t)(aP + R 1 + R 2 ) ̃  x (t)

+ 2(t k +1 − t ) ηT 
1 (t )�η4 (t ) − ηT 

1 (t )�η1 (t )

+ (q k − 2 q (t )) 

[
z(t ) 
z̄ (t ) 

]T 

U 

[
z(t ) 
z̄ (t ) 

]

+ 2(q k − q (t )) 

[
z(t ) 
z̄ (t ) 

]T

U 

[
−z(t ) + ̃  x (t) 

−z̄ (t ) + ̃  x (t − ρ) 

]

+ ηT 
2 (t) Q η2 (t) + a (t k +1 − t) ηT 

1 (t)�η1 (t)

− e −aρ˜ x T (t − ρ) R 2 ̃  x (t − ρ) − ηT 
3 (t) R 4 η3 (t)

+ ˙ ̃ x 
T 
(t)(ρ2 R 3 + ̂  q 2 R 4 + Y ) ̇ ̃ x (t) − 2 q (t) ηT 

3 (t) R 4 ̇
 ̃ x (t)

− 3 ηT 
6 (t) R 4 η6 (t) − 3 ηT 

8 (t) R 5 η8 (t)

− 6 ηT 
6 (t) R 4 [ q (t) ̇

 ̃ x (t) + 2 z(t) − 2 ̃  x (t)]

+ ̂  q 2 e −aρ ˙ ̃ x 
T 
(t − ρ) R 5 ̇ ̃ x (t − ρ) − ηT 

7 (t) R 5 η7 (t)

− 2 q (t) ηT 
7 (t) R 5 ̇

 ̃ x (t − ρ) − aq (t) ηT 
3 (t) R 4 η3 (t)

− 6 ηT 
8 (t) R 5 [ q (t) ̇

 ̃ x (t − ρ) + 2 ̄z (t)− 2 ̃  x (t − ρ)]

− e −aρ ˙ ̃ x 
T 
(t − ρ) Y ˙ ̃ x (t − ρ) − 3 aq (t ) ηT 

6 (t ) R 4 η6 (t)

− aq (t) ηT 
7 (t) R 5 η7 (t) − 3 aq (t) ηT 

8 (t) R 5 η8 (t)

+ a (q k − q (t )) q (t ) 

[
z(t ) 
z̄ (t ) 

]T 

U 

[
z(t ) 
z̄ (t ) 

]

+ e −aρξ − bh T (x 0 (t)) h (x 0 (t)) , (20) 
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where ξ = −ρ
∫ t 
t−ρ

˙ ̃ x 
T 
(s ) R 3 ̇ ̃ x (s ) ds. Now, we define

ζ (t) = 

[
˜ x T (t) , ˜ x T (t − q (t)) , 

∫ t

t k

˜ x T (s ) ds, z T (t) , ˜ x T (t − ρ) , 

˜ x T (t − q (t) − ρ) , z̄ T (t) , ˙ ̃ x 
T 
(t) ,

˙ ̃ x 
T 
(t − ρ) , ˜ f T ( ̃  x (t ) , t ) , ˜ g T ( ̃  x (t ) , t ) , h T (x 0 (t ))

]T

.

Based on the Jensen’s inequality, the ξ in (20) can be written as 

−ρ

∫ t

t−ρ

˙ ̃ x 
T 
(s ) R 3 ̇ ̃ x (s ) ds ≤ −[ ̃  x (t) − ˜ x (t − ρ)] T R 3 [ ̃  x (t) − ˜ x (t − ρ)] .

(21) 

For a system (7) , the following equation holds for any appropriate 

dimensional matrix S : 

0 = 2�(t) 

{
− ˙ ̃ x (t) + Ā ̃  x (t) + β0 ̄B ̃

 f ( ̃  x (t) , t)

+ (1 − β0 ) ̄C ̃  g ( ̃  x (t ) , t ) + (β(t) − β0 )

× [ ̄B ̃  f ( ̃  x (t ) , t ) − C̄ ̃  g ( ̃  x (t ) , t )] + K 1 ̄H ̃  x (t − q (t))

+ K 2 ̄H ̃  x (t − q (t) − ρ) + h (x 0 (t))

+ N F(t) 
[
M 

(1) ̄H ̃  x (t − q (t)) + M 
(2) ̄H ̃  x (t − q (t) − ρ) 

]}
, (22) 

where �(t) = ̃  x T (t ) S T + ˙ ̃ x 
T 
(t ) S T . By utilizing Lemma 2 , one can get

the following inequality from (22) , 

2�(t) N F(t) 
[
M 

(1) ̄H ̃  x (t − q (t)) + M 
(2) ̄H ̃  x (t − q (t) − ρ) 

]

≤ μ−1 �(t) N N 
T �T (t)+ μ

[
M 

(1) ̄H ̃  x (t − q (t)) 

+ M 
(2) ̄H ̃  x (t − q (t) − ρ) 

]
T

×
[
M 

(1) ̄H ̃  x (t − q (t)) + M 
(2) ̄H ̃  x (t − q (t) − ρ) 

]
.

(23) 

Now, the nonlinear function f (x i (t ) , t ) and g(x i (t ) , t ) satisfies the 

Lipschitz condition (2) , which implies that for a diagonal matrix 

�, �̄ > 0 , 

˜ f T ( ̃  x (t ) , t )(I N � �) ̃  f ( ̃  x (t ) , t ) ≤ ˜ x T (t)(I N � Ŵ�Ŵ) ̃  x (t) , (24) 

˜ g T ( ̃  x (t ) , t )(I N � �̄) ̃  g ( ̃  x (t ) , t ) ≤ ˜ x T (t )(I N � ϒ�̄ϒ) ̃  x (t ) . (25) 

Let us define Ǩ 1 = S T K 1 and Ǩ 2 = S T K 2 , then combining (20) –(25) 

for t k ≤ t < t k +1 , which gives that 

E {W(t) } ≤ ζ T (t)

{
�1 + (t k +1 − t)�2 + (t − t k )�3 

}
ζ (t) 

= ζ T (t) � ζ (t) , 

where �1 = �̄1 + μ−1 �N N T �T . It is clear that E {W(t) } < 0 if

� < 0 . By the convex combination method, we obtain � < 0 for 

t k ≤ t < t k +1 . Applying Schur complement to � < 0 we get the 

inequalities (12) and (13) . We can conclude from Lemma 3 , 

lim 
t→∞

d( ̃  x (t, ̃  x 0 ) , E(P, (b/a ) δ2 )) = 0 . This completes the proof of 

Theorem 1 . �

Remark 2. Note that lim 
t→ t k 

V l (t) = V l (t k ) ≥ 0 , l = 1 , 3 , 4 . For the 

looped LKF V 2 (t) satisfies lim 
t → t −

k

V 2 ( t) = lim 
t → t + 

k

V 2 (t) = V 2 (t k ) = 0 . 

Since lim 
t→ t k 

V c (t) = V c (t k ) ≥ 0 , therefore V c (t) is continuous in 

time. Moreover, by Lemma 1 lim 
t → t −

k

V l (t) ≥ V l (t k ) = 0 , l = 5 , 6 . The 

positive-definiteness of V l (t) , l = 1 , 3 , 4 can be easily obtained by 

the positive-definite matrices P, Q, Y, R 1 , R 2 , R 3 . When utilizing 

Lemma 1 and the matrix R 4 > 0 , the positive-definite of V 5 (t) can 

be obtained as follows: 

V 5 (t) ≥q (t) 2 
∫ t

t k

e a (s −t) ̇ ̃ x 
T 
(s ) R 4 ̇ ̃ x (s ) ds − q (t) ηT 

3 (t) R 4 η3 (t)

− 3 q (t) ηT 
6 (t) R 4 η6 (t)

= q (t) 
[ 
q (t) 

∫ t

t k

e a (s −t) ̇ ̃ x 
T 
(s ) R 4 ̇ ̃ x (s ) ds − ηT 

3 (t) R 4 η3 (t)

− 3 ηT 
6 (t) R 4 η6 (t)

]
> 0 . 

Similarly we can verified V 6 (t) is positive-definite for (t k , t k +1 ) . 

Also the looped functional V 2 (t) satisfies V 2 (t k ) = V 2 (t k +1 ) = 0 , 

which provides that it not required to be a positive-definite, so it 

relaxed the stability condition. 

Remark 3. We have discussed the practical consensus of het- 

erogeneous MAS with randomly occurring nonlinearities under a 

fixed topology in the above subsection. In general, communication 

among the agents may be required to switch according to various 

practical applications. Hence, it is necessary to study the practical 

consensus of heterogeneous MAS with switching topology and it is 

summarized in the following subsection. 

3.2. Switching topology 

In this case, we consider a group of directed graph G(ϑ (t)) ∈ 

{G 1 , G 2 , . . . , G l } , with ϑ (t) is the switched signal which has the val- 

ues in a finite set T = { 1 , 2 , . . . , l} . 

Assumption 4. Every possible graph G s , s ∈ T has a directed span- 

ning tree with a root of the leader. 

The switching transmission between each agent occurs only at 

the sampling instant t k , k ∈ N, which means that the graph G(ϑ (t)) 

is sampled at the same sampling time t k , i.e.,) G(ϑ (t k )) and also 

which is constant until the next sampling. For the switching topol- 

ogy, RRSDC is given as follows: 

u i (t) = (K ϑ (t k ) 
1 i 

+ �K 
ϑ (t k ) 
1 i 

(t)) 

[
N ∑

j=1

w 
ϑ (t k ) 
i j 

[ x i (t − q (t)) − x j (t − q (t))] 

+ m 
ϑ (t k ) 
i 

[ x i (t − q (t)) − x 0 (t − q (t))] 

]

+ (K ϑ (t k ) 
2 i 

+ �K 
ϑ (t k ) 
2 i 

(t)) 

×

[
N ∑

j=1

w 
ϑ (t k ) 
i j 

[ x i (t − q (t) − ρ) − x j (t − q (t) − ρ)] 

+ m 
ϑ (t k ) 
i 

[ x i (t − q (t) − ρ) − x 0 (t − q (t) − ρ)] 

]
, (26) 

where w 
ϑ (t k ) 

i j
and m 

ϑ (t k ) 

i
are weighted coefficients of the graph 

G(ϑ (t k )) and K 
ϑ (t k ) 

1 i 
, K 

ϑ (t k ) 

2 i
are the controller gain matrix depend- 

ing on switching signal. �K 
ϑ (t k ) 

1 i 
, �K 

ϑ (t k ) 

2 i 
are the controller gain 

fluctuations. 

From (26) , the system (7) can be modified as follows 

˙ ̃ x (t) = Ā ̃  x (t) + β0 ̄B ̃
 f ( ̃  x (t ) , t ) + (1 − β0 ) ̄C ̃  g ( ̃  x (t ) , t )

+(β(t) − β0 )[ ̄B ̃
 f ( ̃  x (t) , t) − C̄ ̃  g ( ̃  x (t) , t)] + h (x 0 (t))

+ K 1 s ̄H s ̃  x (t − q (t)) + K 2 s ̄H s ̃  x (t − q (t) − ρ) + N s F s (t) 

×

[
M 

(1) 
s H̄ s ̃  x (t − q (t)) + M 

(2) 
s H̄ s ̃  x (t − q (t) − ρ) 

]

˜ x (θ ) = φ(θ ) , θ ∈ [ −q ⋆ , 0] , t k ≤ t < t k +1 , (27) 
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where M 
(1) 
s , M 

(2) 
s , N s are known matrices and F s (t) satisfies 

F T s (t) F s (t) ≤ I. K 1 s , K 2 s and H̄ s are the control gain matrices of 

K 1 (ϑ (t k )) , K 2 (ϑ (t k )) and the weighted matrix H̄ (ϑ (t k )) corre- 

sponding to ϑ (t k ) = s ∈ T respectively. 

Theorem 2. Suppose that under Assumptions 1 , 3 and 4 , given 

positive scalars a , β0 , ̂ q , ρ there exist scalars b > 0 , μ > 0 , 

symmetric matrices P > 0 , Y > 0 , R l > 0 (l = 1 , 2 , . . . , 5) , Q 22 > 0 ,

Q = 

[ 
Q 11 Q 12 Q 13 

∗ Q 22 Q 23 

∗ ∗ Q 33 

] 

, U = 

[
U 11 U 12 

∗ U 22 

]
and any matrices X l (l = 

1 , 2 , . . . , 5) , S, diagonal matrices �, �̄ > 0 , Ǩ 1 s = diag { ̌K 1 is } N , Ǩ 2 s = 

diag { ̌K 2 is } N such that the following LMIs hold:
[
�̄1 s + ̂  q �2 �N s

∗ −μI 

]
< 0 , (28) 

[
�̄1 s + ̂  q �3 �N s

∗ −μI 

]
< 0 , (29) 

where � = I T 1 S 
T + I T 8 S 

T , 

�̄1 s = Sym 

{
I T 1 P s I 8 

}
+ I T 1 (aP s + R 1 + R 2 + I N � Ŵ�Ŵ

+ I N � ϒ�̄ϒ) I 1 − [ I 1 , I 2 , I 3 ] 
T �[ I 1 , I 2 , I 3 ] 

+[ I 2 , I 8 , I 6 ] 
T Q[ I 2 , I 8 , I 6 ] − e −aρI T 5 R 2 I 5 

+ I T 8 (ρ2 R 3 + ̂  q 2 R 4 + Y ) I 8 − I T 10 (I N � �) I 10 

−3[ I 1 + I 2 − 2 I 4 ] 
T R 4 [ I 1 + I 2 − 2 I 4 ] 

− 6 Sym 

{
[ I 1 + I 2 − 2 I 4 ] 

T R 4 [ I 4 − I 1 ] 

}
− bI T 12 I 12 

−3[ I 5 + I 6 − 2 I 7 ] 
T R 5 [ I 5 + I 6 − 2 I 7 ] 

− e −aρ[ I 1 − I 5 ] 
T R 3 [ I 1 − I 5 ]− e −aρ (I T 9 Y I 9 − ̂ q 2 I T 9 R 5 I 9 ) 

−6 Sym 

{ 

[ I 5 + I 6 −2 I 7 ] 
T R 5 [ I 7 − I 5 ] 

}

+ μ[ M 
(1) 
s H̄ s I 2 + M 

(2) 
s H̄ s I 6 ] 

T [ M 
(1) 
s H̄ s I 2 +M 

(2) 
s H̄ s I 6 ] 

−[ I 1 − I 2 ] 
T R 4 [ I 1 − I 2 ] − I T 11 (I N � �̄) I 11 

− [ I 5 − I 6 ] 
T R 5 [ I 5 − I 6 ] + Sym 

{
− �I 8 

+�Ā I 1 + β0 �B̄ I 10 + (1 − β0 )�C̄ I 11 + �I 12 

+ (I T 1 + I T 8 ) ̌K 1 s ̄H s I 2 + (I T 1 + I T 8 ) ̌K 2 s ̄H s I 6 

}
,

�2 and �3 are given in Theorem 1 . Then exponentially achieved the 

practical leader-following consensus for the MASs (1) and (3) under 

the controller (26) with the convergence region E ∞ is given by 

E s ∞ �

{ 

˜ x (t) ∈ R 
Nn : ̃  x T (t ) P r ̃  x (t ) ≤

b 

a 
δ2 

}
, (30) 

where P r � min { P s : s ∈ T } at a decay rate a/ 2 . Moreover, the

sampled-data controller gain matrices are given by K 1 s = S −T Ǩ 1 s , 

K 2 s = S −T Ǩ 2 s . 

Proof. Choose the same LKF in Theorem 1 by replacing V 1 (t) into 
˜ x T (t) P s ̃  x (t) . Then, define Ǩ 1 s = S T K 1 s and Ǩ 2 s = S T K 2 s and all other 

notations and proof are similar to the Theorem 1 . Then, we achieve 

the practical leader-following consensus for the system (27) in the 

switching case. This proof is completed. �

Remark 4. The novel features and contributions of this paper lie 

in the following: 

• The random variables are introduced to represent the stochastic

nonlinearities in the heterogeneous MAS at any instant of time,

which obeys the Bernoulli distribution.

Fig. 1. Directed graph G. 

• Developing a control protocol for the heterogeneous MAS, the

gain fluctuation and constant signal transmission delay are si- 

multaneously considered so that the designed RRSDC scheme is

insensitive in these factors.
• For the proposed SDC scheme, the sampling intervals are time- 

varying and aperiodic, which is more general than the periodic

sampling to analyze and achieve the mean square practical con- 

sensus for the heterogeneous MAS.
• A novel LKF, including the looped functional and WIBD term

is proposed to deploy the available information on the saw- 

tooth structure characteristic of the actual sampling pattern. In

the proposed LKF, some matrices are no need to satisfy the

positive-definite condition.
• The practical consensus problem for a heterogeneous MAS is in- 

vestigated under fixed topology. Then, it has been extended for

the switched case also.

4. numerical examples

Example 1. Consider the generalized Chua’s circuit described as in 

the works of Ding and Zheng [7] 
{ 

˙ x 1 = κ1 (x 2 − α0 x 1 − ν(x 1 )) 
˙ x 2 = x 1 − x 2 + x 3 
˙ x 3 = −κ2 x 2 − κ3 x 3 

(31) 

with nonlinear function ν(x 1 ) is given by 

ν(x 1 ) = α2 x 1 + 
1 

2 
(α1 − α2 )(| x 1 + 1 | − | x 1 − 1 | ) .

Now, we consider three follower agents and one leader agent. 

The directed graph G in Fig. 1 represents the topology of the sys- 

tem, which is a directed spanning tree with leader agent node 0. 

For our convenience, assume that all connecting weights are to be 

1 and corresponding H = 

[ 
1 0 0 

−1 1 0 

0 −1 2 

] 

. Consider the randomly 

occurring nonlinear functions in (31) , the dynamics of each agent i 

for system (31) under the control input u i with i = 1 , 2 , 3 is given 

by 

˙ x i (t) = A i x i (t) + β(t) B i f (x i (t ) , t ) 

+ (1 − β(t)) C i g(x i (t ) , t ) + u i (t) , 

x i (t) = [ x i 1 (t) , x i 2 (t) , x i 3 (t)] 
T . 

The resultant parameter values for the dynamics of the follower 

agents are given by 

A i = 

[ 
a i b i 0 
1 −1 1 
0 c i 0 

]
, B i = 

[ 
d i 0 0 
0 0 0 
0 0 0 

]
, C i = 

[ 
e i 0 0 
0 0 0 
0 0 0 

]
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Fig. 2. State trajectories of ̃  x i 1 (t) without control input. 

Fig. 3. State trajectories of ̃  x i 2 (t) without control input. 

Fig. 4. State trajectories of ̃  x i 3 (t) without control input. 

with a 1 = −3 . 2 , a 2 = −2 . 5 , a 3 = −2 . 5714 , b 1 = 10 , b 2 = 10 , b 3 = 

9 , c 1 = −14 . 87 , c 2 = −18 , c 3 = −14 . 286 , d 1 = 5 . 9 , d 2 = 5 . 833 , d 3 = 

3 . 8571 , e 1 = 5 . 9 , e 2 = 5 . 833 , e 3 = 3 . 8571 . The randomly occurring 

nonlinear functions are given by f (x i ) = g(x i ) = [0 . 5(| x i 1 + 1 | −
| x i 1 − 1 | ) , 0 , 0] T . The leader agent parameter values are given by

A = 

[ 
−2 . 3714 8 . 90 0 0 0 

1 −1 1 
0 −14 . 4860 0 

]
, B = 

[ 
4 . 8571 0 0 

0 0 . 5 0 
0 0 1 

]
,

C = 

[ 
4 . 8571 0 0 

0 0 . 5 0 
0 0 1 

]
.

The state trajectories for the error system (7) without control input 

(i.e., u i (t) = 0 ) is plotted in Figs. 2–4 . It is clearly observed that the 

controller must need for the agents to achieve the consensus with 

the leader. Now we assume a = 0 . 6 , β0 = 0 . 8 , ̂  q = 0 . 06 and ρ = 0 . 1 . 

The uncertain parameter matrices are chosen to be M (1) = M (2) = 

N = 0 . 09 I 9 and F(t) = I 9 × 0 . 09 sin (t) . According to the proposed 

control technique with the value of the above parameter, the fol- 

lowing control gains are obtained by solving the LMIs (12) and 

Fig. 5. State trajectories of ̃  x i 1 (t) with control input (4) for each agent i = 1 , 2 , 3 . 

Fig. 6. State trajectories of ̃  x i 2 (t) with control input (4) for each agent i = 1 , 2 , 3 . 

Table 1

Maximum sampling period ̂  q for different val- 

ues of ρ in Example 1 .

ρ 0.10 0.15 0.20 0.30

̂ q 0.060 0.0585 0.040 0.0345

(13) in Theorem 1 , 

K 11 = 

[ 
−0 . 1153 −0 . 0311 −0 . 0671 
−0 . 1134 −0 . 4922 −0 . 0720 
−0 . 0816 −0 . 0176 −0 . 5323 

]
,

K 12 = 

[ 
−0 . 0573 −0 . 0373 −0 . 0584 
−0 . 0616 −0 . 3058 −0 . 0132 
−0 . 0331 −0 . 0376 −0 . 3227 

]
,

K 13 = 

[ 
−0 . 0379 −0 . 0281 −0 . 0336 
−0 . 0492 −0 . 1953 0 . 0157 
−0 . 0119 −0 . 0072 −0 . 2086 

]
,

K 21 = 

[ 
0 . 0 0 09 −0 . 0 0 02 0 . 0 0 03 

−0 . 0 0 01 0 . 0 0 02 0 . 0011 
−0 . 0 0 02 −0 . 0 0 02 0 . 0 0 07 

] 

,

K 22 = 

[ 
0 . 0 0 03 −0 . 0 0 01 0 . 0 0 01 

−0 . 0 0 01 0 . 0 0 01 0 . 0 0 03 
−0 . 0 0 01 −0 . 0 0 01 0 . 0 0 04 

]
,

K 23 = 

[ 
0 . 0 0 03 −0 . 0 0 01 0 . 0 0 01 

−0 . 0 0 02 0 . 0 0 0 0 0 . 0 0 04 
−0 . 0 0 01 −0 . 0 0 01 0 . 0 0 03 

]
.

Based on the above control gain matrices, the simulation re- 

sults on the state trajectories for the error system (7) are plotted 

in Figs. 5–7 . Evolution of random nonlinearities and control input 

trajectories are given in Figs. 8 and 9 , respectively. Also, the max- 

imum sampling period is calculated for different values of ρ with 

the above same parameter values based on Theorem 1 and it is 

tabulated in Table 1 . We can observe from Table 1 , the maximum 

sampling period is decreased gradually when increase the memory 

parameter value. From the simulation results, we conclude that the 
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Fig. 7. State trajectories of ̃  x i 3 (t) with control input (4) for each agent i = 1 , 2 , 3 . 

Fig. 8. Control responses of the system in Example 1 .

Fig. 9. Evolution of β(t) in Example 1 .

Fig. 10. Two possible switching topologies: (a) Graph G 1 (b) Graph G 2 . 

practical consensus achieved by all agents together with a leader in 

a bounded domain. 

Example 2. In this example, we have to demonstrate that the ef- 

fectiveness of Theorem 2 for heterogeneous MAS (1) and (3) . Con- 

sider the system (1) with three follower agents, and their commu- 

nication topology is assumed to be two different directed graphs 

which are given in Fig. 10 . The dynamics of each follower agents 

are taken by 

A 1 = 

[ 
−10 . 5 −0 . 3 1

0 −8 . 3 0 . 7

0 0 . 6 −12 . 5 

] 

,

A 2 = 

[ 
−10 . 5 1 0

1 −9 . 8 0 . 9

0 −1 −11 . 8 

] 

, A 3 = 

[ 
−12 . 7 0 1 . 1

0 . 4 −10 . 8 0

1 . 0 0 −12 . 4 

] 

,

B 1 = 

[ 
3 . 9 0 0 . 4

0 0 . 3 0

0 . 2 0 0 . 1

] 

,

B 2 = 

[ 
1 . 8 0 0

0 1 . 2 0

−0 . 5 0 1 . 0

] 

, B 3 = 

[ 
3 . 8 0 0 . 7

0 −0 . 6 0

0 0 . 2 0

] 

,

C 1 = 

[ 
1 . 9 0 0 . 7

0 0 0 . 3

0 . 3 0 −0 . 6 

] 

, C 2 = 

[ 
2 . 9 0 0 . 2

0 0 . 2 0

−0 . 6 0 1 . 2

] 

,

C 3 = 

[ 
3 . 5 0 0 . 4

0 0 −0 . 6 

0 . 2 0 0 . 9

] 

.

The nonlinear functions are chosen to be f (x i ) = g(x i ) = 

[0 . 8(| x i 1 + 1 | − | x i 1 − 1 | ) , 0 , 0] T . The parameter values of the leader

agent given by 

A = 

[ 
−2 . 9 0 . 4 −0 . 1 
1 −1 . 5 0 . 8 

−0 . 6 0 . 7 −3 . 6 

]
, B = 

[ 
7 . 8 0 0 
0 3 . 5 0 
0 0 1 

]
,

C = 

[ 
8 . 2 0 0 
0 0 . 5 0 
0 0 1 

]
.

For two different topology, the corresponding uncertain param- 

eter values are taken by M 
(1) 
1 = M 

(2) 
1 = M 

(1) 
2 = M 

(2) 
2 = 0 . 05 I 9 , 

N 1 = N 2 = 0 . 01 I 9 and F 1 (t) = F 2 (t) = I 9 × 0 . 5 sin (t) . Taking a = 

0 . 2 , β0 = 0 . 8 , ρ = 0 . 1 and solving the LMIs (28) - (29) with the max- 

imum sampling interval ̂ q = 0 . 01 , and the corresponding RRSDC 

gains are 

K G 1 
11 = 

[ 
−0 . 0055 −0 . 0012 −0 . 0 0 04 
−0 . 0040 −0 . 0040 −0 . 0061 
−0 . 0014 −0 . 0057 −0 . 0051 

] 

,

K G 1 
12 = 

[ 
−0 . 0025 −0 . 0011 −0 . 0 0 02 
−0 . 0020 −0 . 0 0 03 −0 . 0024 
−0 . 0 0 03 −0 . 0015 −0 . 0102 

]
,

K G 1 
13 = 

[ 
−0 . 0031 −0 . 0 0 06 −0 . 0015 
−0 . 0024 0 . 0015 −0 . 0091 
−0 . 0010 −0 . 0012 −0 . 0256 

]
,

K G 1 
21 = 10 −4 ×

[ 
−0 . 1982 −0 . 0177 −0 . 0059 
−0 . 0302 −0 . 1951 −0 . 0361 
−0 . 0104 −0 . 0460 −0 . 1935 

]
,

K G 1 
22 = 10 −4 ×

[ 
−0 . 0750 −0 . 0061 0 . 0 0 08 
−0 . 01 03 −0 . 0817 −0 . 0037 
−0 . 0 0 03 −0 . 0052 −0 . 0869 

]
,

K G 1 
23 = 10 −4 ×

[ 
−0 . 0594 −0 . 0035 −0 . 0045 
−0 . 0097 −0 . 0748 −0 . 0173 
−0 . 0049 −0 . 0151 −0 . 1644 

]
,

K G 2 
11 = 

[ 
−0 . 0034 −0 . 0 0 07 −0 . 0 0 03 
−0 . 0026 −0 . 0026 −0 . 0043 
−0 . 0010 −0 . 0039 −0 . 0035 

]
,

K G 2 
12 = 

[ 
−0 . 0058 −0 . 0025 −0 . 0 0 07 
−0 . 0051 −0 . 0 0 06 −0 . 0064 
−0 . 0 0 09 −0 . 0039 −0 . 0286 

]
,

K G 2 
13 = 

[ 
−0 . 0051 −0 . 0010 −0 . 0028 
−0 . 0041 0 . 0026 −0 . 0164 
−0 . 0019 −0 . 0024 −0 . 0489 

] 

,

K G 2 
21 = 10 −4 ×

[ 
−0 . 1044 −0 . 0082 −0 . 0026 
−0 . 0116 −0 . 1080 −0 . 0116 
−0 . 0036 −0 . 0179 −0 . 1037 

]
,
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Fig. 11. Switching mode.

Fig. 12. State trajectories of ̃  x i 1 (t) with control input (26) . 

Fig. 13. State trajectories of ̃  x i 2 (t) with control input (26) . 

K G 2 
22 = 10 −4 ×

[ 
−0 . 1398 −0 . 0033 0 . 0033 
−0 . 0021 −0 . 1988 0 . 0105 
0 . 0 0 05 0 . 0 0 0 0 −0 . 1 027 

]
,

K G 2 
23 = 10 −4 ×

[ 
−0 . 0581 0 . 0013 0 . 0034 
0 . 0080 −0 . 1279 0 . 0353 
0 . 0016 −0 . 0 0 09 −0 . 0651 

]
.

Figure 11 illustrates the switching topology for the agents, 

where modes 1 and 2 represent the graphs G 1 and G 2 , respectively. 

The state trajectories of the error system are given in Figs. 12–

14 , which shows that the proposed resilient retarded sampled-data 

controller stabilizes the considered heterogeneous MAS, and their 

corresponding control response for switched topology is displayed 

in Fig. 15 . From the above discussions, one can conclude that, for 

heterogeneous MAS, all the follower agents achieved practical con- 

sensus together with the leader under the control input (26) . 

5. Conclusion

In this paper, the practical consensus analysis for heteroge- 

neous MAS with randomly occurring nonlinearities under fixed 

and switching topologies has been investigated in a mean-square 

Fig. 14. State trajectories of ̃  x i 3 (t) with control input (26) . 

Fig. 15. Control responses of the system in Example 2 .

sense. Besides, a stochastic variable has been introduced to de- 

pict the random behavior of the nonlinearities. The main advan- 

tage of the method is to design the RRSDC scheme for heteroge- 

neous multi-agent systems, which considers the control gain vari- 

ation and signal transmission delay. Based on the WIBD term and 

looped functional information, a novel LKF has been constructed 

to derive sufficient conditions for the leader-follower practical con- 

sensus of heterogeneous MAS under a fixed topology. Then, the de- 

rived conditions have been extended for heterogeneous MAS under 

the switching topology. At last, the effectiveness of the RRSDC de- 

sign method was verified via a numerical example with its sim- 

ulations. An increasing number of agents will burden the compu- 

tational resource, and thus in the future, we will introduce some 

lemmas based on the free matrix-based inequalities to alleviate the 

computational burden. It would also be interesting to further con- 

sider the sampled-data control-based practical consensus problem 

for singular MASs and stochastic MASs with communication delays 

and packet dropouts. 
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