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Abstract

Finding better ways to handle software complexity (both inherent and
accidental) is the holy grail for a significant part of the software engineering
community, and especially for the Model Driven Engineering (MDE) one. To
that purpose, plenty of techniques have been proposed, leading to a succession
of trends in model based software developments paradigms in the last decades.
While these trends seem to pop out from nowhere, we claim in this article that
most of them actually stem from trying to get a better grasp on the variability
of software. We revisit the history of MDE trying to identify the main aspect
of variability they wanted to address when they were introduced. We conclude
on what are the variability challenges of our time, including variability of data
leading to machine learning of models.

1 Introduction

Software suffers from a very striking paradox. One the one hand it is so easy to
write simple programs that a 6 years old child can do Logo or Scratch programming
right after a few minutes of training. On the other hand, it is so difficult to write
complex ones that basically nobody is able to write large, bug free programs1. At
the scale of a 100 lines program, the method or the programming language used
does not really matter much, and if you fail, you can just start over again at very
little cost. However it is well-known from Fred Brooks’ days [3], that writing a
100,000 line program is much more difficult than 1000 times the effort of writing a
100 line program.

1Even most real life “proven” programs still have bugs in corner cases, stemming from unexpected
conditions.
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We can then identify 3 dimensions of complexity in building software:

Inherent complexity of software This is due to software roots in Alan Turing’s
theory of universal computation: Even extremely short and simple programs
may be impossible to prove or even have undecidable properties (termination).

Complexity due to scale Within this dimension, Fred Brooks [3] identifies two
types of software complexity: essential and accidental complexity. On the
one hand, essential complexity is software complexity that is inherent to the
problem targeted by the software or to the solution provided by the software.
This inherent complexity can arise, for example, from the variety of input
events and data that must be correctly handled by the software, or from the
critical functional and quality concerns that the software must address. For
example, software controlling a commercial aircraft is inherently complex
from both a problem and solution perspective. On the other hand, accidental
complexity comes from the use of inappropriate technologies, which leads to
significant human effort being spent on developing the software.

Complexity due to uncertainty Uncertainty in software development comes from
many sources. First it comes from the problem domain: requirements, in-
cluding business or legal rules and human expected behavior are generally
incomplete and do evolve over time. Assumptions about the world the soft-
ware interacts with are typically quite rough, usually implicit, and do not take
into account all corner cases. Uncertainty can also come from the execution
platform, either inherently (hardware faults or even simple network delays)
or accidentally due to e.g.; misinterpretations or changes in APIs. This is
not even counting with cyber-attacks and other malicious tampering with the
software.

Dealing with the inherent complexity of software requires reasoning about
the software, using techniques ranging from full formal proofs to lightweight
mechanisms such as Design By Contract [31] or Unit Testing [19].

Due to the limited capacity of human mind (nobody can fully understand a
program made of one million lines of code), dealing with the complexity due to scale
can only be achieved through abstraction and modularity. If a program is properly
broken into 10 modules, each made of 10 submodules, each made of another 10
submodules, and each of these leaf modules containing 1000 lines of code, then we
can both fully understand any given module and how this one fits with the other
999, provided we have an abstract understanding of those (what they do, not how
they do it).

Dealing with the complexity due to uncertainty requires a proper anticipation
of eventual changes, by identifying and isolating (or at least reducing the coupling
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with) the parts that could change. This is the idea of Separation of Concerns, along
with the explicit management of variations, along the two dimensions of space
and time for respectively variants and versions. Deciding which variant should be
chosen can be done at different stages in the software lifecycle: at requirement time,
design time, compile time, load time, JIT time, or even runtime [18].

If you consider variability management of essential complexity as the main
concern in software development, it is interesting to look back at the history of trends
in Software Engineering to see what particular problem of variability management
these trends actually wanted implicitly or explicitly to address. In this paper we
roughly identify 4 generations, that are outlined in the next sections:

• 1st Generation: CASE tools

• 2nd Generation: Model Driven Architecture

• 3rd Generation: Separation of Concerns with Models, Aspects and Features

• 4th Generation: Domain Specific Languages & Software Language Engineer-
ing

Each of these sections first starts with the presentation of the code idea, then
highlights its good points, and finally list its drawbacks (the Bad and the Ugly).

We conclude with what could be the challenges of the next generation: the
integration of Models & Data.

2 First Generation: CASE tools

2.1 The Idea

Computer Assisted Software Engineering (CASE) tools were born in the 80’s, with
features such as consistency checking, validation and code generation starting to be
used in some industries such as telecommunications.

The telecom industry (actually mostly the European one) indeed started to use a
number of so-called Formal Description Techniques, from SDL (Specification and
Description Language) to Estelle or Lotos (Logic of Temporal ordering of events).
SDL and Estelle were based on the notion of extended state machines, whereas
Lotos was based on process algebra. These languages featured a fairly well-defined
syntax (both textual and graphical in the case of SDL, see Figure 1) and semantics,
and were thus amenable to simulation and early attempts to scale model-checking
to industrial strength.

Once confidence could be built into a given specification through simulation
and validation, some CASE tools allowed engineers to use code generation to get
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Figure 1: A CASE Tool for SDL

an instant implementation of their algorithms and protocols. As a matter of fact,
one of my early contribution to this field was to build such a code generator for
Estelle [23], targeting the early distributed computers of that time, ranging from
dedicated machines such as the Intel hypercubes to more mundane networks of
Unix computers.

2.2 The Good

The promises of this approach were great: you could program these very complex
distributed computers at a high level of abstraction, with a high level of confidence
in the validity of your code because the simulation/validation/model-checking could
be performed on the exact same source code. What was actually achieved in
software engineering terms was a clear separation of the essential complexity (the
specification of a protocol) from the accidental complexity of the implementation,
thus making it easier to evolve the specification to meet new requirements [20].

2.3 The Bad and the Ugly

There were however two main drawbacks to this approach. The first one is due to
the highly abstract and somehow mathematical nature of these Formal Description
Techniques. It was in fact quite difficult to train large numbers of telecom engineers
to use these formalisms. SDL was kind of OK, but Lotos was considered as way
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too baroque for C programmers, with Estelle and its Pascal-like syntax somehow in
between.

The second drawback, which is probably the worst one, is linked to code
generation. Code generators at that time were black boxes, heavily protected
by the CASE tool vendors. In some cases, the generated code perfectly fitted
the engineering needs, and thus several successful uses of this technology were
documented (and leveraged by the vendor marketing departments). However in
many other cases there were difficult engineering constraints to care of, such as
speed, code compacity, memory footprint, memory usage, and in many cases
interface with legacy software or firmware. These constraints would each have
required the (functional) code to be generated in slightly different ways, but that
was impossible with black box code generators.

In some cases, engineers tried to circumvent the problem by adding a post-
processing step after the code has been generated. For example, I remember the
case at a large telecom company that was using an SDL code generator and had the
issue of a state machine transition that took too long to execute. The consequence
was that some real time constraints could not be met. So the engineers broke the
transition into two blocks, yielding the control to the scheduler in the middle. That
worked for meeting the real time constraints. However there was a catch that was
only seen much later after a catastrophic crash of the system. By breaking the
transition, that in SDL semantics was atomic, the engineers involuntarily introduced
new behavior with a different interleaving of event processing that in some rare
cases led to this crash.

In the end, one size fits all black box code generation was rapidly abandoned in
the industry. The bottom line was that it was not worth the trouble.

3 The Time of Model Driven Architecture (MDA)

3.1 The Idea

In [32] the OMG Architecture Board described its Model Driven Architecture
(MDA) vision to support interoperability with specifications that address integration
through the entire systems life cycle: from business modeling to system design, to
component construction, to assembly, integration, deployment, management, and
evolution. MDA had the primary goal to separate the fundamental logic behind a
specification from the specifics of the particular middleware that implements it. This
would allow rapid development and delivery of new interoperability specifications
that use new deployment technologies but are based on proven, tested business
models. In the OMG vision, organizations would use MDA to meet the integration
challenges posed by new platforms, while preserving their investments in existing
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business logic based on existing platforms. The term platform is used here to
refer to technological and engineering details that are irrelevant to the fundamental
functionality of a software component.

Main concepts in MDA are:

CIM: a Computation Independent Model focuses on the context and requirements
of the system without consideration for its structure or processing.

PIM: a The Platform Independent Model focuses on the operational capabilities of
a system outside the context of a specific platform (or set of platforms) by
showing only those parts of a complete specification that can be abstracted
out of that platform.

PSM: a Platform Specific Model augments a Platform Independent Model with
details relating to the use of a specific platform.

PDM: a Platform Description Model describes set of subsystems and technologies
that provide a coherent set of functionality through interfaces and usage
patterns, e.g.; CORBA, Java/EJB, C#/.NET etc.

Model Transformations are automated ways of modifying and creating models.

Early on, model transformations were developed within modeling tools using
proprietary languages. Such a method was unfortunately far from being reusable
and robust. Model transformations were increasingly seen as vital assets that must
be managed with sound software engineering principles: they must be analyzed,
designed, implemented, tested, maintained and be subject to configuration man-
agement. For the same reason that domain know-how should not be tied to a
particular platform, it was considered critical that model transformations were
not prisoners of a given CASE tool. So the OMG launch a RFP on MOF QVT
(Query/View/Transformation) in order to define a vendor independent Model Trans-
formation language.

3.2 The Good

Since domain specific models are less likely to change rapidly than platform-specific
ones, the MDA core idea made a lot of sense: it should be possible to capitalize
on platform-independent models (PIM), and more or less automatically derive
platform-specific models (PSM) ––and ultimately code–– from PIM through model
transformations [2].

According to [32], that vision would provide:
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Figure 2: Y-development

• Portability, increasing application re-use and reducing the cost and complexity
of application development and management, now and into the future.

• Cross-platform Interoperability, using rigorous methods to guarantee that stan-
dards based on multiple implementation technologies all implement identical
business functions.

• Platform Independence, greatly reducing the time, cost and complexity asso-
ciated with re-targeting applications for different platforms —including those
yet to be introduced.

• Domain Specificity, through Domain-specific models that enable rapid imple-
mentation of new, industry-specific applications over diverse platforms.

• Productivity, by allowing developers, designers and system administrators
to use languages and concepts they are comfortable with, while allowing
seamless communication and integration across the teams.

3.3 The Bad and the Ugly

In its most idealized form, illustrated in Figure 2, the MDA would combine a PIM
with a PDM to automatically provide a PSM. The reality however is a little bit more
complex than this idealized vision, which probably explains why the MDA never
quite took real momentum.

First, MDA is mostly a forward engineering approach in which models are
transformed into implementation artifacts (e.g. code, database schema, software
configuration scripts, test cases) in one direction via a fully or partially automated
generation step. When not everything is captured in the source models, some
modification of the generated code has to be carried out manually to take into account
the missing concerns. That rapidly becomes a nightmare from the maintenance
point of view, even if some vendors came up with tricks to alleviate the burden of
keeping the manual modifications in synch with the generated code.
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Second, in some business areas involving fault-tolerant, distributed real-time
computations, there was a concern that the added value of a company not only lies
in its know-how of the business domain (the PIM) but also in the design know-
how needed to make these systems work in the field (i.e. the transformation to go
from PIM to PSM). In some cases, the transformation was much more complex
than the PIM. A lot of knowledge was actually captured in such a transformation,
but it was done at the wrong level of abstraction because there was very little
support for a proper separation of concerns in transformation languages such as
QVT. One possible approach would have been to actually fulfill the Y-shaped
approach presented in Figure 2, with an explicit PDM and a much simpler model
transformation which would “just” implement a model composition between the
PIM and the PDM to get the PDM. However no one ever managed to model a non
trivial platform in such a way that it could be use in that purpose.

Finally, we can see that the effort to build dedicated transformation languages
such as QVT or ATL has been a dead end. These language never really captured a
wide audience. Their most advanced features (such as semi-declarative style) were
at best difficult to use, while their navigation capabilities and higher order features
are now available in general-purpose languages such as Java or Kotlin, leaving very
little interest in writing new model transformations with QVT-style languages.

4 Separation of Concerns with Models, Aspects and Fea-
tures

4.1 The Idea

As discussed in the previous section, MDA had the goal to separate the fundamental
logic behind a specification from the specifics of the particular middleware that
implements it. Platform dependency is indeed one important concern to separate
from the core functionality of an application. But that is not the only one. In
any complex application, there are many other concerns that must be dealt with,
including performances, fault tolerance, concurrency, distribution, data persistency,
energy consumption, safety, security, user experience, and many more.

The term separation of concerns has probably been coined by Dijkstra as far
back as 1974 [9]:

Let me try to explain to you, what to my taste is characteristic for all
intelligent thinking. It is, that one is willing to study in depth an aspect
of one’s subject matter in isolation for the sake of its own consistency,
all the time knowing that one is occupying oneself only with one of the
aspects. We know that a program must be correct and we can study

8



it from that viewpoint only; we also know that it should be efficient
and we can study its efficiency on another day, so to speak. In another
mood we may ask ourselves whether, and if so: why, the program is
desirable. But nothing is gained —on the contrary!— by tackling these
various aspects simultaneously. It is what I sometimes have called "the
separation of concerns", which, even if not perfectly possible, is yet
the only available technique for effective ordering of one’s thoughts,
that I know of. This is what I mean by "focusing one’s attention upon
some aspect": it does not mean ignoring the other aspects, it is just
doing justice to the fact that from this aspect’s point of view, the other is
irrelevant. It is being one- and multiple-track minded simultaneously.

As Dijkstra already pointed out, separation of concerns naturally leads to the
idea of aspects that can be analyzed separately, which is precisely what we are
trying to achieve with modeling. My preferred definition of a model is indeed [21]:

A model is the abstraction of an aspect of reality for handling a
given concern.

Note that the Aspect Oriented Programming community had a much narrower
definition of an aspect as being only the modularization of a cross-cutting con-
cern [12]. If we indeed have an already existing “main” decomposition paradigm
(such as object orientation), there are many classes of concerns for which a clear
allocation into modules is not possible (hence the name “cross-cutting”). Examples
include both allocating responsibility for providing certain kinds of functionality
(such as logging) in a cohesive, loosely coupled fashion, as well as handling many
non-functional requirements that are inherently cross-cutting, e.g.; security, resource
management, etc. But purely outside the programming world [39], there was an
acceptance for a wider definition where an aspect is a concern that can be modular-
ized. In that sense an aspect becomes quite close to the concept of a feature, as in
Feature Oriented Programming [1].

Indeed, once we have identified and modularized our concerns as model level
aspects [42], we still need to manage which variant of which concern goes into which
product. This led to the development of the Software Product Line concept [37],
and in particular to the pervasive feature diagram notation, as illustrated in Figure 3,
to describe and explicitly manage variability2.

4.2 The Good

So really modeling is the activity of separating concerns in the problem domain,
an activity often called analysis. If solutions to these concerns could be described

2Taken from https://commons.wikimedia.org/w/index.php?curid=25197577
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Figure 3: A Feature Model Example

as aspects, the design process would then be characterized as a weaving of these
aspects into a detailed design model [16]. This is actually what software designers
have been actually doing forever. Most often however, the various aspects were not
explicit, or when there were, it was in the form of informal descriptions. So the
task of the designer was to do the weaving in her head more or less at once, and
then produce the resulting detailed design as a big tangled program (even if one
decomposition paradigm, such as functional or object-oriented, is used). While it
could work pretty well for small problems, it is a major headache for bigger ones.

Note that the real challenge here is not on how to design the system to take a
particular aspect into account: there is a huge design know-how in industry for that,
often captured in the form of design patterns. Taking into account more than one
aspect as the same time is a little bit more tricky, but many large scale successful
projects in industry are there to show us that engineers do ultimately manage to sort
it out (most of the time).

The real challenge in a product-line context is that the engineer wants to be able
to change her mind on which version of which variant of any particular aspect she
wants in the system. And she wants to do it cheaply, quickly and safely. For that,
redoing by hand the tedious weaving of every aspect is not an option.

In this context, Model Driven Engineering (MDE) can be seen as a method-
ology for mechanizing the process experienced designers follow by hand [43].
The idea is that when a new product has to be derived from the product-line, we
can automatically replay the design process, just changing a few things here and
there [33].

MDE technologies, such as executable meta-modeling [35], support develop-
ment of models that capture software functionality and properties at different levels
of abstraction and from different perspectives, as well as rigorous analysis of models,
and transformation of models into software artifacts that serve specific development
purposes.
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4.3 The Bad and the Ugly

Cleanly separating concerns of a system is not always completely straightforward,
but its difficulty is more or less proportional to the inherent complexity of the
problem at hand. But once concerns have been separated into aspects, even simple
ones as in the AOP view (i.e. oblivious and cross-cutting), one still needs to compose
them.

While weaving a single aspect is pretty straightforward, weaving a second one at
the same join point is indeed another story. When a second aspect has to be woven,
the initial join point might not any longer exist because it could have been modified
by the first aspect advice. If we want to allow aspect weaving on a pair-wise basis,
we must then define the join point matching mechanism in a way that considers
these composability issues. However, with this new way of specifying join points,
two new problems arise (see [21] for a detailed explanation with the example of
sequence diagrams):

• It is in general difficult (or even statically undecidable [4, 25]) to identify join
points when the patterns we are looking for are based on the properties of the
computational flow.

• The composition of the advice with the detected part cannot any longer be
just a replacement of the detected part by the advice: we also have to define
more sophisticated compositions operators.

More generally, the problem is that nobody ever came up with composition
operators with good mathematical properties such as commutativity and associativity.
That makes the tool support for these approaches extremely difficult and costly to
build.

It probably means that there is no hope for a fully general-purpose, meta-model
independent, model-level aspect weaver. Still, it should be possible to develop
aspect weaving software components handling several aspects of aspect weaving,
from general-purpose model-level pattern matching [38] to automated support for
composing models written in a particular language (through a definition of model
composition behavior in the metamodel defining the language [14]), to specializable
model composers [17]. These aspect weaving components could then be customized
and combined to build domain specific or even project specific aspect weavers.
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5 Domain Specific languages and Software Language En-
gineering

5.1 The Idea

The principle of separation of concerns, and its derivatives, Modularity and Ab-
straction are the keys toward mastering the different dimensions of complexity of
software, including its inherent variability. But as discussed above, it is extremely
difficult to come up with powerful general-purpose composition mechanisms work-
ing at the level of software modules (functions, classes, aspects, components, etc.).

One very powerful idea [34] is to lift the composition at the language (or meta-
model) level. Each concern of a complex software could then be described using its
own relevant Domain Specific language, and their composition worked out one and
for all by defining how those DSL could be composed.

The idea of using DSL is far from being a new one. As far back as 1972, Dijkstra
(again!) said in his ACM Turing Lecture:

Another lesson we should have learned from the recent past is
that the development of ’richer’ or ’more powerful’ programming
languages was a mistake in the sense that these baroque monstrosities,
these conglomerations of idiosyncrasies, are really unmanageable, both
mechanically and mentally.

I see a great future for very systematic and very modest program-
ming languages.

This quote is thus often cited by proponents of Domain Specific Languages
(DSL), which are indeed modest languages specifically designed for a single purpose.
Such languages provide developers with abstractions that are directly related to the
application-specific concerns they are addressing in their software projects. For
example, there are modeling languages for expressing security, distributed real-time
systems, and user interface concerns, in addition to languages that are specific to
e.g. the automotive software domain.

These DSLs tend to be smaller, focus on a particular domain, serve a smaller user
community, and evolve at a faster rate than traditional modeling or programming
languages, since the concern domains are continually evolving. The engineering
of these languages thus presents special challenges when compared with the de-
velopment of traditional languages. The MDE community [6] has developed a
rich integrated collection of generative technologies that are based on standardized
metamodeling facilities such as OMG’s MetaObject Facility (MOF) [36]. These
technologies use metamodels to facilitate and drive the generation of parsers, com-
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pilers, code generators, checkers, simulators, and other integrated development
environment services.

The need for proper tools and methods in the development of software languages
recently led to the emergence of the Software Language Engineering (SLE) research
field which is defined as “the application of systematic, disciplined, and measurable
approaches to the development, use, deployment, and maintenance of software
languages” [26].

SLE makes it possible to isolate the variability coming from the problem domain
in the sense that domain experts are given DSL for them to directly express their
requirements and change them as often as they wish.

5.2 The Good

New DSLs can nowadays easily be developed using a language workbench [13],
a “one-stop shop” for the definition of languages and their environments [41]. The
main intent of language workbenches is to provide a unified environment to assist
both language designers and users in, respectively, creating new DSLs and using
them.

The idea of using multiple DSL to solve a problem can even be applied to itself,
as exemplified with the Kermeta Language Workbench [22] which is implemented
as a Mashup of Meta-Languages. Modern language workbenches such as Xtext [10],
Spoofax [24] or Monticore [27] thus typically offer a set of meta-languages that
language designers use to express each of the implementation concerns of a DSL,
along with tools and methods for manipulating their specifications.

One of the current trend in SLE is to consider more and more languages as
first-class entities that can be extended, composed, and manipulated as a whole.
Melange [8] is such a meta-language for modular and reusable development of
DSLs. Leveraging the model type theory [40], Melange provides an algebra of
operators for extending, restricting, and assembling separate DSL artifacts (see
Figure 4).

Beyond helping the development of a single DSL, a new challenge in SLE is also
to co-develop a set of related DSLs, each aiming at capturing a specific aspect of the
same system, but seldom in a fully orthogonal way. For example, a system engineer
may need to analyze a system property that requires information scattered in models
expressed in different DSLs. Supporting this coordinated use of multiple DSLs
leads to what we called the globalization of modeling languages [5], by analogy
with world globalization in which relationships are established between sovereign
countries to regulate interactions (e.g., travel and commerce related interactions)
while preserving each country’s independent existence.

Globalized DSLs aim to support several critical aspects of developing complex
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systems: communication across teams working on different aspects, coordination of
work across the teams, and control of the teams to ensure product quality. The way
different DSLs can be related ranges from simple interoperability, to collaboration
(e.g. the same “event” could appear in a class diagram, a sequence diagram and a
statechart), and finally composition (e.g., weaving and merging). The later is made
possible when the builder of the DSLs has a full control over their semantics (and
assuming they should be much simpler than the semantics of a general-purpose
language such as Java) so that she can define at language level how they could be
composed together [29].

The GEMOC Studio3 is an example of a workbench supporting the global-
ization of modeling languages. It provides generic components through Eclipse
technologies for the development, integration, and use of heterogeneous executable
modeling languages. This includes, among others:

• metaprogramming approaches and associated execution engines to design
and execute the behavioral semantics of executable modeling languages,

• efficient and domain-specific execution trace management services,

• model animation services,

• advanced debugging facilities such as forward and backward debugging (i.e.
omniscient debugging), timeline, etc.

• coordination facilities to support concurrent and coordinated execution of
heterogeneous models

• an extensible framework for easily adding new execution engines and runtime
services

5.3 The Bad and the Ugly

“Software languages are software too” [11] and, consequently, they inherit all
the complexity of software development in terms of maintenance, evolution, user
experience, etc. Not only do languages require traditional software development
skills, but they also require specialized knowledge for conducting the development
of complex artifacts such as grammars, metamodels, interpreters, or type systems.
While this is still far from being an easy endeavor, there is already some progress
compared to the past. Indeed, during the 60’s–70’s you really had to be a genius
to fully develop a new language. During the late 80’s–90’s, it became feasible for

3http://gemoc.org/studio.html
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mere PhDs. In this millennium, it is usually taught at master level, or even before.
Maybe tomorrow anybody will be able to hack her own language.

With respect to the globalization of DSLs, many challenging issues remain.
Relationships among the languages will need to be explicitly defined in a form that
corresponding tools can use to realize the desired interactions. Requirements for
tool manipulation are thus another topic that will be a focus for future work in the
area of DSL globalization.

6 A New Challenge: Models & Data

In all the previous sections, the models we have been discussing were explicit
models that engineers were supposed to have created at some point. These engineer-
ing models are devoted to support the definition and representation of a targeted
system [28]. Engineering models are prescriptive during the design process of a
system, and become descriptive once the system is built.

But engineering models are not the only kind of models that are useful nowadays.
Scientific models are for instance representations of some aspects of a phenomenon
of the real world [15]. Based on established scientific knowledge, they are primarily
used to explain and analyze a phenomenon of interest: they are first and foremost
descriptive models. These models are validated or rejected by experiments, which
play an analogous role as tests for engineering models. But once validated, these
models can also become predictive. They are indeed typically used to predict future
behavior of the phenomenon of interest through computer ran simulations, which
make them somehow become engineering models.

Recent advances in computing power has also enabled a new spring for machine
learning (ML) techniques, fostering the possibility to automatically infer models
from data instead of laboriously crafting them. ML models are obtained through
inductive reasoning principle, i.e., generalization from specific cases. ML models
can be descriptive of a current or past relationship, predictive when given some
hypothetical input data, or prescriptive if they are used in a larger system to make
decisions.

Of course, it would be ridiculous to use machine learning to build models from
well-known domains: we already quite well know the law of gravity, or what the
model of a bank account is. We do not need to learn them from observations, i.e.
apples falling from trees or sets of banking transactions. We however see it as
an interesting challenge of our time how we can smoothly combine these three
types of models (engineering models, scientific models and ML models) to build
innovative systems. In particular, the kind of variability we must deal with here is
the variability of data. Indeed, these models cannot be fully known before the data
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Figure 5: A Simplified Bus Network Model

is acquired, either for calibration (case of scientific models) or synthesis (case of
machine learning).

A possible direction for integrating these models would be to articulate them
around the concept of time, i.e. Past, Present, Future. Let’s take the simplified exam-
ple of a bus network, as illustrated in Figure 5, and concentrate on the getSpeed()
method of the class InterStop, that yields the speed of a bus between two adjacent
stops at a specific date d.

• Conceptually speaking, if d is in the past, the getSpeed() method is a simple
lookup of the relevant data in the database of recorded bus timetables that
would have been designed as a part of the engineering model for the bus
management application.

• If d is now, then it means that to get the speed of a bus on a particular
InterStop, I should have access to some kind of model reflecting the current
state of the bus system, aka model at runtime.

• If d is in the future, then I have to find a way to accurately predict the future.
Of course predictions are always difficult4, but there exist several techniques
to help us do that. First we can use an explicit (scientific) model bringing
some mathematical approximation of the distribution of bus speeds across
the city, using for instance some linear regression of predefined parameters
such as time of the day, road quality, number of pedestrian crossings etc.
After some calibration with past data, we might or might not get accurate
predictions over the future. Alternatively we can also try to learn bus speeds
out of raw data using one of the myriads of Machine Learning techniques we
now have at our disposal, with all the well-known caveat of these techniques.

What is interesting here is that to predict the future, the model is no longer fixed
but needs to be continuously changed to incorporate new knowledge stemming out
of new data. As engineers we now have to cope with a brand new dimension of
variability: the variability brought by the continuous flow of new data entering our
system.

4Especially when they concern the future (Woody Allen).
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We are currently exploring these ideas in the context of modeling the public
transportation infrastructure of the Rennes Metropolis, with the hope of providing
an integrated tool supporting past, present and future views of what’s going on there,
including support for what-if scenarios (e.g.; what if road works happen here and
here and bus have to be deviated, or what if we change the itinerary of that line
etc.) [30].

Many other groups are working along the same lines around the world [7], and
there is no doubt that this opens the way for a renewed interest in software and
system modeling.

Acknowledgement I would like to thank all the members of the DiverSE team at
Inria/IRISA for fruitful discussions on the topic of this paper and for their feed-back
on its early versions.
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