
HAL Id: hal-04080261
https://hal.science/hal-04080261

Submitted on 24 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visualizations for the evolution of Variant-Rich Systems:
A systematic mapping study

Raul Medeiros, Jabier Martinez, Oscar Díaz, Jean-Rémy Falleri

To cite this version:
Raul Medeiros, Jabier Martinez, Oscar Díaz, Jean-Rémy Falleri. Visualizations for the evolution of
Variant-Rich Systems: A systematic mapping study. Information and Software Technology, 2023, 154,
pp.107084. �10.1016/j.infsof.2022.107084�. �hal-04080261�

https://hal.science/hal-04080261
https://hal.archives-ouvertes.fr

Information and Software Technology 154 (2023) 107084

A
0

V
m
R
a

b

c

A

K
V
S
V
E
M
M

1

u
n
t
a
t
p
n
a
f
t
s

(

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

isualizations for the evolution of Variant-Rich Systems: A systematic
apping study

aul Medeiros a,∗, Jabier Martinez b, Oscar Díaz a, Jean-Rémy Falleri c

University of the Basque Country (UPV/EHU), San Sebastián, Spain
Tecnalia, Basque Research and Technology Alliance (BRTA), Derio, Spain
LaBRI, UMR 5800, F-33400, IUF, Talence, France

R T I C L E I N F O

eywords:
ariant-rich systems
oftware product lines
isualization
volution
aintenance
apping study

A B S T R A C T

Context: Variant-Rich Systems (VRSs), such as Software Product Lines or variants created through clone &
own, aim at reusing existing assets. The long lifespan of families of variants, and the scale of both the code
base and the workforce make VRS maintenance and evolution a challenge. Visualization tools are a needed
companion.
Objective: We aim at mapping the current state of visualization interventions in the area of VRS evolution.
We tackle evolution in both functionality and architecture. Three research questions are posed: What sort of
analysis is being conducted to assess VRS evolution? (Analysis perspective); What sort of visualizations are
displayed? (Visualization perspective); What is the research maturity of the reported interventions? (Maturity
perspective).
Methods: We performed a systematic mapping study including automated search in digital libraries, expert
knowledge, and snowballing.
Results: The study reports on 41 visualization approaches to cope with VRS evolution. Analysis wise, feature
identification and location is the most popular scenario, followed by variant integration towards a Software
Product Line. As for visualization, nodelink diagram visualization is predominant while researchers have come
up with a wealth of ingenious visualization approaches. Finally, maturity wise, almost half of the studies are
solution proposals. Most of the studies provide proof-of-concept, some of them also include publicly available
tools, yet very few face proof-of-value.
Conclusions: This study introduces a comparison framework where to frame future studies. It also points
out distinct research gaps worth investigating as well as shortcomings in the evidence about relevance and
contextual considerations (e.g., scalability).
. Introduction

Software evolution is a major issue in software engineering [1]. Its
nderstanding involves facing large amounts of data from heteroge-
eous data sources including version control systems, bug tracking sys-
ems, mailing and project discussion lists, as well as the implementation
ssets themselves. Software evolution research interests include to build
heories and models that allow grasping the past and present, while
redicting future properties, and hence, supporting software mainte-
ance and evolution [1]. In this realm, our endeavours can be framed
long two dimensions: the purpose of the evolution (i.e., evolution in
unctionality, e.g., perfective maintenance, or evolution in architec-
ure, e.g., refactoring) and the subject of evolution (i.e., variant-rich
ystems).

∗ Corresponding author.
E-mail addresses: raul.medeiros@ehu.eus (R. Medeiros), jabier.martinez@tecnalia.com (J. Martinez), oscar.diaz@ehu.eus (O. Díaz), falleri@labri.fr

J.-R. Falleri).

A Variant-Rich System (VRS) consists of a family of software prod-
ucts (aka portfolio) that serves a particular market segment or context
while sharing commonalities and variabilities among them in their
functions or behavior. Depending on the automation level (ad-hoc vs.
systematic), there are different strategies for managing VRSs, ranging
from clone & own to Software Product Lines (SPLs) [2]. VRS evolution
tends to be more frequent and complex than its one-off application
counterpart. Frequency wise, evolution episodes are more numerous
since the functionality scope is not that of a single product but of
a family of products (aka a domain). On top of that, evolution is
not limited to the functionality itself. The gradual enlargement of the
functionality might require to be accompanied by the evolution of the
system architecture (e.g., moving from clone & own to SPLs [3]). Both
vailable online 29 September 2022
950-5849/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2022.107084
eceived 14 January 2022; Received in revised form 18 September 2022; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

22 September 2022

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:raul.medeiros@ehu.eus
mailto:jabier.martinez@tecnalia.com
mailto:oscar.diaz@ehu.eus
mailto:falleri@labri.fr
https://doi.org/10.1016/j.infsof.2022.107084
https://doi.org/10.1016/j.infsof.2022.107084
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.107084&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 154 (2023) 107084R. Medeiros et al.

H
o

t
1

t
t
s
m
g
o
t
D
b
(
S

f
z
‘
H
i
i
d
c
v
c

higher frequency and more complex evolution scenarios substantiate
the need for visualization assistance even to a larger degree than
in one-off software development, and, specifically, the use of Visual
Analytics [4].

Visual Analytics is defined as the science of analytical reasoning
facilitated by interactive visual interfaces [4]. The basic idea is to
visually represent the data to allow humans to directly interact with the
information, to gain insights, and to ultimately make optimal decisions.
Broadly speaking, Visual Analytics helps create a path from data to
decision. In this process, visualization plays a twofold role [5]:

• as an abstraction medium, by highlighting certain constructs and
relationships while ignoring others,

• as an interaction medium, by supporting the workflows for deci-
sion making.

ence, interventions based on this approach are characterized in terms
f both the analysis they allow, and the visualizations they support. On

these premises, this work introduces the following research questions:

• RQ1: What sort of analysis is being conducted to assess VRS evolu-
tion?

• RQ2: What sort of visualizations are displayed?
• RQ3: What is the research maturity of the reported interventions?

We answer these questions through a systematic mapping study.
A systematic mapping study is an evidence-based form of secondary
study. Systematic mapping studies intend to provide a broad overview
of a study domain, as well as to determine whether or not research
evidence exists on a certain issue and to estimate its amount [6].
To the best of our knowledge, no previous work has characterized
VRS literature along with the aforementioned research questions. We
extracted data for 234 potentially relevant articles using academic
article search engines. After a careful screening of these articles, we
identified 41 primary sources.1

The rest of the paper is structured as follows. Section 2 presents
related reviews. Section 3 describes the background. Section 4 intro-
duces the research design, and Section 5 describes the data extraction.
Sections 6, 7 and 8 present the results while Section 9 discusses them.
Then, Section 10 presents the threats to validity. Finally, Section 11
concludes the paper.

2. Related work

Several studies have surveyed the literature on software visualiza-
tion, namely:

• Kienle and Müller look into requirements to build and evaluate
tools in software visualization along with three main activities:
maintenance, re-engineering, and reverse engineering [7].

• Shahin et al. investigated software visualizations but for under-
standing software architectures [8].

• Chotisarn et al. conduct a systematic review along two main con-
cerns: software aspect to be visualized (i.e., structure, behavior
and evolution) and software process to be supported (i.e., soft-
ware requirements, software design and implementation, soft-
ware validation, software maintenance) [9].

• Novais et al. review the visualization of software evolution from
a global perspective [10].

• Lopez-Herrejon et al. focus on visualization approaches to support
a broad range of Software Product Line activities [11].

1 A gallery of the visualizations of the 41 primary sources (taken from
he respective papers) is available for research purposes at https://doi.org/
0.5281/zenodo.7057654.
2

Table A.15 provides more details on the mentioned surveys. In
their tertiary study on research in Software Product Lines (SPLs) [12],
Raatikainen et al. notice that [11] and its previous version [13],
are the only ones which tackle visualization in SPLs, departing from
visualization in one-off development. Compared with Lopez-Herrejon
et al.’s work, our mapping is more specific as we focus on evolution.
Yet, our interest is broader since we encompass VRSs no matter their
stage in the evolution maturity journey (e.g., clone & own) and not
only SPLs. This introduces a main distinctive concern that is not limited
to the ‘evolution in functionality’ but also expands to ‘evolution in
architecture’. This results in [11] considering 37 primary sources while
ours had 41 with an overlap of 12 primary sources.

3. The mapping space

Visual Analytics is defined as the science of analytical reasoning
facilitated by interactive visual interfaces [4]. Accordingly, primary
sources are characterized along two major dimensions: the analysis
dimension and the visualization dimension. We add a third dimension:
the maturity of the visualization proposal. Along with good practices in
mapping studies, this section resorts to literature-backed classification
schemas that will be used to characterize the primary sources along
these three dimensions.

3.1. Dimension 1: Analysis scenarios

This analysis dimension considers the subject (aka ‘object’, ‘artifact’)
to be analyzed, and the purpose of the analysis.

The subject of evolution. VRSs face variability at different degrees
of automation (ad-hoc vs. systematic) through different implemen-
ation mechanisms: annotative approaches like pre-processor direc-
ives [14] or feature toggles [15]; compositional approaches such as
ource code super-imposition and merge [16]; generative program-
ing [17], feature-oriented programming [18,19], aspect-oriented pro-

ramming [20] or delta-oriented programming [21]. The binding time
f the variability is also relevant ranging from design-time to run-
ime, the latter enabling the creation of self-adaptive systems (aka
ynamic SPLs [22]). We use the umbrella term ‘VRSs’ to denote this
road diversity of cases, from almost independently created variants
i.e., clone & own), to highly-configurable systems, SPLs and Dynamic
PLs.
The purpose of evolution. VRSs can evolve not only in their

unctionality but also in their architecture. At the onset, an organi-
ation might capture variations through ‘if-then’ statements, where
if’ conditions are evaluated at runtime against a configuration file.
ere, a single artifact handles all functionality, no matter whether it

s statically known that a configuration option will never be selected
n a certain scenario. Alternatively, variations can be supported as
istinct variants (products). While the number of variants is small,
lone & own might be an effective architecture. However, as the
ariants increase, clone & own ends in replication and propagation
hallenges [2]. Engineers can opt to move to Conditional Compilation.

Here, variants are enclosed within #ifdef and #endif marks, and asso-
ciated with pre-compilation directives, i.e., boolean expressions upon
‘configuration parameters’. This allows for configuration-dependency
checking to be outsourced from the application code to dedicated
configurators. Finally, as the number of features and variants increase,
a more systematic approach is needed. This might end up in an SPL.

This diversity in both the subject and the purpose gives rise to
distinct scenarios where engineers are confronted with VRS evolution.
Next, we revise Struber et al.’s evolution scenarios [23]. For each
scenario, we present: the setting where this scenario arises and an
example of a visualization intervention that (partially) tackles these
needs. We selected the examples arbitrarily based on visualization

variety, maturity, and clarity.

https://doi.org/10.5281/zenodo.7057654
https://doi.org/10.5281/zenodo.7057654

Information and Software Technology 154 (2023) 107084R. Medeiros et al.
Fig. 1. Variant Synchronization. Using similarity analysis, this tool identifies common, shared and unique artifacts among variants. On the upper left side, the visualization shows
a similarity distribution of 6 variants. Colors represent the degree of commonality of the artifacts: green (common), cyan (shared) and yellow (unique). On the upper right side,
a treemap groups the shared lines of code regarding the number of products where they are present. On the bottom left side, the similarity distribution is displayed within each
implementation element (i.e., package or folder) allowing a more focused structural exploration. Finally, on the bottom right corner, a phylogenetic distance diagram provides
information about which variants are more similar. Figure credits [S1]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
3.1.1. Variant Synchronization (VS)
Setting. Clone & own and variant-based evolved SPLs. When bug

fixes or feature implementations are made in one variant, they need
to be propagated to other variants. During Variant Synchronization, it
is important to identify the variants affected by a bug fix or a feature
upgrade. To this end, criteria such as the cost of the propagation or the
importance of the variant can be used.

Example. Variant synchronization benefits from visualizing the
distribution of the lines of code of each variant in terms of ‘core’,
‘shared’, or ‘unique‘. In this way, if a bug is fixed in the ‘shared’ part
of a variant it becomes a candidate to be rippled across the other
variants sharing the same code. This approach is followed in [S1] using
set-based similarity analysis (see Fig. 1).

3.1.2. Variant Integration (VI)
Setting. Variant-based evolved SPLs. Here, application engineers

are allowed to tune the codebase to meet the specifics of a variant
without waiting for this specific to be introduced in the SPL platform.
Bug fixes or urgent customer requests might not wait for being con-
ducted at the SPL platform, and hence, they are branched off into
a separate codebase. Eventually, these branches need to be merged
back into the SPL Master. Being variants from the same SPL, they are
based on the very same core assets, and hence, bug fixes or functional
enhancements undertaken for a variant might well serve other variants.
Here, application engineers need to be aware of potential coordination
problems right during coding rather than deferring it until merging
time.

Example. PeeringHub [S2] (see Fig. 2) advocates for making appli-
cation engineers aware of potential coordination problems right during
coding rather than deferring it until merge time. To this end, PeeringHub
introduces the notion of ‘peering bar’ for GitHub. These visual bars
reflect whether the codebase of a variant’s feature is being upgraded
in other variant branches. PeeringHub helps by making developers
aware of potential coordination problems right during variant coding
rather than deferring it until variant specifics are merged back into the
platform master.
3

3.1.3. Feature Identification and Location (FIL)
Setting. Migration from clone & own to an SPL platform. Feature

identification aims to determine which features are present, while fea-
ture location tackles the relationship between features and assets. De-
velopers may wish to determine which features already exist in the sys-
tem and which features are implemented in which assets (e.g., source
code, models, requirements, or other types of artifacts) as a means of
better supporting clone & own development as well as preparing for
the migration to an SPL platform.

Example. During the migration from clone & own to an SPL plat-
form, SPL engineers might need to identify which parts of the variants
are common and which ones are specific. Fig. 3 shows a visualization
that uses clone detection for this purpose. The visualization shows the
parts of the source code that are common (red), variant specific (white),
and those that might be shared among some variants but not all (light
red). This way, the user can interact with the results (e.g., focusing on
specific source code files) and identify mandatory features and features
that only appear in a given variant or a set of variants [S3].

3.1.4. Constraints Extraction (CE)
Setting. Migration from clone & own to an SPL platform. On

the way towards an SPL, meaningful sets of functional requirements
are named as a ‘feature’. Features hold dependencies among them: a
feature might require/exclude other features. This information might
not be initially known. Developers might be assisted through an au-
tomated constraint extraction approach. Constraint extraction exhibits
two needs. First, it has to be easy to identify which constraints are
already formalized. Secondly, constraints extraction techniques are
not 100% accurate, and hence, means are needed for measuring the
confidence of the extracted constraints.

Example. Feature Relation Graphs (FRoGs) [S4]. Fig. 4 places the
feature under analysis at the center while the rest of the features
are disposed at a distance based on the frequency they appear to-
gether in the available configurations. It can be used to discover
non-formalized ‘requires’ and ‘excludes’ constraints between features as
well as soft-constraints such as one feature ‘encourages’ or ‘discourages’
another.

Information and Software Technology 154 (2023) 107084

4

R. Medeiros et al.

Fig. 2. Variant Integration. PeeringHub mimics GitHub topic bar but now colors denote code churns per feature within a branch. Branches hold temporary developments of variants
(e.g., productDenmark) before being merged back into the Master. In the example, the PeeringBar hints at code efforts being conducted for the variant productDenmark, specifically,
for features WindSpeed, English, AirPressure, etc. In this way, if you are upgrading namesake features, you better engage with your productDenmark colleagues to prevent later
conflicts during merging. Figure credits [S2]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Feature Identification and Location. The visualization consists of a heatmap inside a treemap. The treemap represents the structure of each variant’s artifacts, while the
heatmap represents the degree of commonality of each variant implementation artifact. Using the colors, a developer can identify the parts of the source code that are common
(red), the parts that are product specific (white), and the parts that might be shared among some product variants but not by all of them (light red). Figure credits [S3]. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Information and Software Technology 154 (2023) 107084R. Medeiros et al.
Fig. 4. Constraint Extraction. Feature Relation Graphs use nodelink diagrams on top of a radial network. Nodes represent feature names. The node in the center is the feature under
analysis while the arrangement of the others represents the relationship they have with the central feature. Concretely, the arrangement represents three types of relationships:
type of constraint (proximity to the center), stakeholder perspective (radial position), and level of formalization (edge type). Using the visualization, developers identify potential
feature constraints related to the feature under analysis. Figure credits [S4]. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 5. Architecture Recovery. When it comes to integrating a set of existing similar variants on the way towards an SPL, it is essential to abstract a common architecture. This
visualization abstracts from the variants’ component architecture to highlight the variance presence. The component diagram depicts which modules are present in several variants
(list of names) and to which extent the module is similarly implemented (bar chart). Figure credits [S5].
3.1.5. Architecture Recovery (AR)
Setting. Migration from clone & own to an SPL platform. While

feature models capture functionality dependencies, architectural mod-
els focus on the dependencies of implemented classes or components.
Automatic extraction of architectural dependencies can be assisted
5

through architecture recovery techniques. Architecture Recovery can
be performed from a configurable platform or from a set of variants.

Example. Building a platform architecture out of existing variants
is error-prone and tedious. Fig. 5 introduces a visualization that ab-
stracts and aggregates this information. Commonalities and variabilities

Information and Software Technology 154 (2023) 107084R. Medeiros et al.
Fig. 6. Transformation. FeatureVisu uses a nodelink visualization built on top of a clustering method to depict the feature cohesion metric. For instance, on the left side, we can
observe how the implementation elements of the feature BaliBuild (green) are more cohesive than those of the features Bali (blue) and CodeGen (red). On the right side, we
can observe an excerpt of the previous layout but this time showing the dependency links between the implementation elements. Figure credits [S6]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
among variant architectures are captured from two perspectives: vari-
ance presence (i.e., if the existence of the module is variable or not)
and variance realization (i.e., if the implementation of the module is
different across variants) [S5].

3.1.6. Transformations (TR)
Setting. Evolution of an SPL platform. The developer can use trans-

formation techniques to decrease manual effort during evolution activ-
ities. Transformation techniques include refactoring and partial refac-
toring of an SPL platform. For instance, high cohesion of a feature is
a desired property and a relevant motivation for refactoring. For this,
developers look to what extent implementation elements of a feature
depend on each other, minimizing external dependencies.

Example. FeatureVisu (see Fig. 6) supports feature cohesion by
creating clustering among features with a high cohesion.

3.1.7. Functional Testing (FT)
Setting. Clone & own and SPL platforms. Regression testing aims

at ensuring that an application still functions as expected after any
code changes. In view of the impossibility of testing hundreds of
features and variants, deciding which features and configuration to
test becomes critical. To tame this scalability issue, testers resort to
distinct heuristics: hot spots (i.e., the larger the change, the more likely
the impact) or variant similarity comparison analysis to increase test
coverage.

Example. FeatureCloud (see Fig. 7) is a tree-cloud visualization to
identify hot-spot features, i.e., features undergoing substantial change
in their codebase, i.e., ifdef blocks. FeatureCloud depicts feature change
along three metrics: LOC (color opacity), scattering (font size), and
tangling (position in the word cloud). Using FeatureCloud, developers
identify which features had complex updates and thus, might require
more dedicated testing.

3.1.8. Analysis of Non-Functional Properties (ANF)
Setting. Clone & own and SPL platforms. VRSs are common among

cyber–physical systems where non-functional requirements are key
(e.g., performance in a safety–critical system, memory consumption
in an embedded system with resource constraints). In safety–critical
domains, engineers might need to explore which variants are optimal
6

for their goals. This might require the analysis of the impact of fea-
tures and feature interactions on quality properties, optimization of
configurations towards attaining a given quality criteria, and analysis
of trade-offs among non-functional properties.

Example. Fig. 8 presents a bubble chart to analyze optimal vari-
ants: variants are located based on four custom non-functional metrics
(battery-life, security, productivity and cost).

3.1.9. Co-evolution of Problem Space and Solution Space (CPS)
Setting. Compared to the evolution of one-off applications, VRS

evolution introduces additional challenges since the evolution should
be synchronized across a potentially high number of variants [2]. The
inter-dependency between these variants varies from highly-indepe-
ndent (e.g., the clone & own approach where ‘clones’ might evolve
totally independently from its ancestor) to totally-dependent variants
(e.g., configurable software-product lines where new variant require-
ments should be first considered at the core platform before impacting
the variants). An automated approach may suggest co-evolution activ-
ities to maintain the two spaces in sync. This scenario includes both
evolving the solution space based on the problem space, and vice-versa.

Example. New feature dependencies may be reflected uniquely in
the code without being mirrored in the feature model due to devel-
opment urgency during SPL evolution. Fig. 9 presents a visualization
that identifies dissonances between the problem and the solution space.
The visualization displays inconsistencies between the current feature
model and its implementation through different views: the dependency
matrix shows inconsistencies between feature dependencies in red (top-
right); the feature model shows suggested feature dependencies with
colored lines (middle-right); the code-view displays the feature imple-
mentation (middle-left); and finally, the nodelink diagram depicts the
code-level interactions (bottom).

3.2. Dimension 2: Visualization approach

Visualization can be regarded as the intervention to cope with
increasingly complex evolution scenarios. By introducing Visual Analyt-
ics, decision makers can focus their attention on visualization-enabled
analytical reasoning while benefiting from automatic data processing
techniques. This dimension can be characterized along with the sort of
interaction type [24] and the visualization strategy [10].

Information and Software Technology 154 (2023) 107084

7

R. Medeiros et al.

Fig. 7. Functional Testing. FeatureCloud helps identify hot-spot features, i.e., features undergoing substantial changes in their codebase from the last release of the SPL platform.
FeatureCloud takes the code churn, and extracts the pre-compilation directives from the associated ifdef blocks. On these grounds, the tool generates a word-cloud using feature
names as words, and pre-compilation directives as phrases. Nodes stand for features. Color opacity, font size, and distribution of nodes denote the size of the change, the scattering
degree and the tangling degree, respectively, for the feature at hand. Take the case of feature AUTO_BED_LEVELING_UBL (right-upper corner in the screenshot). From the last
release, this feature has been subject to few changes (light-blue color). Yet, testing is guessed to be complicated. First, this feature’s changes are scattered along distinct ifdef blocks
(as reflected by the medium font size). Second, these changes pertain to ifdef blocks whose pre-compilation directives involve feature AUTO_BED_LEVELING_UBL but also other five
features that are depicted in the same radial branch, e.g., EEPROM_SETTING. Figure credits [S7]. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 8. Analysis of Non-Functional Properties. Bubble Front Graphs display four custom quality (non-functional) metrics in a bubble chart. This way, users can select the optimal
variants based on those quality metrics. The chart uses four dimensions to represent those quality metrics: horizontal axis X (bottom), the vertical axis Y (left), bubble color Z (top)
and bubble size 𝑇 (right) to visualize up to four quality dimensions simultaneously. In the figure, productivity is represented as a vertical coordinate (Y); batterylife is represented
as a horizontal coordinate (X); security is represented as a color (Z); and cost is represented as a size (T). Figure credits [S8]. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Information and Software Technology 154 (2023) 107084R. Medeiros et al.
Fig. 9. Co-evolution of Problem Space and Solution Space. This visualization guides developers on the evolution of the feature model by showing them inconsistencies between the
current feature model and its implementation. The top-right matrix displays the inconsistencies (marked in red). The visualization also suggests feature-level dependencies which
are shown in the feature model on the middle-right (colored lines). Developers can also consult the implementation of the selected feature on the upper-left part and check its
code-level dependencies in the nodelink diagram on the lower part. Figure credits [S9]. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Visualization interaction. Yi et al. introduce the following interaction
schema [24]:

• Filter. When the visualization allows users to specify several con-
ditions that the data that is shown must satisfy.

• Select. When the visualization provides users with the ability to
focus on a specific data item(s).

• Abstract/Elaborate. When the visualization provides users with the
functionality of adjusting the abstraction/detail level of the data.

• Connect. When the visualization provides users with the option of
checking associations and relationships between data items.

• Explore. When the visualization enables users to explore a differ-
ent subset of data items.

• Reconfigure. When the visualization allows users to watch differ-
ent perspectives by rearranging the data.

Visualization strategy. Novais et al. introduce the following strategy
schema [10]:

• Temporal Snapshot (TS). It represents a snapshot of the software
at a specific point in time.

• Temporal Overview (TO). It displays all of the values of the de-
velopment of a particular metric for all of the software entities
being examined. This complicates the presentation since we must
represent several entities (e.g. software modules) in a single visual
picture, as well as the temporal evolution of one or more of their
properties (e.g. size).

• Temporal Accumulative Snapshot (TA). It considers the absolute
value of changes to study the evolution of the program. It is
commonly employed in the study of software churn [25].

• Differential Relative (DR). It expresses the increase or decrease in
a software module’s property. If a software feature f1 increased
its scattering by 2 points, but another feature f2 increased it by 4,
then the DR representation should graphically show that f2 grew
more than f1. In a similar way, decrements should be presented.
8

• Differential Absolute (DA). When the definition of growth or re-
duction does not apply, the absolute strategy comes in handy. It
is focused on recognizing and representing discrete events, such
as entity properties that have appeared or vanished from one
software version to the next.

3.3. Dimension 3: Research maturity

No matter the analysis nor the visualization, an important insight is
the extent of the evidence of the intervention utility. To this end, we
resort to two existing classifications for Research Type [26] and Evalu-
ation Method [27]. In addition, we consider the Publication Venue as
an additional proxy of the research maturity.

Research type. Wieringa et al. introduce the following research type
schema [26]:

• Evaluation research. Explains a method of evaluating research that
involves assessing how a solution works in practice or comparing
it to other solutions while highlighting positive and negative as-
pects. It is more comprehensive than validation and is frequently
performed in an industrial context.

• Validation research. Describes the validation of a research that
has not yet been implemented in practice, for example, by an
experiment, the performance of tests, lab experiments, and so on.
It usually comes after a proposal for a solution.

• Proposal of solutions. Without a thorough validation, these works
suggest a solution approach and argue for its utility. The approach
must be new, or at the very least a considerable improvement on
one that already exists. A proof-of-concept might be presented in
the form of a simple example, a compelling argument, or another
method.

• Philosophical papers. These publications propose a new way of
thinking, a new conceptual framework, etc.

Information and Software Technology 154 (2023) 107084R. Medeiros et al.

E
[

Fig. 10. Primary sources selection process.
• Personal experience papers. Represent the authors’ experience, gen-
erally in practice, with a particular method, technology, or other
device. These papers are frequently authored by industry profes-
sionals.

valuation method. Stol and Fitzgerald introduce the following schema
27]:

• Field Studies. Any research undertaken in a specific, real-world
situation to explore a specific software engineering issue.

• Field Experiments. Experimental studies conducted in a natural
setting with a high degree of realism (similar to a field study), but
this evaluation method reduces the level of realism compared to
a field study because the researcher manipulates some properties
or variables in the research setting in order to observe an effect
of some kind.

• Experimental Simulations. In this kind of evaluations, the behaviors
of actors (e.g., developers, users, or software systems) that a
researcher aims to observe and measure in experimental simula-
tions are natural, but the setting in which they occur has been
specifically created for the purposes of the study—that is, the
setting would not exist if the study did not exist.

• Laboratory Experiments. Laboratory experiments differ from field
9

experiments in that field experiments explore phenomena in their
natural setting, whereas laboratory experiments are conducted in
a controlled environment.

• Judgment Studies. These studies entail obtaining empirical data
from a group of people who are asked to assess or rate actions,
reply to a researcher’s request or ‘stimulus’, or debate a particular
topic of interest.

• Sample Studies. These are studies that try to attain generalizability
across a certain demographic or set of factors, such as software
professionals, software systems, or development process artifacts.

• Formal theory. This is a way of evaluation that aims for a high
level of universality so that the resultant theory or framework
may be used in a wide range of situations, even though most
theories have boundaries beyond which they do not apply.

• Computer Simulation. Studies that replicate a real-world phe-
nomenon or setting using a computer. These kinds of studies
are like virtual laboratory experiments where hypotheses can be
tested.

Publication venue. We distinguish between four different venue types:

journals, conferences, workshops and symposiums.

Information and Software Technology 154 (2023) 107084R. Medeiros et al.

p
t
t

R
m
t

4

S
t
e
‘
t
t
o
w
e
c

A
f
e
n
q

4. Research design

The goal of this study is to review the visualization interventions
that have been proposed to assist in the maintenance and evolution of
VRSs. To this end, we follow the recommendations presented in [6].
This section describes the plan for each step of the study, including
the research questions, academic databases and search strategy, and
inclusion/exclusion criteria.

4.1. Research questions

RQ1: What sort of analysis is being conducted to assess VRS evo-
lution?. RQ1 takes an analysis perspective. In accordance with the
Goal-Question-Metric (GQM) model, an analysis is conducted by an
agent with a purpose through a set of questions grounded on a collec-
tion of metrics [28]. Accordingly, we could characterize studies based
on the agent (‘target role’), the purpose (‘evolution scenario’), and the
support provided by the tool to conduct the analysis (‘added-value’).
We can then refine RQ1 as follows:

• RQ1.1: Which are the target roles involved?
• RQ1.2: What are the evolution goals being pursued?
• RQ1.3: What is the added-value provided by the tool?
RQ2: What sort of visualization are displayed?. RQ2 takes a tool

erspective. The question intends to find out what kind of visualization
ools are used on VRS evolution and what are the elements used to build
hem. This question can be refined as follows

• RQ2.1: What are the elements being visualized?
• RQ2.2: Which visualization techniques are used?
• RQ2.3: Which sort of visual interactions are catered for?
• RQ2.4: What visualization strategies are used?
• RQ2.5: What data sources are used to build which visualizations?
• RQ2.6: To what extent is VRS scalability considered in each evolution
scenario?

Q3: What is the research maturity of the reported interventions? No
atter the analysis nor the visualization, this question sheds light on

he degree of maturity of the primary sources.

.2. Search strategy

earch string. Along the lines of Kitchenham et al. [6], we broke down
he question into individual facets, namely, VRS as ‘the population’,
volution as ‘the aim’, and ‘Visual Analytics’ (i.e., visualization) as
the intervention’. We searched for synonyms. In addition, we noticed
hat ‘maintenance’ and ‘evolution’ are terms that are arbitrarily in-
erchanged. We also noticed that visualization is often expressed in
ther forms such as ‘visual’ or ‘visualizing’. Hence, we included visual
ith a wildcard *. What was more elusive was the notion of VRS as it
ncompasses areas such as product lines, variability management and
onfigurable systems. This resulted on the following search string:

(‘‘evol*’’ OR ‘‘maint*’’) AND (‘‘visual*’’) AND
(‘‘product line’’ OR ‘‘feature model’’ OR ‘‘variability

management’’ OR ‘‘configurable system’’)

cademic databases. Primary sources were obtained by querying the
ollowing databases: Scopus,2 ACM Digital Library,3 IEEEXplore,4 Sci-
nceDirect5 and Wiley Online Library6 (see the top of Fig. 10). We did
ot query Google Scholar and SpringerLink as they lacked the advanced
uery functionality we needed.

2 https://www.scopus.com/.
3 https://dl.acm.org/.
4 https://ieeexplore.ieee.org/.
5 https://www.sciencedirect.com/search.
6

10

https://onlinelibrary.wiley.com/.
Fig. 11. Distribution of the primary sources per year.

Search scope. Search was conducted upon papers’ title, abstract, and
keywords. To check the validity of the search string, we manually
double checked a few articles.

4.3. Protocol

Fig. 10 outlines the process. We ran the query on the 17th of
September of 2021. We obtained an initial set of 234 papers from
which 24 belonged to the papers manually selected by the authors. At
the onset, we removed duplicated papers (40) and secondary studies.
This resulted in 189 candidate papers (‘Candidate papers’). We reserved
secondary studies for a snowballing phase.

Candidate papers (189) went next through a filtering process. The ti-
tle and the abstract were carefully read by two researchers (the first two
authors). In case of doubt, the introduction and conclusion, or even the
full content of the paper was also read. Each paper was filtered based on
the inclusion and exclusion criteria described in Table 1. Snowballing
was conducted for the remaining 35 papers that provided an addition of
6 papers. This gives a total of 41 primary sources. To minimize potential
biases on the selection process, two other researchers (the last two
authors) were involved when doubts or disagreements arouse between
the other two researchers. This happened for 15 papers. Finally, two re-
searchers (the two first authors) carried out the data extraction process.
Each paper classification was surveyed by at least another researcher.
Fig. 11 shows the distribution of the primary sources publication per
year. It suggests a sustained effort throughout with an average of 2.75
publications per year.

5. Data extraction & Paper classification

Data from primary sources was extracted along the template in
Table 2. The table indicates the Research Questions, the items ex-
tracted to answer them, the domain (‘type of data’) and cardinality
(‘multivalued’) of these items and the section where the information
item is described. Besides the literature-backed classification schemas
introduced in Section 3, new ones were derived from the data itself
(ad-hoc schemas). That is, if an existing scheme did not exist, thematic
analysis was conducted by grounding classification themes on quotes
extracted directly from the primary sources. Next, we review these
ad-hoc schemas.

RQ1.1: Target role. Regarding ‘target role’, a main distinction in SPLs
is between domain engineers and application engineers. As the review
scope is not limited to SPLs but includes VRSs in general, we conducted
a fine-grained categorization of ‘target roles’ through a coding step
(i.e., grouping equivalents, synonyms, and assigning ids). We identified
six categories, namely:

• Application Engineers: The people who develop variants out of
existing code. Primary sources refer to them as either ‘application
engineer’ or ‘product developer’.

• Domain Engineers: The people who develop code to be reused. Pri-
mary sources refer to them as ‘SPL architects’, ‘domain engineers’

or ‘product line maintainer’.

https://www.scopus.com/
https://dl.acm.org/
https://ieeexplore.ieee.org/
https://www.sciencedirect.com/search
https://onlinelibrary.wiley.com/

Information and Software Technology 154 (2023) 107084R. Medeiros et al.

R
p
t
f

R
t
a

R
i

R
S
t

Table 1
Exclusion and inclusion criteria.
Type Criteria

Inclusion criteria - Focus on topic – The study focuses on evolution or maintenance.
– The study focuses on variant-rich systems.
– The study proposes/uses some kind of graphical visualization technique to support evolution activities

Inclusion criteria - Quality guarantee – The study is peer reviewed
Exclusion criteria - Type of paper – The study is in a language other than English

– The study is a previous version of another study in the review
– The work is a Secondary study such as a literature review

Exclusion criteria - Characteristics of the approach – The visualization is not tool supported. We only focus on visualizations that have an implementation
behind them, e.g., we exclude manually created graphs
Table 2
Data extraction template.
RQ Extracted item Type of data Multi-valued Described at

RQ1 Analysis scenarios Yes Yes Section 3.1
Target roles Ad-hoc schema Yes Section 5
Added-value Ad-hoc schema Yes Section 5

RQ2 Visualized elements Ad-hoc schema Yes Section 5
Visualization technique Ad-hoc schema Yes Section 5
Visualization interaction Existing schema Yes Section 3.2
Visualization strategies Existing schema Yes Section 3.2
Data sources Ad-hoc schema Yes Section 5

RQ3 Research type Existing schema No Section 3.3
Evaluation method Existing schema Yes Section 3.3
Tool availability Free text No Section 5

Metadata General meta-data Free text No Section 5
-
v
m
(

R
v
f
c
p

G
t

6
a

(
W

6

p
l
t
o
r
c

6

s
d
s
v
m

• Software Engineers: This code is used when authors do not make
a clear distinction between Application Engineers and Domain
Engineers. This code abstracts from quotes referring to either
‘engineers’ or ‘code developers’.

• Requirement Engineers: This code is used when the primary sources
explicitly mention that the tool targets people in charge of re-
quirement engineering activity. Primary sources refer to them as
‘requirement engineer’ or ‘scope analyst’.

• Testers: Here, authors mention that the tool targets testers or it is
used for testing purposes.

• Project Managers: The people in charge of the planning, schedul-
ing, budgeting, execution, and delivery of a software. This code
abstracts from quotes referring to either ‘managers’, ‘change con-
trol board’ or ‘product line managers’.

Q1.3: Added-value. This facet accounts for the degree of support
rovided by the visualization from merely displaying the raw data
o engineering analysis workflows as part of the tool offerings. Codes
ollow:

• Raw. When raw elements are used in the visual analysis (e.g., code-
base), at best, tool interactions are limited to provide some sort
of data aggregation,

• Metric. When metrics are computed from the raw elements as
proxies for the analysis (e.g., number of methods, feature cohe-
sion),

• Analysis. When some sort of analysis is being conducted out of the
metric (e.g., data-flow analysis, feature-location analysis).

Q2.1: Visualized elements. Visualized elements may coincide with
he data sources. Sometimes however, elements such as features are
bstracted out of the code without the existence of a feature model.

Q2.3: Visualization technique. Examples of visualization techniques
nclude nodelink diagrams, heatmaps, bubble charts, etc.

Q2.5: Data sources. This includes [10], namely: ‘source code’ (e.g., the
PL platform codebase or the variant codebase, if available), ‘fea-
ure model’, ‘variant configuration model’, other model-based artifacts
11
(e.g., UML notation such as architectural-component diagrams or state-
transition diagrams), ‘traceability links’ (feature-code traces, requirement
ariant traces), ‘project documentation’ (requirements or design docu-
ents), ‘VCS meta-data’ (commits, issues), and the ‘run-time context’

logs).

Q3.3. Tool availability/replicability. We checked the availability of the
isualization tool (source code or installer package). First, we searched
or an URL in the paper that would take us to the tool. If broken, we
ontacted the authors asking for an active link. If the link was not
resent, we googled it using the tool name as the search string.

eneral meta-data. We recovered the venues and publication years for
he primary sources.

. Results for RQ1: What sort of analysis is being conducted to
ssess VRS evolution?

An analysis is conducted by an agent (‘target role’) with a purpose
‘evolution scenario’) assisted by a visualization tool (‘added-value’).
e delve into each of these characteristics.

.1. Target roles

Table 3 outlines the extent each target role is being referred to in the
rimary sources. ‘Domain engineers’ and ‘application engineers’ get the
ion’s share: 31 of the primary sources target these roles. For the rest of
he primary sources, either this distinction did not apply (e.g., clone &
wn where a reusability platform is not available, and hence the ‘target
ole’ of ‘domain engineer’ does not yet exist) or they tackle marginal
ases (e.g., testing, management).

.2. Evolution scenarios

Table 4 summarizes the results. We can observe how visualization
upport develops in tandem with the VRS field. At the onset, VRSs
epart from clone & own to an extractive approach on the search for
ystematic reuse. Here, ‘Feature Identification and Location’ in existing
ariants was (and still is) a main endeavour (10 papers). As the area
atures, and VRS develops towards configuration systems and SPLs,

Information and Software Technology 154 (2023) 107084R. Medeiros et al.
Table 3
Target roles numbers.
Target role Number Primary sources

Application engineers 16 [S10,S9,S11,S7,S2,S12,S13,S14,S5,S15,S3,S16,S17,S6,S18,S19]
Domain engineers 15 [S9,S7,S20,S4,S21,S22,S8,S23,S19,S24,S25,S26,S15,S25,S27]
Software engineers 9 [S28,S29,S30,S31,S32,S33,S34,S35,S1]
Testers 3 [S36,S37,S16]
Requirements engineers 2 [S38,S39]
Project managers 2 [S40,S41]
Table 4
Evolution scenarios numbers.
Evolution scenario Number Primary sources

Feature Identification and Location (FIL) 10 [S28,S31,S32,S35,S3,S22,S38,S17,S39,S13]
Variant Integration (VI) 8 [S26,S30,S2,S33,S21,S14,S41,S23]
Variant Synchronization (VS) 6 [S10,S27,S12,S11,S37,S1]
Functional Testing (FT) 6 [S30,S7,S36,S29,S16,S19]
Transformations (TR) 5 [S25,S11,S24,S20,S6]
Co-Evolution of Problem and Solution Spaces (CPS) 4 [S9,S7,S40,S18]
Constraints Extraction (CE) 4 [S9,S4,S34,S15]
Architecture Recovery (AR) 2 [S5,S19]
Analysis of Non-Functional Properties (ANF) 1 [S8]
L

7

a
v
o
t
o

t
p
p
d
S
t
l
f

7

u
c
r
g
w
a
d

‘Variant Synchronization’ ‘Variant Integration’, and ‘Transformations’ are
moved to the spot (19 papers). Visualization wise, efforts are made to
understand and support evolution rather than on testing the preser-
vation of certain (non)functional properties. Interestingly, it is not
uncommon for primary sources to investigate multiple scenarios: [S30]
(VI and FT), [S11] (VS and TR) or [S19] (FT and AR).

6.3. Added-value

Table 5 displays the results: 8 papers contribute through elabo-
rated mining approaches to provide the raw data; 14 papers place
a visualization on top of the raw data to highlight different metrics;
finally, 18 papers contribute by providing some sort of analysis on
top of the visualization. This distribution 8-14-18 is akin to the role
played by each added-value: one sort of raw data might be aggregated
along different metrics which, in turn, might allow for different analysis
perspectives.

We complement this report by listing the metrics and analysis
types at play: code churn [S23,S2,S7], feature scattering [S26,S7,S31],
number of feature dependencies [S9,S18], code delta metric [S23],
feature cohesion metric [S6], feature size [S26], feature tangling [S7],
feature model metrics [S20], number of method overload [S35], run-
time non-functional metrics [S8], significance criteria [S10], t-wise
coverage [S36] and weighted hamming distance [S16]. On the other
hand, analysis strategies include, formal concept analysis [S21,S38], n-
way analysis [S5,S17,S3,S14], behavior analysis and comparison [S12],
bug prevalence analysis [S37], clone detection analysis [S39], data-
flow analysis [S34], feature location analysis [S32,S13], MOEA Anal-
ysis [S25], NLP analysis [S22], pair-wise feature relations [S4], PLC
project analysis [S28], scope analysis [S41], and variant similarity
analysis [S33,S1,S39].

With the exception of [S23,S39,S7,S26], papers focus on either a
single metric or a single analysis strategy. This pattern is common in
the early stages of an area subject to analysis (as it is the case of VRS
evolution). Rationales are many-fold: mining techniques are not yet
mature; lack of evidence about the appropriate metrics; and the scarcity
of real scenarios where to validate the analysis strategies. As the area
matures, we expect more hybrid approaches where different metrics
and strategies are combined to tackle more realistic settings.

7. Results for RQ2: What sort of visualization are displayed?

7.1. Visualized elements (RQ2.1)

Table 6 displays the results: ‘features’, ‘variants’, and ‘implementation
12

assets’ (e.g., source code classes) are the most popular. These elements
seem to satisfy the analysis needs of the most investigated scenarios (see
Section 6.2), i.e., ‘Variant Synchronization’ and ‘Feature Identification and
ocation’.

.2. Visualization techniques (RQ2.2)

Table 7 summarizes the results: ‘nodelink diagram’ (e.g. Figs. 6
nd 4), and ‘tabular/matrix’ (e.g., Fig. 8) are by far the most popular
isualization techniques. This coincides with visualizations for one-
ff development [10]. In total, we found 11 different visualization
echniques. We note that 16 primary sources implemented more than
ne: ‘heatmap’ and ‘enriched software diagram’ (see Fig. 9) [S9]; ‘tabu-
lar/matrix’ and ‘enriched software diagram’ [S26]; ‘tabular/matrix’ and
‘line chart’ [S11]; ‘alluvial diagram’ and ‘bar chart’ (see Fig. 2) [S2]; ‘tab-
ular/matrix’ and ‘bar chart’ [S31,S14]; ‘tabular/matrix’, ‘bubble chart’,
‘treemap’ and ‘heatmap’ [S36]; ‘tabular/matrix’ and ‘bubble chart’ (see
Fig. 8) [S8]; ‘nodelink diagram’ and ‘tabular/matrix’ [S34,S40]; ‘bar
chart’, ‘heatmap’ and ‘treemap’ (see Fig. 3) [S3]; ‘tabular/matrix’ and
‘heatmap’ [S16]; ‘bar chart’ and ‘nodelink diagram’ (see Fig. 1) [S1];
‘nodelink diagram’ and ‘word cloud’ (see Fig. 7) [S7]; ‘tabular/matrix’,
‘bar chart’ and ‘enriched software diagram’ (see Fig. 5) [S5]; or ‘alluvial
diagram’ and ‘treemap’ [S23].

7.3. Visualization interactions (RQ2.3 & RQ2.6)

Table 8 outlines the results. Nearly half of the primary sources
(44%) do not support any kind of interaction but just provide static
diagrams. For those supporting some interaction, ‘abstract/elaborate’ is
he most common. This may be due to the different levels of abstraction
resent in VRSs (e.g. variants, features, source code). Some of the
rimary sources start the analysis at the variant level and next, drill-
own to either the features or the source code [S30,S2,S1,S39,S23,S12,
5,S3]. Both ‘filter’ and ‘select’ mechanisms are also widely used, akin
o the large codebase of VRSs. Finally, ‘connect’ and ‘explore’ are the
east popular which could be due to the yet poorly elaborated analysis
rameworks for managing VRS evolution.

.4. Visualization strategies (RQ2.4)

Table 9 summarizes the results: the vast majority of primary sources
se a ‘temporal snapshot’ strategy. Tentatively, researchers are also
onsidering other scenarios, e.g., ‘temporal overview’ and ‘differential
elative’. Exceptionally, three primary sources support various strate-
ies: [S9,S11] both support ‘temporal snapshot’ and ‘differential relative’,
hile [S1] supports ‘temporal snapshot’ and ‘temporal overview’. The
bility to change the strategy based on user-demand seems to be a
esirable property for future visualization tools.

Information and Software Technology 154 (2023) 107084R. Medeiros et al.

t
s
h
r
S
‘

d

Table 5
Added-value numbers.
Added-value Number Primary sources

Analysis strategy 19 [S21,S38,S5,S17,S12,S37,S39,S34,S32,S13,S25,S22,S3,S14,S4,S41,S33,S1,S28]
Metrics 14 [S23,S2,S7,S26,S31,S9,S18,S6,S20,S35,S8,S10,S36,S16]
Raw 8 [S27,S30,S11,S24,S29,S40,S15,S19]
Table 6
Visualized elements numbers.
Visualized element Number Primary sources

Features 21 [S9,S30,S11,S7,S2,S31,S32,S24,S20,S4]
[S36,S34,S15,S22,S17,S6,S39,S41,S19,S23,S13]

Variants 19 [S10,S27,S11,S2,S12,S33,S36,S8,S21,S37]
[S14,S3,S22,S38,S16,S17,S1,S39,S23]

Implementation assets 15 [S9,S28,S30,S11,S31,S32,S12,S35,S3,S1]
[S6,S39,S19,S23,S13]

Feature model 5 [S9,S26,S20,S40,S18]
Architecture 4 [S25,S24,S29,S5]
Variation points 4 [S27,S28,S15,S35]
Requirements 2 [S21,S38]
Table 7
Visualization techniques numbers.
Visualization technique Number Primary sources

Nodelink diagram 23 [S11,S32,S12,S13,S29,S34,S40,S15,S35,S6,S39]
[S18,S19,S33,S21,S38,S4,S30,S1,S20,S25,S7,S24]

Tabular/Matrix 11 [S11,S31,S36,S8,S26,S34,S14,S40,S16,S39,S41]
Bar chart 7 [S10,S31,S3,S17,S1,S14,S2]
Enriched software diagram 5 [S9,S26,S37,S5,S25]
Heatmap 4 [S9,S36,S3,S16]
Treemap 4 [S36,S3,S23,S13]
Indented tree 3 [S27,S28,S24]
Word cloud 2 [S7,S22]
Bubble chart 2 [S36,S8]
Alluvial diagram 2 [S2,S23]
Line chart 1 [S11]
Table 8
Visualization interactions numbers.
Visualization interaction Number Primary sources

None 17 [S10,S9,S25,S26,S31,S32,S13,S24,S33,S36,S21,S37]
[S34,S15,S22,S38,S41]

Abstract/Elaborate 14 [S28,S30,S11,S7,S2,S12,S20,S14,S5,S3,S16,S1,S6,S23]
Select 10 [S27,S28,S11,S4,S29,S16,S1,S6,S39,S19]
Filter 8 [S30,S7,S33,S4,S40,S35,S17,S18]
Explore 5 [S11,S7,S8,S15,S39]
Connect 2 [S28,S30]
Reconfigure 1 [S6]
Table 9
Visualization strategies numbers.
Visualization strategy Number Primary sources

Temporal snapshot 33 [S21,S38,S16,S17,S1,S6,S39,S18,S19,S14,S34,S40,S5,S15,S35,S3,S22]
[S10,S9,S25,S27,S28,S30,S11,S31,S32,S12,S13,S24,S20,S4,S36,S8]

Temporal overview 5 [S33,S29,S37,S1,S41]
Differential relative 5 [S9,S26,S7,S2,S23]
Differential absolute 1 [S11]
c
p
c

7

(
a
d
e

7.5. Data sources (RQ2.5)

Table 10 shows the results: ‘source code’ and ‘feature model’ are
he most common data sources with 29 and 17 primary sources, re-
pectively. ‘Traceability links’ and ‘models’ are also relevant, but with
alf of the occurrences. In the case of ‘traceability links’, researchers
esort to different approaches: ‘feature-to-code’ [S26,S30,S11,S32,S6,
19], ‘feature-to-component’ [S24,S19], ‘feature-to-variant’ [S19,S13], or
requirement-to-variant’ [S21,S19].

Researchers often resort to a combination of data sources. Fig. 12
epicts the most popular combinations using an Upset plot [29]. The
13

s

ombinations (‘source code’, ‘feature model’, ‘traceability links’) is ex-
lored in 4 primary sources. We expect more research on how to
ombine different data sources.

.6. Visualization techniques & Data sources (RQ2.5)

This section breaks down visualization techniques by data sources
see Fig. 13 (right-side)). Questions of interest include: What sources
re the most used with tabular/matrix? What techniques do usually
epend on traceability links? Fig. 13 (right side) depicts the outcome. We
xcluded visualization techniques which involve less than three data
ources. It comes as no surprise that the ‘source code’ and ‘nodelink

Information and Software Technology 154 (2023) 107084R. Medeiros et al.
Table 10
Data sources numbers.
Data source Number Primary sources

Source code 29 [S35,S3,S1,S6,S39,S19,S23,S13,S15,S28,S16,S10,S21,S37,S22,S27]
[S9,S26,S30,S11,S7,S2,S31,S32,S12,S33,S34,S14,S5]

Feature model 17 [S9,S27,S26,S30,S11,S20,S4,S36,S8,S15,S16,S6,S19,S32,S24,S13,S41]
Traceability links 9 [S26,S30,S11,S32,S6,S19,S24,S21,S13]
Models 8 [S25,S24,S29,S40,S15,S6,S19,S17]
VCS metadata 5 [S2,S37,S19,S23,S18]
Project documentation 4 [S21,S38,S25,S8]
Variant config. model 3 [S4,S29,S16]
Runtime contexts 2 [S30,S29]
Fig. 12. Upset plot of data sources combinations. The bar chart on the left represents the number of primary sources using a particular data source, while the bar chart on the
top represents the number of primary sources with a visualization resorting to a particular combination of one or more data sources.
Fig. 13. Visualization techniques distribution by evolution scenarios and data sources.
diagram’ have the biggest relation as they are the most popular ap-
proaches. ‘Feature model’ for ‘nodelink diagram’ follows the lead with
11 occurrences. In general, ‘feature model’ and ‘source code’ are the
most popular data sources no matter the visualization technique. The
exception is that of ‘enriched software diagram’. Here, ‘feature model’,
‘source code’ and ‘traceability links’ are equally popular.

7.7. Visualization techniques & Evolution scenario (RQ2.2)

This section breaks down visualization techniques by evolution
scenario (see Fig. 13 (left-side)). ‘Nodelink diagram’ and ‘tabular/matrix’
14
are widely supported throughout the six scenarios. By contrast, ‘alluvial
diagram’ and ‘line chart’ techniques are used in a single scenario,
specifically, ‘Variant Integration’ and ‘Functional Testing’, respectively.

7.8. Assessing scenario maturity (RQ2.6)

It could be argued that the more sophisticated the interaction, the
more mature are the scenarios being targeted by the tool. On these
premises, this section assesses scenario maturity based on the sort
of supported interactions. Specifically, we grouped Interaction codes

Information and Software Technology 154 (2023) 107084R. Medeiros et al.

‘

i

Table 11
Research types numbers.
Research type Number Primary sources

Solution proposal 20 [S29,S11,S12,S13,S14,S3,S16,S17,S18,S19,S20,S23,S24,S25]
[S27,S39,S34,S1,S36,S40]

Validation research 14 [S28,S10,S9,S7,S2,S6,S21,S22,S8,S26,S30,S32,S33,S35]
Evaluation research 5 [S5,S15,S4,S38,S41]
Conceptual proposal 1 [S37]
Experience paper 1 [S31]
N
s
a
o
s
i
p
f

Fig. 14. Evolution scenarios vs. visualization interactions. Advanced interaction refers
to ‘Abstract/Elaborate’, ‘Reconfigure’, and ‘Filter’, while Simple includes ‘Explore’,
Connect’, and ‘Select’.

n two groups: advanced and simple. The former encompasses ‘ab-
stract/elaborate’, ‘reconfigure’ and ‘filter’ as they tackle large visualiza-
tion spaces. By contrast, simple interactions include ‘explore’, ‘connect’
and ‘select’ that handle smaller data-set, once they have been filtered.
On these premises, we could define a ‘maturity model’ for visualiza-
tion scenarios that move from ‘static’ (i.e., no interaction) to ‘simple
dynamic’ and finally, ‘advance dynamic’. Fig. 14 depicts this journey
for each of the scenarios. ‘Variant Integration’, ‘Variant Synchronization’,
‘Feature Identification and Location’ and ‘Co-Evolution of Problem Space
and Solution Space’ exhibit the larger rate of advanced interactions.
Rationales might be the fact that these scenarios face large sets of
elements to be displayed, and hence, the need for advanced interactions
is self-evident.

8. Results for RQ3: What is the research maturity of the reported
interventions?

This section considers four proxies to assess research maturity: (1)
Research Type, (2) Evaluation Method, (3) availability of the tool, and
(4) Publication Venue.

8.1. Research Type

Table 11 shows the distribution of the Research Types along with
Wieringa et al.’s schema [26]. ‘Solution proposal’ is the category with
more primary sources (20). Works falling into this category limit their
contribution to presenting the visualization tool through a proof of
concept. The primary sources conducting some kind of evaluation move
to either ‘validation research’ (14) or ‘evaluation research’ (5). These
studies represent nearly half of the primary sources.

8.2. Evaluation Method

Table 12 delves into the sort of evaluation method: ‘field experiment’
is the most popular method with 7 primary sources. Only four primary
sources conducted a ‘field study’ which is considered the strongest
evaluation.
15

m

Table 12
Evaluation methods numbers.
Evaluation method Number Primary sources

Field experiment 7 [S28,S10,S9,S6,S4,S26,S38]
Judgment studies 4 [S2,S8,S30,S32]
Laboratory experiment 3 [S5,S21,S22]
Experimental simulation 3 [S7,S33,S35]
Field study 2 [S15,S41]

8.3. Tool availability

Making a tool available for public scrutiny and download is cer-
tainly a proof of confidence about the degree of completion of the
tool. It also permits replicability and reproducibility, and in so doing,
allows for knowledge accumulation. At the moment of conducting the
mapping, 13 tools were available in the paper or through a quick search
on the internet (see Table 13). We also include tools available upon
request.

8.4. Publication Venue

Different sorts of venues account for distinct objectives. While work-
shops welcome proof-of-concept manuscripts at an early stage of re-
search, journals tend to request sounder proof of utility and empirical
evidence. Table 14 shows the distribution per venue. The majority
of the primary studies (64%) appeared in conferences, SPLC being
the most popular one. Only three found their way into journals. We
conjecture that this situation is due to the difficulty of researchers
in providing good-enough empirical evidence. Of the proposed tools,
53.7% lack a strong empirical evaluation in terms of the realism about
either the VRS at hand, the analysis tasks being conducted, or the
subjects being used in the experiments. Besides the complexity that
goes in building the tool, researchers face the difficulty of the lack of
available industrial VRSs.

9. Discussion

This section provides some insights about what we feel as promising
research directions.

Project managers role. ‘Project managers’ are in charge of making
important decisions about the evolution of the VRS. It seems logical
to think that those decisions should be tool supported. However, the
results show that only two primary sources target this role. Visual
Analytics plays a key role in decision making in other areas [30] and
VRSs evolution should be no exception.

Overlooked scenarios. Table 4 highlights that scenarios ‘Analysis of
on-Functional properties’ and ‘Architecture Recovery’ have been scarcely

tudied: one and two primary studies, respectively. We think that more
ttention should be dedicated to these two scenarios. A loose analysis
f non functional properties may impact on crucial aspects such as the
ecurity or the efficiency of the VRS [31]. As for ‘Architecture Recovery’,
t is an essential step in the transit from clone & own to an SPL
latform. Though reverse engineering techniques have been proposed
or building a reference platform architecture [32], these techniques

ight benefit from Visual Analytics.

Information and Software Technology 154 (2023) 107084R. Medeiros et al.

F
f
o
b
a
a
u
c

P
2
t
i
n
i
w
d
t

Table 13
Primary sources with available tools.
Primary source Tool availability

[S4] https://github.com/but4reuse/frogs, https://github.com/FeatureIDE since 3.3
[S5] Initially available under request. Contact Fraunhofer IESE.
[S6] http://www.fosd.de/FeatureVisu
[S7] https://github.com/rmedeiros/FeatureCloud
[S8] https://github.com/gsdlab/claferMooVisualizer
[S34] http://www.cin.ufpe.br/~emergo
[S10] https://issue-propagation.github.io/demo/
[S11] https://bitbucket.org/easelab/featuredashboard
[S17] Integrated in https://but4reuse.github.io/
[S20] http://smalltalkhub.com/abergel/Familiar/
[S22] Integrated in https://but4reuse.github.io/
[S24] Integrated in https://github.com/xLineMapper
[S25] https://github.com/otimizes/OPLA-Tool
[S28] https://www.isf.cs.tu-bs.de/cms/team/schlie/material/VAToolkit
[S32] Available on request from the authors
Table 14
Venues where the primary sources were published. Venues are ordered by type.
Venue Number Primary sources Type

Software and Systems Modeling (SoSyM) 1 [S19] Journal
IEICE Transactions on Information and Systems 1 [S33] Journal
Journal of Computer Languages (COLA) 1 [S9] Journal

Int. Systems and Software Product Line Conf. (SPLC) 9 [S11,S7,S2,S16,S22] Conference
[S8,S35,S1,S37]

Working Conf. on Software Visualization (VISSOFT) 4 [S13,S20,S4,S36] Conference
Int. Conf. on Aspect-oriented software development (AOSD) 2 [S38,S34] Conference
Conf. on Software Engineering and Advanced Applications (SEAA) 2 [S40,S39] Conference
Working Conf. on Reverse Engineering (WCRE) 2 [S14,S5] Conference
Int. Conf. on Req. Engineering (RE) 1 [S41] Conference
Int. Conf. on Software Engineering and Knowledge Engineering (SEKE) 1 [S29] Conference
Int. Conf. on Software Reuse (ICSR) 1 [S15] Conference
European Conf. on Modelling Foundations and Applications (ECMFA) 1 [S17] Conference
Int. Conf. on Software Engineering (ICSE) 1 [S6] Conference
Int. Working Conf. on Req. Engineering: Fdn. for Soft. Quality (REFSQ) 1 [S26] Conference
Int. Conf. on Industrial Cyberphysical Systems (ICPS) 1 [S27] Conference
Conference on Enterprise Information Systems (CENTERIS) 1 [S21] Conference

Int. Workshop on Reverse Variability Engineering (REVE) 3 [S28,S23,S31] Workshop
Int. Workshop on Variability Modelling of Software-intensive Sys. (VaMoS) 1 [S32] Workshop
Int. Workshop on Req. Engineering Visualization (REV) 1 [S18] Workshop
Int. Workshop on Knowledge-Oriented Product Line Engineering (KOPLE) 1 [S3] Workshop

ACM Symposium on Applied Computing (SAC) 1 [S24] Symposium
Brazilian Symposium on Software Engineering (SBES) 1 [S25] Symposium
Symposium on Conceptual Modelling Education (SCME-iStar) 1 [S12] Symposium
Pacific Visualization Symposium (PacificVis) 1 [S10] Symposium
Seminar on Advanced Techniques Tools for Software Evolution (SATToSE) 1 [S30] Symposium
Furthermore, Struber et al. also include another evolution scenario:
eature Model Synthesis (FMS) [23]. FMS is the automated process
or generating a first candidate for a feature model. Curiously, none
f the primary sources tries to support this scenario. This could be
ecause FMS is usually performed through automatic techniques [23]
nd graphs such as the ones created through formal concept analysis
re used so far only as the internals for this automation. However, FMS
sually relies on displaying alternatives feature model structures. We
onsider that visualizations can help during this decision process.

romising visualization techniques. All the primary sources provide
D visualizations, where interactions, if available, are rather tradi-
ional (e.g., selecting, filtering, etc.). However, computer visualization
s experimenting a boom of novel techniques [9]. This includes dy-
amic/live visualization [33], augmented reality [34] or virtual real-
ty [35], to name a few. Often, these techniques are introduced to cope
ith an increasing complexity in both the structure and quantity of
ata. VRSs as complex systems might be a good target where these
echniques can be put to the test.
16
Promising data sources.

• User Feedback. We miss data sources used in other Software
Engineering practices such as Continuous Software Engineering
(CSE). CSE is an agile software development process that sup-
ports the incremental implementation of requirements and their
timely validation through user feedback [36]. For example, in
CSE decision knowledge and usage knowledge are two important
information sources that drive the evolution and have been used
in visualizations for CSE [37]. Both, usage and decision knowl-
edge are used by practitioners while evolving their systems [38].
Again, VRSs might be a promising venue to look into the potential
of these data sources.

• Version Control Systems (VCS). Mining VCSs is an already mature
area with several mining tools available [39,40]. This fact makes
even more curious the lack of primary sources resorting to VCS
data (such as issue trackers or commit messages). This could be
related to the lack of available and open source VRSs.

https://github.com/but4reuse/frogs
https://github.com/FeatureIDE
http://www.fosd.de/FeatureVisu
https://github.com/rmedeiros/FeatureCloud
https://github.com/gsdlab/claferMooVisualizer
http://www.cin.ufpe.br/~emergo
https://issue-propagation.github.io/demo/
https://bitbucket.org/easelab/featuredashboard
https://but4reuse.github.io/
http://smalltalkhub.com/abergel/Familiar/
https://but4reuse.github.io/
https://github.com/xLineMapper
https://github.com/otimizes/OPLA-Tool
https://www.isf.cs.tu-bs.de/cms/team/schlie/material/VAToolkit

Information and Software Technology 154 (2023) 107084R. Medeiros et al.

m
v
R
a
m
s
s
h
c

C

R
r
M
I
C
e
–

D

i
i

A

n
M
a

A

Scalability awareness.

• VRSs’ large codebase. Static visualization might be the start but
they could hardly scale up to the hundreds of artifacts that
a VRS encompasses. More investigation is needed in advanced
interaction mechanisms that permit analysts ‘abstract/elaborate’,
‘reconfigure’ and ‘filter’ to spot ‘bad smells’ among the myriad of
artifacts. In general, only 56% of the primary sources implement
interaction mechanisms. This is a low percentage, yet similar to
the rate presented by Novais et al. in one-off development [10].

• VRSs’ co-existence between the Problem Space (Feature
Model) and the Solution Space (Configuration model, codebase). One-
off products lack the notion of domain or family. By contrast,
VRSs tackle the notion of family as a set of variants united
and systematically managed from a common platform: ‘family’
and ‘variant’ co-exists throughout. Both notions feedback each
other during evolution. Visualization wise, most primary sources
focus on one view, either the family perspective or the variant
perspective. As VRSs mature from configurable systems to full-
fledged SPLs, this double perspective would become paramount
for domain engineering to be informed of what is going on in
application engineering, and vice versa, how variant upgrades
end up being merged back in the SPL platform.

• VRSs’ large feature set. If VRSs exhibit hundreds of features, then
scalability is certainly a concern. Yet, most popular scenarios such
as VI, VS and FIL exhibit a worrying situation; more or less a half
of the primary sources tackling them ignore the scalability issue.

Visualization intervention evaluation. The fact that most tools are
only partially validated, if validated at all, shows a worrying sit-
uation. This scenario is shared with visualization interventions for
one-off development. In their literature review about software visual-
ization, Merino et al. [41] found that 62% of the primary sources lack
a strong evaluation. In the same vein, our review indicates that only
21% of the visualizations are validated in realistic industrial settings.
In this respect, research methodologies such as Action Design Research
might help involve practitioners. [42] provides a case in point.

10. Threats to validity

This section discusses four types of threats of validity: internal valid-
ity, external validity, construct validity, and conclusion validity [43].

Internal validity. Obtaining a representative set of literature publi-
cations for this systematic mapping study can be viewed as a validity
threat due to the search process. To minimize this threat, we followed
the guidelines proposed in [6]. We might have overlooked relevant
search terms, and the search engines against which we performed
the search could lack relevant venues. To limit these threats, we also
bootstrapped the search using manually gathered (‘experts’) articles,
and we performed snowballing. Another threat is our filtering step
that could have resulted in relevant articles being filtered out. To limit
this threat we use additional reviewers in case of doubt and consensus
among the reviewers. We also allowed ourselves to read the whole
article in case of doubt during the filtering phase.

External validity. Most of the primary sources are only authored by
academics. This might back findings being useful for academia, but
the doubt remains about its impact in industry. Also, our findings are
mainly within the field of VRS evolution. We cannot generalize our
results beyond tasks other than evolution, and software other than VRS.

Construct validity. Threats related to the construct validity are the
suitability of the research questions and the categorization scheme
used to extract the data. To mitigate these threats, we resorted to
external taxonomies as much as possible (such as the one proposed
in Strüber et al. [23], Novais et al. [10], Wieringa et al. [26] and Stol
and Fitzgerald [27]). As for the questions, the issues raised are similar
to those tackled in other literature reviews [10] but accommodated to
VRS specifics.
17
Conclusion validity. Concerning the subjectivity of the assessment of
the primary sources, they were reviewed by at least two authors to mit-
igate bias in data extraction. In case of disagreements, the researchers
discussed these cases to reach consensus. We also used multiple re-
viewers during the classification phase to limit the subjectivity of the
process.

11. Conclusions

The inherent complexity in the evolution of variant-rich systems
calls for dedicated visualizations. To this end, we analyzed 41 visual-
izations to answer three main questions about (1) the purpose of the
analysis being conducted, (2) the kind of supporting visualization, and
(3) the maturity of the reported interventions.

Analysis wise, we found that researchers tend to overlook ‘project
managers’ role and three evolution scenarios: ‘Feature Model Synthesis’,
‘Analysis of Non-Functional Properties’, and ‘Architecture Recovery’.

Visualization wise, we analyzed visual elements, visualization tech-
niques, interactions, strategies and data sources. We found 11 different
visualization techniques where the ‘nodelink diagram’ was the most
popular with 23 primary sources. Unfortunately, scalability seems to
be an aspect with high potential for improvement as only 56% of the
primary sources implement interaction mechanisms. When it comes to
strategies and data sources, ‘temporal snapshot’ and ‘source code’ are the

ost used approaches, respectively. Overall, we miss studies applying
isualization techniques with increasing popularity (e.g. 3D or Virtual
eality) and data sources that are used in other Software Engineering
reas (e.g. user feedback or decision knowledge). Finally, benchmarks
ight also help provide common ground to assess and compare vi-

ualization interventions. All in all, Visual Analytics for variant-rich
ystems looks promising, yet in an early stage of development. We
ope this work will have an impact in planning and categorizing future
ontributions to the field.

RediT authorship contribution statement

Raul Medeiros: Conceptualization, Methodology, Validation,
esources, Writing – original draft, Investigation, Writing –
eview & editing, Visualization, Project administration. Jabier
artinez: Conceptualization, Methodology, Validation, Resources,

nvestigation, Writing – review & editing, Data curation. Oscar Díaz:
onceptualization, Methodology, Investigation, Writing – review &
diting, Supervision. Jean-Rémy Falleri: Conceptualization, Writing
review & editing.

eclaration of competing interest

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

This work is supported by the Spanish Ministry of Science, In-
ovation and Universities grant number RTI2018-099818-B-I00. Raul
edeiros enjoys a doctoral grant from the Spanish Ministry of Science

nd Innovation (PRE2019-087324).

ppendix. Related literature surveys

See Table A.15.

Information and Software Technology 154 (2023) 107084R. Medeiros et al.
Table A.15
Characterization of related literature surveys.
Literature survey Target

artifact
Research topic Research questions # Papers

Kienle and Müller [7] One-off Requirements of Vis.
Tools for evolution

What (non-functional) requirements should software
visualization tools satisfy?

Unmentioned

Shahin et al. [8] One-off Software architectures What visualization techniques are used in software
architecture?
How much evidence is available to support the
adoption of different visualization techniques in
software architecture?
What are the different purposes of using visualization
techniques in software architecture?
What are the domains in which architecture
visualization techniques have been applied to support
architecting activities?
Which are the architecture visualization techniques
mostly used in industry?

53

Chotisarn et al. [9] One-off Software processes What software systems aspects are visually supported?
What software engineering processes are visually
supported?
What are the software engineering roles involved?
What visualization techniques have been used?
What display mediums have been used?
To what extent are visualization tools reusable?

105

Novais et al. [10] One-off Software evolution What maintenance tasks are current SEV technologies
evidently supporting and how do the approaches differ
from each other?

146

Lopez-Herrejon et al.
[13]

SPL SPLs In what stages of the SPL life cycle have visualization
techniques been used?
What visualization techniques have been used?
What visualization tools have been used?
What are the publication fora used?

32

Lopez-Herrejon et al.
[11]

SPL SPLs The same as in [13] plus:
What forms of empirical evaluation have been used?
What is the provenance of evaluation examples used?

37

This work VRS VRS evolution See Section 4.1 41
References

[1] T. Mens, S. Demeyer (Eds.), Software Evolution, Springer, 2008, http://dx.doi.
org/10.1007/978-3-540-76440-3.

[2] W. Mahmood, D. Strüber, T. Berger, R. Lämmel, M. Mukelabai, Seamless vari-
ability management with the virtual platform, in: 43rd IEEE/ACM International
Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021,
IEEE, 2021, pp. 1658–1670, http://dx.doi.org/10.1109/ICSE43902.2021.00147.

[3] T. Berger, J. Steghöfer, T. Ziadi, J. Robin, J. Martinez, The state of adoption and
the challenges of systematic variability management in industry, Empir. Softw.
Eng. 25 (3) (2020) 1755–1797, http://dx.doi.org/10.1007/s10664-019-09787-6.

[4] K.A. Cook, J.J. Thomas, Illuminating the Path: The Research and Development
Agenda for Visual Analytics, Technical Report, Pacific Northwest National
Lab.(PNNL), Richland, WA (United States), 2005.

[5] S. Reddivari, S. Rad, T. Bhowmik, N. Cain, N. Niu, Visual requirements analytics:
a framework and case study, Requir. Eng. 19 (3) (2014) 257–279, http://dx.doi.
org/10.1007/s00766-013-0194-3.

[6] B.A. Kitchenham, D. Budgen, P. Brereton, Evidence-Based Software Engineering
and Systematic Reviews, Vol. 4, CRC Press, 2015.

[7] H.M. Kienle, H.A. Müller, Requirements of software visualization tools: A
literature survey, in: J.I. Maletic, A.C. Telea, A. Marcus (Eds.), Proceedings of
the 4th IEEE International Workshop on Visualizing Software for Understand-
ing and Analysis, VISSOFT 2007, Banff, Alberta, Canada, June 25-26, 2007,
IEEE Computer Society, 2007, pp. 2–9, http://dx.doi.org/10.1109/VISSOF.2007.
4290693.

[8] M. Shahin, P. Liang, M.A. Babar, A systematic review of software architecture
visualization techniques, J. Syst. Softw. 94 (2014) 161–185, http://dx.doi.org/
10.1016/j.jss.2014.03.071.

[9] N. Chotisarn, L. Merino, X. Zheng, S. Lonapalawong, T. Zhang, M. Xu, W. Chen,
A systematic literature review of modern software visualization, J. Vis. 23 (4)
(2020) 539–558, http://dx.doi.org/10.1007/s12650-020-00647-w.

[10] R.L. Novais, A. Torres, T.S. Mendes, M.G. Mendonça, N. Zazworka, Software
evolution visualization: A systematic mapping study, Inf. Softw. Technol. 55 (11)
(2013) 1860–1883, http://dx.doi.org/10.1016/j.infsof.2013.05.008.

[11] R.E. Lopez-Herrejon, S. Illescas, A. Egyed, A systematic mapping study of
information visualization for software product line engineering, J. Softw. Evol.
Process. 30 (2) (2018) http://dx.doi.org/10.1002/smr.1912.
18
[12] M. Raatikainen, J. Tiihonen, T. Männistö, Software product lines and variability
modeling: A tertiary study, J. Syst. Softw. 149 (2019) 485–510, http://dx.doi.
org/10.1016/j.jss.2018.12.027.

[13] R.E. Lopez-Herrejon, S. Illescas, A. Egyed, Visualization for software product
lines: A systematic mapping study, in: B. Sharif, C. Parnin, J. Fabry (Eds.), 2016
IEEE Working Conference on Software Visualization, VISSOFT 2016, Raleigh,
NC, USA, October 3-4, 2016, IEEE Computer Society, 2016, pp. 26–35, http:
//dx.doi.org/10.1109/VISSOFT.2016.11.

[14] M.A. Babar, L. Chen, F. Shull, Managing variability in software product lines,
IEEE Softw. 27 (3) (2010) 89–91, http://dx.doi.org/10.1109/MS.2010.77.

[15] R. Mahdavi-Hezaveh, J. Dremann, L.A. Williams, Software development with
feature toggles: practices used by practitioners, Empir. Softw. Eng. 26 (1) (2021)
1, http://dx.doi.org/10.1007/s10664-020-09901-z.

[16] S. Apel, C. Kästner, C. Lengauer, FEATUREHOUSE: Language-independent, au-
tomated software composition, in: 31st International Conference on Software
Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceedings,
IEEE, 2009, pp. 221–231, http://dx.doi.org/10.1109/ICSE.2009.5070523.

[17] K. Czarnecki, U.W. Eisenecker, Generative Programming - Methods, Tools and
Applications, Addison-Wesley, 2000, URL: http://www.addison-wesley.de/main/
main.asp?page=englisch/bookdetails&productid=99258.

[18] D.S. Batory, J.N. Sarvela, A. Rauschmayer, Scaling step-wise refinement, IEEE
Trans. Softw. Eng. 30 (6) (2004) 355–371, http://dx.doi.org/10.1109/TSE.2004.
23.

[19] C. Prehofer, Feature-oriented programming: A new way of object composition,
Concurr. Comput. Pract. Exp. 13 (6) (2001) 465–501, http://dx.doi.org/10.1002/
cpe.583.

[20] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J. Loingtier, J.
Irwin, Aspect-oriented programming, in: M. Aksit, S. Matsuoka (Eds.), ECOOP’97
- Object-Oriented Programming, 11th European Conference, Jyväskylä, Finland,
June 9-13, 1997, Proceedings, in: Lecture Notes in Computer Science, vol. 1241,
Springer, 1997, pp. 220–242, http://dx.doi.org/10.1007/BFb0053381.

[21] I. Schaefer, L. Bettini, V. Bono, F. Damiani, N. Tanzarella, Delta-oriented
programming of software product lines, in: J. Bosch, J. Lee (Eds.), Software
Product Lines: Going beyond - 14th International Conference, SPLC 2010, Jeju
Island, South Korea, September 13-17, 2010. Proceedings, in: Lecture Notes in
Computer Science, vol. 6287, Springer, 2010, pp. 77–91, http://dx.doi.org/10.
1007/978-3-642-15579-6_6.

http://dx.doi.org/10.1007/978-3-540-76440-3
http://dx.doi.org/10.1007/978-3-540-76440-3
http://dx.doi.org/10.1007/978-3-540-76440-3
http://dx.doi.org/10.1109/ICSE43902.2021.00147
http://dx.doi.org/10.1007/s10664-019-09787-6
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb4
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb4
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb4
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb4
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb4
http://dx.doi.org/10.1007/s00766-013-0194-3
http://dx.doi.org/10.1007/s00766-013-0194-3
http://dx.doi.org/10.1007/s00766-013-0194-3
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb6
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb6
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb6
http://dx.doi.org/10.1109/VISSOF.2007.4290693
http://dx.doi.org/10.1109/VISSOF.2007.4290693
http://dx.doi.org/10.1109/VISSOF.2007.4290693
http://dx.doi.org/10.1016/j.jss.2014.03.071
http://dx.doi.org/10.1016/j.jss.2014.03.071
http://dx.doi.org/10.1016/j.jss.2014.03.071
http://dx.doi.org/10.1007/s12650-020-00647-w
http://dx.doi.org/10.1016/j.infsof.2013.05.008
http://dx.doi.org/10.1002/smr.1912
http://dx.doi.org/10.1016/j.jss.2018.12.027
http://dx.doi.org/10.1016/j.jss.2018.12.027
http://dx.doi.org/10.1016/j.jss.2018.12.027
http://dx.doi.org/10.1109/VISSOFT.2016.11
http://dx.doi.org/10.1109/VISSOFT.2016.11
http://dx.doi.org/10.1109/VISSOFT.2016.11
http://dx.doi.org/10.1109/MS.2010.77
http://dx.doi.org/10.1007/s10664-020-09901-z
http://dx.doi.org/10.1109/ICSE.2009.5070523
http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails&productid=99258
http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails&productid=99258
http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails&productid=99258
http://dx.doi.org/10.1109/TSE.2004.23
http://dx.doi.org/10.1109/TSE.2004.23
http://dx.doi.org/10.1109/TSE.2004.23
http://dx.doi.org/10.1002/cpe.583
http://dx.doi.org/10.1002/cpe.583
http://dx.doi.org/10.1002/cpe.583
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/978-3-642-15579-6_6
http://dx.doi.org/10.1007/978-3-642-15579-6_6
http://dx.doi.org/10.1007/978-3-642-15579-6_6

Information and Software Technology 154 (2023) 107084R. Medeiros et al.
[22] R. Capilla, J. Bosch, P. Trinidad, A.R. Cortés, M. Hinchey, An overview of
dynamic software product line architectures and techniques: Observations from
research and industry, J. Syst. Softw. 91 (2014) 3–23, http://dx.doi.org/10.1016/
j.jss.2013.12.038.

[23] D. Strüber, M. Mukelabai, J. Krüger, S. Fischer, L. Linsbauer, J. Martinez, T.
Berger, Facing the truth: benchmarking the techniques for the evolution of
variant-rich systems, in: T. Berger, P. Collet, L. Duchien, T. Fogdal, P. Heymans,
T. Kehrer, J. Martinez, R. Mazo, L. Montalvillo, C. Salinesi, X. Tërnava, T. Thüm,
T. Ziadi (Eds.), Proceedings of the 23rd International Systems and Software
Product Line Conference, SPLC 2019, Volume a, Paris, France, September 9-13,
2019, ACM, 2019, pp. 26:1–26:12, http://dx.doi.org/10.1145/3336294.3336302.

[24] J.S. Yi, Y. ah Kang, J.T. Stasko, J.A. Jacko, Toward a deeper understanding of
the role of interaction in information visualization, IEEE Trans. Vis. Comput.
Graph. 13 (6) (2007) 1224–1231, http://dx.doi.org/10.1109/TVCG.2007.70515.

[25] T.L. Graves, A.F. Karr, J.S. Marron, H.P. Siy, Predicting fault incidence using
software change history, IEEE Trans. Softw. Eng. 26 (7) (2000) 653–661, http:
//dx.doi.org/10.1109/32.859533.

[26] R.J. Wieringa, N.A.M. Maiden, N.R. Mead, C. Rolland, Requirements engineering
paper classification and evaluation criteria: a proposal and a discussion, Requir.
Eng. 11 (1) (2006) 102–107, http://dx.doi.org/10.1007/s00766-005-0021-6.

[27] K. Stol, B. Fitzgerald, The ABC of software engineering research, ACM Trans.
Softw. Eng. Methodol. 27 (3) (2018) 11:1–11:51, http://dx.doi.org/10.1145/
3241743.

[28] V.R. Basili, G. Caldiera, H.D. Rombach, The goal question metric approach,
in: Encyclopedia of Software Engineering, Vol. 2, 1994, pp. 528–532, URL:
http://www.csri.utoronto.ca/~sme/CSC444F/handouts/GQM-paper.pdf.

[29] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, H. Pfister, UpSet: Visualization
of intersecting sets, IEEE Trans. Vis. Comput. Graphics (InfoVis) 20 (12) (2014)
1983–1992, http://dx.doi.org/10.1109/TVCG.2014.2346248.

[30] D.A. Keim, F. Mansmann, J. Schneidewind, J. Thomas, H. Ziegler, Visual
analytics: Scope and challenges, in: S.J. Simoff, M.H. Böhlen, A. Mazeika (Eds.),
Visual Data Mining - Theory, Techniques and Tools for Visual Analytics, in:
Lecture Notes in Computer Science, vol. 4404, Springer, 2008, pp. 76–90,
http://dx.doi.org/10.1007/978-3-540-71080-6_6.

[31] M. Mukelabai, D. Nesic, S. Maro, T. Berger, J. Steghöfer, Tackling combinatorial
explosion: a study of industrial needs and practices for analyzing highly config-
urable systems, in: M. Huchard, C. Kästner, G. Fraser (Eds.), Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, Montpellier, France, September 3-7, 2018, ACM, 2018, pp. 155–166,
http://dx.doi.org/10.1145/3238147.3238201.

[32] Z.T. Sinkala, M. Blom, S. Herold, A mapping study of software architecture
recovery for software product lines, in: J. Pérez, R. Mirandola, H. Chen
(Eds.), Proceedings of the 12th European Conference on Software Architecture:
Companion Proceedings, ECSA 2018, Madrid, Spain, September 24-28, 2018,
ACM, 2018, pp. 49:1–49:7, http://dx.doi.org/10.1145/3241403.3241454.

[33] A. Krause, M. Hansen, W. Hasselbring, Live visualization of dynamic software
cities with heat map overlays, in: Working Conference on Software Visualization,
VISSOFT 2021, Luxembourg, September 27-28, 2021, IEEE, 2021, pp. 125–129,
http://dx.doi.org/10.1109/VISSOFT52517.2021.00024.

[34] A. Schreiber, L. Nafeie, A. Baranowski, P. Seipel, M. Misiak, Visualization of
software architectures in virtual reality and augmented reality, in: 2019 IEEE
Aerospace Conference, 2019, pp. 1–12, http://dx.doi.org/10.1109/AERO.2019.
8742198.

[35] S. Romano, N. Capece, U. Erra, G. Scanniello, M. Lanza, On the use of virtual
reality in software visualization: The case of the city metaphor, Inf. Softw.
Technol. 114 (2019) 92–106, http://dx.doi.org/10.1016/j.infsof.2019.06.007.

[36] B. Fitzgerald, K. Stol, Continuous software engineering: A roadmap and agenda,
J. Syst. Softw. 123 (2017) 176–189, http://dx.doi.org/10.1016/j.jss.2015.06.063.

[37] A. Kleebaum, B. Paech, J.O. Johanssen, B. Bruegge, Continuous rationale
visualization, in: Working Conference on Software Visualization, VISSOFT 2021,
Luxembourg, September 27-28, 2021, IEEE, 2021, pp. 33–43, http://dx.doi.org/
10.1109/VISSOFT52517.2021.00013.

[38] J.O. Johanssen, A. Kleebaum, B. Paech, B. Bruegge, Continuous software engi-
neering and its support by usage and decision knowledge: An interview study
with practitioners, J. Softw. Evol. Process. 31 (5) (2019) http://dx.doi.org/10.
1002/smr.2169.

[39] N.M. Tiwari, G. Upadhyaya, H.A. Nguyen, H. Rajan, Candoia: a platform
for building and sharing mining software repositories tools as apps, in: J.M.
González-Barahona, A. Hindle, L. Tan (Eds.), Proceedings of the 14th Interna-
tional Conference on Mining Software Repositories, MSR 2017, Buenos Aires,
Argentina, May 20-28, 2017, IEEE Computer Society, 2017, pp. 53–63, http:
//dx.doi.org/10.1109/MSR.2017.56.

[40] Y. Ma, T. Dey, C. Bogart, S. Amreen, M. Valiev, A. Tutko, D. Kennard, R.
Zaretzki, A. Mockus, World of code: enabling a research workflow for mining
and analyzing the universe of open source VCS data, Empir. Softw. Eng. 26 (2)
(2021) 22, http://dx.doi.org/10.1007/s10664-020-09905-9.

[41] L. Merino, M. Ghafari, C. Anslow, O. Nierstrasz, A systematic literature review
of software visualization evaluation, J. Syst. Softw. 144 (2018) 165–180, http:
//dx.doi.org/10.1016/j.jss.2018.06.027.
19
[42] O. Díaz, L. Montalvillo, R. Medeiros, M. Azanza, T. Fogdal, Visualizing the
customization endeavor in product-based-evolving software product lines: a case
of action design research, Empir. Softw. Eng. 27 (3) (2022) 75, http://dx.doi.
org/10.1007/s10664-021-10101-6.

[43] X. Zhou, Y. Jin, H. Zhang, S. Li, X. Huang, A map of threats to validity of
systematic literature reviews in software engineering, in: 2016 23rd Asia-Pacific
Software Engineering Conference, APSEC, 2016, pp. 153–160, http://dx.doi.org/
10.1109/APSEC.2016.031.

References (Primary sources)

[S1] V.L. Tenev, S. Duszynski, M. Becker, Variant analysis: Set-based similarity
visualization for cloned software systems, in: M.H. ter Beek, W. Cazzola, O.
Díaz, M.L. Rosa, R.E. Lopez-Herrejon, T. Thüm, J. Troya, A.R. Cortés, D.
Benavides (Eds.), Proceedings of the 21st International Systems and Software
Product Line Conference, SPLC 2017, Volume B, Sevilla, Spain, September
25-29, 2017, ACM, 2017, pp. 22–27, http://dx.doi.org/10.1145/3109729.
3109753.

[S2] L. Montalvillo, O. Díaz, T. Fogdal, Reducing coordination overhead in spls:
peering in on peers, in: T. Berger, P. Borba, G. Botterweck, T. Männistö, D.
Benavides, S. Nadi, T. Kehrer, R. Rabiser, C. Elsner, M. Mukelabai (Eds.),
Proceedings of the 22nd International Systems and Software Product Line
Conference - Volume 1, SPLC 2018, Gothenburg, Sweden, September 10-14,
2018, ACM, 2018, pp. 110–120, http://dx.doi.org/10.1145/3233027.3233041.

[S3] J. Martinez, A.K. Thurimella, Collaboration and source code driven bottom-
up product line engineering, in: E.S. de Almeida, C. Schwanninger, D.
Benavides (Eds.), 16th International Software Product Line Conference, SPLC
’12, Salvador, Brazil - September 2-7, 2012, Vol. 2, ACM, 2012, pp. 196–200,
http://dx.doi.org/10.1145/2364412.2364445.

[S4] J. Martinez, T. Ziadi, R. Mazo, T.F. Bissyandé, J. Klein, Y.L. Traon, Feature
relations graphs: A visualisation paradigm for feature constraints in software
product lines, in: H.A. Sahraoui, A. Zaidman, B. Sharif (Eds.), Second IEEE
Working Conference on Software Visualization, VISSOFT 2014, Victoria, BC,
Canada, September 29-30, 2014, IEEE Computer Society, 2014, pp. 50–59,
http://dx.doi.org/10.1109/VISSOFT.2014.18.

[S5] S. Duszynski, J. Knodel, M. Naab, D. Hein, C. Schitter, Variant comparison - a
technique for visualizing software variants, in: A.E. Hassan, A. Zaidman, M.D.
Penta (Eds.), WCRE 2008, Proceedings of the 15th Working Conference on
Reverse Engineering, Antwerp, Belgium, October 15-18, 2008, IEEE Computer
Society, 2008, pp. 229–233, http://dx.doi.org/10.1109/WCRE.2008.22.

[S6] S. Apel, D. Beyer, Feature cohesion in software product lines: an exploratory
study, in: R.N. Taylor, H.C. Gall, N. Medvidovic (Eds.), Proceedings of the
33rd International Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu, HI, USA, May 21-28, 2011, ACM, 2011, pp. 421–430, http://dx.doi.
org/10.1145/1985793.1985851.

[S7] O. Díaz, R. Medeiros, L. Montalvillo, Change analysis of #if-def blocks with
featurecloud, in: C. Cetina, O. Díaz, L. Duchien, M. Huchard, R. Rabiser, C.
Salinesi, C. Seidl, X. Tërnava, L. Teixeira, T. Thüm, T. Ziadi (Eds.), Proceedings
of the 23rd International Systems and Software Product Line Conference,
SPLC 2019, Volume B, Paris, France, September 9-13, 2019, ACM, 2019, pp.
59:1–59:4, http://dx.doi.org/10.1145/3307630.3342386.

[S8] A. Murashkin, M. Antkiewicz, D. Rayside, K. Czarnecki, Visualization and
exploration of optimal variants in product line engineering, in: T. Kishi, S.
Jarzabek, S. Gnesi (Eds.), 17th International Software Product Line Conference,
SPLC 2013, Tokyo, Japan - August 26-30, 2013, ACM, 2013, pp. 111–115,
http://dx.doi.org/10.1145/2491627.2491647.

[S9] K. Feichtinger, D. Hinterreiter, L. Linsbauer, H. Prähofer, P. Grünbacher,
Guiding feature model evolution by lifting code-level dependencies, J. Comput.
Lang. 63 (2021) 101034, http://dx.doi.org/10.1016/j.cola.2021.101034.

[S10] Y. Kim, H. Jeon, Y. Kim, Y. Ki, H. Song, J. Seo, Visualization support for
multi-criteria decision making in software issue propagation, in: 14th IEEE
Pacific Visualization Symposium, PacificVis 2021, Tianjin, China, April 19-
21, 2021, IEEE, 2021, pp. 81–85, http://dx.doi.org/10.1109/PacificVis52677.
2021.00018.

[S11] S. Entekhabi, A. Solback, J. Steghöfer, T. Berger, Visualization of feature
locations with the tool featuredashboard, in: C. Cetina, O. Díaz, L. Duchien,
M. Huchard, R. Rabiser, C. Salinesi, C. Seidl, X. Tërnava, L. Teixeira, T. Thüm,
T. Ziadi (Eds.), Proceedings of the 23rd International Systems and Software
Product Line Conference, SPLC 2019, Volume B, Paris, France, September
9-13, 2019, ACM, 2019, pp. 55:1–55:4, http://dx.doi.org/10.1145/3307630.
3342392.

[S12] A. Zamansky, I. Reinhartz-Berger, Visualizing code variabilities for supporting
reuse decisions, in: X. Franch, M. Snoeck, R.S.S. Guizzardi, I. Jureta (Eds.), Pro-
ceedings of the 5th Symposium on Conceptual Modeling Education and the 2nd
International iStar Teaching Workshop Co-Located with the 36th International
Conference on Conceptual Modeling (ER 2017), Valencia, Spain, November
6-9, 2017, in: CEUR Workshop Proceedings, vol. 1954, CEUR-WS.org, 2017,
pp. 25–34, URL http://ceur-ws.org/Vol-1954/SCME_2017_paper_5.pdf.

http://dx.doi.org/10.1016/j.jss.2013.12.038
http://dx.doi.org/10.1016/j.jss.2013.12.038
http://dx.doi.org/10.1016/j.jss.2013.12.038
http://dx.doi.org/10.1145/3336294.3336302
http://dx.doi.org/10.1109/TVCG.2007.70515
http://dx.doi.org/10.1109/32.859533
http://dx.doi.org/10.1109/32.859533
http://dx.doi.org/10.1109/32.859533
http://dx.doi.org/10.1007/s00766-005-0021-6
http://dx.doi.org/10.1145/3241743
http://dx.doi.org/10.1145/3241743
http://dx.doi.org/10.1145/3241743
http://www.csri.utoronto.ca/~sme/CSC444F/handouts/GQM-paper.pdf
http://dx.doi.org/10.1109/TVCG.2014.2346248
http://dx.doi.org/10.1007/978-3-540-71080-6_6
http://dx.doi.org/10.1145/3238147.3238201
http://dx.doi.org/10.1145/3241403.3241454
http://dx.doi.org/10.1109/VISSOFT52517.2021.00024
http://dx.doi.org/10.1109/AERO.2019.8742198
http://dx.doi.org/10.1109/AERO.2019.8742198
http://dx.doi.org/10.1109/AERO.2019.8742198
http://dx.doi.org/10.1016/j.infsof.2019.06.007
http://dx.doi.org/10.1016/j.jss.2015.06.063
http://dx.doi.org/10.1109/VISSOFT52517.2021.00013
http://dx.doi.org/10.1109/VISSOFT52517.2021.00013
http://dx.doi.org/10.1109/VISSOFT52517.2021.00013
http://dx.doi.org/10.1002/smr.2169
http://dx.doi.org/10.1002/smr.2169
http://dx.doi.org/10.1002/smr.2169
http://dx.doi.org/10.1109/MSR.2017.56
http://dx.doi.org/10.1109/MSR.2017.56
http://dx.doi.org/10.1109/MSR.2017.56
http://dx.doi.org/10.1007/s10664-020-09905-9
http://dx.doi.org/10.1016/j.jss.2018.06.027
http://dx.doi.org/10.1016/j.jss.2018.06.027
http://dx.doi.org/10.1016/j.jss.2018.06.027
http://dx.doi.org/10.1007/s10664-021-10101-6
http://dx.doi.org/10.1007/s10664-021-10101-6
http://dx.doi.org/10.1007/s10664-021-10101-6
http://dx.doi.org/10.1109/APSEC.2016.031
http://dx.doi.org/10.1109/APSEC.2016.031
http://dx.doi.org/10.1109/APSEC.2016.031
http://dx.doi.org/10.1145/3109729.3109753
http://dx.doi.org/10.1145/3109729.3109753
http://dx.doi.org/10.1145/3109729.3109753
http://dx.doi.org/10.1145/3233027.3233041
http://dx.doi.org/10.1145/2364412.2364445
http://dx.doi.org/10.1109/VISSOFT.2014.18
http://dx.doi.org/10.1109/WCRE.2008.22
http://dx.doi.org/10.1145/1985793.1985851
http://dx.doi.org/10.1145/1985793.1985851
http://dx.doi.org/10.1145/1985793.1985851
http://dx.doi.org/10.1145/3307630.3342386
http://dx.doi.org/10.1145/2491627.2491647
http://dx.doi.org/10.1016/j.cola.2021.101034
http://dx.doi.org/10.1109/PacificVis52677.2021.00018
http://dx.doi.org/10.1109/PacificVis52677.2021.00018
http://dx.doi.org/10.1109/PacificVis52677.2021.00018
http://dx.doi.org/10.1145/3307630.3342392
http://dx.doi.org/10.1145/3307630.3342392
http://dx.doi.org/10.1145/3307630.3342392
http://ceur-ws.org/Vol-1954/SCME_2017_paper_5.pdf

Information and Software Technology 154 (2023) 107084R. Medeiros et al.
[S13] S. Illescas, R.E. Lopez-Herrejon, A. Egyed, Towards visualization of feature
interactions in software product lines, in: B. Sharif, C. Parnin, J. Fabry (Eds.),
2016 IEEE Working Conference on Software Visualization, VISSOFT 2016,
Raleigh, NC, USA, October 3-4, 2016, IEEE Computer Society, 2016, pp. 46–50,
http://dx.doi.org/10.1109/VISSOFT.2016.16.

[S14] S. Duszynski, J. Knodel, M. Becker, Analyzing the source code of multiple
software variants for reuse potential, in: M. Pinzger, D. Poshyvanyk, J.
Buckley (Eds.), 18th Working Conference on Reverse Engineering, WCRE 2011,
Limerick, Ireland, October 17-20, 2011, IEEE Computer Society, 2011, pp.
303–307, http://dx.doi.org/10.1109/WCRE.2011.44.

[S15] M. Sinnema, S. Deelstra, P. Hoekstra, The COVAMOF derivation process, in: M.
Morisio (Ed.), Reuse of Off-the-Shelf Components, 9th International Conference
on Software Reuse, ICSR 2006, Turin, Italy, June 12-15, 2006 Proceedings, in:
Lecture Notes in Computer Science, vol. 4039, Springer, 2006, pp. 101–114,
http://dx.doi.org/10.1007/11763864_8.

[S16] M. Al-Hajjaji, M. Schulze, U. Ryssel, Similarity analysis of product-line
variants, in: T. Berger, P. Borba, G. Botterweck, T. Männistö, D. Benavides, S.
Nadi, T. Kehrer, R. Rabiser, C. Elsner, M. Mukelabai (Eds.), Proceedings of the
22nd International Systems and Software Product Line Conference - Volume
1, SPLC 2018, Gothenburg, Sweden, September 10-14, 2018, ACM, 2018, pp.
226–235, http://dx.doi.org/10.1145/3233027.3233044.

[S17] J. Martinez, T. Ziadi, J. Klein, Y.L. Traon, Identifying and visualising common-
ality and variability in model variants, in: J. Cabot, J. Rubin (Eds.), Modelling
Foundations and Applications - 10th European Conference, ECMFA@STAF
2014, York, UK, July 21-25, 2014. Proceedings, in: Lecture Notes in Computer
Science, vol. 8569, Springer, 2014, pp. 117–131, http://dx.doi.org/10.1007/
978-3-319-09195-2_8.

[S18] D. Sellier, M. Mannion, Visualizing product line requirement selection de-
cisions, in: Software Product Lines, 11th International Conference, SPLC
2007, Kyoto, Japan, September 10-14, 2007, Proceedings. Second Volume
(Workshops), Kindai Kagaku Sha Co. Ltd., Tokyo, Japan, 2007, pp. 109–118.

[S19] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J. Royer, A. Rummler,
A. Sousa, A model-driven traceability framework for software product lines,
Softw. Syst. Model. 9 (4) (2010) 427–451, http://dx.doi.org/10.1007/s10270-
009-0120-9.

[S20] S. Urli, A. Bergel, M. Blay-Fornarino, P. Collet, S. Mosser, A visual support
for decomposing complex feature models, in: 3rd IEEE Working Conference on
Software Visualization, VISSOFT 2015, Bremen, Germany, September 27-28,
2015, IEEE Computer Society, 2015, pp. 76–85, http://dx.doi.org/10.1109/
VISSOFT.2015.7332417.

[S21] T. Huysegoms, M. Snoeck, G. Dedene, A. Goderis, F. Stumpe, Visualizing
variability management in requirements engineering through formal concept
analysis, Proc. Technol. 9 (2013) 189–199, http://dx.doi.org/10.1016/j.protcy.
2013.12.021, cENTERIS 2013 - Conference on ENTERprise Information Sys-
tems / ProjMAN 2013 - International Conference on Project MANagement/
HCIST 2013 - International Conference on Health and Social Care Information
Systems and Technologies.

[S22] J. Martinez, T. Ziadi, T.F. Bissyandé, J. Klein, Y.L. Traon, Name suggestions
during feature identification: the variclouds approach, in: H. Mei (Ed.),
Proceedings of the 20th International Systems and Software Product Line
Conference, SPLC 2016, Beijing, China, September 16-23, 2016, ACM, 2016,
pp. 119–123, http://dx.doi.org/10.1145/2934466.2934480.

[S23] L. Montalvillo, O. Díaz, M. Azanza, Visualizing product customization efforts
for spotting SPL reuse opportunities, in: M.H. ter Beek, W. Cazzola, O. Díaz,
M.L. Rosa, R.E. Lopez-Herrejon, T. Thüm, J. Troya, A.R. Cortés, D. Benavides
(Eds.), Proceedings of the 21st International Systems and Software Product
Line Conference, SPLC 2017, Volume B, Sevilla, Spain, September 25-29, 2017,
ACM, 2017, pp. 73–80, http://dx.doi.org/10.1145/3109729.3109737.

[S24] G. Gharibi, Y. Zheng, Archfeature: integrating features into product line
architecture, in: S. Ossowski (Ed.), Proceedings of the 31st Annual ACM
Symposium on Applied Computing, Pisa, Italy, April 4-8, 2016, ACM, 2016,
pp. 1302–1308, http://dx.doi.org/10.1145/2851613.2851764.

[S25] W.M. Freire, M. Massago, A.C. Zavadski, A.M.M.M. Amaral, T.E. Colanzi,
Opla-tool v2.0: a tool for product line architecture design optimization, in: E.
Cavalcante, F. Dantas, T. Batista (Eds.), SBES ’20: 34th Brazilian Symposium
on Software Engineering, Natal, Brazil, October 19-23, 2020, ACM, 2020, pp.
818–823, http://dx.doi.org/10.1145/3422392.3422498.

[S26] D. Hinterreiter, P. Grünbacher, H. Prähofer, Visualizing feature-level evolution
in product lines: A research preview, in: N.H. Madhavji, L. Pasquale, A.
Ferrari, S. Gnesi (Eds.), Requirements Engineering: Foundation for Software
Quality - 26th International Working Conference, REFSQ 2020, Pisa, Italy,
March 24-27, 2020, Proceedings [REFSQ 2020 was Postponed], in: Lecture
Notes in Computer Science, vol. 12045, Springer, 2020, pp. 300–306, http:
//dx.doi.org/10.1007/978-3-030-44429-7_21.

[S27] J. Fischer, B. Vogel-Heuser, E. Estévez-Estévez, M. Male, Varapp: Variant man-
agement app for IEC 61131-3 compliant legacy software, in: IEEE Conference
on Industrial Cyberphysical Systems, ICPS 2020, Tampere, Finland, June 10-
12, 2020, IEEE, 2020, pp. 269–276, http://dx.doi.org/10.1109/ICPS48405.
2020.9274774.
20
[S28] A. Schlie, K. Rosiak, O. Urbaniak, I. Schaefer, B. Vogel-Heuser, Analyzing
variability in automation software with the variability analysis toolkit, in: C.
Cetina, O. Díaz, L. Duchien, M. Huchard, R. Rabiser, C. Salinesi, C. Seidl,
X. Tërnava, L. Teixeira, T. Thüm, T. Ziadi (Eds.), Proceedings of the 23rd
International Systems and Software Product Line Conference, SPLC 2019,
Volume B, Paris, France, September 9-13, 2019, ACM, 2019, pp. 89:1–89:8,
http://dx.doi.org/10.1145/3307630.3342408.

[S29] D.H. Carmo, S.T. Carvalho, L.G.P. Murta, O. Loques, Runtime monitoring and
auditing of self-adaptive systems (S), in: The 25th International Conference
on Software Engineering and Knowledge Engineering, Boston, MA, USA,
June 27-29, 2013, Knowledge Systems Institute Graduate School, 2013, pp.
731–736.

[S30] B. Duhoux, K. Mens, B. Dumas, H.S. Leung, A context and feature visualisation
tool for a feature-based context-oriented programming language, in: A. Etien
(Ed.), Proceedings of the Seminar Series on Advanced Techniques & Tools
for Software Evolution (SATTOSE 2019), Bolzano, Italy, July 8-10 Day, 2019,
in: CEUR Workshop Proceedings, vol. 2510, CEUR-WS.org, 2019, URL http:
//ceur-ws.org/Vol-2510/sattose2019_paper_7.pdf.

[S31] J. Krüger, L. Nell, W. Fenske, G. Saake, T. Leich, Finding lost features in
cloned systems, in: M.H. ter Beek, W. Cazzola, O. Díaz, M.L. Rosa, R.E. Lopez-
Herrejon, T. Thüm, J. Troya, A.R. Cortés, D. Benavides (Eds.), Proceedings of
the 21st International Systems and Software Product Line Conference, SPLC
2017, Volume B, Sevilla, Spain, September 25-29, 2017, ACM, 2017, pp.
65–72, http://dx.doi.org/10.1145/3109729.3109736.

[S32] B. Andam, A. Burger, T. Berger, M.R.V. Chaudron, Florida: Feature location
dashboard for extracting and visualizing feature traces, in: M.H. ter Beek,
N. Siegmund, I. Schaefer (Eds.), Proceedings of the Eleventh International
Workshop on Variability Modelling of Software-Intensive Systems, VaMoS
2017, Eindhoven, NetherlandS, February 1-3, 2017, ACM, 2017, pp. 100–107,
http://dx.doi.org/10.1145/3023956.3023967.

[S33] T. Kanda, T. Ishio, K. Inoue, Approximating the evolution history of software
from source code, IEICE Trans. Inf. Syst. 98-D (6) (2015) 1185–1193, http:
//dx.doi.org/10.1587/transinf.2014EDP7286.

[S34] M. Ribeiro, T. Tolêdo, J. Winther, C. Brabrand, P. Borba, Emergo: a tool
for improving maintainability of preprocessor-based product lines, in: R.
Hirschfeld, E. Tanter, K.J. Sullivan, R.P. Gabriel (Eds.), Companion Volume of
the 11th International Conference on Aspect-Oriented Software Development,
AOSD 2012, Potsdam, Germany, March 25-30, 2012, ACM, 2012, pp. 23–26,
http://dx.doi.org/10.1145/2162110.2162128.

[S35] X. Tërnava, J. Mortara, P. Collet, Identifying and visualizing variability in
object-oriented variability-rich systems, in: T. Berger, P. Collet, L. Duchien,
T. Fogdal, P. Heymans, T. Kehrer, J. Martinez, R. Mazo, L. Montalvillo,
C. Salinesi, X. Tërnava, T. Thüm, T. Ziadi (Eds.), Proceedings of the 23rd
International Systems and Software Product Line Conference, SPLC 2019,
Volume a, Paris, France, September 9-13, 2019, ACM, 2019, pp. 32:1–32:13,
http://dx.doi.org/10.1145/3336294.3336311.

[S36] R.E. Lopez-Herrejon, A. Egyed, Towards interactive visualization support for
pairwise testing software product lines, in: A.C. Telea, A. Kerren, A. Marcus
(Eds.), 2013 First IEEE Working Conference on Software Visualization (VIS-
SOFT), Eindhoven, the Netherlands, September 27-28, 2013, IEEE Computer
Society, 2013, pp. 1–4, http://dx.doi.org/10.1109/VISSOFT.2013.6650543.

[S37] T.H.B. de Oliveira, M. Becker, E.Y. Nakagawa, Supporting the analysis of
bug prevalence in software product lines with product genealogy, in: E.S.
de Almeida, C. Schwanninger, D. Benavides (Eds.), 16th International Software
Product Line Conference, SPLC ’12, Salvador, Brazil - September 2-7, 2012
Volume 1, ACM, 2012, pp. 181–185, http://dx.doi.org/10.1145/2362536.
2362561.

[S38] N. Niu, S.M. Easterbrook, Concept analysis for product line requirements, in:
K.J. Sullivan, A. Moreira, C. Schwanninger, J. Gray (Eds.), Proceedings of
the 8th International Conference on Aspect-Oriented Software Development,
AOSD 2009, Charlottesville, Virginia, USA, March 2-6, 2009, ACM, 2009, pp.
137–148, http://dx.doi.org/10.1145/1509239.1509259.

[S39] T.F.L. de Medeiros, E.S. de Almeida, S.R. de Lemos Meira, Codescoping: A
source code based tool to software product lines scoping, in: V. Cortellessa,
H. Muccini, O. Demirörs (Eds.), 38th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2012, Cesme, Izmir, Turkey,
September 5-8, 2012, IEEE Computer Society, 2012, pp. 101–104, http://dx.
doi.org/10.1109/SEAA.2012.70.

[S40] R. Rabiser, D. Dhungana, W. Heider, P. Grünbacher, Flexibility and end-user
support in model-based product line tools, in: 35th Euromicro Conference on
Software Engineering and Advanced Applications, SEAA 2009, Patras, Greece,
August 27-29, 2009, Proceedings, IEEE Computer Society, 2009, pp. 508–511,
http://dx.doi.org/10.1109/SEAA.2009.13.

[S41] K. Wnuk, B. Regnell, L. Karlsson, What happened to our features? visualization
and understanding of scope change dynamics in a large-scale industrial setting,
in: RE 2009, 17th IEEE International Requirements Engineering Conference,
Atlanta, Georgia, USA, August 31 - September 4, 2009, IEEE Computer Society,
2009, pp. 89–98, http://dx.doi.org/10.1109/RE.2009.32.

http://dx.doi.org/10.1109/VISSOFT.2016.16
http://dx.doi.org/10.1109/WCRE.2011.44
http://dx.doi.org/10.1007/11763864_8
http://dx.doi.org/10.1145/3233027.3233044
http://dx.doi.org/10.1007/978-3-319-09195-2_8
http://dx.doi.org/10.1007/978-3-319-09195-2_8
http://dx.doi.org/10.1007/978-3-319-09195-2_8
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb61
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb61
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb61
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb61
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb61
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb61
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb61
http://dx.doi.org/10.1007/s10270-009-0120-9
http://dx.doi.org/10.1007/s10270-009-0120-9
http://dx.doi.org/10.1007/s10270-009-0120-9
http://dx.doi.org/10.1109/VISSOFT.2015.7332417
http://dx.doi.org/10.1109/VISSOFT.2015.7332417
http://dx.doi.org/10.1109/VISSOFT.2015.7332417
http://dx.doi.org/10.1016/j.protcy.2013.12.021
http://dx.doi.org/10.1016/j.protcy.2013.12.021
http://dx.doi.org/10.1016/j.protcy.2013.12.021
http://dx.doi.org/10.1145/2934466.2934480
http://dx.doi.org/10.1145/3109729.3109737
http://dx.doi.org/10.1145/2851613.2851764
http://dx.doi.org/10.1145/3422392.3422498
http://dx.doi.org/10.1007/978-3-030-44429-7_21
http://dx.doi.org/10.1007/978-3-030-44429-7_21
http://dx.doi.org/10.1007/978-3-030-44429-7_21
http://dx.doi.org/10.1109/ICPS48405.2020.9274774
http://dx.doi.org/10.1109/ICPS48405.2020.9274774
http://dx.doi.org/10.1109/ICPS48405.2020.9274774
http://dx.doi.org/10.1145/3307630.3342408
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb72
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb72
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb72
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb72
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb72
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb72
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb72
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb72
http://refhub.elsevier.com/S0950-5849(22)00193-8/sb72
http://ceur-ws.org/Vol-2510/sattose2019_paper_7.pdf
http://ceur-ws.org/Vol-2510/sattose2019_paper_7.pdf
http://ceur-ws.org/Vol-2510/sattose2019_paper_7.pdf
http://dx.doi.org/10.1145/3109729.3109736
http://dx.doi.org/10.1145/3023956.3023967
http://dx.doi.org/10.1587/transinf.2014EDP7286
http://dx.doi.org/10.1587/transinf.2014EDP7286
http://dx.doi.org/10.1587/transinf.2014EDP7286
http://dx.doi.org/10.1145/2162110.2162128
http://dx.doi.org/10.1145/3336294.3336311
http://dx.doi.org/10.1109/VISSOFT.2013.6650543
http://dx.doi.org/10.1145/2362536.2362561
http://dx.doi.org/10.1145/2362536.2362561
http://dx.doi.org/10.1145/2362536.2362561
http://dx.doi.org/10.1145/1509239.1509259
http://dx.doi.org/10.1109/SEAA.2012.70
http://dx.doi.org/10.1109/SEAA.2012.70
http://dx.doi.org/10.1109/SEAA.2012.70
http://dx.doi.org/10.1109/SEAA.2009.13
http://dx.doi.org/10.1109/RE.2009.32

	Visualizations for the evolution of Variant-Rich Systems: A systematic mapping study
	Introduction
	Related work
	The mapping space
	Dimension 1: Analysis scenarios
	Variant Synchronization (VS)
	Variant Integration (VI)
	Feature Identification and Location (FIL)
	Constraints Extraction (CE)
	Architecture Recovery (AR)
	Transformations (TR)
	Functional Testing (FT)
	Analysis of Non-Functional Properties (ANF)
	Co-evolution of Problem Space and Solution Space (CPS)

	Dimension 2: Visualization approach
	Dimension 3: Research maturity

	Research design
	Research questions
	Search strategy
	Protocol

	Data extraction Paper classification
	Results for RQ1: What sort of analysis is being conducted to assess VRS evolution?
	Target roles
	Evolution scenarios
	Added-value

	Results for RQ2: What sort of visualization are displayed?
	Visualized elements (RQ2.1)
	Visualization techniques (RQ2.2)
	Visualization interactions (RQ2.3 RQ2.6)
	Visualization strategies (RQ2.4)
	Data sources (RQ2.5)
	Visualization techniques Data sources (RQ2.5)
	Visualization techniques Evolution scenario (RQ2.2)
	Assessing scenario maturity (RQ2.6)

	Results for RQ3: What is the research maturity of the reported interventions?
	Research Type
	Evaluation Method
	Tool availability
	Publication Venue

	Discussion
	Threats to validity
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Related Literature Surveys
	References

