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We consider axial (or odd-parity) perturbations of non-spinning hairy black holes (BH) in
shift-symmetric DHOST (Degenerate Higher-Order Scalar-Tensor) theories, including terms
quartic and cubic in second derivatives of the scalar field. We give a new formulation of
the effective metric in which axial perturbations propagate as in general relativity. We then
introduce a generic parametrization of the effective metric in the vicinity of the background
BH horizon. Writing the dynamics of the perturbations in terms of a Schrödinger-like op-
erator, we discuss in which cases the operator is (essentially) self-adjoint, thus leading to
an unambiguous time evolution, according to the choice of parameters characterizing the
near-horizon effective metric. This is in particular useful to investigate the stability of the
perturbations. We finally illustrate our general analysis with two examples of BH solutions.

I. INTRODUCTION

Future observations of binary black hole mergers via GWs offer the tantalizing prospect of
detecting the oscillations of the newly created back hole (BH) in the so-called post-merger ringdown
phase. The main contribution to these oscillations can be decomposed into discrete modes known
as quasi-normal modes (QNMs) – instead of normal modes because these modes decay as they are
radiated away. The measurement of QNM frequencies and decay rates provides a very powerful test
of general relativity (GR) in the vicinity of a black hole. Indeed, the frequencies and decay rates of
QNMs (labelled by the integers ℓ, m and n) depend only on the two parameters of a Kerr black hole
solution, namely its mass and angular momentum (assuming the BH to be electrically neutral).
The measurement of the frequency σ and the decay rate τ of a single QNM, associated with the
complex frequency ω = σ + i/τ thus completely determines the two parameters and consistency
can be checked by measuring any other QNM. (Note that the astrophysical environment of the BH
could potentially affect the QNMs spectrum and lead to an instability, see e.g. [1, 2].)

With these observational prospects in mind, it is interesting to explore possible deviations from
the GR predictions within models of modified gravity. The theory of BH perturbations is already
quite involved in general relativity (see e.g. [3]). In the context of modified gravity, the analysis is
even more daunting, due to different factors: paucity of exact BH solutions, in particular of rotating
BHs; presence of extra modes (e.g. scalar modes in scalar-tensor theories); modified dynamical
equations. In the present work, we avoid some of these difficulties by concentrating on nonrotating
configurations and on purely tensorial modes. In the context of scalar-tensor theories, this means
that we focus our attention on axial, or odd-parity, modes which are analogous to those of GR
but now possess different dynamics. By contrast, we do not discuss here the polar, or even-parity,
modes, which contain additional modes due to the presence of the scalar field perturbations.

In the present study, we work in the most general framework of scalar-tensor theories propagat-
ing a single scalar degree of freedom, known as DHOST (Degenerate Higher-Order Scalar-Tensor)
theories [4–8] (see [9] and [10] for reviews), which include previously studied families of scalar-tensor
theories. General DHOST Lagrangians contain second derivatives of the scalar field and can lead
to equations of motion of order higher than two, but imposing the degeneracy conditions ensures
that the solutions of these equations of motion do not depend on more initial conditions than
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standard second-order equations of motion. In other words, these degeneracy conditions guarantee
the absence of a ghost-like extra degree of freedom.

Perturbations of BH in the context of DHOST theories have been explored in several works (see
e.g. [11–24]). One can also mention other works based on an EFT approach [25–29]. In particular,
in our previous works [30, 31], we have explored the equations of motion and the asymptotic
behaviours of the solutions. We have also discussed the effective metric in which odd-parity modes
propagate [32]. The present work extends these results in two directions.

First, we consider the effective metric for odd-parity modes in DHOST theories including cubic
terms. Interestingly, we find that this metric can be partially written in a covariant form, even if
the nice geometric interpretation of the effective metric as the result of a disformal transformation
in quadratic DHOST is no longer valid when cubic terms are included1.

Second, assuming a generic power-law behaviour of the effective metric near the BH horizon,
we discuss the self-adjointness of the Schrödinger-like equation describing the odd-parity modes.
Interestingly, a singular effective metric, corresponding to a naked singularity, does not necessarily
lead to a loss of predictability for the associated Schrödinger-like equation. This property was
already pointed out for some naked singularity geometries in the context of general relativity [37–
39] (see also [40] for an interesting example in scalar-tensor theories), and we use some of the
formalism introduced in these previous works to study some generic behaviours of the effective
metric.

This article is structured as follows. In the next section, we present the DHOST theories and
introduce the effective metric for the axial perturbations of a static black hole solution. We then
reformulate the dynamics of these perturbations in terms of a simple Schrödinger-like equation.
Section III introduces a general parametrization of the effective metric near the BH horizon and
studies the self-adjointness of the Schrödinger-like, depending on the values of the parameters. The
section concludes with a discussion on the stability of the axial perturbations. In Section IV, we
illlustrate our general approach with two specific examples of BH solutions. We conclude in the
final section. This article is completed with a few appendices, where the details of our calculations
are presented.

II. EFFECTIVE METRIC FOR BH AXIAL PERTURBATIONS

A. Static and spherically symmetric geometries in DHOST Theories

As discussed in the introduction, we work within the framework of DHOST theories, whose
action, up to cubic order in second derivatives of the scalar field, can be written in the form [4, 8]

S[gµν , φ] =

∫

d4x
√−g

(

P (X,φ) +Q(X,φ)�φ+ L(2) + L(3)
)

, (2.1)

where gµν denotes the metric, φ the scalar field and X ≡ φµφµ its kinetic term, using the short-
hand notation φµ = ∇µφ. The lagrangian densities L(2) and L(3) contain all the terms that
are, respectively, quadratic and cubic in the second derivatives φµν ≡ ∇µ∇νφ and the associated
curvature-dependent terms:

L(2) = F2(X,φ)R +

5
∑

i=1

Ai(X,φ)L
(2)
i , L(3) = F3(X,φ)Gµνφ

µν +

10
∑

i=1

Bi(X,φ)L
(3)
i , (2.2)

1 Note that generalised disformal transformations have recently been discussed in [33–36].
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where R is the Ricci scalar and Gµν the Einstein tensor. The five elementary quadratic Lagrangian

L
(2)
i read

L
(2)
1 = φµνφ

µν , L
(2)
2 = (✷φ)2 , L

(2)
3 = (✷φ)φµφµνφ

ν ,

L
(2)
4 = φµφµρφ

ρνφν , L
(2)
5 = (φµφµνφ

ν)2 , (2.3)

while the ten elementary cubic Lagrangian densities L
(3)
i are given by [8]

L
(3)
1 = (✷φ)3 , L

(3)
2 = (✷φ)φµνφ

µν , L
(3)
3 = φµνφ

νρφµρ ,

L
(3)
4 = (✷φ)2 φµφ

µνφν , L
(3)
5 = ✷φφµφ

µνφνρφ
ρ , L

(3)
6 = φµνφ

µνφρφ
ρσφσ ,

L
(3)
7 = φµφ

µνφνρφ
ρσφσ , L

(3)
8 = φµφ

µνφνρφ
ρ φσφ

σλφλ ,

L
(3)
9 = ✷φ (φµφ

µνφν)
2 , L

(3)
10 = (φµφ

µνφν)
3 . (2.4)

The functions P and Q in (2.1) can be chosen arbitrarily, while the other ones, Fi, Ai and Bi,
must satisfy degeneracy conditions in order to guarantee the presence of a single scalar degree of
freedom [4]. For theories up to cubic order, these degeneracy conditions were explicitly computed
in [8], generalising the degeneracy conditions for quadratic DHOST theories established in [4].

Note that, for axial modes, one does not need to take into account the degeneracy conditions
since the scalar perturbations vanish by construction in the odd-parity sector. So our results would
be unchanged for non degenerate scalar-tensor theories. This applies for example to U-DHOST
theories [41], theories that are degenerate in the so-called unitary gauge (where the scalar field is
uniform) but not in other gauges, or to the scordatura model [42], in which the theory is a small
controlled deformation of a DHOST theory so that the ghost-like extra degree of freedom is too
massive to be excited in the regime of validity of the theory.

In the rest of this paper, we will restrict our study to shift-symmetric theories, which entails
that all the functions in the action (2.1) depend on the kinetic density X only, and not explicitly
on the scalar field φ itself.

In the following, we consider static and spherically symmetric solutions of these theories, char-
acterised by a metric gµν expressed as

ds2 = gµν dx
µ dxν = −A(r) dt2 +

1

B(r)
dr2 + C(r)(dθ2 + sin2 θ dϕ2) , (2.5)

and a scalar field of the form

φ(t, r) = qt+ ψ(r) , (2.6)

where q is a constant. An explicit linear time dependence, i.e. q 6= 0, initially proposed in [43]
(see [44] for an earlier work in a different context), is compatible with the assumption of staticity
provided the theory is shift-symmetric (i.e. its Lagrangian depends only on the derivatives of φ,
not φ itself) and allows configurations with a time-like gradient for the scalar field.

Various exact BH solutions of this type have been obtained [45–51] (see also the reviews [10, 52]
on Horndeski theories and references therein). In the present work, we study generic properties
of axial perturbations about static and spherically symmetric solutions and, as such, we do not
assume any specific solution. We will nevertheless mention a few particular solutions as illustrative
examples in the final part.
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B. Effective metric of axial perturbations

As shown in several previous studies [19, 21, 32], axial modes propagate in an effective met-
ric gµν which in general is distinct from the background metric gµν . Indeed, in a scalar-tensor
gravitational theory, axial gravitational waves are sensitive to the background scalar field in ad-
dition to the background metric. This affects their dynamics, in contrast with other fields that
are minimally coupled to the metric gµν , such as an electromagnetic field with a standard action.
As a consequence, axial gravitational waves and, say, photons effectively propagate in different
geometries.

More specifically, we have shown in [32] that, for axial perturbations about a static and spheri-
cally symmetric background solution of the form (2.5)-(2.6), there exists a correspondence between
their dynamics in any higher-order scalar-tensor theory of the form (2.1) (even non degenerate)
and the usual GR dynamics but in an effective background metric of the form2

gµν dx
µ dxν = −A(r) dt2∗ +

1

B(r)
dr2 + C(r)(dθ2 + sin2 θ dϕ2) , (2.7)

with a new time coordinate t∗ defined by

t∗ = t−
∫

drΨ(r) . (2.8)

The effective metric components A, B and C, as well as Ψ, depend on the functions introduced
in the Lagrangian and on the background configuration (2.5)-(2.6). Their explicit expression for
DHOST theories up to cubic order was computed in [32] and is recalled in Appendix A, where we
also present their extensions to non degenerate theories.

Interestingly, after a long calculation summarised in the appendix, we find that this effective
metric can be written in the compact and almost covariant form3

gµν = Λ

[

Ω gµν + Dφµφν + S φµν +
T

2
(φµXν + φνXµ)

]

, (2.9)

where Ω, D, S and T can be simply expressed in terms of the functions entering the action (2.2),

T = F3X − 3

2
B3 , S =

3

2
XB3 ,

D = A1 + (B2 +
2

3
B3)✷φ+B6 φ

αφαβφ
β , (2.10)

Ω = F2 −XD − T φαφαβφ
β ,

evaluated on the background solution. Here, the X subscript means a derivative with respect to
X. The global conformal factor Λ takes the form

Λ = Φ

√

B

A
Γ , (2.11)

2 Note that (2.7) has a priori no reason to be a vacuum solution of General Relativity, but it can always be seen as
a GR solution with appropriate, although artificial in general, energy-momentum tensor.

3 In the general case, many of the terms on the right-hand side involve the background metric gµν in a non-trivial
way and the relation (2.9) defining gµν in terms of gµν is presumably non invertible. It is nevertheless invertible
in the particular case of quadratic theories, where the relation reduces to a disformal transformation. In this
special case, the dynamics of the axial perturbations is equivalent to that of axial perturbations with respect to
the effective metric in GR, as discussed in [32] and below.
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where Φ and Γ were also introduced in [32] and are recalled in Appendix A.

As already stressed, the expression (2.9)-(2.10) of the effective metric is valid for any higher
derivative scalar-tensor theories (up to the cubic order) without imposing the degeneracy condi-
tions. In the degenerate case, the term ✷φ disappears from (2.10) because one of the degeneracy
conditions imposes 2B2 + 3B3 = 0.

In the simpler case of quadratic theories (i.e. assuming that the cubic terms vanish: F3 = B2 =
B3 = B6 = 0), the terms T and S disappear and one recovers the expression of the effective metric
obtained in [32] with

Λ =

√

F2

F2 −XA1
, Ω = F2 −XA1 , D = A1 . (2.12)

As shown in [32] the effective metric in this case corresponds to the disformal transformation of
the background metric so that the new action, expressed in terms of gµν , is characterised by the
functions

F̃2 = 1 , Ã1 = 0 . (2.13)

As a consequence, the dynamics of axial perturbations in the frame of the effective metric is
strictly equivalent to the dynamics of these perturbations in General Relativity. In other words,
the effective metric can be interpreted as an “Einstein frame” for axial perturbations. We stress
that this does not mean that the gravitational theory is equivalent to General Relativity. First,
because the matter fields, or other fields, are minimally coupled to the metric gµν and therefore
nonminimally coupled to the effective metric. Second, because the other quadratic Lagrangian
functions Ãi do not necessarily vanish, in which case the dynamics of the polar perturbations in
the effective metric frame differs from the GR one.

C. Schrödinger-like equation for axial perturbations

As recalled in the previous sections, the dynamics of axial perturbations in higher-order scalar-
tensor theories (not necessarily degenerate) corresponds to that of General Relativity with the
effective metric (2.7) instead of the background metric.

The GR dynamics of linear perturbations hµν about a reference metric gµν is given by the
linearised Einstein equations,

Eµν ≡ ✷hµν +∇µ∇νh+ (∇α∇βh
αβ −✷h)gµν + 2∇(µ∇αh

α
ν) − 6∇α∇(µh

α
ν)

+ Rµνh−Rhµν +
1

2
Rgµνh+Rαβgµνhαβ + 8Rα(µh

α
ν) = 0 , (2.14)

where h ≡ gµνhµν is the trace of hµν and we use the standard notation A(µν) ≡ (Aµν+Aνµ)/2 for any
2-index tensor Aµν . In the above equation, indices are lowered or raised with the reference metric
gµν ; the covariant derivatives are associated with gµν as well. In the following, the nonperturbed
metric will correspond to our effective metric.

From the above linearised Einstein’s equations, one can derive a Schrödinger-like equation for
axial perturbations, as we now recall briefly. Details can be found in [53] or in the more recent
articles [11, 31, 32]. In the Regge-Wheeler gauge [53], axial perturbations are described by the
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following non-vanishing components of the perturbations:

htθ =
1

sin θ

∑

ℓ,m

hℓm0 (t, r)∂ϕYℓm(θ, ϕ), htϕ = − sin θ
∑

ℓ,m

hℓm0 (t, r)∂θYℓm(θ, ϕ),

hrθ =
1

sin θ

∑

ℓ,m

hℓm1 (t, r)∂ϕYℓm(θ, ϕ), hrϕ = − sin θ
∑

ℓ,m

hℓm1 (t, r)∂θYℓm(θ, ϕ), (2.15)

using an expansion in spherical harmonics Yℓm(θ, ϕ), reflecting the spherical symmetry of the
background. In the following, since perturbations with different values of ℓ and m do not couple
at linear level, we drop the indices ℓ and m to shorten the equations. Moreover, we consider only
ℓ ≥ 2 since axial perturbations contain no monopole (ℓ = 0) nor dipole (ℓ = 1) contributions.

For ℓ ≥ 2, one can show that only three out of the ten equations (2.14) are non trivial and that
only two of these three equations are independent, providing two equations for the two functions
h0 and h1. Combining these two equations, and working in frequency space, so that any function
f(t∗, r) is replaced by

f(t∗, r) = e−iωt∗ f(r) , (2.16)

we obtain the well-known Schrödinger-like equation4

−∂
2χ

∂r2∗
+ V χ = ω2 χ . (2.17)

The function χ(r) corresponds to the following linear combination of h0 and h1,

χ =

(F
C

)1/2( B

AΓ

)1/4 h1 +Ψh0
ωN

, (2.18)

where the definitions of F , Γ and Ψ are recalled in Appendix A. The tortoise coordinate r∗(r) for
the effective metric is defined as5

r∗ =

∫

dr
√

A(r)B(r)
. (2.19)

Finally, the potential V (r) can be written in the simple form

V = S2 − ∂∗S + Vλ , Vλ = 2λ
A

C
, S ≡ 1

2

∂∗C

C
, (2.20)

with

λ ≡ ℓ(ℓ+ 1)

2
− 1 , (2.21)

and where ∂∗ denotes a derivative with respect to r∗.

4 In addition to the Schrödinger-like equation, we obviously have a second equation whose expression is not needed
here. However, these two equations are necessary to solve completely the perturbations equations, and then to
find h0 and h1.

5 We stress that r∗ does not correspond to the tortoise coordinate of the background metric.
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III. AXIAL PERTURBATIONS: ASYMPTOTICS AND STABILITY

A. Asymptotic behaviour of the effective metric at the singularity

As our starting point we consider a black hole background metric with (at least) one event
horizon located at r = rs in the static coordinates system used in (2.5). The corresponding effective
metric gµν might not be that of a black hole: a priori, it can describe any static and spherically
symmetric geometry, such as, for instance, a naked singularity, a regular space-time or a black hole
whose horizon differs from the background one. Different examples of such effective metrics have
been considered in [32] and some of them will be discussed later on.

Here, we assume the effective metric to be singular (i.e. one its components either vanishes or
diverges) for some value of the radius r = rs, which can be different from rs or not. The singularity
at r = rs can be a naked singularity or a coordinate singularity. Furthermore, we assume the metric
to be well-defined and well-behaved in the domain r > rs, by which we mean that all coefficients
A(r), B(r) and C(r) remain strictly positive for r > rs, and give an asymptotically flat metric.

To describe the behaviour of the metric near the singularity, it is convenient to introduce the
dimensionless coordinate ε defined by

ε =
r

rs
− 1 . (3.1)

In the following, we will assume that the effective metric coefficients behave as power laws of ε in
the vicinity of the singularity, so that their leading order terms is of the form

A(r) = a εα (1 + o(1)) , B(r) = b εβ (1 + o(1)) , C(r) = c εγ (1 + o(1)) when ε→ 0 , (3.2)

where α, β and γ are real constants, and a, b and c are non-negative numbers.
Rewriting the effective metric in terms of the tortoise coordinate (2.19),

ds2 = A

[

−dt2∗ + dr2∗ +
C

A

(

dθ2 + sin2 θ dϕ2
)

]

, (3.3)

the near-singularity behaviour of the effective metric is described by

ds2 ≃ a εα
[

−dt2∗ + dr2∗ + κ2 εξ
(

dθ2 + sin2 θ dϕ2
)

]

, dr∗ = ρ εσ−1 dε , (3.4)

where we have introduced the new parameters

κ2 ≡ c

a
, ρ ≡ rs√

ab
, σ ≡ 1− α+ β

2
, ξ ≡ γ − α . (3.5)

In order to determine the nature of the singularity of the effective metric, it is useful to express
r∗ in terms of ε near the singularity. This gives

if σ = 0 , r∗ ≃ ρ ln ε , if σ 6= 0 , σ r∗ ≃ ρ εσ . (3.6)

When σ ≤ 0, the singularity r = rs corresponds to the limit r∗ → −∞ and the domain of the
Schrödinger-like equation (2.17) is therefore the full real line R. As a consequence, following the
arguments of [38], the singularity is null and the space-time is globally hyperbolic. By contrast,
when σ > 0, the singularity is located at r∗ = 0. This gives a time-like singularity and the domain
of the Schrödinger-like equation is reduced to the half-line R

+
∗ .

As argued in [38], one expects the Schrödinger operator in (2.17) to be essentially self-adjoint
when the singularity is null, which means that the evolution of the perturbation is well-defined
and does not need any extra boundary conditions at the singularity. However, this might not be
the case when the singularity is time-like and a careful study of the asymptotic behaviour of the
potential at the singularity is needed to conclude about the self-adjointness.
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B. Asymptotic of the potential and self-adjointness of the Schrödinger operator

The detailed study of the asymptotic behaviour of the potential at the singularity is given
in Appendix B. This is crucial to conclude about the self-adjoint properties of the Schrödinger
operator (2.17) and the positivity of its spectrum, which in turn, will enable us to conclude on the
stability of axial perturbations (see e.g. [54] for a general study of the Schrödinger operator).

We summarise below the main results of Appendix B. We treat separately the cases σ = 0,
σ < 0 and σ > 0 and we assume that γ 6= 0 and γ+2σ 6= 0. The special cases γ = 0 and γ+2σ = 0
are studied in the appendix.

1. Case σ = 0 (and γ 6= 0)

According to (3.6), the singularity is null, located at r∗ → −∞. Let us examine in turn the
cases ξ > 0 and ξ ≤ 0.

For ξ > 0, the potential behaves near the singularity as

V ≃ V +
s exp

(

−ξ r∗
ρ

)

, V +
s = 2

λ

κ2
( r∗ → −∞, ξ > 0) (3.7)

so that limr∗→−∞ V (r∗) = +∞. Using the results of [55] on the asymptotic behaviour of the
solutions of one-dimensional Schrödinger equations, summarized in Appendix C, we can find a pair
of independent solutions χ± which behave at the singularity as follows,

χ±(r∗) ≃ exp

[

ξr∗
4ρ

± 2V
+1/2
s ρ

ξ
exp

(

−ξ r∗
2ρ

)

]

(r∗ → −∞, ξ > 0) . (3.8)

This leading behaviour does not depend on the frequency ω, and one immediately sees that χ− is
an element of L2(R) whereas χ+ is not. As a consequence, it is not necessary to add any boundary
condition at the singularity which means that the Schrödinger operator is essentially self-adjoint.

Let us now turn to the case ξ ≤ 0. In the limit r∗ → −∞, the potential is constant:

V ≃ 2
λ

κ2
δξ +

γ2

4ρ2
≡ V −

s (3.9)

with δξ = 1 if ξ = 0 and δξ = 0 otherwise. In this case, one can find two solutions, still denoted
χ±, behaving as

χ±(r∗) ≃ exp
[

±
√

V −
s − ω2 r∗

]

(r∗ → −∞, ξ ≤ 0) , (3.10)

where the square root is imaginary if Vs − ω2 < 0. To prove that the corresponding Schrödinger
operator is self-adjoint, it is sufficient6 to show that, when ω = ±i, one of two solutions χ± is not
in L2(R) which is clearly the case (since V −

s + 1 > 0).

For σ = 0, we thus conclude that the Schrödinger operator is essentially self-adjoint. This is
consistent with the fact that the space time is globally hyperbolic in this case.

6 More details on this theorem can be found in [55] for instance. Some illustrative examples, which are furthermore
physically relevant, are studied in [38].
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2. The case σ < 0 (and γ 6= 0,−2σ)

According to (3.6), the singularity is still null and located at r∗ → −∞. As found in Appendix
B, the behaviour of the potential near the singularity is given by

V ≃ V∗s |r∗|ν with V∗s = Vs

( |σ|
ρ

)ν

, (3.11)

where

if ξ > 2σ : ν = − ξ

σ
, Vs = 2

λ

κ2
, (3.12)

if ξ ≤ 2σ : ν = −2, Vs = 2
λ

κ2
δξ−2σ +

γ(γ + 2σ)

4ρ2
. (3.13)

The asymptotic behaviour of the potential when r∗ → −∞ depends on the sign of ν. In each
case, one can find two solutions χ± whose asymptotic behaviour at the singularity can be obtained
explicitly:

ν < 0 , lim
r∗→−∞

V (r∗) = 0 , χ±(r∗) ≃ exp [±i ω r∗] , (3.14)

ν = 0 , lim
r∗→−∞

V (r∗) = V∗s , χ±(r∗) ≃ exp
[

±
√

V∗s − ω2 r∗

]

, (3.15)

ν > 0 , lim
r∗→−∞

V (r∗) = +∞ , χ±(r∗) ≃
1

|r∗|ν/4
exp

[ ±2

ν + 2

√

V∗s|r∗|1+ν/2

]

. (3.16)

We see that, when ω = ±i, one of the two solutions does not belong to L2(R), which is a sufficient
condition for the operator to be self-adjoint. Again, this is consistent with the fact that the effective
spacetime is globally hyperbolic.

3. The case σ > 0 (and γ 6= 0,−2σ)

According to (3.6), the singularity is now time-like, located at r∗ = 0. The asymptotic behaviour
of the potential can be written in the form (3.11), but now with

if ξ > 2σ : ν < −2 and Vs > 0 ; (3.17)

if ξ ≤ 2σ : ν = −2 , Vs = 2
λ

κ2
δξ−2σ +

γ(γ + 2σ)

4ρ2
. (3.18)

For ξ > 2σ, following the usual method, one can find two independent solutions χ±, with the
following asymptotic behaviour near the singularity:

χ±(r∗) ≃
1

|r∗|ν/4
exp

[ ±2

ν + 2
|r∗|1+ν/2

]

, r∗ → 0 , (3.19)

which are formally the same expressions as those in (3.18). Since 1 + ν/2 < 0 in this case, one
concludes that χ− is an element of L2(R) whereas χ+ is exponentially divergent at the origin.

Similarly, for ξ ≤ 2σ one can easily find two independent solutions, which behave asymptotically
as

χ±(r∗) ≃ r
n±

∗ , n± ≡ 1±
√
1 + 4V∗s
2

. (3.20)
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Combining (3.11) with (3.18) and using (3.5), the constant V∗s is explicitly given by

V∗s = 2
λ

σ2
r2s
bc
δξ−2σ +

γ(γ + 2σ)

4σ2
. (3.21)

When V∗s ≥ 3/4, the solution χ− is not square integrable near r∗ = 0 whereas χ+ is, so the
Schrödinger operator is essentially self-adjoint. When V∗s < 3/4, both solutions are integrable
near the singularity. This implies that the operator is not essentially self-adjoint and boundary
conditions at the singularity are required in order to know how the perturbation evolves from a
given initial condition. In this case, the singularity is time-like and the space-time is not globally
hyperbolic.

In summary, we have found that the Schrödinger operator is essentially self-adjoint, except
when

σ > 0 , ξ ≤ 2σ , V∗s <
3

4
. (3.22)

The last inequality can be reformulated as follows:

if ξ < 2σ , −3σ < γ < σ ; (3.23)

if ξ = 2σ , 8λ
r2s
bc
< (3σ − γ)(σ + γ) . (3.24)

C. Stability of axial perturbations

We now discuss the stability of the axial perturbations, using arguments similar to those given
in [56] (see also [14, 15, 57]). Stability can be shown by using the property that the Schrödinger-
like operator is a positive self-adjoint operator in the space of square integrable functions, which
implies that there is no normalisable unstable mode.

One way to show stability is to show that ω2 > 0 for any square integrable function χ in the
domain of the Schrödinger-like equation (2.17).

Multiplying the Schrödinger equation (2.17) by χ, one obtains

Iω ≡ ω2

∫ +∞

r∗min

dr∗ |χ|2 =

∫ +∞

r∗min

dr∗
[

−χ∂2∗χ+ (S2 − ∂∗S + Vλ)|χ|2
]

, (3.25)

where ∂∗ denotes a derivative with respect to r∗ and where we have used the decomposition (2.20)
of the potential. By introducing the derivative operator D defined by

Dχ ≡ ∂∗χ+ S χ , (3.26)

we can rewrite the above integral in the convenient form

Iω =

∫ +∞

r∗min

dr∗
(

|Dχ|2 + Vλ|χ|2
)

− [χ∂∗χ+ S|χ|2]+∞

r∗min
. (3.27)

If the right-hand side can be shown to be positive then this implies ω2 > 0 and therefore the
stability of the mode. Let us therefore analyse the boundary terms.

First of all, since the effective metric is supposed to be asymptotically flat, the boundary term
for r∗ → ∞ vanishes and the only remaining boundary term is

lim
r∗→r∗min

(

χ∂∗χ+ S|χ|2
)

. (3.28)
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When σ ≤ 0, the singularity is sent to infinity, i.e. r∗min = −∞. Using the explicit expression
of S,

S =
1

2

∂∗C

C
=

1

2

√
AB

C ′

C
, (3.29)

and substituting the behaviour of the effective metric functions near the singularity, one finds the
following behaviours for S, depending on the value of γ:

if γ 6= 0 , S ≃ γ

2ρ
ε−σ , if γ = 0 , S ≃ c1

2ρ
ε1−σ , (3.30)

where c1 is introduced in (B2). Hence, S is bounded (it even goes to zero when σ < 0) and the
boundary term (3.28) vanishes, which implies the stability of axial perturbations.

When σ > 0, the situation is different because the domain reduces to the real half-line, with the
singularity located at ρ = 0. In this case, the function S diverges at the singularity, according to

S ≃ γ

2σr∗
, (3.31)

where γ is supposed not to vanish. To go further, we need to distinguish between the cases ξ > 2σ
and ξ ≤ 2σ (3.17). In the former case (which corresponds to an essentially self-adjoint Schrödinger
operator), we showed that the solution of the Schrödinger equation behaves as

χ(r∗) ∼
1

r
ν/4
∗

exp

[

2

ν + 2
r
1+ν/2
∗

]

, (3.32)

where ν + 2 < 0, and then we restrict the functions in (3.25) to behave exactly as the solutions at
the singularity. As a consequence, the boundary term in (3.25) vanishes and axial perturbations
are stable.

In the latter case (ξ ≤ 2σ), we need to treat separately the cases where the Schrödinger operator
is essentially self-adjoint and where it is not. When it is essentially self-adjoint, i.e. V∗s ≥ 3/4, the
asymptotic behaviour of the solution is given by a power law

χ(r∗) ∼ rn∗ , n =
1 +

√
1 + 4V∗s
2

, (3.33)

where n ≥ 3/2. Therefore, the boundary term vanishes and axial perturbations are stable.
When V∗s < 3/4, the situation is different as the Schrödinger operator is not essentially self-

adjoint and boundary conditions at the singularity need to be prescribed. Indeed, any solution
behaves as follows at the singularity,

χ(r∗) ≃ α+r
n+

∗ + α−r
n−

∗ , n± =
1±

√
1 + 4V∗s
2

, (3.34)

where α± are constants. We immediately show that

1

2
≤ Re(n+) <

3

2
, −1

2
≤ Re(n−) <

1

2
, (3.35)

which confirms that both solutions are square integrable at the singularity. If we choose the
boundary condition such that α+ = 0, then the boundary term diverges at the singularity and
then we cannot conclude that axial perturbations are stable using the properties of the integral
(3.25). On the contrary, if we choose α− = 0, the boundary term does not diverge anymore and
vanishes when V∗s 6= 0 which may be the sign of stability.
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IV. EXAMPLES

Let us now turn to the application of the above analysis to specific black hole solutions in
DHOST theories. We will consider two different solutions whose perturbations were studied in
[31, 58]. These solutions span several subcases of the general theory and solution presented in
Sec. IIA: there are solutions with q = 0 and q 6= 0 and solutions of both quadratic and cubic
DHOST theories.

1. BCL solution

The BCL solution, proposed in [45] and named here after its authors, is a DHOST black
hole solution whose metric is analogous to Reissner-Nordström but with an imaginary charge. It
constitutes an instructive toy model for the study of black holes in DHOST since it is different
from the Schwarzschild solution but show comparable dynamics. This solution corresponds to the
specific choice of DHOST functions

F2 = f0 + f1
√
X , P = −p1X , A1 = −A2 = 2F2X , (4.1)

while all other DHOST functions are zero. The metric is given by (2.5) with

A(r) = B(r) =
(

1− r+
r

)(

1 +
r−
r

)

, C(r) = r2 ,

φ(r) = ψ(r) = ± f1
p1
√
r+r−

arctan

[

rmr + 2r+r−

2
√
r+r−

√

(r − r+)(r + r−)

]

+ cst . (4.2)

where the (positive) quantities r+ and r− are defined by

r+r− =
f21

2f0p1
, r+ − r− = 2m and r+ > r− > 0 , (4.3)

m corresponding to the ADM mass. The metric has only one horizon located at r = r+. The
global sign of φ(r) and the constant are physically irrelevant [45].

Axial perturbations of the BCL black hole and their effective metric were studied in [31, 32].
The functions A, B and C are given by

A(r) = f0

√

1 +
2r+r−
r2

A(r) , B(r) =
A(r)

f0

(

1 + 2r+r−
r2

)3/2
, C(r) = f0

√

1 +
2r+r−
r2

r2 , (4.4)

and the potential V is

V (r) = A(r)

[

2λ

r2
+

∑6
n=0 pnr

n

r2(r2 + 2r+r−)3

]

,

p0 = −5r3+r
3
− , p1 = −3r2+r

2
−(r+ − r−) , p2 = −6r2+r

2
− ,

p3 = −4r+r−(r+ − r−) , p4 = −3r+r− , p5 = −3(r+ − r−) , p6 = 2 . (4.5)

Note that this expression differs from the potential given in [31] because the radial coordinates
used here and in that previous work are different.
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We can study the asymptotic behaviour of perturbations of this solution using the framework
developped in the present paper. In order to do this, we compute the asymptotics of the effective
metric at the black hole horizon r = r+. The quantities defined in (3.2) are

α = 1 , β = 1 , γ = 0 , ε =
r

r+
− 1 ,

a = f0

√

1 +
2r−
r+

r+ + r−
r+

, b =
1

f0

(

1 + 2r−
r+

)3/2

r+ + r−
r+

, c = f0r
2
+

√

1 +
2r−
r+

. (4.6)

This implies

σ = 0 ξ = −1 , κ2 =
r3+

r+ + r−
and ρ =

r2+
r+ + r−

√

1 +
2r−
r+

. (4.7)

We are therefore in the case (σ = 0, ξ ≤ −1) described in Appendix B, which is the case of the
Schwarzschild black hole. One can check that the tortoise coordinate r∗ indeed behaves as ρ ln(ε)
when ε goes to 0. Furthermore, the behaviour of the potential (4.5) as r∗ goes to −∞ is indeed
given by (B21). The arguments of Sec. IIIC imply that odd perturbations of the BCL black hole
are stable.

2. 4D Einstein-Gauss-Bonnet solution

We now turn to another exact black hole, solution of a DHOST theory obtained through the
compactification of a higher-dimensional Lovelock theory [59, 60]. The DHOST theory is specified
by the following choice of Lagrangian functions:

F2 = 1− 2̟X , P = 2̟X2 , Q = −4̟X , F3 = −4̟ ln(X) ,

A1 = −A2 = 2F2X , 3B1 = −B2 =
3

2
B3 = F3X , (4.8)

while all the other functions are set to zero. Here, ̟ is a scalar parameter describing the deviation
from GR.

The black hole metric is given by (2.5) with

A(r) = B(r) = 1 +
r2

2̟

(

1−
√

1 +
4̟µ

r3

)

= 1− µ

r

2

1 +
√

1 + 4̟µ
r3

, (4.9)

C(r) = r2 , φ(r) =
−1 +

√

A(r)

r
√

A(r)
. (4.10)

The solution reduces to the Schwarzschild black hole in the ̟ −→ 0 limit: the parameter µ
corresponds to twice the black hole mass in that case.

This black hole has several horizons. The outermost one is located at r = rh, with

rh =
1

2

(

µ+
√

µ2 − 4̟
)

. (4.11)

The perturbations of this black hole solution were studied in [58], and their effective metric was
computed in [32]. We can now study the stability of odd parity perturbations of this solution using
the framework developped in the present work.
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The study of perturbations of this solution is made easier when one uses the dimensionless
quantities given by

z =
r

rh
and ̺ =

̟

r2h
. (4.12)

With these choices, the parameter ̺ is such that 0 ≤ ̺ ≤ 1 and the outermost horizon is located
at z = 1. One has therefore

A(z) = 1 +
z2

2̺

(

1−
√

1 +
4̺(1 + ̺)

z3

)

= 1− 2(1 + ̺)

z

(

1 +
√

1 + 4̺(1+̺)
z3

) . (4.13)

In the following, we shall work with the quantity f(z) defined from A(z) via

f(z) =
√

A(z) . (4.14)

The effective metric obtained in [32] is given by

A =
f1/2

z2

√

γ31γ2
γ33

, B = f5/2z2

√

γ53
γ1γ32

, C = f−1/2

√

γ1γ2
γ3

, (4.15)

where the functions γi are defined by

γ1 = f
[

z2 + 2̺(f − 1)(f − 1− 2zf ′)
]

, (4.16)

γ2 = z4 − 2̺(1 + ̺)z , (4.17)

γ3 = z2 + 2̺(1− f2) . (4.18)

Choosing ε = z − 1, this implies that the parameters defined in (3.2) and (3.5) are

α =
1

4
, β =

5

4
, γ = −1

4
, σ =

1

4
, ξ = −1

2
,

ρ = (1 + 2̺)1/4(1− ̺)−5/4

√

1

2̺
− 3̺− 2̺2 . (4.19)

We are therefore in the case σ > 0 and ξ ≤ 2σ. In this situation, the Schrödinger operator may
or may not be essentially self-adjoint depending on the value of the constant V∗s defined in (3.21).
For the black hole solution considered here, this constant is7

V∗s =
γ(γ + 2σ)

4σ2
= −1

4
<

3

4
. (4.21)

Henceforth, the Schrödinger operator is not essentially self-adjoint which means that we need to
choose specific boundary conditions in order to have a uniquely defined time evolution of pertur-
bations. However, as noted in Sec. IIIC, this is not necessarily a sign of instability. It may be
necessary, in order to compute quasinormal modes of this solution, to impose boundary conditions
such that odd perturbations are stable.

7 Since in that case ν = −2, the behaviour of the potential near the horizon is

V ∼ −
1

4r2∗
when r∗ −→ 0 . (4.20)
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V. CONCLUSIONS

In this work, we have studied the axial perturbations of non-spinning black holes in DHOST
theories, the most general family of scalar-tensor theories with a single scalar degree of freedom.
Although the family of DHOST theories is huge, the dynamics of axial perturbations can be
encapsulated in a few functions that depend on the background metric and on the DHOST functions
evaluated on the background. Moreover, there is a correspondence between the dynamics of axial
perturbations in DHOST theories and that of axial perturbations in GR in a different metric,
which we call the effective metric. Since we assume that all ordinary fields, like the electromagnetic
field, are minimally coupled to the background metric, this implies that axial gravitational waves
propagate (in the ordinary sense) in a different metric compared with other fields.

This effective metric depends explicitly on the choice of the DHOST theory, as well as on
the particular background BH solution. Depending on the particular case at hand, the effective
metric can either describe another BH geometry, with the same or a different horizon, or a naked
singularity. Specific examples of all these possibilities were presented in [32] and are recalled in
Section IV.

We have studied the effective metric from a general point of view, by assuming a generic
power-law behaviour of the effective metric coefficients near the singularity, be it a curvature or
a coordinate singularity. Given our ansatz characterized by a few exponents, we have classified
all possible behaviours of the effective tortoise coordinate and of the potential for the effective
Schrödinger-like equation. This has enabled us to discuss, in a generic way, the self-adjointness
status of the Schrödinger-like operator and the stability of the perturbations.

Whereas most cases lead to self-adjoint operators, we have nevertheless identified a small region
of our parameter space where the operator fails to be self-adjoint. Interestingly, one of our exam-
ples turns out to be in this particular region: this is the case of the 4D Einstein-Gauss-Bonnet
spacetime. This means that, in this particular case, the time evolution of the axial perturbations
seems ambiguously defined, requiring additional information.

In future work, we would like to extend our analysis to polar perturbations. The situation is
however more delicate since the polar perturbations now include an additional mode, that of the
scalar field.
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APPENDIX

Appendix A: A new formulation of the effective metric for axial perturbations

In this appendix, we first summarize some results on the effective metric of axial perturbations
obtained in [32] (see also [19, 21]) and then show how to derive the new (almost covariant) form
(2.9) for the effective metric in (not necessarily degenerate) higher derivative scalar-tensor theories
including cubic terms.
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1. A first expression of the effective metric

As shown in [32], the dynamics of axial perturbations about any static and spherical symmetric
solution of the form (2.5) and (2.6) in any higher order scalar-tensor theory, up to cubic order in
second derivatives of the scalar field, can be encapsulated in just four functions F , Φ, Ψ and Γ,
which depend on the background metric and some of the functions in the Lagrangian, evaluated
on the background. The explicit expressions for these four functions are [32]

F = A

[

F2 −XA1 − Y (F3X +B2 +XB6) + (Y −X✷φ)(B2 +
3

2
B3)−

3

2
XφttB3

]

−q2
[

A1 + Y B6 +✷φ(B2 +
3

2
B3)

]

,

Φ = F/[F2 −XA1 − Y (F3X +
3

2
B3 +XB6)−

3

2
Φθ
θB3 −

3

2
X✷φB3] ,

Ψ =
qF−1

Bψ′

[

X(A1 +✷φ(B2 +
3

2
B3)) + Y (F3X +

3

2
B3 +XB6)

+
q2

A
(A1 +✷φ(B2 +

3

2
B3) + Y B6) +

3

2
B3φ

t
t

]

,

Γ = Ψ2 +
F
AB

[

AF2 + AY F3X + q2(A1 + Y B6 +✷φ(B2 +
3

2
B3) +

3

2
BφrrB3)−

3

2
qBψ′φrt

]

,

where we have introduced the notation

Y ≡ φµφµνφ
ν , (A1)

and used the explicit expressions of the non-trivial second derivatives of the scalar field, namely
φνµ = gνρφµρ,

φtt =
1

2
B
A′

A
, φrr = Bψ′′ − 1

2
B′ψ′ , φθθ = φϕϕ =

1

2
B
C′

C
ψ′ , φtr =

1

2
q
A′

A
, (A2)

and the identities

✷φ = φtt + φrr + 2φθθ , φµXµ = Bψ′X ′ , X ′ =
2

A

(

−qφtr + ABψ′φrr
)

. (A3)

Remarkably, the DHOST dynamics of the axial perturbations in the background metric is
equivalent to the GR dynamics in the effective metric

gµνdx
µdxν = Λ

[

−F dt2 + N dr2 + 2P drdt + M C (dθ2 + sin2 θ dϕ2)
]

, (A4)

where we have introduced

Λ = Φ

√

B

A
Γ , N = F(Γ−Ψ2) , P = FΨ , M = F/Φ . (A5)

From (A4) and (A5), we immediately deduce the coefficients of the effective metric (2.7)

A = −ΛF ,
1

B
= N +

P 2

F , C = ΛMC , (A6)

and the new time coordinate t∗ from the relation

dt∗ = dt−Ψ(r) dr . (A7)
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2. A “more covariant” formulation

We see that the effective metric involves second derivatives of the scalar field when one considers
cubic higher order scalar-tensor theories. This suggests that we can try to reformulate gµν in the
following form,

gµν = Λ

[

Ω gµν + Dφµφν + S φµν +
T

2
(φµXν + φνXµ)

]

, (A8)

for some “covariant” functions Ω, D, S and T to be determined (in terms of covariant quantities
only). This is possible if these functions satisfy the relations

F = ΩA− q2D − Sφtt , (A9)

N =
Ω

B
+ ψ′2D + Sφrr + 2Tψ′φαφαr , (A10)

P = qψ′D + Sφrt + qTφαφαr , (A11)

M = Ω+
S

C
φθθ . (A12)

Let us underline that these relations impose more than 4 equations for the 4 unknowns as we
require that the unknowns take a covariant form as explained above.

The last equation (A12) together with the expression of M immediately lead to a solution for
Ω and S:

Ω = F2 −X[A1 +✷Φ (B2 +
2

3
B3) + Y B6]− Y (F3X − 3

2
B3) , (A13)

S =
3

2
XB3 , (A14)

where we recall that Y has been defined in (A1). Then, the first equation (A9) enables us to find
the expression of D,

D = A1 +✷Φ (B2 +
2

3
B3) + Y B6 , (A15)

while the second one (A10) leads to

T = F3X − 3

2
B3 . (A16)

Finally, one shows that the third equation (A11) is consistent with the expressions above. As a
consequence, we obtain the desired form of the effective metric with (2.10).

Appendix B: Asymptotic behaviour of the potential at the singularity

In this appendix, we give more details on the analysis of the asymptotic behaviour of the
potential near the singularity. For that, it is convenient to first decompose the potential into,

V = Vλ + V0 with Vλ = 2λ
A

C
, V0 = S2 − ∂∗S , (B1)

and then study the behaviours of Vλ and V0 separately.
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1. Generalities

As we are going to see, we need to expand the effective metric coefficients, introduced in (2.7),
up to sub-leading orders as follows

A(r) ≃ a εα (1 + a1ε) , B(r) ≃ b εβ (1 + b1ε) , C(r) ≃ c εγ (1 + c1ε) , (B2)

where (α, β, γ) and (a1, b1, c1) are real constants, while (a, b, c) are positive real numbers. We
will also use the notations introduced in (3.4),

κ2 =
c

a
, ρ =

rs√
ab
, σ = 1− α+ β

2
, ξ = γ − α . (B3)

The leading order term in the expansion of Vλ in powers of ε is straightforward to obtain, it
does not depend on (a1, b1, c1) and is given by

Vλ ≃ 2
λ

κ2
ε−ξ . (B4)

The calculation of the leading order term in the expansion of V0 is subtler. Indeed, after a direct
calculation, one obtains,

V0 ≃ V
(0)
0 ε−2σ + V

(1)
0 ε−2σ+1 , (B5)

with

V
(0)
0 =

γ(γ + 2σ)

4ρ2
, V

(1)
0 =

1

4ρ2
[(a1 + b1)(γ + 2σ − 1)γ + 2c1(γ + σ − 1)] . (B6)

We see that V
(0)
0 vanishes when γ = 0 or γ+2σ = 0 and in that case we have to consider the term

proportional to V
(1)
0 . Therefore, we will distinguish between the cases γ 6= 0 and γ = 0.

In any case, the leading order term in the expansion of the potential in powers of ε is

V ≃ Vs ε
η , (B7)

where the expressions of Vs and η depends on the parameters entering in the metric near the
singularity.

2. The case γ 6= 0

When γ 6= 0 (and also γ + 2σ 6= 0), the expressions of Vs and η depend on the sign of ξ − 2σ
according to:

if ξ > 2σ (i.e. γ > 2− β) , Vs = 2
λ

κ2
, η = −ξ , (B8)

if ξ ≤ 2σ (i.e. γ ≤ 2− β) , Vs =
γ(γ + 2σ)

4ρ2
+ 2

λ

κ2
δξ−2σ, , η = −2σ , (B9)

where we introduced the Kronecker symbol δξ which satisfies δξ = 0 if ξ 6= 0 and δ0 = 1.
In order to express the asymptotic behaviour of the potential in terms of the tortoise coordinate

r∗, we must distinguish between the cases σ = 0 and σ 6= 0.
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When σ = 0, we find, using (3.6),

V ≃ Vs exp

(

η
r∗
ρ

)

, (σ = 0) . (B10)

where Vs and η have been given above. The singularity is located at r∗ → −∞ and

• if ξ > 0 , V (r∗) ≃ 2
λ

κ2
exp

(

−ξ r∗
ρ

)

, (B11)

• if ξ ≤ 0 , V (r∗) ≃ 2
λ

κ2
δξ +

γ2

4ρ2
. (B12)

When σ 6= 0, we have

V ≃ V∗s |r∗|ν , V∗s = Vs

( |σ|
ρ

)ν

, ν =
η

σ
, (σ 6= 0) . (B13)

The singularity is located at r∗ → −∞ if σ < 0, at r∗ = 0 if σ > 0, and the parameters are given
by

• if ξ > 2σ , ν = − ξ

σ
, Vs = 2

λ

κ2
, (B14)

• if ξ ≤ 2σ , ν = −2 , Vs = 2
λ

κ2
δξ−2σ +

γ(γ + 2σ)

4ρ2
. (B15)

3. The cases γ = 0 and γ + 2σ = 0

We proceed as in the previous section but now we compare the two terms

Vλ ≃ 2
λ

κ2
ε−ξ and V0 ≃ V

(1)
0 ε−2σ+1 (B16)

with

V
(1)
0 =

(σ − 1)c1
2ρ2

(γ = 0) or V
(1)
0 =

σ(a1 + b1 − c1)− c1
2ρ2

(γ = −2σ) . (B17)

We assume that σ is such that the corresponding expression above does not vanish. Otherwise we
should consider the next term in the expansion of V0 and the computation would then be similar.

Following the same analysis as before, we still have the behaviour (B7) for the potential with
different expressions of Vs and η,

• if ξ > 2σ − 1 , Vs = 2
λ

κ2
, η = −ξ , (B18)

• if ξ ≤ 2σ − 1 , Vs = V
(1)
0 + 2

λ

κ2
δβ+γ−1 , η = −2σ + 1 . (B19)

We now express the results in terms of r∗. The potential takes the same form as in (B10) and
(B13) with different parameters.

When σ = 0, the singularity is located at r∗ → −∞ and

• if ξ > −1 , V (r∗) ≃ 2
λ

κ2
exp

(

−ξ r∗
ρ

)

, (B20)

• if ξ ≤ −1 , V (r∗) ≃
(

V
(1)
0 + 2

λ

κ2
δξ+1

)

exp

(

r∗
ρ

)

. (B21)



20

Notice that the Schwarzschild metric falls in this case and more precisely it corresponds to γ = 0,
σ = 0 (as α = β = 1) and ξ = −α = −1. Therefore, we recover the well-known exponential fall-off
of the potential.

When σ 6= 0, we have,

• if ξ > 2σ − 1 , ν = − ξ

σ
, Vs = 2

λ

κ2
, (B22)

• if ξ ≤ 2σ − 1 , ν = −2 +
1

σ
, Vs = 2

λ

κ2
δβ+γ−1 + V

(1)
0 . (B23)

The main differences with the case γ(γ + 2σ) 6= 0 are the existence of new behaviours of the
potential which correspond to,

• σ = 0 and −1 < ξ < 0 where the potential decreases exponentially when r∗ → −∞;

• σ < 0 where ν ≥ −2+1/σ whereas ν ≥ −2 in the previous case, which means the possibility
for the potential to tend to zero faster than 1/r2∗ when r∗ → −∞;

• σ > 0 where ν ≤ −2+1/σ whereas ν ≤ −2 in the previous case, which means the possibility
for the potential V (r∗) ≃ V∗s r

ν
∗ to tend to zero at the singularity.

Appendix C: Asymptotic behaviour of the solutions and self-adjointness of the Schrödinger

operator

In this section, we summarise some of the results given in the chapter 2 of the book [55]
concerning the asymptotic behaviour of the solutions of the Schrödinger equation. Then, we apply
these general results to the particular cases we are interested in.

1. Asymptotic behaviour of the solution

Let us consider the one-dimensional Schrödinger equation for the wave function χ(x),

−d2χ

dx2
+ V (x)χ = ω2χ , (C1)

where we use the variable x instead of r∗ (to lighten the notations).
The authors of the book [55] state a theorem (Theorem 4.6. in Chap. 2) where they give the

asymptotic behaviour when x → +∞ of the two solutions of the Schrödinger equation depending
on the behaviour of the potential itself at infinity.

Let us start with the case where |V (x)| → ∞. It is stated [55] that, if the following two integrals

∫

∞

x0

dx
|V ′(x)|2
|V (x)|5/2 ,

∫

∞

x0

dx
|V ′′(x)|
|V (x)|3/2 , (C2)

are convergent for x0 arbitrary large, then there exist a pair χ±(x) of two independent solutions
of the Schrödinger equation whose asymptotic behaviours at infinity are given by,

χ±(x) ≃
1

|V (x)|1/4 exp

[

±ǫ
∫

dx
√

|V (x)− ω2|
]

, (C3)

where ǫ = 1 if V (x) → +∞ and ǫ = i if V (x) → −∞.
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The case where V (x) → 0 is different. It is stated [55] that, if the following two integrals
∫

∞

x0

dx |V ′(x)|2 ,
∫

∞

x0

dx |V ′′(x)| , (C4)

are convergent for x0 arbitrary large, then there exist a pair χ±(x) of two independent solutions
of the Schrödinger equation whose asymptotic behaviours at infinity are now given by,

χ±(x) ≃ exp

[

±i ω
∫

dx
√

1− V (x)/ω2

]

. (C5)

2. Application to some potentials

When, we study the dynamics of axial perturbations, we find Schrödinger equivations associated
with potentials which are equivalent (when x→ +∞) to one of the following,

V (x) = V0 exp(λx) or V (x) = V0 x
ν . (C6)

a. Exponential potentials

When the potential is exponential, we have two cases to consider. The first one is λ > 0 and
V0 > 0 where V (x) → +∞. We immediately check the conditions (C2) are satisfied and therefore
the two independent solutions χ± (C3) are equivalent to

χ±(x) ≃ exp

[

−λ
4
x± 2

√
V0
λ

exp

(

λ

2
x

)]

. (C7)

The second case is λ < 0 with no conditions on V0 > 0, hence V (x) → 0. The conditions (C4)
are satisfied and then the two independent solutions χ± (C5) are equivalent to

χ±(x) ≃ exp(±i ωx) . (C8)

b. Power law potentials

When the potential is a power law, we also encounter two cases. The first one corresponds to
ν > 0 and V0 > 0 where V (x) → +∞. The conditions (C2) are satisfied and therefore the two
independent solutions χ± (C3) are equivalent to

χ±(x) ≃ x−ν/4 exp

[

±2
√
V0

ν + 2
x1+ν/2

]

. (C9)

The second case corresponds to ν < 0 while the sign of V0 is arbitrary, hence V (x) → 0. The
conditions (C2) are satisfied and we obtain

χ±(x) ≃ exp(±i ωx) . (C10)
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