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Abstract
Clustering is a compression task which consists in
grouping similar objects into clusters. In real-life appli-
cations, the system may have access to several views of
the same data and have each view process by a specific
clustering algorithm: this framework is called collab-
orative clustering and can benefit from algorithms ca-
pable of exchanging information between the different
views. In this paper, we consider this type of unsuper-
vised ensemble learning as a compression problem and
develop a theoretical framework based on algorithmic
theory of information suitable for multi-view cluster-
ing and collaborative clustering applications. Using
this approach, we propose a new algorithm based on
solid theoretical basis, and test it on several real and
artificial data sets.

Mots-clef : Collaborative clustering, Minimum De-
scription Length, Kolmogorov complexity.

1 Introduction
Data clustering is a Machine learning task which con-
sists in finding the intrinsic structures of a data set by
forming groups of objects that share similar features
called clusters. This task is difficult in the sense that
unlike in supervised learning, the evaluation of the re-
sults and the evaluation of the right number of clusters
are generally unknown. Over the past two decades, this
task has become even more challenging when the avail-
able data sets became more complex with the introduc-
tion of multi-view data sets, distributed data, and data

set having different scales of structures of interest (e.g.
hierarchical clusters). However, very much like in the
real world, such problems can be tackled more easily
by having several algorithms working together in order
to increase both the quality of the results and their
reliability.

Within this context, the field unsupervised ensemble
learning [GSIM09, VR11] encompasses several unsu-
pervised applications in which several unsupervised al-
gorithms are working together with the goal of improv-
ing the final result(s). Such applications include Multi-
view clustering [ZV15, KI11, BS05], the clustering of
distributed data [DFVW11], and collaborative cluster-
ing [Ped02, GB10, SGBC15, FWG07]. Depending on
the final application or on the context, these tasks may
aim at finding a single consensus solution, or simply at
globally improving the different solutions found by the
algorithms based on information exchanges. Regard-
less of the final goal (consensus or mutual improve-
ment), these methods are naturally overlapping, and
share several common properties:

• Robustness: The ensemble learning process must
lead on average to partitions that are better than
the local clustering results.

• Consistency : The updated results must be some-
how similar to the original local results

• Novelty : Ensemble learning must make it possible
to find solutions that would have been otherwise
unattainable locally.

• Stability : Results that have a lower sensitivity to
noise.
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In this article, we are interested in proposing
a generic information-based unsupervised ensemble
learning framework. Most of the existing frame-
works for unsupervised ensemble learning rely either on
probabilistic models link to specific algorithms, or on
heuristic methods that have strong limitations such as
only allowing identical and prototype-based algorithms
to work together in an ensemble learning process. In
addition, none of these frameworks actually describes
the information exchanges between the different algo-
rithms.

To cope with this issue, we propose a generic model
based on algorithmic information theory and the prin-
ciple of minimum description length. Our proposed
model is based on a strong theoretical basis using Kol-
mogorov complexity to describe and reduce the di-
vergences between the partitions of the different al-
gorithms. In this article, we focused on a final appli-
cation where mutual improvement is the goal, rather
than reaching a single consensus solution. Our work
is therefore closer to applications in collaborative clus-
tering, but remains applicable to other unsupervised
ensemble learning frameworks.

The remainder of this article is organized as follows:
In Section 2, we introduce the notions of Minimum De-
scription Length principle and Kolmogorov complexity.
In section 3, we describe the principle of collaborative
clustering using these notion and we present our pro-
posed method. In section 4, we present complexity
computations for two families of clustering models. In
section 5, we show some experiments. And finally, in
Section 6 we finish this article with some conclusions
and perspectives on this work.

2 Minimum Description Length
Principle

In this paper, we propose to use the Minimum De-
scription Length (MDL) principle in order to perform
collaborative clustering. The MDL principle is an
inductive principle introduced by Wallace and Boul-
ton [WB68] and by Rissanen’s formal work on induc-
tion [Ris78]. The principle states that the best model
to select is the model which compresses observations
the most: Given a data set and an enumeration of the-
ories to explain data, the best theory is the one that
minimizes the sum of the length (in bits) of the de-
scription of the theory and of the length (in bits) of
the data encoded with the theory.

MDL principle is expressed mathematically with the
help of Kolmogorov complexity. Originally introduced
as an alternative to probabilities as a description of
randomness, Kolmogorov complexity of a string x is
an intrinsic property of the object x and measures how
complex the object is to generate [LV08]. Using a prefix
Universal Turing Machine (UTM) M (hence a UTM
producing decodable codes), the complexity of x re-
lated to machineM is defined as:

KM(x) = min
p∈PM

{l(p); p() = x} (1)

In equation 1, the term p ∈ PM designates a program
(hence a Turing machine) in the set of admissible pro-
grams for UTMM and p() corresponds to the output
of program p with no argument specified.

Although the invariance theorem extends the defini-
tion of complexity to make it machine-independent, we
will use the machine-dependent definition for several
reasons. First, the ideal Kolmogorov complexity is not
calculable because it relies on a double minimization:
over all programs of all Universal Turing Machines.
Considering a restriction of the research space to a
unique machine admitting a simpler set of programs is
an admissible way to overcome non-calculability while
preserving a meaningful approach. Statistical learning
relies on assumptions of the same nature: because of
the non-calculability of probabilities and in order to
prevent overfitting (ie. to reject distributions which
do not obey the commonly admitted aim of general-
ization), the assumption of choosing a restricted set
of hypotheses is well accepted in the machine learning
field.

Secondly, this restriction has to be seen as an induc-
tive bias for the learning. As long known by philoso-
phers and demonstrated by the no-free-lunch theo-
rem [Wol96], there is no absolute foundation to induc-
tive reasoning and any inductive algorithm is necessar-
ily biased toward some tasks and some solutions. The
proposed machine restriction has to be understood as
a plausible inductive bias.

A similar definition can be given of conditional
Kolmogorov complexity: conditional complexity of x
knowing y is defined as the length of the shortest pro-
gram on a Turing machine which takes y as argument
and outputs x:

KM(x|y) = min
p∈PM

{l(p); p(y) = x} (2)
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3 Minimum Description Length
Principle for Collaboration

3.1 Problem and Notations
Clustering and compression are by nature two highly
related tasks. Clustering is often used as a tool for lossy
compression, but the structures discovered by cluster-
ing algorithms can also be used to provide a lossless
description of data.
In the context of this paper, we consider a set of

J views on the same data, denoted X1, . . . , XJ . A
clustering algorithm AJ is associated with any of the
views Xj . The algorithm, given with a parameter θj ,
produces a solution vector Sj . We consider only hard
clustering, which means that a point is associated to a
single cluster by the algorithm.
In the context of Minimum Description Length, we

consider models defined as the parameter and solution
of the clustering algorithm: M j = 〈θj , Sj〉. The total
model used in a collaborative context is the concate-
nation of all local models: M = 〈M1, . . . ,MJ〉. A
complete data view X is defined as X = 〈X1, . . . , XJ〉.
Using these notations, the MDL principle states

that the chosen parameters and solutions for the
clustering minimize the objective K(M1, . . . ,MJ) +
K(X1, . . . , XJ |M1, . . . ,MJ) or, equivalently:

K(θ1, S1, . . . , θJ , SJ)+K(X1, . . . , XJ |θ1, S1, . . . , θJ , SJ)
(3)

The purpose of the following sections is to provide a
simplified and calculable expression of the two involved
complexity terms.

3.2 Data description
We first focus on the termK(X1, . . . , XJ |M1, . . . ,MJ)
which corresponds to the way the complete model is
used to describe data points. The simplification pro-
posed for this term is straightforward but enlightens
important properties of the chosen framework. In par-
ticular, we will suppose that no transfer is involved in
this part.
The first hypothesis consists in isolating each data

representation Xi: the views are supposed to be inde-
pendently described. However, this hypothesis is differ-
ent from an actual independence hypothesis: two views
can share common or correlated attributes. Descrip-
tion independence is weaker as an assumption than
statistical independence because it allows a strong cor-
relation between variables. In particular, two different
views may share common attributes or even be iden-
tical but the system will keep considering independent

computations for them though.

K(X1, . . . , XJ |M1, . . . ,MJ) ≤
J∑

i=1
K(Xi|M1, . . . ,MJ)

(4)
This assumption makes sense in a context of collabo-
rative clustering for which a complete view cannot be
accessed by the system but is split into components
that are managed independently by several collaborat-
ing sub-systems.

A second natural hypothesis consists in attributing
the whole description of each data representation Xi

to the corresponding model M i, which corresponds
to using property K(Xi|M1, . . . ,MJ) ≤ K(Xi|M i).
This property points out that the description length of
Xi using one single model is necessarily higher than
using all models, because the description does not
exploit information contained in other models. Our
choice is justified here both by our aim at obtain-
ing a tractable upper-bound and by the idea that
collaborative systems first run local terms indepen-
dently before transfering information between local
agents [GB10, SGBC15]. Including this upper-bound
into equation 4 leads to:

K(X1, . . . , XJ |M1, . . . ,MJ)

≤
J∑

i=1
K(Xi|M1, . . . ,MJ) ≤

J∑
i=1

K(Xi|M i)

(5)

The expression obtained in equation 5 has to be con-
sidered as a local generation term for the views. No
collaboration is involved in this expression: the collab-
orative component of MDL is held by model descrip-
tion. This hypothesis is particularly restrictive, but
consistent with the separation of a local term (describ-
ing local fitness for each algorithm and a global term
(description interactions between solutions). As men-
tioned earlier, such a separation is commonly accepted
for collaborative clustering. In terms of data descrip-
tion, this choice is straightforward as well: local views
can be seen as managed by independent Turing ma-
chines provided with local models.

3.3 Model description
The model complexity K(M) = K(M1, . . . ,MJ) can
be expressed using the definitions of the models pre-
sented earlier (M i = 〈θi, Si〉). The total model com-
plexity measures the complexity of all solutions to-
gether with all parameters. Based on this, the first sim-
plification consists in separating the parameters and
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the solutions using chain rule. The chain rule states
that for two objects A and B, the complexity K(A,B)
is upper-bounded by K(A)+K(B|A) up to a constant.
In our context, we obtain:

K(M) ≤ K(S1, . . . , SJ) +K(θ1, . . . , θJ |S1, . . . , SJ)
(6)

Applying the same hypothesis as in equation 5, the
second term of previous equation can be simplified into:

K(θ1, . . . , θJ |S1, . . . , SJ) ≤
J∑

i=1
K(θi|Si) (7)

Not much attention will be given to the terms K(θi|Si)
in the following. We can consider these terms as con-
stant. In our context, this term has no real impact
as the model parameters are evaluated using the re-
search bias of the corresponding clustering algorithm.
Otherwise, it would play a role of prior such as in the
Bayesian setting.
The solution complexity is obtained by applying the

chain rule recursively over all the solutions. Besides, as
we do not consider a hierarchy between models (hence
an ordering of the solution), we assume that any order
can be used and consider an upper-bound in which each
solution Si is described with help of all other solutions
(denoted S−i):

K(S1, . . . , SJ)

≤
J∑

i=1
K(Si|S1, . . . , Si−1) ≤

J∑
i=1

K(Si|S−i) (8)

Because a solution Sj is part of the set S−i), a
description of Si provided S−i is necessarily shorter
than a description of Si provided Sj . In mathematical
terms, this corresponds to saying that K(Si|S−i) ≤
K(Si|Sj) for all j (see Corollary 1.4.2 in [Gác88]).
Thus, the following upper-bound can be considered for
the total solution complexity:

K(S1, . . . , SJ) ≤
J∑

i=1
K(Si|S−i) ≤ 1

J − 1
∑
i 6=j

K(Si|Sj)

(9)
In equation 9, the coefficient 1/(J − 1) is a conse-

quence of very general bounds. Depending on the prob-
lem, the parameters can be refined. In a more general
framework (which will not be considered in the scope
of this paper), coefficients αi,j could be considered in
the solution transfer term [SMM17] .

3.4 Final problem
After all proposed simplifications, the final objective
function for collaborative clustering based on MDL

principle is:
J∑

i=1

K(Xi|M i) +K(θi|Si) + 1
J − 1

∑
j 6=i

K(Si|Sj)


(10)

The MDL principle assumes that the optimal models
M1, . . . ,MJ have to minimize this quantity. In equa-
tion 10, as in any expression involving complexity given
in this paper, we did not precise constant terms. All
equalities and inequalities presented are defined up to
a constant as stated in the invariance theorem. This
constant is not a problem to us though, as we consider
only complexity differences and the constant depends
only on the Turing machine which is supposed to be
fixed in our problem.

4 Local clustering complexity
In this section, we present clustering as a particular
case of compression with the help of two families of
clustering models: prototype-based models and proba-
bilistic models. We show that this compression leads to
an expression of the complexity K(Xi|M i) and discuss
data encoding relative to the models.

4.1 Compression with prototype-based
models

Prototype-based methods form a class of methods in
which data points are described by their relative posi-
tion to virtual points called prototype. The idea behind
prototype-based methods is that the information con-
tained in the absolute position of the prototype has
not to be repeated for every associated point. Various
prototype-based methods are usually employed in clus-
tering, including K-means [Llo06] and Self-Organizing
Maps [KSH01].

A description of a prototype-based model M is of-
fered by the description of its prototypes. We suppose
here that the parameter θ for the model M consists
simply in the list of the prototypes. A prototype P
is a virtual point (ie. P does not necessarily belong
to the data set) taken as a reference for the descrip-
tion of close data points. A prototype is described
by its absolute coordinates. Considering the indepen-
dence of prototypes inside a prototype model, we have
K(θ) =

∑
P∈M K(P ). By definition, we have in par-

ticular K(θ|S) ≤ K(θ).
Given a model, a point is associated to the closest

prototype in the model and the relative coordinates to
it. This description is to determine an upper-bound of
Kolmogorov complexity:
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K(X|M) ≤
N∑

n=1
K(Xn|M)

≤
N∑

n=1
min
P∈M

K(Xn|P ) ≤
N∑

n=1
min
P∈M

K(Xn − P )

(11)

where X is a full data matrix, N the number of data
in X and Xn is the n-th point in the data set.

4.2 Compression with probabilistic
models

Some clustering models are based on probabilistic mod-
els. Among them, the Gaussian Mixture Models de-
scribes data points as generated by a mixture of nor-
mal distributions. In a perspective of hard clustering,
a point is associated to the distribution maximizing its
conditional distribution.
By construction, probabilities and complexity can-

not be directly correlated, since probabilities model the
global generation model of a source whereas complex-
ity measures the amount of information contained in
a single message independently of the source. A prob-
ability distribution can be seen as a compression tool
yet: Intuitively, an event of high probability is simple
to describe. If x is an element of a given ensemble X
and µ an semi-computable probability distribution over
X , we have K(x) ≤ K(µ)− logµ(x) and in particular
K(x|µ) ≤ − logµ(x).
Thus, a probabilistic model can be used for data

compression in our framework. In particular, Gaus-
sian Mixture Models can be employed as a clustering
algorithm in our framework. An upper-bound of Kol-
mogorov complexity induced by a probabilistic model
is given by:

K(X|M) ≤
N∑

n=1
K(Xn|M) ≤

N∑
n=1
− logµ(Xn) = −L(X)

(12)
where L designates the log-likelihood of a set.

5 Algorithm

In this section, we explain how we optimize the ob-
jective function in equation 10. In the case of this
article, we consider only the case where the solutions
S1, · · · , SJ produced by the algorithms are hard parti-
tions, and therefore can be described as vectors.

5.1 Global approach
Following the model of other collaborative and multi-
view algorithms, the optimization is done in 2 steps
[GB10, SGBC15]:

• A local step during which each algorithm Ai pro-
cesses its local view Xi and produces a first model
M i = 〈θi, Si〉 based only on the local information.
These local models are used as initial values.

• A global step during which equation (10) is op-
timized using the MDL principle and Kolmogorov
complexity.

The key difficulty of the algorithm lies therefore in
the global step, and in particular in the estimation of
the complexityK(Si|Sj). Our idea to evaluate a lower-
bound of the complexity K(Si|Sj) is to build a naive
mapping from Si to Sj . To do so, we consider the
confusion matrix Ωi,j that maps the clusters of Si to
the clusters of Sj .

Ωi,j =


ωi,j

1,1 · · · ωi,j
1,Kj

...
. . .

...
ωi,j

Ki,1 · · · ωi,j
Ki,Kj

 where ωi,j
a,b = |Si

a∩S
j
b |

(13)
From there an argmax on each line of Ωi,j in equa-

tion 13 gives us the majority mapping rule for each
cluster of Ai into a cluster of Aj . Using this method,
a compression is obtained by defining a general map-
ping transforming all labels of Si into labels of Sj and
correcting the errors afterwards. The time complexity
to compute all the rules between all solutions vectors
using this method is in O(N) for solutions vectors of
length N .
As depicted in figure 1, the transformation from so-

lution Sj into solution Si is described with the help
of a set of associative rules mapping a cluster from Sj

into a cluster from Sj . In general, such a mapping
does not have any noticeable property: in particular,
it is neither injective nor surjective. We define a map-
ping as a function Rj,i : {1, . . . ,Kj} 7→ {1, . . . ,Ki}.
We propose to encode the mapping as a key-value set
〈(1,Rj,i(1)), . . . , (Kj ,Rj,i(Kj))〉. A cluster by cluster
mapping between two solutions is often not sufficient to
offer a full description of a transformation from one so-
lution into another: some exceptions have to be added
to describe the exact transformation. An exception is
encoded as a tuple (n, ki) ∈ {1, . . . , N} ×Ki and over-
writes the transformation rule. The set of exceptions
for the transformation of Sj into Si is denoted Ej,i
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We use this language of rules and exceptions to de-
scribe solutions in the term K(Si|Sj): the pure com-
plexity is upper-bounded by the complexity of the rule
Rj,i and the associated exceptions:

K(Si|Sj) ≤ K (Rj,i) +
∑

e∈Ej,i

K(e) (14)

In equation 14, the complexity terms for rules and
exceptions are defined as the sum of the individual
complexities of components of the corresponding tuple:
K (Rj,i) = K(ki) + K(kj) and K(e) = K(n) + K(ki).
We choose to encode all elements of a same set with
the same number of bits. Any element of a set of
p elements can be encoded on a prefix-machine with
K(p) bits. As stated in section 3.1 of [LV08], we have
K(p) = C(p) + C(C(p)) +O(C(C(C(p)))) where C(.)
designates the non-prefix complexity. We have in par-
ticular C(p) ≤ log p, hence K(p) ≤ log p + log log p +
O(log log log p). In particular, knowing that in our
cases of interest the size of the sets cannot be arbitrar-
ily large, we can suppose that there exists a constant
c independent of p such that K(p) ≤ log p + c. We
do not use this constant in practice, since we are only
interested in variations of complexity. Consequently,
we will use the following upper-bound for the solution
transfer term:

K(Si|Sj) ≤ Kj ×
(
logKj + logKi

)
+ |Ej,i| ×

(
logN + logKi

)
(15)

Given these elements, optimizing equation 10 con-
sists in searching for the error corrections that would
have the most positive impact on the collaborative
term

∑
j 6=i K(Si|Sj) with a minimal impact on the lo-

cal term K(Xi|M i). Corrections that do not improve
the collaborative term or have a negative impact are
ignored.

Figure 1: Examples of majority rules (on the right)
and potential errors to correct (in red)

5.2 Description of the algorithm
We decompose the algorithm into three main steps:

1. Local optimization: Local algorithms compute
clustering solutions to the corresponding view.

2. Solution mapping: Mappings (as defined in sec-
tion 5.1) are found for any pair of solutions (Si|Sj)

3. Mapping optimization: The mappings are
slightly corrected in order to make global complex-
ity decrease.

The local optimization step consists in a parallel run
of all local clustering algorithms. Because there is no
collaboration in the local term in equation 10, algo-
rithms can run without any interaction. We notice
that we do not aim at minimizing the expression of
complexity directly, but we use standard algorithms
instead: The clustering algorithms are seen as research
biases for the minimization of complexity.

The solution mapping involves a one-by-one pairing
of solutions. It can be decomposed into two steps: First
the algorithm determines the rules by selecting the
maximal cluster associations based on the confusion
matrix (as explained in section 5.1 and equation 13).
The time complexity of this step is O(N × J2). The
complete algorithm is detailed in Algorithm 1.

Algorithm 1: SolutionMapping
Input: A set of J clustering solutions S1, . . . , SJ

Output: A set of rules {Rj,i}1≤i,j≤J and
exceptions {E}1≤i,j≤J

for i = 1 . . . J do
for j = 1 . . . J do

Compute Ωi,j

for k = 1 . . .Ki do
Rj,i[k]← argmaxl Ωi,j

k,l

for n = 1 . . . N do
if Rj,i

[
Sj [n]

]
6= Si[n] then

Ej,i[n]← Si[n]

return {Rj,i}1≤i,j≤J , {Ej,i}1≤i,j≤J

The mapping optimization is the most complex step
of the method. It consists in removing exceptions one
by one in the obtained set {Ej,i}1≤i,j≤J . Removing an
exception results in a single change inside a clustering
solution. The system decides to remove an exception
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if this deletion leads to a reduction in complexity. Be-
cause a deletion modifies the solutions, the deletion or-
der has importance in this algorithm. Thus, the naive
algorithm cannot be used here. Instead, we choose a
greedy approach selecting only the exception leading
to the highest complexity reduction. The obtained so-
lution is not guaranteed to be the global minimum but
a only local minimum. At each step, the algorithm
explores the set of exceptions and computes the differ-
ence in total complexity induced by the deletion of the
current exception. The algorithm is exposed in Algo-
rithm 2.
At each step, the algorithm has access to a finite list

of exceptions and removes the exception which corre-
sponds to the highest complexity reduction: From one
step to another, the complexity can only decrease. Be-
cause the number of possible solutions is finite and the
total complexity is necessarily non-negative, the algo-
rithm must converge in a finite number of steps. Hence,
no stop criterion has to be given.

6 Applications

6.1 Datasets
In this section, we propose an applicative setting in
which we used our proposed method on various multi-
view data sets, real and artificial.
We considered the following data sets:

• The Wisconsin Data Breast Cancer (UCI): This
data set contains 569 instances with 30 parameters
and 2 classes. These 30 parameters contain 10
descriptors for 3 different cells (10 each) of the
same patient. This data set can easily be split
into 3 views: one for each cell.

• The Spam Base data set (UCI): The Spam Base
data set contains 4601 observations described by
57 attributes and a label column: Spam or not
Spam (1 or 0). The different attributes can be
split into views containing word frequencies, letter
frequencies and capital run sequences attributes.

• The VHR Strasbourg data set1 [RP14]: It contains
the description of 187.058 segments extracted from
a very high resolution satellite image of the French
city of Strasbourg. Each segment is described by
27 attributes that can be split between radiomet-
ical attributes, shape attributes, and texture at-
tributes. Furthermore, the color attributes can
also be split between Red, Blue and near-infrared

Algorithm 2: GreedyMappingOptimization
Input: A set of J models (θ1, S1), . . . , (θJ , SJ); A

set of rules {Rj,i}i,j and exceptions {E}i,j

Output: Modified solutions S1, . . . , SJ

∆Kmin = 0
while Exceptions left do

for e = (j, i, n, k) ∈ E do
∆K ← K(Xi[n]|θi, Si[n])−
K(Xi[n]|θi,Rj,i

[
Sj [n]

]
)

Ẽ ← E\e
for l = 1 . . . J do

if Transformation from Si to Sl admits
an exception in n then

if Exception is corrected with new
value then

∆K ← ∆K − (K(N) +K(Kl))
Remove n from Ẽl,i

else Ẽl,i[n]← Rj,i

[
Sj [n]

]
else ∆K ← ∆K + (K(N) +
K(Kl)); Ẽl,i[n]← Rj,i

[
Sj [n]

]
if Transformation from Sl to Si admits
an exception in n then

if Exception is corrected with new
value then

∆K ← ∆K − (K(N) +K(Ki))
Remove n from Ẽi,l

else Ẽi,l[n]← Rj,i

[
Sj [n]

]
else ∆K ← ∆K + (K(N) +
K(Ki)); Ẽi,l[n]← Rj,i

[
Sj [n]

]
if ∆K < ∆Kmin then
∆Kmin ← ∆K; Emin ← E

if A modification has been found then
E ← Emin; Modify S

return Modified solutions S
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attributes. The data set is provided with a partial
hybrid ground-truth containing 15 expert classes.

• The Battalia3 data set1 (artificial): Battalia3 is an
artificial dataset created using the exoplanet ran-
dom generator from the online game Battalia.fr;
This data set describes 2000 randomly generated
exoplanets with 27 numerical attributes and their
associated class (6 classes). The attributes can
be split between system and orbital parameters (7
attributes), planet characteristics (10 attributes)
and atmospheric characteristics (10 attributes).

• The "MV2" data set (artificial)1: A data set cre-
ated specifically to test this kind of algorithm. It
features 2000 randomly generated data, split into 4
views of 6 attributes each, and a total of 4 classes.
All attributes were generated either from Gaus-
sian distributions with parameters linked to the
matching class, or are random noise, or are linear
combinations of other attributes.

6.2 Experimental results
To assess the effectiveness of our proposed method, in
this section we propose an experiment in which we com-
pare it with four other collaborative and multi-view
method from the literature: The collaborative cluster-
ing framework for heterogeneous algorithms (CCHA)
[SGBC15] with EM algorithms for the Gaussian Mix-
ture Model (diagonal covariance matrix) collaborat-
ing together, a re-implementation of the multi-view
EM algorithm [BS05] for the Gaussian Mixture Model
with diagonal covariance matrix as well, the collab-
orative GTM algorithm [GGB12] (complete variance-
covariance matrix) and the collaborative SOM algo-
rithm [Nis09]. For our method, we used a gaussian
mixture model (complete variance-covariance matrix)
in each view.
The 3 methods are compared using two unsupervised

indexes: the Davies-Bouldin index [D.L74] (DBI) and
the Silhouette index [Rou87] (Sil.), both of which assess
in different ways the quality of the cluster in term of
compacity and whether or not they are well separated.
The Davies-Bouldin index is a positive not normalized
index the value of which is better when it is lower.
The Silhouette index is a normalized index which takes
values between -1 and 1, 1 being the best possible value.
Furthermore, since all data sets were acquired from

originally supervised problems, they were all provided
1Available from Dr. J. Sublime ResearchGate account

with available labels. Consequently, in our experi-
ments, we also used the Rand Index [Ran71] based on
the original classes as an external index.

In Table 1, we show the average results achieved on
the unsupervised indexes at the end for the multi-view
or collaborative process. The results for the supervised
indexes (Rand index) are shown in Table 2. Both the
Davies-Bouldin index and the Silhouette index where
computed using the partitions found on the local views
and the complete data as reference.

As one can see, our method achieves competitive
results on both supervised and unsupervised indexes
when compared with other state of the art multi-view
and collaborative frameworks. Furthermore, the aver-
age indexes reached by our algorithm even show this
we do slightly better than the other methods. Clus-
tering being a mature domain, small improvements are
already a step in the right direction. Futhermore, the
strength of our method does not lie only in its capac-
ity to achieve competitive results -as proved in these
experiments-, but more in its genericity and strong
mathematical background.

Finally, we would like to mention that comparing
multi-view methods originally designed for different
types of applications and with vastly different archi-
tectures is a difficult task. Therefore, this shorts ex-
periments may not be fully representative of the full
potential of any of the methods compared in this sec-
tion, ours included.

7 Conclusion
In this paper, we proposed a new approach for multi-
view and collaborative clustering based on algorithmic
theory of information. We introduced the Minimum
Description Length Principle as a useful inductive prin-
ciple in the context of collaborative clustering. The
MDL principle states that the optimal model (hence
the optimal clustering solution) corresponds to a min-
imal value for the description length of the model and
of the data, measured by Kolmogorov complexity. Be-
cause Kolmogorov complexity is not calculable, we de-
fined our objective function as an upper-bound of pure
complexity obtained with straightforward simplifying
hypotheses. We proposed a minimization algorithm
based on a greedy exploration of the description space
and compared its performances on standard data sets
with the state-of-the-art algorithms. Our method out-
performs standard algorithms on most data sets and
presents highly similar results on the others. How-
ever, it offers a very general and theoretically grounded
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Dataset Our Model MV-EM CCHA GTMcol SOMcol

DBI Sil. DBI Sil. DBI Sil. DBI Sil. DBI Sil.
WDBC 0.98 0.55 1.63 0.42 1.63 0.42 1.8 0.37 1.68 0.41

SpamBase 3.08 0.19 4.77 0.086 4.73 0.085 4.60 0.093 4.35 0.113
VHR Strasbourg 3.46 0.14 3.21 0.12 2.89 0.175 4.15 0.073 3.78 0.098

Battalia3 2.29 0.25 2.43 0.16 2.83 0.14 2.68 0.35 2.51 0.34
MV2 1.61 0.37 1.34 0.35 1.34 0.35 1.61 0.38 1.44 0.39

Table 1: Experimental results: raw average results on unsupervised indexes

Dataset Our Model MV-EM CCHA GTMcol SOMcol

Rand Rand Rand Rand Rand
WDBC 0.73 0.79 0.87 0.96 0.97

SpamBase 0.76 0.74 0.86 0.83 0.84
VHR Strasbourg 0.78 0.73 0.75 0.69 0.70

Battalia3 0.86 0.78 0.80 0.78 0.79
MV2 0.93 0.93 0.93 0.90 0.90

Table 2: Experimental results: raw average results on the Rand Index

framework to address the issue of unsupervised ensem-
ble learning.
As a general framework, the proposed methodology

offers a large variety of perspectives. To take advan-
tage of its generality, an extension to other classes of
clustering algorithms (e.g. density based clustering,
spectral clustering...) is needed: A proper definition of
the quantity K(X|M) is needed for these algorithms.
Besides, we proposed some simplifying hypotheses but
other less restrictive hypotheses might be found and
lead to more accurate results. As a complement, al-
gorithmic issues have to be overcome in future works.
On the one hand, an adaptation to large data sets has
to be considered to obtain a scalable method. On the
other hand, the mapping optimization presented in this
paper is based on a greedy approximation: An exact
computation cannot be performed in a naive way, but
could be reached by more subtle algorithms.
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