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Abstract

As part of a probabilistic reconstruction of quantum theory (QT), we
show that spin is not a purely quantum mechanical phenomenon, as has
long been assumed. Rather, this phenomenon occurs before the transi-
tion to QT takes place, namely in the area of the quasi-classical (here
better quasi-quantum) theory. This borderland between classical physics
and QT can be reached within the framework of our reconstruction by
the replacement p → M(q, t), where p is the momentum variable of the
particle and M(q, t) is the momentum field in configuration space. The
occurrence of spin, and its special value 1/2 , is a consequence of the fact
thatM(q, t) must have exactly three independent componentsMk(q, t)
for a single particle because of the three-dimensionality of space. In the
Schrödinger equation for a “particle with spin zero”, the momentum field
is usually represented as a gradient of a single function S. This implies
dependencies between the components Mk(q, t) for which no explana-
tion exists. In reality,M(q, t) needs to be represented by three functions,
two of which are rotational degrees of freedom. The latter are responsible
for the existence of spin. All massisve structureless particles in nature
must therefore be spin-one-half particles, simply because they have to
be described by 4 real fields, one of which has the physical meaning
of a probability density, while the other three are required to represent
the momentum field in three-dimensional space. We derive the Pauli-
Schrödinger equation, the correct value g = 2 of the gyromagnetic ratio,
the classical limit of the Pauli-Schrödinger equation, and clarify some
other open questions in the borderland between classical physics and QT.
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1 Introduction

”Niels Bohr brainwashed a whole
generation of theorists into
thinking that the job
(interpreting quantum theory)
was done 50 years ago”

Murray Gell-Mann (1929-2019)

Quantum theory (QT) is the subject of controversial discussions since its
invention more then ninety years ago. The phenomenon of spin, discovered
at about the same time, plays a particularly mysterious role, because of the
disturbing fact that we are unable to identify a classical counterpart for this
”classically non-describable two-valuedness” [1]. One suspects that a satisfy-
ing explanation of spin will not be possible without a better understanding
of QT as a whole. There are two fundamentally different ways to interpret
the formalism of QT. The first way, mainly propagated by Bohr, claims that
QT is able to describe individual particles. In contrast to this “individuality
interpretation”, Einstein’s “ensemble interpretation” asserts that QT is only
able to describe statistical ensembles [2]. It may seem strange that a the-
ory whose dynamical predictions are statistical in nature should be able to
describe individual particles. As a matter of fact, however, Bohr’s interpreta-
tion is predominant at the moment; it is accompanied by ongoing discussions
about various internal contradictions.

The reference theory for any interpretation of QT must be part of classi-
cal physics. In the context of the individuality interpretation, this reference
theory is classical mechanics (CM). Due to the fundamental differences in
the mathematical formulation of both theories (ordinary differential equations
and observables defined as ordinary functions in CM, as opposed to partial
differential equations and observables defined as operators in QT), the similar-
ities between QT and CM are limited to structural (mathematical) similarities
between both theories. A satisfactory understanding of QT in this formal sense
would be achieved if it were possible to map the structural properties of classi-
cal observables in a one-to-one manner to corresponding properties of quantum
mechanical operators. However, such a general process called “quantization”
does not exist, as Groenewold has shown [3].

In the probabilistic version of CM, which we call probabilistic mechanics
(PM), the object to be examined is not one (or several) individual parti-
cles, but a statistical ensemble of (one or several) particles. The observable
quantities are expectation values, and the fundamental dynamical variable,
the probability density ρ, satisfies a partial differential equation (the Liouville
equation). Thus, in contrast to CM, the mathematical formulation of PM is
very similar to that of QT. This similarity allows for a completely different
approach when studying the relation between QT and classical physics, namely
a “derivation” or “reconstruction” of one of the two theories from the other.
The relevance of the probabilistic component for a proper understanding of
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QT was recognized very early by Van Vleck [4], Schiller [5],[6], Bopp [7],[8]
and others.

This work is the fourth in a series of papers that attempt to understand QT
on the basis of Einstein’s ensemble interpretation. These works will be referred
to as I [9], II [10], and III [11]. According to the ensemble interpretation,
the natural starting point for a reconstruction of QT is PM. In I-III it was
shown that it is possible, by choosing this starting point, to derive not only
Schrödinger’s equation, but also most other fundamental properties of QT,
such as the non-commutative structure of operators, Born’s rule and others.
In the present work it will be shown that even the strange phenomenon of
spin may be derived using a refined version (actually a corrected version) of
the theory presented in III.

The mathematical similarity between both theories allows a derivation of
QT from PM that is very simple, at least in conceptual terms. The main
formal difference between PM and QT is the number of independent variables,
as can be seen immediately if one descends from Hilbert space to the most
concrete formulation of QT in terms of differential equations. Obviously, PM is
a theory in phase space with, neglecting time at the moment, 2n independent
variables, while QT is a theory in configuration space with n independent
variables. Thus, a reconstruction of QT must necessarily contain a projection
from phase space to configuration space. As a second fundamental step a
linearization or randomization must be performed, as explained in detail in
III. A theory containing these two steps, regardless of the order, is referred to
as “Hamilton-Liouville-Lie-Kolmogorov theory” (HLLK).

In works I and II, the first version of the HLLK was used, in which the lin-
earization is performed first followed by the projection. In III and the present
work, the projection is performed first and then the linearization (or random-
ization) follows as second step. This second version of the HLLK allows for
a deeper understanding of the relationship between QT and classical physics.
Let us also note, that in II a variety of different observables A was investi-
gated, while in III and the present work we study only the particular sector
A = H of HLLK related to spin.

The present work follows the same general scheme as III, but the actual
implementation is more involved. In the following section 2 we introduce, as
in III, a general momentum field. As was shown in III, it is not possible
to use the components Mk of the momentum field themselves as dynamical
variables because they are in general not functionally independent from each
other. Instead, one must take as dynamical variables certain independent func-
tions, called potentials, which may be used to represent the momenta; the
situation is similar as in QT. In III only irrotational momentum fields were
dealt with, which means that all components Mk could derived from a single
function S. In this case the transition from the Mk to the new dynamic vari-
able S (which later becomes the quantum mechanical phase) is obvious. In
the present work we need a larger number of potentials S,Qα, Pα in order to
represent general momentum fields, that also have vortical components. The
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fields Qα, Pα called Clebsch potentials describe these vortical components and
are ultimately responsible for the spin. The equations of motion for the new
dynamic variables S,Qα, Pα were derived by the mathematician H. Rund [12].
In section 3 we give a brief overview of Rund’s theory and then reproduce his
results within the present formalism.

In the emerging quasi-quantal or quasi-classical theory, which is referred
to as QA, particle trajectories do still exist, but are only locally valid. In the
following sections we restrict ourselves to the case N = 1 of a single particle,
where besides S and ρ, only two additional (vortical) variablesQ, P occur. The
QA (for N = 1) is structurally identical to the theory of inviscid barotropic
fluids; this correspondence is only of a formal nature and it should be born in
mind that the physical meaning of the variables is quite different. We use some
results from fluid mechanics concerning vortex lines. In section 4 we implement
a topological restriction for the variables Q, P . We assume that the mapping of
R3 onto the space of the Q, P describes linked vortex lines (the linking number
is a topological invariant). The suitable mapping is given by the famous Hopf
map, which implies the replacement of the Q, P with new canonical Clebsch
variables ϑ and ϕ. This map also provides the definition of a suitable two-
component state variable (spinor) ψ which is of central importance for the
transition to QT and for the implementation of the minimal-coupling rule. As
shown in section 6 the special form of Hopf’s map is closely related to the fact
that the parameter space of the rotation group is doubly connected.

Using the new state variable ψ, we construct in section 5 a semi-linear form
of the evolution equations, which differs from the Pauli-Schrödinger equation
(without external electromagnetic field) only by a non-linear term. Only when
using this form of the evolution equations is it possible (see section 6) to
implement the minimal-coupling-rule in a natural way and to derive the cor-
rect g-factor of 2 . Section 6 also contains a discussion of the concept of the
”magnetic moment of the electron”.

The transition to QT is carried out in section 7 by linearization with respect
to the variable ψ. This can be done very easily by eliminating the non-linear
term in the semi-linear equation. Section 7 also examines which terms have to
be added to the original evolution equations for ρ, S, ϑ, ϕ in order to generate
the linearization.

The justification for performing the linearization, discussed in more detail
in III, is that a large number of globally valid solutions can only be gener-
ated in a linear theory (because of the superposition principle). This point is
discussed in more detail in III. While this reasoning is understandable, the
process of eliminating a term in a differential equation may seem somewhat
formal, if not crude. One wonders what exactly happened during the discontin-
uous transition from the quasi-classical equations to the quantum equations.
In section 8 this discontinuous process is “resolved” and a statistical theory
is constructed which is as similar as possible to the quasi-classical theory, but
which does not claim to describe individual particles at all. This theory, whose
basic assumptions are the same as in III, represents the most detailed version
of the HLLK.
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In the last section 9 we list the results obtained so far, taking into account
both versions of the HLLK, both the first version used in I and II and the
second version used in III and here. Then we go into more detail on some
important points. In particular, we emphasize that quantum spin cannot be
a localizable property of individual particles, but a collective property of the
probabilistic single-particle ensemble, which is related to the possibility of rota-
tions in three-dimensional space. The three-dimensionality of space is also the
reason for the special value 1/2 of the spin. Other points that will be discussed
are the classical limit of the Pauli equation and the role of potentials in quan-
tum theory. We conclude with a few remarks concerning the interpretation of
the quantum theoretical formalism.

2 Basic equations

In this section we briefly recall all those relations from III that we need for
our spin theory; detailed explanations may be found in III. The state of a
system of N particles is described by n = 3N coordinates q = q1, ..., qn and n
conjugate momenta p = p1, ..., pn. Particle trajectories qk(t), pk(t) are given
by the solutions of the canonical equations

q̇k =
∂H(q, p)

∂pk
, ṗk = −∂H(q, p)

∂qk
, (1)

with Hamilton’s function H(q, p) not depending on time t. A particular tra-
jectory in the 2n-dimensional phase space Ω = Rnq ×Rnp may be labeled by its
state q0, p0 at an initial time t0. The solutions of (1) are written in the form

qk = Qk(t, t0, q0, p0), p = Pk(t, t0, q0, p0), (2)

where the dependence on t0 will often be supressed. The variables q, p are
“Lagrangian coordinates” representing particle properties. A statistical ensem-
ble is defined as the uncountable set of all solutions (2). Describing ensembles
with the help of “Eulerian coordinates”, which are denoted by the same
symbols q, p but represent points of Ω, is much more convenient. The most
important Eulerian dynamic variable is the probability density ρ(q, p, t), rul-
ing the time-dependent distribution of trajectories in phase space, which obeys
the Liouville equation

∂ρ

∂t
+

∂ρ

∂qk

∂H

∂pk
− ∂ρ

∂pk

∂H

∂qk
= 0. (3)

In order to perform the transition from probabilistic mechanics (PM) to QT
we need a second Eulerian variable, the action variable S(q, p, t), which obeys
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the differential equation

∂S

∂t
+
∂S

∂q

∂H

∂p
− ∂S

∂p

∂H

∂q
= L̄, (4)

which will be referred to as action equation. The quantity L̄ (the Lagrangian)
is defined by

L̄ = L̄(q, p, t) = p
∂H(q, p)

∂p
−H(q, p). (5)

As a first step on our way from PM to QT, we have to perform the projec-
tion of the basic equations (1), (3), (4) onto configuration space. We replace the
particle momentum p at each instant of time t by a n−component momentum
field M :

pk →Mk(q, t). (6)

Thus, 2n-dimensional phase space is projected to a n-dimensional subspace
M = {(q, p) ∈ Ω | p = M(q)} which is parametrized by the configuration space
coordinates qk [13].

The projection of the canonical equations (1) leads to the differential
equations [12, 14]

q̇k = vk(q, t), (7)

∂Mi(q, t)

∂t
+

[
∂Mi(q, t)

∂ql
− ∂Ml(q, t)

∂qi

]
vl (q, t) = − ∂

∂qi
h (q, t) , (8)

where the fields v(q, t), h(q, t) are defined in terms of H(q, p), V (q, p) by

vk(q, t) = Vk (q,M(q, t)) , (9)

h(q, t) = H (q,M(q, t)) , (10)

Vk(q, p) =
∂H(q, p)

∂pk
. (11)

Eq. (8) will be referred to as canonical condition. As a result of the projection
to configuration space the 2n ordinary differential equations (1) are replaced
by n ordinary differential equations (7), for the particle positions q, and n
partial differential equations (8), for the momentum field M .

A useful quantity, characterizing the purely rotational part of the momen-
tum field, is the vorticity tensor Ωik, defined by

Ωik(q, t) :=
∂Mk(q, t)

∂qi
− ∂Mi(q, t)

∂qk
. (12)

Its equation of motion, which may easily be derived from the canonical condi-
tion, shows that the time-dependence of Ωik is completely determined by the
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solutions of the particle equations of motion (7). As a consequence, performing
a standard calculation from fluid mechanics, one may show that

Ωik(q, t) = Ω0
lj(q)

∂q0
l (q, t)

∂qi

∂q0
j (q, t)

∂qk
. (13)

Here, the functions q0
l (q, t) are obtained by inverting the solutions ql(t, q

0)
of (7); the quantities q0 and Ω0

lj(q) are the initial values of ql(t) and Ωik(q, t).
This relation shows explicitly that the time dependence of the vorticity tensor
is determined by the flow of the particle equations of motion. In particular,
Ω0
lj(q) = 0 implies Ωik(q, t) = 0 for all future times.

The projection of the Liouville equation to configuration space leads to the
continuity relation

∂ρ(q, t)

∂t
+

∂

∂qk
ρ(q, t)vk(q, t) = 0 (14)

for the probability density in configuration-space ρ(q, t). The latter is defined
by the relation ρ(q, p, t) = ρ(q, t)δ(p −M(q, t)), where δ is the n-dimensional
delta function. The projection of the action equation to configuration space
may be put in the form

∂s

∂t
+ vk

[
∂s

∂qk
−Mk(q, t)

]
+ h = 0, (15)

where the action field on configuration space s(q, t) is defined by

s(q, t) = S(q,M(q, t), t). (16)

Relation (15) may also be obtained by means of a Lagrangian to Eulerian
transition of the action integral in configuration space.

As shown in III, the n components M1(q, t), ..,Mn(q, t) of the momen-
tum field are generally not functionally independent from each other. They
are therefore unsuitable as dynamic variables and must be replaced by suit-
able, functionally independent quantities. The problem of finding these new
variables for arbitrary vector fields was solved by Pfaff [15]. For the present
nonrelativistic problem, we need the part of Pfaff’s solution relating to fields
with an odd number L of independent functions. In this case there is an integer
m given by L = 2m+ 1 and M may be written in the form

Mk(q, t) =
∂S(q, t)

∂qk
+ Pα(q, t)

∂Qα(q, t)

∂qk
, (17)

where the Clebsch potentials [16] S(q, t), Pα(q, t), Qα(q, t) are 2m+1 indepen-
dent functions of q1, .., qn, t (Greek indices α, β, .. run from 1 to m and double
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occurrence of these indices entails a summation from 1 to m). Inserting (17)
in the definition (12) we see that the components

Ωij =
∂Pα
∂qj

∂Qα
∂qi
− ∂Qα

∂qj

∂Pα
∂qi

. (18)

of the vorticity tensor will generally be different from zero. As a consequence, if
we consider a closed loop γ, lying in M at time t, then the closed path integral∮

γ

dqkMk(q, t), (19)

will be different from zero. Thus, the components Pα(q, t), Qα(q, t) of a general
momentum field (m > 0) describe a vortical state of motion of the probabilistic
ensemble; they will sometimes be referred to as “vortical variables”. In con-
trast, for the irrotational momentum fields considered in III the integral (19)
vanishes for arbitrary t (assuming that S(q, t) is single-valued).

In III the case m = 0 of an irrotional momentum field was studied. This
case is unphysical but important because it leads to Schrödinger’s equation.
The determination of the equation of motion for the single Clebsch potential S
in III was simple because both the canonical condition and the action equation
reduce in this case to a Hamilton-Jacobi equation. In the following, some basic
results for the general case m > 0 are reported first; the transition to QT is
carried out later for m = 1.

3 Evolution equations

Our task is to derive equations of motion for the new variables qk, S(q, t),
Pα(q, t), Qα(q, t) from the equations of motion (7), (8) for the old variables qk,
Mk(q, t). This is an easy task as regards the particle equation of motion (7);
one only has to insert the expansion (17) in Eq. (7),

q̇k = Vk

(
q,
∂S(q, t)

∂q
+ P (q, t)

∂Q(q, t)

∂q

)
. (20)

The less trivial problem of determining the evolution equations for the Clebsch
potentials was solved by the mathematician H. Rund more than four decades
ago [12]. Rund’s original work contained an unnecessary restriction which was
removed shortly afterwards by Baumeister [17]. This extension will of course
be taken into account in the present work. In this section we first give a brief
overview and discussion of Rund’s theory and then clarify the relationship
between his variables and those used in this work.

3.1 Outline of Rund’s theory

We give a brief outline of Rund’s theory for the convenience of the reader.
If the expansion (17) is inserted in the canonical condition (8) the resulting
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relation may be put in the form

∂

∂qi
T (q, t) +

∂Qα
∂qi

DPα
Dt
− ∂Pα

∂qi

DQα
Dt

= 0, (21)

where

T (q, t) := H

(
q,
∂S

∂q
+ P

∂Q

∂q
, t

)
+
∂S

∂t
+ Pα

∂Qα
∂t

, (22)

and the total derivatives of Pα and Qα with respect to time are defined by

D

Dt
=

∂

∂t
+ Vl

(
q,
∂S

∂q
+ P

∂Q

∂q
, t

)
∂

∂ql
. (23)

In fluid mechanics these total derivatives are referred to as convective
derivatives or material derivatives.

In the next step, one takes advantage of the functional independence of
S, Pα, Qα. As a consequence a one-to-one correspondence between the n
variables S, Pα, Qα, q2m+2, .., qn and the n variables q1, .., qn must exist at
each instant of time. As a further consequence, a function Φ, depending on
S, Pα, Qα, q2m+2, .., qn must exist which fulfills the relation

Φ(t, S, Pα, Qα, q2m+2, .., qn) = T (q1, .., qn, t). (24)

In two further important steps it is shown that Φ depends neither on S nor on
q2m+2, .., qn; the latter result is required for 2m+ 1 < n [17]. The final result
of Rund’s theory is given by the dynamic equations

∂S

∂t
+ Pα

∂Qα
∂t

+H

(
q,
∂S

∂q
+ P

∂Q

∂q
, t

)
− Φ(Q, P, t) = 0, (25)

DPα
Dt

= −∂Φ(Q, P, t)

∂Qα
, (26)

DQα
Dt

=
∂Φ(Q, P, t)

∂Pα
, (27)

where the total derivatives are defined by (23). The function Φ(Q, P, t) is
completely arbitrary.

Besides these fundamental equations we quote from Rund’s work the fol-
lowing important relation which is obtained by differentiating Eq. (25) with
respect to qk:[

DMk

Dt
+
∂H

∂qk

]
− ∂Qα

∂qk

[
DPα
Dt

+
∂Φ

∂Qα

]
+
∂Pα
∂qk

[
DQα
Dt
− ∂Φ

∂Pα

]
= 0. (28)

Equation (25) is referred to by Rund as ”generalized Hamilton-Jacobi
equation”. Indeed, if we set Qα = Pα = Φ = 0, Eq. (25) reduces to the
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Hamilton-Jacobi equation. Equations (26), (27) are referred to as ”associ-
ated canonical equations”, as they may be interpreted as ordinary differential
equations of canonical form, with a “Hamiltonian” Φ(Q, P, t), for the “parti-
cle variables” Pα(t) = Pα(q(t), t), Qα(t) = Qα(q(t), t).

As a first step towards a physical interpretation of these equations we note
the following points:

• The “Hamiltonian” Φ is arbitrary; no physical result can depend on its
functional form. We are therefore allowed to set Φ = 0. Rund has already
shown, using his theory of Clebsch gauge transformations, that a gauge with
vanishing Φ may be introduced [12]; see also [18].

• The relations (26), (27) reduce for Φ = 0 to the condition that the
potentials Qα, Pα are constant if transported along the velocity field

V
(
q, ∂S∂q + P ∂Q

∂q , t
)

.

• Equation (28) shows that the generalized Hamilton-Jacobi equation (25)
makes sure that the validity of (26), (27) implies the validity of the second
canonical equation [see Eqs. (1)] and vice versa.

In view of the important role of the Hamilton-Jacobi equation for the
quantum-classical transition of the Schrödinger equation, the physical
meaning of the generalized Hamilton-Jacobi equation, in particular the
meaning of the new variables Qα, Pα, is of great interest. Its possible role
with regard to QT has, however, not been clarified, neither by Rund himself
nor by authors elaborating later on his theory [17, 19]. Samuel, who
constructed an elegant phase-space version of Rund’s theory wrote [19]:

It is not clear at the moment whether the generalized theory has any relevance to
quantum mechanics. It does seem safe to say however that analogies with quantum
mechanics, if they exist, are not straightforward and will require some unearthing.

In section 5 it will be shown that Rund’s theory, as completed by the continuity
equation, leads for N = 1 to the quasi-classical counterpart of the quantum
theory of a single particle (ensemble) with spin.

3.2 Implementing the Clebsch potentials in the ensemble
equations

We now use Pfaff’s expansion (17) to rewrite the ensemble equations in con-
figuration space (14), (15) in terms of the new variables S, Qα, Pα. We expect
to reproduce Rund’s results and also to find relations between the quantities
S(q, p, t), S(q, t), and s(q, t).

The continuity equation (14) can be simply rewritten by inserting the
expansion (17),

∂ρ(q, t)

∂t
+

∂

∂qk
ρ(q, t)Vk

(
q,
∂S

∂q
+ P

∂Q

∂q
, t

)
= 0. (29)
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The continuity equation (29), the generalized Hamilton Jacobi equation (25),
and the associated canonical equations (26), (27) represent a closed system of
2m+ 2 equations for the 2m+ 2 variables ρ, S, Qα, Pα. This set of extended
Rund’s equations (extended by the continuity equation) is a precursor of the
quasi-quantal approximation (QA) of PM (in the actual QA the variables
Q, P will be replaced by other variables due to a topological restriction; see
section 4). This is of course still a classical system of equations; this means
that the equations for S, Qα, Pα form a closed system that does not contain
the variable ρ. Given a solution of these “deterministic” equations the motion
of particles may be determined with the help of (20).

The projected action equation is given by Eq. (15), where s(q, t) is now
defined by

s(q, t) = S

(
q,
∂S

∂q
+ P

∂Q

∂q
, t

)
, (30)

in terms of the phase space action S(q, p, t). In order to rewrite (15) we use
Pfaff’s expansion (17) and introduce the symbol χ(q, t) = s(q, t) − S(q, t) for
the difference betweeen s and S. The projected action equation may then be
written in the form

Dχ

Dt
− Pα

DQα
Dt

+
∂S

∂t
+ Pα

∂Qα
∂t

+H

(
q,
∂S

∂q
+ P

∂Q

∂q
, t

)
= 0, (31)

We calculate the derivative of (15) with respect to qi and change the order of
derivatives to obtain

∂

∂t

∂s

∂qi
+

∂

∂qi
vk

[
∂s

∂qk
−Mk(q, t)

]
+

∂

∂qi
h = 0. (32)

The canonical condition (8) and the action equation in the form (32) describe
basically the same physics. However, Eq. (8) is an initial value problem for
Mk(q, t) while Eq. (32) describes the relation between Mk(q, t) and s(q, t).
Both equations should agree if an appropriate representation of Mk(q, t) is
chosen. This requirement leads to the following condition for the Clebsch
potentials:

∂

∂qi

[
Dχ

Dt
− Pα

DQα
Dt

]
− ∂Qα

∂qi

DPα
Dt

+
∂Pα
∂qi

DQα
Dt

= 0. (33)

This condition is fulfilled if χ, Qα, Pα are solutions of the associated canonical
equations Eqs. (26), (27) and χ fulfills the relation

Dχ

Dt
− Pα

∂Φ

∂Pα
+ Φ = 0, (34)

where Φ is an arbitrary function of Q, P, t. The generalized Hamilton-Jacobi
equation follows from (31) if Eq. (34) is taken into account. The results of
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Rund’s theory are thus reproduced if the ensemble equations are combined
with Pfaff’s expansion.

Equation (34) clarifies the relation between the Clebsch potential S(q, t)
and the projected action s(q, t). The difference χ = s − S plays the role of
an action defined for a “Hamiltonian” Φ in a 2m-dimensional phase space
with coordinates Qα, Pα. We may set Φ = 0, thereby destroying the canonical
structure of Eqs. (26), (27), (34). Condition (34) reduces for Φ = 0 formally to
the corresponding condition in III for the irrotational case; note however that
the velocity field is defined differently. Then, for this most important gauge,
χ, Qα, Pα become quantities “moving with the flow”, i.e. Dχ

Dt = 0, DQα
Dt = 0,

DPα
Dt = 0. The simplest solution of Dχ

Dt = 0 is again χ = 0, just as in the
irrotational case.

3.3 Interpretation of Clebsch potentials

Let us ask if the new dynamical degrees of freedom S(q, t), Pα(q, t), Qα(q, t)
may be understood in terms of any standard concept of physics. This question
is not answered in Rund’s theory. With regard to the Clebsch variable S, which
is also responsible for the U(1) gauge mechanism, we can answer this question
in the affirmative. We derived in section 3.2 the relation between S(q, t) and the
projected action variable s(q, t). The variable S(q, t) can therefore be traced
back to a standard concept in phase space, namely the action variable S(q, p, t).
We mention without proof that this connection can also be established within
the framework of the theory of canonical transformations; if we are given a
complete solution of the Hamilton-Jacobi equation, we can use it to construct
a projection onto the configuration space with prescribed initial values.

The question arises if the vortical variables Pα(q, t), Qα(q, t), may be
understood in an analogous way. Can we find a structure in phase space, using
a possibly extended theory of canonical transformations, which allows us to
understand these variables in a similar way as S(q, t) ? A closer look at the the-
ory of canonical transformations shows that such an extension does probably
not exist. This implies that the variables Q, P describe probably a structure
which has its origin in configuration space. A different concept, valid only
in configuration space, must be found if we want to understand the physical
meaning of the variables Q, P .

The following two hints, as to the physical origin of Q, P , may be obtained
by looking more closely at the basic equations (25)-(28) of Rund’s theory:

• There are two different terms (both sums over α) in Eq. (25) containing
the Clebsch potentials. These terms appear exactly at the positions where
the electrodynamic scalar and vector potentials are located according to the
minimal coupling rule.

• Relation (28) shows that the appearance of the new variables does not lead
to new forces in the particle equations of motion. Introducing Q, P just
means introducing new degrees of freedom, which do not interact with the
particle coordinates.
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The first of these hints tells us that the vortical terms due to Q, P may pos-
sibly be interpreted as electrodynamic potentials, giving rise to nonvanishing
electrodynamic fields. The second hint tells us that these fields must be con-
structed in such a way that they do not exert any forces on the particles. In
a future publication it will be shown that such “internal potentials” actually
exist, and that the vortical Clebsch potentials may be understood with the
help of this concept.

4 Implementing a topological constraint

In the remaining part of this paper we will restrict ourselves to the most impor-
tant case N = 1, n = 3 of a single particle ensemble. The number m pairs of
functions Pα(q, t), Qα(q, t) is equal to 1 and the particle momentum is spec-
ified at each space-time point q, t by three numbers S(q, t), Q(q, t), P (q, t),
corresponding to the fact that the momentum must have three independent
components at each point of three-dimensional space. Further, the Cleb-
sch gauge will be fixed according to Φ = 0 and the simplest Hamiltonian
H0(q, p) = pkpk/2m without external electromagnetic fields will be used (this
important point will be taken into account in section 6). The basic equations
for the four fields S(q, t), Q(q, t), P (q, t), ρ(q, t) are then given by

∂S

∂t
(q, t) + P (q, t)

∂Q

∂t
(q, t) +H0

(
q,
∂S

∂q
+ P

∂Q

∂q

)
= 0, (35)[

∂

∂t
+ V 0

k

(
q,
∂S

∂q
+ P

∂Q

∂q

)
∂

∂qk

]
Q(q, t) = 0, (36)[

∂

∂t
+ V 0

k

(
q,
∂S

∂q
+ P

∂Q

∂q

)
∂

∂qk

]
P (q, t) = 0, (37)

∂ρ

∂t
(q, t) +

∂

∂qk
ρ(q, t)V 0

k

(
q,
∂S

∂q
+ P

∂Q

∂q

)
= 0. (38)

The particle equations of motion q̇k = vk(q, t), with the velocity field defined
by (20), are still valid in their limited range of validity. In this section we
consider a topological property of the mapping from R3 into the space of the
S,Q, P , which implies a more specific form of the Q,P .

For the simplest case of a single free particle considered now, the
relationship between momentum, Clebsch potentials, and velocity is given by

Mk(q, t) = ∂kS(q, t) + P (q, t)∂kQ(q, t) = mvk(q, t). (39)

The vorticity tensor Ωik [see Eq. (18)] may conveniently be replaced by an
axial vorticity vector Ωi = 1

2εiklΩkl = εikl∂kMl, which is closely related to the
vorticity ωi = εikl∂kvl defined by the velocity field v. The relationship between
these vorticities and the Clebsch potentials is given by

Ωi(q, t) = εikl∂kP (q, t)∂lQ(q, t) = mωi(q, t), (40)
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and the equation of motion for the three-vector Ω may be written in the form

∂Ω

∂t
+∇× (Ω× v) = 0, (41)

which is familiar from fluid mechanics. As mentioned already, there is a strong
formal analogy between this part of the present theory and the theory of invis-
cid (ideal) barotropic fluids. This allows us to use several important results
from fluid mechanics in the present context; bearing always in mind the
completely different physical meaning of the variables.

The vorticity field Ω is by definition solenoidal. Surface effects do not
exist in our theory as we are considering an infinitely extended medium with
sufficiently rapidly decreasing variables. The field lines of Ω, referred to as
vortex lines, are therefore closed curves. The topology of a vector field is
basically determined by the mutual position of its field lines, and in particular
by the interlinking of its field lines. This structure remains invariant under the
time evolution given by Eq. (41). Helmholtz’s and Kelvin’s theorems, which
also apply in the present theory, can be interpreted in terms of the invariance
of the topological structure.

The case of linked vortex lines may be explained in terms of simple physical
concepts [see [20], [21] and references therein]. For example, in fluid mechanics
Moffatt considers two idealized vortex filaments C1 and C2 with vanishing
vorticity outside the filaments [20]. Stokes’s theorem leads then immediately
to the conclusion that the closed path integral along filament C1 differs only
from zero if filament C2 penetrates the surface spanned by C1. Generalizing
this consideration to more realistic distributions he arrived at the conclusion
that the quantity

Hω =

∫
d3q vω, (42)

referred to as (total) helicity, is a temporal and topological invariant,
characterizing the degree of linkage of vortex lines.

Using the present notation it is more convenient to work with the helicity
HΩ = m2Hω, which is defined by (42) with v, ω replaced by M, Ω. In order
to study the variation of HΩ with time, we need the evolution equation for
the helicity density hΩ = MkΩk. It is obtained by multiplying the canonical
equation (8) and the vorticity equation (41) by Ω and M respectively, and
adding both equations. The result may be put in the form

∂

∂t
hΩ +∇ (hΩ + hΩV − (MV)Ω) = 0 (43)

which shows explicitly the invariance of HΩ. The total helicity vanishes if
linked vortex lines do nowhere exist. On the other hand, if linked vortex lines
exist M cannot be single valued; in this case we expect topological singularities
of some kind. In order to examine this point more closely we calculate HΩ

using Pfaff’s formula (17), expressing M in terms of the Clebsch potentials
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S, P, Q. Neglecting a surface integral at infinity the helicity may be written as

HΩ = −
∫

d3q Sεikl

(
∂2P

∂qi∂qk

∂Q

∂ql
+

∂2Q

∂qi∂ql

∂P

∂qk

)
. (44)

This formula shows that HΩ vanishes if P, Q are both C2. Linked vortex lines
are therefore, as expected, related to singular, typically multivalued, behavior
of the P, Q. In order to obtain a nonvanishing HΩ it is not required that the
first order derivatives of both Clebsch potentials do not commute; it suffices
if only one of the P, Q is singular.

4.1 The Hopf map

The mapping of R3 in the space of the Clebsch variables P, Q, which is suitable
for describing the quantum mechanical ensembles occurring in nature, belongs
to a topologically non-trivial class, with linked vortex lines and non-vanishing
helicity. It is given by the so-called Hopf map or Hopf bundle [22]. We use the
complex form of the Hopf map (see e.g. [23]), which also provides us with an
appropriate definition for the new (spinorial) state variable, which will later
be used to perform the transition to QT. Let z denote the elements of the
two-dimensional complex vector space C2,

z =

(
z1

z2

)
, (45)

with inner product (z,w) defined according to (z,w) = z+w = z∗1w1 + z∗2w2.
The norm ‖z‖ of z is defined by ‖z‖2 = (z, z). Writing z1 = a+ ıb, z2 = c+ ıd
the points of C2 may be used to assign coordinates a, b, c, d to the points of R4.
The 3−sphere S3 is the subset of R4 defined by ‖z‖2 = a2 + b2 + c2 + d2 = 1,

S3 =
{
z ∈ C2 | ‖z‖2 = 1

}
. (46)

In order to characterize the topological (homotopy) class of the mapping from
R3 to our two-dimensional manifold Q, P , the subset S3 may be identified
with R3 (it is in fact a compactified version of R3 [24]). The Hopf map is a
many to one map from S3 to the 2−sphere S2, defined by

hi(x) = z∗ασ
i
αβzβ , (47)

where x stands for a, b, c, d, the indices α and β run from 1 to 2, and σi are
the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −ı
ı 0

)
, σ3 =

(
1 0
0 −1

)
. (48)
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In order to verify this we use the formula σiαβσ
i
γδ = 2δαδδγβ−δαβδγδ to obtain

hihi =
(
z –1˝2 + z –2˝2

)2
. Thus, the image of the Hopf map is indeed a point

of S2 given that z –1˝2 + z –2˝2 = a2 + b2 + c2 +d2 = 1. The points of S2 have
coordinates

h1 = 2(ac+ bd), (49)

h2 = 2(ad− bc), (50)

h3 = a2 + b2 − c2 − d2. (51)

Two points z, w in S3, which differ from each other by a complex number of
magnitude 1, are mapped to the same point of S2. The set of all points eıχu
on S3 that results from a fixed u is called a fiber. Each fiber is the preimage
of a point of S2. Thus S3 has the structure of a fiber bundle.

The points on S3 can now be represented in the form

z = eı
χ
2

(
a+ ıb
c+ ıd

)
, a2 + b2 + c2 + d2 = 1. (52)

It will become clear soon why it is convenient to use the definition χ
2 in the

prefactor. It makes sense to introduce new variables that eliminate the surface
constraint in (52). We use spherical coordinates, where the angle ϕ is measured
from the y-axis in clockwise direction, to represent the three-vector h in the
form

h = sinϑ sinϕ e1 + sinϑ cosϕ e2 + cosϑ e3. (53)

Using now Eqs. (49)-(51) the dependence of a, b, c, d on ϑ, ϕ may be deter-
mined and we obtain

z =

(
z1

z2

)
= eı

χ
2

(
u1

u2

)
= eı

χ
2

(
cos ϑ2 eı

ϕ
2

ı sin ϑ
2 e−ı

ϕ
2

)
, (54)

as a possible representation of z. In the literature, essentially two different
but equivalent representations are in use, which are due to Takabayasi [25]
and Bohm [26], respectively. Both were introduced in order to rewrite Pauli’s
equation in “hydrodynamic form”. The state vector derived here is associated
with the description of rotations in terms of Euler angles and agrees with
Bohm’s representation; it was already used in Ref. [27] ,

In order to better understand the physical meaning of the quantity χ, we
introduce a three-vector t, with components defined by ti = {z, σiz} . The
curly brackets denote here an antisymmetric product, defined by {z,w} =
z1w2 − z2w1. This vector fulfills the relations t2 = 1 and th = 0, i.e. t, as a
unit vector perpendicular to h, lies in the tangential plane determined by h.
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Using the representation (54) we obtain t in terms of the angles χ, ϑ, ϕ:t1t2
t3

 =

 cosχ cosϕ− sinχ cosϑ sinϕ
− cosχ sinϕ− sinχ cosϑ cosϕ

sinχ sinϑ

 . (55)

This relation shows that χ may be interpreted as an angle of rotation around
an axis determined by ϑ and ϕ. Remarkably, the rotation angle of the vector
t is 2α if the phase of z changes by α. In particular, z changes its sign when χ
changes by 2π and returns to its original value only when χ changes by 4π. An
equivalent form of a “spinor”, as a directed quantity that describes a rotation,
was derived by Payne using intuitive geometric methods[28].

4.2 Helicity and Hopf invariant

The preimage of each point P of S2 is a circle. The topological nontriviality
of the Hopf map is given by the fact that the linking number for every 2
circles, that are mapped to different points P1, P2, is not 0 but 1 ; an explicit
proof may e.g. be found in [29]. This linking number is a topological invariant
referred to as Hopf invariant γ . Whitehead [30] found that γ may be written
as an integral,

γ =
1

16π2

∫
d3q CiDi, (56)

where C, the canonical connection of the Hopf map [31], is given by Ci =
−2ız∗a∂iza, and Di = εijk∂jCk. The value of the Hopf invariant γ is a property
of the divergence-free field D. The field C plays the role of a vector potential
for D and is not gauge-invariant. Conversely, one may choose any suitable C
from the class leading to D in order to calculate γ, as will be done here.

The basic fields χ, ϑ, ϕ that determine (56) are dimensionless quantities
while the fields C and D have dimensions cm−1 and cm−2. If one wants to
use the Whitehead integral in physics, the abstract fields C and D have to be
replaced by suitable physical fields (e.g. velocity and vorticity, or vector poten-
tial and magnetic field), and appropriate dimensions and pre-factors must be
introduced. In our case we have to establish the relation between the field C
and the momentum field M ,

Ci = ∂iχ+ cosϑ∂iϕ Mi = ∂iS + P∂iQ, (57)

in order to be able to find the relation between S, P, Q and χ, ϑ, ϕ. If we
accept z, as defined by (54), as our new state variable (apart from an amplitude
which we will be introduced later) then it is obvious to associate the two-
component quantity in (54), with components u1, u2, with the new rotational
degrees of freedom Q,P . As a consequence we identify the prefactor eı

χ
2 with

the earlier phase factor eı
S
~ , associated with the irrotational momentum fields
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studied in III. This leads to the relations

S

~
=
χ

2
, Ci =

2

~
Mi, P∂iQ =

~
2

cosϑ∂iϕ, (58)

As for the identification of P,Q we could, remembering that the Clebsch poten-
tials are canonical variables [12], interpret P as momentum and Q as position.
This could be achieved by replaćıng ~/2 by ~/2R and φ by Rφ , where R is a
length. The numerical value of R is arbitrary since P,Q always occur in pairs.
Thus we may set R = 1:

P =
~
2

cosϑ, Q = ϕ. (59)

The topological meaning of the “canonical Clebsch potentials” defined by (59),
was clarified by Kutnetsov and Mikhailov [32]. These authors studied ideal
fluids which are, however, described by essentially the same mathematical
structure as the present problem. In their work the constant ~/2 is replaced
by an undetermined constant - let us recall that we were only able to fix the
value of this constant by anticipating the quantization process.

If we replace P,Q in (40) by the canonical Clebsch potentials (59) the
vorticity Ωi and the helicity HΩ become quantized variables,

Ωi =
~
2
εikl (∂k cosϑ) (∂lϕ) , HΩ = (2π~)2γ. (60)

The linking number γ takes integer values in general, and is 1 in the present
theory. The Hopf map is sometimes introduced by restricting the vorticity
according to the relation Ωi = ~

2Ti, where

Ti =
1

2
εijkεlmnh

l (∂jh
m) (∂kh

n) . (61)

The vector T was first introduced by Takabayasi [33] and later rediscovered in
other contexts by Faddeev [34] and Mermin and Ho [35]. Topological methods
have been used successfully to classify phases in superfluid He and other many-
body systems [36]. If v in Eq. (42) is replaced by the superfluid velocity [37]
one obtains the same ~-dependent prefactor as in Eq. (60).

4.3 Invariance of circulation and quantization condition

As shown in III, after projection to the n-dimensional subspace defined by M ,
the Poincaré integral invariant takes the form

IC̄(t) =

∮
C̄t

Mi(q, t)dqi, (62)
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where C̄t is a closed path in the subset (q,M(q, t)) of phase space. This formula
expresses the invariance of the circulation IC̄ ; in a fluid-dynamical context it
is referred to as Kelvin’s theorem. It remains true if M is expressed in terms
of S,Q, P according to (17), or in terms of S, ϑ, ϕ according to (58).

We expect, in analogy to the helicity, that the invariant IC̄ becomes “quan-
tized” for topological reasons. This is indeed the case as found already by
Takabayasi, who used - contrary to the present work - the basic equations of
QT as his starting point[38]. Using (57)-(61) the circulation may be written as∮

C̄t

Mi(q, t)dqi = h

(
n+

1

4π

∫
St

dSiTi

)
, (63)

where St is a surface [a cross section of the tube formed by the solutions
of (7)] with boundary C̄t. The first term on the r.h.s. is due to the fact, that
S may change by 2π~n (where n is an integer) when going around C̄t. This
multi-valuedness, and its associated topological singularity, does not affect
the uniqueness of the state function z. This term corresponds to the usual
quantization condition. The second term on the r.h.s. is due to the additional
non-singular vorticity of the momentum field.

To interpret this second term, we note that the vortical part of the momen-
tum field may be interpreted, apart from a constant of proportionality, as a
kind of internal vector potential, with components AIk(q, t). When expressed
in terms of the canonical Clebsch potentials, AIk is given by

AIk = −~c
2e

cosϑ∂kϕ. (64)

The associated inner magnetic field is proportional to the Takabayasi vector or
to the vorticity, BIi = εikl∂kA

I
l = c

eΩi. It is useful to introduce, for comparison,
an external vector potential with associated magnetic field BEi (This does not
cover the complete influence of the external magnetic field, the full theory will
be given in section 6). The circulation extended this way may be written as∮

C̄t

Mi(q, t)dqi +
e

c

∫
St

dSi
(
BEi +BIi

)
= nh. (65)

We see that the vortical part of the momentum field may be interpreted as
an additional, “internal” contribution to the magnetic field. In superconduct-
ing many-particle systems one observes the phenomenon of flux quantization,
which is described by Eq. (65) without this vortical contribution. Its absence
is, however, not really unexpected, since the superconducting state is not
generated by single electrons but by spinless paired electrons (Cooper pairs).
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5 Semilinear evolution equation

After introducing the canonical Clebsch variables, one obtains the updated set
of basic equations for the dynamical variables ρ, S, ϑ, ϕ by replacing P, Q in
Eqs. (35)-(38) by cosϑ, ϕ according to (59):

∂tS + eΦ +
~
2

cosϑ∂tϕ+
1

2m

∑
k

(
∂kS +

~
2

cosϑ∂kϕ

)2

= 0, (66)[
∂t +

(
∂kS +

~
2

cosϑ∂k ϕ

)
∂k

]
ϕ = 0, (67)[

∂t +

(
∂kS +

~
2

cosϑ∂k ϕ

)
∂k

]
ϑ = 0, (68)

∂tρ+ ∂kρ

(
∂kS +

~
2

cosϑ∂k ϕ

)
= 0. (69)

Instead of the two dynamical equations for ϑ and ϕ the relation Dth = 0
for the unit vector h, defined by Eq. (53), may equivalently be used. The
particle equations of motion q̇k = vk(q, t) remain true; they define the ranges
of integration in the quantization condition (65).

The above evolution equations, as given by (66)- (69), are neither suitable
for the transition to QT by linearization, nor for the introduction of a gauge
field. To achieve these goals, these four equations must first be replaced by a
single equation for a single variable with two complex components. A suitable
quantity is provided by the Hopf map. In order to perform this transformation,
it is convenient to rewrite (66)-(69) in the following form:

DtS = L̄, (70)

Dtϑ = 0, (71)

Dtϕ = 0, (72)

Dtρ
1
2 = −1

2
ρ

1
2 ∂kvk, (73)

where Dt = ∂t + vk∂k, L̄ = 1
2vkMk − V , and

vk =
1

m

(
∂kS +

~
2

cosϑ∂kϕ

)
. (74)

The basic equations of QA reformulated this way differ from the equations used
in III only with regard to the additional equations of motion (71) and (72) and
the additional vortical term in the definition (74). The structural differences
between these equations and the original phase space equations used in I, II
were mentioned in III.

Let us stress once again, that these basic equations do essentially not
belong to QT, despite the occurrence of the constant ~. The occurrence of ~
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is explained as follows: Due to topological considerations, the introduction of
a quantity with the dimension of an action became necessary. For the sake of
simplicity, we have already assigned the special numerical value of Planck’s
constant to this quantity; without this assignement the transition to QT, to be
performed later, cannot be realized. This assignment of a numerical value may
therefore be interpreted as a first step in the quantization process. However,
the very occurence of this constant is a consequence of classical (topological)
considerations.

We obtain an appropriate two-component variable ψ, suitable for lineariza-
tion, by multiplying the variable z defined by the Hopf map [see Eq. (54)] by
the factor

√
ρ,

ψa =
√
ρ e

ı
~S ua, a = 1, 2. (75)

Then, as a consequence of the physical meaning of ρ, the integral of |ψ|2 over
the entire space must be 1.

Let us write the projected Liouville equation (73) in the form Lρ 1
2 = 0,

with the differential operator L = ~
ı

[
Dt + 1

2 (∂ivi)
]
. Let us next consider the

two-component quantity Ta = Lσ0
abψb. The terms in the differential equation

to be constructed are necessarily 2×2 matrices. It turns out that it is sufficient
to use the 2× 2 identity matrix σ0, at least in the present field-free case. If we
let the differential operator L act on ψ, then Ta takes the form

Ta =
~
ı
σ0
abψb

[
ρ−

1
2

(
Dt +

1

2
(∂ivi)

)
ρ

1
2 +

ı

~
DtS +

1

u(b)
Dtu(b)

]
, (76)

whithout summation over b in the bracket. If we now use the evolution
equations (70)-(73), the first and third terms vanish and DtS is replaced by
L̄. If we equate the resulting expression with the original definition of Ta, we
obtain the differential equation[

~
ı
Dt +

~
2ı

(∂ivi)−
1

2
vkMk + V

]
ψa = 0, (77)

which is equivalent to Eqs. (70)- (73), but is already more similar to the
desired form. In order to proceed with the linearization we use the rela-

tion (∂kS)ψb = ~
ı

[
∂k − ρ−

1
2

(
∂kρ

1
2

)
+ u−1

(b)

(
∂ku(b)

)]
ψb which follows directly

from the definition of ψ [see Eq. (75)]. Using this last relation as well as the
definition of Mk one obtains the equation viMiψb = ~

ı vi
(
∂i − fi(b)

)
ψb. The

function

fkb =
1

ρ
1
2

(
∂kρ

1
2

)
+

1

u(b)

(
∂ku(b)

)
− ı

2
cosϑ (∂kϕ) , (78)

does not depend on the variable S which carries the gauge degree of freedom.
Repeated application of this last equation leads, after a number of further
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elementary rearrangements, to the following “semilinear” differential equation[
~
ı
∂t −

~2

2m
∂k∂k + V

]
ψa = − ~2

2m

[
fk(a)fk(a) + (∂kfk(a))

]
ψa. (79)

This differential equation, together with the particle equation of motion
q̇k = vk(q, t), represents that form of the QA which is most similar to QT - and
which accordingly enables a particularly simple transition to QT. In I a differ-
ential equation in phase space was derived (Eq. 19 of I), which has been called
the “classical counterpart of Schrödinger’s equation”. If we follow this naming
scheme, we can call Eq. (79) the “quasiclassical counterpart of Schrödinger’s
equation”. It represents the completion of the non-linear Schrödinger equation
reported in III (see Eq. 40 of III), where two of the three possible degrees of
freedom of the momentum field were unjustifiably neglected.

6 Introducing a gauge field

Let us now “switch on” an electromagnetic field. This is usually done using
the principle of minimal coupling

~
ı
∂k ⇒

~
ı
∂k −

e

c
Ak, −~

ı
∂t ⇒ −

~
ı
∂t + eΦ, (80)

where A, Φ is the vector and scalar potential respectively. In the (quasi) clas-
sical equation (79) application of this rule to the derivatives on the right-hand
side does not lead to meaningful results. We therefore use the more funda-
mental version of the principle of minimal coupling formulated by Dirac [39]
(see also [40], [41]). With this method, the wave function ψ is multiplied by a
non-integrable phase factor:

exp

{
− ı

~
e

c

∫ x,t

[dq′kAk(q′, t′)− cdt′Φ(q′, t′)]

}
, (81)

This phase factor is then shifted to the left of the differential operators, creat-
ing the potentials, and can afterwards be eliminated. The final wave function
is again single-valued as it should be. This version of the minimal coupling
rule can be applied to Eq. (79), since the right-hand side does not contain any
derivatives of ψ . We obtain in this way the standard result[
~
ı
∂t − eΦ−

~2

2m

3∑
k=1

(
∂k − ı

e

~c
Ak

)2

+ V

]
ψa = − ~2

2m

[
fk(a)fk(a) + (∂kfk(a))

]
ψa.

(82)
The linear part of Eqs. (79) and (82) apparently plays a decisive role in the
transition to QT. This part, in which, based on our assumptions, the kinetic
energy is proportional to the identity matrix, does not contain any coupling
between the two components of ψ, neither in the field-free case nor in the
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presence of an electromagnetic field. Assuming that Eq. (79) is true, this would
lead to the strange conclusion that the vortical components of the momentum
field have no observable consequences at all after transition to QT. Instead,
we suspect that Eq. (79) is incomplete.

6.1 Two representations of Euclidean space

The geometric objects occurring in physics may be characterized by their
behavior under certain groups of transformations. The relevant group in the
present context is the rotation group SO(3), the group of orthogonal 3 × 3
matrices with determinant 1. A geometric object is associated with a specific
representation of SO(3). For example, in the Schrödinger equation for spinless
particles studied in III, a one-component complex quantity occurs as a geomet-
ric object. In this case, only the space of independent variables is transformed
under SO(3) and the representation associated with this geometric object is
the identical representation.

The geometric object that arises in the present problem is the spinor ψ.
At every point of space this is an element of a Hilbert space H2, which is
defined (as in section 4.1) by C2 with the inner product (ψ, φ) = ψ∗1φ1 +ψ∗2φ2.
The group of automorphisms of H2 is given by the linear transformations
that leave the inner product invariant. This is the group U(2), but it can
be restricted to SU(2), the group of two-dimensional unitary transformations
with determinant 1. A general element U ∈ SU(2) has the form

U =

(
α β
−β∗ α∗

)
, (83)

where α and β are complex numbers that satisfy |α|2 + |β|2 = 1. This means
that the group space of SU(2) is given by the 3-sphere S3 (the spinorial
part of ψ is also determined by a point on S3, as was shown in section 4.1).
Thus, a spinor is the geometric object transforming according to the natural
representation of the group SU(2) ∼= S3.

Let us recall the relation between the groups SU(2) and SO(3). This point
is well-known from the quantum mechanical theory of spin; but of course
this relation is primarily a “classical” matter of group theory and associ-
ated topological considerations. To find this relation we introduce a matrix
representation of Euclidean space following Eberlein [42]. We start from the
observation that every Hermitian operator in H2 may be represented as a lin-
ear combination, with real coefficients, of the three Pauli matrices σk and the
identity matrix σ0 . If we associate in our non-relativistic theory the identity
matrix σ0 with a time-like coordinate, then the remaining three Pauli matri-
ces σk, with trace 0, may be used to represent an arbitrary three-dimensional
Hermitian 2× 2 matrix, say Q, in the form

Q = q1σ
1 + q2σ

2 + q3σ
3, (84)
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where the qi are real numbers. Let us denote the Euclidean space with the usual
inner product by E3 and the real vector space of the Hermitian matrices (84),
with basis elements σk, by E3. There is a one-to-one correspondence between
the vectors qiei ∈ E3, where ei is an orthonormal basis, and the matrices
qkσ

k ∈ E3,
qiei ↔ qkσ

k. (85)

This mapping from E3 to E3 also preserves the inner product (p, q) = piqi. If
P and Q are the elements of E3 corresponding to p and q, then their inner
product, which is denoted by (P ·Q), is defined by PQ+QP = 2(P ·Q)σ0. The
invariance can easily be verified with the help of the relation σiσk + σkσi =
2δikσ0 . Thus, the space E3 may be called the matrix model, or the spin model,
of Euclidean space [24],[42].

Let us consider an element Q ∈ E3 and a unitary matrix U ∈ SU(2). The
transformed element

RU (Q) = UQU−1 (86)

is hermitian and has vanishing trace, so it is again an element of E3 which
may be written in the form Q

′
= q

′

kσ
k. If we now insert U as given by (83)

and evaluate Eq. (86) we find the relation

q
′

i = Rik(α, β)qk, (87)

where Rik(α, β) are the elements of a (real) orthogonal matrix with determi-
nant 1 which is uniquely determined by the matrix U defined by (83). These
elements satisfy the relationship Rik(−α,−β) = Rik(α, β). As a consequence,
Eq. (86) defines a mapping SU(2)→ SO(3) which is not one-to-one, since the
two elements ±U are mapped onto the same element of SO(3). One can also
show that RU1U2 = RU1RU2 and that every rotation in E3 may be represented
in the form (86) [42],[24]. The mapping SU(2)→ SO(3), which is often referred
to as “spinor mapping”, is therefore a two-to-one group homomorphism.

The difference between the groups SU(2) and SO(3) is essentially due
to the different topological structure of their parameter spaces. The two-to-
one group homomorphism from the simply connected SU(2) to the double
connected SO(3) means that SU(2) is the covering group (double cover) of
SO(3). As already mentioned, the parameter space of SU(2) is the 3-sphere
S3. The parameter space of SO(3) may be identified with a filled sphere in
three-dimensional space with radius π; this choice of the group manifold allows
an easy intuitive understanding of the topological structure [43]. Alternatively,
one may also use the surface of the 3-sphere S3 with antipodal points identified,
as group manifold; this latter choice is particularly plausible in view of the
two-to-one homomorphism from SU(2) to SO(3).

To choose between the two representations E3 and E3 of the abstract
Euclidean space, we note that the transformation behavior of the Hermitian
operator Q ∈ E3, as given by (86), is consistent with the general condition that
the action of an operator before and after a basis transformation U must be
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the same. The spin model E3 of Euclidean space is therefore the appropriate
choice for vectors that act as operators on the Hilbert space H2.

The representation E3 would be suitable if we had three-vectors as
geometric objects, in which the effect of SO(3) is realized by means of the
usual rotation matrices. The spin group SU(2), as discussed above, has a
richer structure compared to the SO(3). Its group manifold is larger, as is the
number of its representations; any representation of SO(3) can be extended
to a representation of the SU(2) (by composition with the spinor mapping),
but not the other way around. [However, in the physical literature the term
“two-valued representation of SO(3)” is often used for SU(2)]. The fact that
the simply connected parameter space of SU(2) contains two elements ±U
for every rotation R may be related to the corresponding property of the full
group O(3) of the automorphisms of Euclidean space. The statement

The orthogonal transformations are the automorphisms of Euclidean vector space.
Only with the spinors do we strike this level in the theory of its representations...

made by Hermann Weyl emphasises the fundamental role of the spin repre-
sentation [44].

The spinorial geometric object ψ associated with SU(2) is essentially
(except for a subsequently added amplitude

√
ρ) given by the Hopf map,

defined in section 4.1. The introduction of the Hopf map was based on the
assumption that the statistical ensembles occurring in nature belong to a topo-
logical class describing linked vortex lines. This choice, which may have seemed
a bit arbitrary, is now justified by the fact that the Hopf map describes the
topology of rotations in H2. The property of linked vortex lines seems to cor-
respond to a particular topological property of rotations, namely the fact that
ψ does not return to the starting point until it has been rotated by 4π.

6.2 Minimal coupling in E3

According to the discussion of the last section, the transition from E3 to E3

should be performed simultaneously with the introduction of the spinor ψ.
The transition is defined by the simple replacement rule viei → viσ

i. This
rule can only be applied in the quantum-like version (83) of the equation of
motion, and here again only in the Laplace operator, which can be written in
the form ∂iei∂kek . One obtains

∂k∂k = ∂iei∂kek → ∂iσ
i∂kσ

k = ∂k∂k + ıεlikσl∂i∂k, (88)

where the relation σiσk = δik + ıεlikσl was used to obtain the last term on
the right-hand side. Eq. (88) shows that this replacement rule can only lead
to a new contribution, as compared with the original Laplace operator, if the
first order derivatives are not interchangeable, that is, if they operate on a
a singular, typically multi-valued ψ. This is the case if the minimal coupling



26 A reconstruction of quantum theory for spinning particles

rule (81) is applied. The evolution equation then takes the form[
~
ı
∂t − eΦ−

~2

2m

3∑
k=1

(
∂k − ı

e

~c
Ak

)2

+ V

]
ψa+µBσ

k
abBkψb = − ~2

2m

[
fk(a)fk(a) + (∂kfk(a))

]
ψa.

(89)
where µB = −e~/2mc is the Bohr magneton, and Bk are the components
of the magnetic field B = ∇ × A. The B−dependent coupling term was
introduced by Pauli and is sometimes referred to as “Zeemann term”, as it
played an important role in the explanation of the anomalous Zeeman effect.
In mathematical terms A is called connection and B is called curvature of the
connection [24].

We brought the quasi-classical evolution Eqs (66)-(69) in the quantum-like
form (79) and then introduced an external electromagnetic field with the help
of the principle of minimal coupling. If we now go back from the result (99)
to the original form, we obtain the equations

∂tS + eΦ +
~
2

cosϑ∂tϕ+
m

2

∑
k

v2
k + µiBi = 0, (90)

Dtϕ =
e

mc

1

sinϑ
(B3 sinϑ−B2 cosϑ cosϕ−B1 cosϑ cosϕ) , (91)

Dtϑ =
e

mc
(B1 cosϕ−B2 sinϕ) , (92)

∂tρ+ ∂kρvk = 0, (93)

where the velocity field v and the total derivative Dt are now defined by

vk =
1

m

(
∂kS −

e

c
Ak +

~
2

cosϑ∂kϕ

)
, Dt = ∂t + vk∂k. (94)

The “magnetic moment of the electron” is defined by µi = − e
mcsi, where s

is a three-vector of constant lenght ~
2 which is parallel to the unit vector h

defining the Hopf map,

s =
~
2

(sinϑ sinϕ e1 + sinϑ cosϕ e2 + cosϑ e3) . (95)

The electromagnetic field leads to two types of new terms in Eqs. (89)-(93),
namely on the one hand to the usual extensions of the energy and momentum
fields by potentials and on the other hand to terms depending on the magnetic
field B. The latter terms may be interpreted with the help of the vector s,
using the fact that Eqs. (91) and (92) may be written in the form

Dts = − e

mc
B× s, (96)
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which is the field-theoretical version of the equation of motion of a classical
magnetic dipole in a magnetic field.

6.3 The magnetic moment of the electron

According to classical electrodynamics, a rotating charge distribution with
mass m, total charge q, and angular momentum L leads to a magnetic dipole
moment µ = q

2mcL. The pre-factor q
2mc is called the gyromagnetic ratio. The

interaction with an external magnetic field is taken into account by a term
µB in the Hamiltonian function. The new B−dependent terms in Eqs. (90)
and (96) agree in form with this particle image, differ however with regard
to the gyromagnetic ratio between the “intrinsic angular momentum” s and
the associated magnetic moment µs. The gyromagnetic factor g defined by
µs = g

2
q
mcs takes the value g = 2 and is consequently twice as large as would

be expected in the particle image.
If we want to interpret the Zeemann term in the quantum-like form (89)

of the evolution equations, we must first identify the quantum-like quantity S
corresponding to s. The formula ρs = ψ∗a

~
2σabψb which results directly from

the definitions of h and ψ, suggests the choice Sab = ~
2σab; the same result

for the “spin operator” S is obtained with the help of the angular momentum
commutation relations in QT. The quantum-like formulation (89) of the evo-
lution equations leads of course to the same result for g as (90), (93), (96):
The Zeemann term in (89) may be written in the form µop

s B, and the rela-
tion between S and the operator of the magnetic moment µop

s is given by
µop

s = − g2
e
mcS with g = 2. This value of the gyromagnetic factor has been

experimentally confirmed to a good approximation (there are corrections to
this value that are not of interest here).

The correct gyromagnetic factor g = 2 was obtained by Dirac in 1928,
in the course of the derivation of the relativistic wave equation that bears
his name [45]. It has long been assumed that the deviation from g = 1 is to
be regarded as a relativistic (as well as quantum) effect. About four decades
later Levy-Leblond showed, however, that the same correct value of g may
also be derived from Schrödinger’s equation if a linearization with regard to
the differential operator ∂k is performed [46]. One of the assumptions made
by Dirac is that the basic quantum equations for a particle should be linear
in all first order derivatives. This assumption may be partly motivated by the
relativistic space-time structure considered by Dirac. It’s physical meaning
is, however, not invariably linked to this space-time structure. Lévy-Leblond
made the same assumption as Dirac for the non-relativistic space-time and
obtained a differential equation for a four-component spinor, just as in Dirac’s
theory. This four-component spinor is composed of two two-component spinors
ψ̂ and χ̂ which obey the equations

[~
ı

∂

∂t
+ V (q)

]
ψ̂ − σk

~
ı

∂

∂qk
χ̂ = 0, (97)
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σl
~
ı

∂

∂ql
ψ̂ + 2mχ̂ = 0. (98)

The two-spinor χ̂, defined as a linear combination of derivatives of ψ̂ with
respect to ql, plays obviously the role of an auxiliary variable. If χ̂ is inserted
in (97) one obtains the field free Pauli-Schrödinger equation if the derivatives

of ψ̂ with respect to qk commute with each other. If, on the other hand, a gauge
field is turned on with the help of the miminal coupling rule, one obtains Pauli’s
equation with the Zeemann term including the correct factor g = 2. Lévy-
Leblond’s derivation shows that spin is not a relativistic phenomenon. This
fact is still not widely known. You can still find statements like: “Quantum spin
arises from the combination of special relativity with quantum mechanics” [47].

The value g = 2, which is “anomalous” in the sense of a deviation from
the result of the particle image, cannot therefore be explained as a relativis-
tic (quantum mechanical) effect. This convenient explanation breaks down.
Instead, the question now arises why the linearity in ∂k should be responsible
for this deviation. The answer may be found in an unjustly forgotten work [42]
by Eberlein from 1962. In this work, which provides the basis for our above
considerations, the correct value g = 2 was found for the first time in the
framework of non-relativistic QT.

As discussed in more detail in section 6.1, Eberlein introduced a matrix
representation of Euclidean space that is suitable for describing the behav-
ior of spinors. The deeper reason for this lies in the topology of the rotation
group. The result of these topological considerations agrees with the result of
the “linearization” (with regard to the differential operator), which was car-
ried out by Levy-Leblond following Dirac’s method. A comparison of these
two processes shows that this is no coincidence: The conditions for a meaning-
ful “linearization” lead to the same commutation relations as the conditions
for a consistent spinor representation of R3. This means that the unclear
requirement of “linearity” may be replaced by the obvious requirement that
the topological structure of the rotation group has to be correctly taken into
account. But this means that actually no assumption at all is required in order
to be able to derive the correct g-factor (it is tempting to associate the factor
2 with the ratio 4π/2π).

This insight automatically leads to the next question. If the deviation of
the gyromagnetic factor from 1 is a purely topological effect why should we
then need QT to derive it. The answer given by the present theory is that
we actually do not need QT to derive it; according to the present derivation,
it may be classified as a semiclassical (or semiquantal) effect. The fact that
the Zeeman term is not a quantum effect may also be realized from the very
absence of ~ in the constant of proportionality between µop

s and S (the ~
that appears in the definition of S is irrelevant, as discussed in section 4.2).
It should also be mentioned in advance that the transition to QT carried out
below does not lead to any modification of the Zeemann term. The latter is a
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consequence of the minimal coupling rule if the momentum field is displayed
correctly - that is, taking into account its vortical degrees of freedom.

Let us now ask for possible interpretations of the “magnetic moment of
the electron”. In the particle picture it was suggested by Uhlenbeck and
Goudsmit [48] that an “intrinsic” angular momentum of the electron, called
spin, is responsible for the observed effects. The magnitude of the spin vector
is assumed to be a constant equal to ~

2 . As already mentioned, the form of the
relevant coupling term is compatible with this assumption, but not the magni-
tude of the prefactor (g = 2 instead of g = 1). The second, much more serious
shortcoming is the universally accepted fact that such a classical intrinsic spin
cannot exist because it is in conflict with fundamental physical principles [49].
While the theories of Dirac [45], Eberlein [42], and Levy-Leblond [46] provide
an explanation for the value g = 2, the fundamental second difficulty remains.
In a relativistic world the construction of a classical model for a spinning
electron is just as impossible as in the non-relativistic case.Thus, while the
existence of quantum spin is experimentally extremely well confirmed, a clas-
sical counterpart of this property - if interpreted as a property of individual
electrons - does not exist [50]. Nevertheless, the intuitive ideas of Uhlenbeck
and Goudsmit dominate our thinking about spin even today. The reason is
that there is no better explanation, at least in the framework of the individu-
ality interpretation (particle picture) of QT. This represents a painful gap in
our understanding of nature, especially in view of the fundamental importance
of spin for the stability of matter.

This gap in our understanding disappears if one renounces the claim to be
able to describe the behavior of individual particles with the help of QT. In
the ensemble interpretation on which the present work is based, it is possible
to explain the origins of quantum spin in a simple way: The momentum field,
which describes a collective of particles and assigns a momentum to every
point of configuration space, must have three independent components, as
space is three dimensional. This simple fact leads to the appearance of two
additional fields describing an internal degree of freedom of the ensemble (so
one can dispense with the strange idea that a point particle has internal degrees
of freedom). After linearization one obtains the complete basic equation of
non-relativistic QT for a single particle, derived by Eberlein and Levy-Leblond.

It is of course also possible to introduce additional spin degrees of freedom
in phase space. The problem here, however, is that you then make assump-
tions that do not correspond to reality. In contrast, the existence of spin in
the ensemble theory follows automatically from the basic assumption that
the dynamic variables of quantum theory only depend on the space-time
coordinates as independent variables.

The two difficulties of the individuality interpretation mentioned above do
not arise in the ensemble interpretation. The difficulty, or better impossibility,
to understand spin as an intrinsic angular momentum of a single particle does
not exist in the ensemble theory, since the spin in this interpretation is a
collective property that results from a vortical component in the momentum
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distribution of the probabilistic ensemble of all particles. Of course, there is
then no difficulty in accepting a deviation of the gyromagnetic ratio from the
single particle value.

7 Transition to quantum theory by linearization

Let us briefly recap at this point. Our first step was the projection
from phase space to configuration space, transforming Eqs. (1)-(4) to
Eqs. (7), (8), (14), (15). With this first, most fundamental step, the globally
valid theory PM was converted to the only locally valid theory QA. The next
two steps were the introduction of independent variables (potentials) and the
transition to canonical Clebsch potentials. Of course, these two steps, that led
to Eqs. (66)-(69) do not change anything in the fundamentally inacceptable
nature (only local validity) of the above theory. This also applies to the next
step that we have carried out, namely the rewriting of the basic equations in
the quantum-like form (79).

The form (79) of the QA, in which the quantum variable ψ is already
used, is still a theory in which particle trajectories exist - albeit subject to
“local validity” as discussed in III. Using this form of the basic equations
of QA, the influence of an external electromagnetic field could be taken into
account in a simple way, with the help of the minimal coupling rule. This form
also allows a particularly simple transition to QT. This transition must be
performed in such a way that the global validity, which has been lost during
the projection, emerges again from the locally valid QA. This requires either
linearizing Eq. (79) or randomizing Eqs. (66)-(69), as discussed in detail in III.
It will be shown that both kinds of “quantization” can be carried out quite
analogously to the spinless case. This final transition to QT is a process that
is completely independent from the presence or absense of an electromagnetic
field. We therefore omit the electrodynamic terms in (89) for the sake of clarity.

The transition to QT by linearization takes place in a simple manner by
omitting the non-linear term on the right-hand side of Eq. (79). In the resulting
quantum theoretical evolution equation[

~
ı
∂t −

~2

2m
∂k∂k + V

]
ψa = 0, (99)

the role of S, ϑ, ϕ as functions defining the momentum field is destroyed and
the particle equations of motion q̇k = vk(q, t) become meaningless. All theo-
rems (such as those of Helmholtz type) that are based on deterministic laws
for particle motion become invalid. This conclusion is of course the same as in
the irrotational case studied in III. Probabilistic theories of this kind, in which
probabilistic statements about particles can be made, while no statements can
be made about the orbits of the particles, were referred to as Type 3 theo-
ries in an earlier work of the present author [51]. Thus, the restoration of the
global validity of our theory leads to a radical change in its physical meaning.
Just as radical is the change in the mathematical description that is now made
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possible by linearity. The new probabilistic structure, the role of eigenvalues
and non-commuting observables, Born’s rule, and other characteristics of QT
were derived in I and II.

The equation of motion (99) is a doubling of the Schrödinger equation and
at first glance appears to be equivalent to it. But this is not the case; the new
discrete degree of freedom has important physical consequences even in the
absence of an external electromagnetic field. The latter may be introduced in
the same way as in section 6.2 and leads to Eq. (89) with vanishing right hand
side.

7.1 Alternative description of the linearization

Let us ask which modifications Eqs. (66)-(69) will undergo as a consequence
of the transition to QT. The answer provides us with a reformulation of
Schrödinger’s equation in terms of the variables S, ϕ, ϑ, ρ which will be useful
later. We assume that the new equations take the form

∂S

∂t
(q, t) +

~
2

cosϑ(q, t)
∂ϕ

∂t
(q, t) +H0

(
q,
∂S

∂q
+

~
2
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∂ϕ

∂q

)
= LS , (100)[
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k
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∂q

)
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∂qk

]
ϕ(q, t) = Lϕ, (101)[
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cosϑ(q, t) = Lϑ, (102)

∂ρ

∂t
(q, t) +

∂

∂qk
ρ(q, t)V 0

k

(
q,
∂S

∂q
+

~
2

cosϑ
∂ϕ

∂q

)
= Lρ, (103)

with new terms LA, where A = S, ϕ, ϑ, ρ, replacing the zeros on the right-
hand sides of Eqs. (66)-(69).

We will here determine the quantum terms LA in a purely formal way,
as a consequence of the linearization, postponing questions concerning deeper
physical meaning. We denote the left-hand sides of (66)-(69) by TA. The four
basic equations TA = 0 of QA are equivalent to the nonlinear equations

Lψ + M = 0, (104)

where L and M are given by L = ~
ı ∂t −

~2

2m∂k∂k + V and Ma =
~2

2m

[
fk(a)fk(a) + (∂kfk(a))

]
ψa. On the other hand, the four basic equations

TA = LA of QT are equivalent to the linear equations

Lψ = 0. (105)

We multiply the spinor (104) from the left by ψ+ and φ+, where the spinor

φ, which is orthogonal to ψ, is defined by φ =
√
ρ e

ı
~S (u∗2,−u∗1)

T
. Taking

advantage of the fact that all equations are evolution equations, containing
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only a single first-order derivative with respect to time, we can identify the
real and imaginary parts of the resulting expressions and obtain the relations

ρTS + ı
~
2
Tρ = ψ+M + ψ+Lψ (106)

−~
2
ρTϑ + ı

~
2
ρ sinϑTϕ = φ+M + φ+Lψ. (107)

We proceed in the same way with the spinor (105) and obtain the relations

ρ (TS − LS) + ı
~
2

(Tρ − Lρ) = ψ+Lψ (108)

−~
2
ρ (Tϑ − Lϑ) + ı

~
2
ρ sinϑ (Tϕ − Lϕ) = φ+Lψ. (109)

Comparison of (106), (107) and (108), (109) shows that the terms LA obey
the equations ρLS + ı~2Lρ = ψ+M and −~

2ρLϑ + ı~2ρ sinϑLϕ = φ+M . It is
of course reasonable that the additional quantum terms may be determined
from the nonlinear term M which makes the difference between QA and QT.
A longer calculation leads to the result

LS =
~2

8m

{
4ρ−

1
2

(
∂k∂kρ

1
2

)
− sin2 ϑ (∂kϕ) (∂kϕ)− (∂kϑ) (∂kϑ)

}
, (110)

Lϕ =
~

2m

{
cosϑ (∂kϕ) (∂kϕ)− 1

sinϑ
(∂k∂kϑ)− 1

ρ sinϑ
(∂kρ) (∂kϑ)

}
, (111)

Lϑ =
~

2m

{
2ρ−

1
2

(
∂kρ

1
2

)
sinϑ (∂kϕ) + 2 cosϑ (∂kϕ) (∂kϑ) + sinϑ (∂k∂kϕ)

}
,

(112)

Lρ = 0. (113)

Equations (100)- (103), with the terms LA given by (110)- (113) are equiva-
lent to the spinorial Schrödinger Eq. (99). Apart from the continuity equation
(103), which remains unchanged, the new quantum terms lead to a coupling
of the variables S, ρ, ϕ, ϑ which makes the concept of individual particle tra-
jectories meaningless. The situation is basically the same as in the case of
irrotational momentum fields treated in III; in this case only the first term
of LS survives, which is sometimes (misleadingly) referred to as “quantum
potential”. Our next task, performed in section 8, is to understand the terms
LA with the help of statistical concepts.

The form (100)- (103) of the Schrödinger equation, with the terms LA given
by (110)- (113), was derived many years ago in pioneering work by Bohm and
co-workers [26], [52] and Takabayasi [38]. In earlier work by Takabayasi [33] and
also in works by Bialynicki-Birula [53] hydrodynamic variables (velocity field
or momentum field) in addition to spin variables were used as dynamic vari-
ables instead of the three quantum mechanical potentials used in the present
theory. The basic equations of this “hydrodynamic formulation” of QT [53]
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may be derived from the above equations by means of a tedious differentiation.
The derivation of the above equations presented here can be seen as a con-
tinuation and completion of the theories of Bohm and Takabayasi. It has now
been possible to derive the same equations starting from the well-understood
classical theory PM, and give also plausible reasons for the individual steps
leading from PM to QT.

8 Transition to quantum theory by
randomization

The zeroing of the nonlinear term in Eq. (79), that creates QT is, in physical
terms, a randomization. However, it is an unusual kind of randomization.
With the standard concept of randomization, as used in classical probabilistic
physics, only the initial conditions are random while the particle movement
itself is ruled by deterministic laws. This standard type of probabilistic theory
was referred to as type 2 theory in a previous work of the present author [51]. In
contrast, the above transition from (79) to (99) makes the equations of motion
themselves “random” (which means nonexistent), while statistical predictions
about the behavior of the particles are still possible. This (quantum) type of
probabilistic theory was referred to as type 3 theory [51]. The question arises as
to whether we can better understand this transition from type 2 to type 3. Are
there statistical assumptions that are equivalent to the linearization process,
explaining, in an alternative way, the transition from (79) [or (66)-(69)] to (99)
? In III it was shown that this question can be answered in the affirmative
in the case of irrotational momentum fields. Here we show that the same
holds true in the present completed theory. The following construction is an
expanded and improved version of an earlier theory of the present author [27].

8.1 Definition of Ehrenfest-like relations

There should be as close a relationship as possible between the statistical
equations of type 3 that we want to construct, and the equations of classical
mechanics. We assume therefore the validity of Ehrenfest-like relations of the
form

dtq̄k(t) =
1

m
p̄k(t), (114)

dtp̄k(t) = Fk(q, t), (115)

dts̄k(t) = Tk(q, t),, (116)

where Fk(q, t) is the external force and the “macroscopic variables” q̄, p̄, s̄ are
defined as average values

q̄k(t) =

∫
dqρ(q, t)qk, (117)
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p̄k(t) =

∫
dqρ(q, t)Mk(q, t), (118)

s̄k(t) =

∫
dqρ(q, t)sk(q, t),, (119)

of the “microscopic” field variables q, M, s. The “statistical conditions” (114)-
(116) ensure that the mean values of Mk(q, t) and sk(q, t) obey particle-like
relations. We switch on an external electromagnetic field by taking into
account the terms containing Φ,A and B [see Eqs. (90), (94) and (96)] which
are induced by the process of minimal coupling. We do this because in the
course of the following derivation of Schrödinger’s equation, it will be possi-
ble to establish a connection between the “potentials” Φ,A and B on the one
hand and associated external forces F on the other hand. It is instructive to
write the energy and momentum components M0 and Mk in the form

M0 = ∂tS
′
+R0, Mk = ∂kS

′
+Rk, (120)

where

∂tS
′

= ∂tS + eΦ, ∂kS
′

= ∂kS −
e

c
Ak, (121)

R0 =
~
2

cosϑ∂tϕ, Rk =
~
2

cosϑ∂kϕ. (122)

Both the multivalued phase S
′

(in contrast to S the first derivatives of S
′

with
respect to qk and t are not interchangeable) and the terms Rk contain rota-
tional components of Mk. The terms that come from S

′
describe the external

field, and the terms that come from Rk describe the internal part of the rota-
tional component of the momentum field. The fundamental law of conservation
of probability

∂tρ+
1

m
∂kρMk = 0, (123)

with the probability current vk defined by mvk = Mk, completes the set of
our basic quations. Let us note that the forces F and T on the right-hand
sides of (115) and (116) have a completely different character. The form of T
is given by the minimal coupling mechanism [see Eq. (96)]. In contrast, the
form of F need not be specified, as will be shown in the next section.

8.2 Implementing the statistical conditions

The first statistical condition (114) is automatically satisfied due to the con-
tinuity equation and the definition of q̄k(t) and p̄k(t) . Using the continuity
equation again and performing some rearrangements, the second statistical
condition (115) takes the form

−
∫

dq(∂kρ)

[
M0 +

1

2m
MiMi

]
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+

∫
dqρ

[
1

m
MiΩik + (∂tMk − ∂kM0)

]
=

∫
dqρFk, (124)

where Ωik is the vorticity tensor defined by Eq. (12). We have not specified
the external forces that appear in our statistical theory. The reason is that the
form of these forces may be derived as a consequence of the special structure
of our theory. The Ehrenfest-like relations (114)-(116) are integral equations.
Our task is to derive one or more differential equations from these integral
equations. The forces F on the right-hand side of (115) must be designed to
allow this. That means there is a “statistical constraint” on the forces in the
present theory.

The concrete form of this restriction can already be seen in Eq. (124):
The permitted forces - that are compatible with the minimal coupling rule
- must already appear on the left-hand side of (124), namely in the form
of statistical mean values. Only such forces can be real, because they may
cancel with the same forces on the right-hand side, thus disappearing from
the integral equation and making he derivation of one or more differential
equations possible.

We now use the decomposition of M0 and Mk according to Eq. (120). The
square bracket in the second term of Eq. (124) takes the form:[

1

m
MiΩik + (∂tMk − ∂kM0)

]
=

1

m
(∂iS

′
+Ri) [∂i, ∂k]S

′
+ [∂t, ∂k]S

′

+
1

m
(∂iS

′
+Ri) (∂iRk − ∂kRi) + ∂tRk − ∂kR0, (125)

where [∂i, ∂k]S
′

= e
c (∂kAi − ∂iAk) and [∂t, ∂k]S

′
= − ec (∂tAk + c∂kΦ).

Because of the well-known relations Bk = εkij∂iAj and Ek = − 1
c∂tAk − ∂kΦ

the first term on the right hand side of (125) is given by the Lorentz force

F
(L)
k = eEk +

e

c
vi (∂kAi − ∂iAk) . (126)

So we write F = F(L) + F(2) and skip the Lorentz force from both sides of
Eq. (124). The second statistical condition now takes the form

−
∫

dq(∂kρ)

[
M0 +

1

2m
MiMi

]
+

∫
dqρ

[
+

1

m
(∂iS

′
+Ri) (∂iRk − ∂kRi) + ∂tRk − ∂kR0

]
=

∫
dqρF

(2)
k ,

(127)
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We now express the vortical components R0, Rk according to (122) in terms of
the Clebsch potentials and obtain after a few rearangements the representation

−
∫

dq(∂kρ)

[
M0 +

1

2m
MiMi

]
−~

2

∫
dqρ sinϑ

{
(∂kϕ)Dtϑ−(∂kϑ)Dtϕ

}
=

∫
dqρF

(2)
k ,

(128)
for the second statistical condition. At this point the third statistical condition
must be taken into account.

If we identify the minimal coupling force T with the right hand side of (96)
and use the continuity equation (123), the integral equation (116) takes the
form ∫

dqρ
[
Dtsk +

e

mc
εkijBisj

]
= 0. (129)

The trivial solution of this equation (vanishing of the square bracket) agrees
with the quasi-classical field equation (96). The simplest nontrivial differential
equation to be associated with the integral equation (129) has the form

Dtsk +
e

mc
εkijBisj =

~
2
Gk, (130)

where the Gk are three functions with vanishing average value. We split off the
factor ~

2 so that the functions Gk do not depend on the parameter defining the
length of the spin vector; the quantities Gk should only describe the influence
of the randomization. If we insert sk [see Eq. (95)] in (130) we obtain the
differential equations for the two independent field variables ϑ and ϕ,

Dtϑ =
e

mc
(B1 cosϕ−B2 sinϕ)− G3

sinϑ
, (131)

Dtϕ =
e

mc

1

sinϑ
(−B1 cosϑ sinϕ−B2 cosϑ cosϕ+B3 sinϑ) +

1

sinϑ
(G1 cosϕ−G2 sinϕ) .

(132)

The form of these differential equations is still undetermined since the func-
tions Gk are not known. What we do know is that the Gk have to obey the
conditions ∫

dqρGk = 0, Gksk = 0. (133)

The first of these says that the average value of Gk has to vanish, the second
is a solvability condition that takes into account the fact that s is a vector
of constant length. With the help of (131) and (132) we can now eliminate
the total derivatives Dtϑ and Dtϕ from the second statistical condition (128).
Performing some rearrangements and a partial integration Eq. (128) takes the
form

−
∫

dq(∂kρ)

[
M0 +

1

2m
MiMi + µiBi

]
−
∫

dqρµi∂kBi
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+
~
2

∫
dqρ
{
G1 cosϕ∂kϑ−G2 sinϕ∂kϑ+G3∂kϕ

}
=

∫
dqρF

(2)
k , (134)

We see that the vortical part of the momentum field leads to the potential
energy term µiBi, the force µi∂kBi, and to the integral depending on the
Gi. Except for the prefactor, the newly derived force agrees with the elec-
trodynamic force exerted by an inhomogeneous magnetic field on a magnetic
dipole. As is well known, it plays a central role in the interpretation of the
Stern-Gerlach experiment. We eliminate the new force by setting

F
(2)
k = −µi∂kBi + F

(3)
k . (135)

The remaining force F
(3)
k can only have the form −∂kV . This leads to the

usual mechanical potential V in the field equation. Then, the second statistical
condition takes the form

−
∫

dq(∂kρ)

[
M0 +

1

2m
MiMi + µiBi + V

]
+
~
2

∫
dqρ
{
G1 cosϕ∂kϑ−G2 sinϕ∂kϑ+G3∂kϕ

}
= 0, (136)

The second integral in Eq. (136) must be a contribution to the field equations.
This implies a relationship of the form

~
2

∫
dqρ
{
G1 cosϕ∂kϑ−G2 sinϕ∂kϑ+G3∂kϕ

}
=

∫
dq(∂kρ)L

′

0, (137)

whereby L
′

0 is an unknown function. Then the second statistical condition
takes the form

−
∫

dq(∂kρ)

[
M0 +

1

2m
MiMi + µiBi + V − L

′

0

]
= 0. (138)

The simplest nontrivial differential equation whose solutions solve this integral
equation is given by

M0 +
1

2m
MiMi + µiBi + V = L0, (139)

where the function L0 obeys the conditions

L0 = L
′

0 + ∆L0,

∫
dq(∂kρ)∆L0 = 0. (140)

We have thus transformed the second statistical condition, originally for-
mulated as an integral equation, into a partial differential equation. The
latter contains, however, 4 unknown functions Gi, L0 which are still to be
determined.
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8.3 Determination of the quantum terms Gi, L0

The first fundamental assumption that we made when constructing our
type 3 theory was the validity of the Ehrenfest-like relations (114)-(116).
This assumption led us to the field equations (123), (139), (131), (132) for
our dynamic variables ρ, S, ϑ, ϕ. These new equations differ from the field
equations of our original type 2 theory by terms Gi, L0, which are unknown
functions of our dynamic variables and their derivatives. The conditions listed
above are not sufficient to determine the Gi, L0. We need a second assumption,
presumably of a statistical nature. A most fundamental statistical principle
says that all states that are unknown must occur with the same probability. In
statistical mechanics (a type 2 theory) this principle is implemented through
the requirement for maximum entropy. In the problem at hand, we are faced
with the task of determining certain terms in a differential equation in accor-
dance with this principle. In this case, the same general principle leads to the
requirement for minimal Fisher information [54],[55],[51],[27]. In the follow-
ing we will derive the terms implied by the requirement of minimal Fisher
information with the help of a variational problem. Large parts of the related
calculations have already been reported[27]. In this regard, we may be brief
here.

We introduce the abbreviation L for the left hand side of Eq. (139) so that
this equation takes the form L − L0 = 0. We assume that the function L0

we are looking for depends only on the variables ρ, ϑ, ϕ, and their first and
second derivatives with respect to qk [27]. Our fundamental second statistical
assumption is that the spatial and temporal average value of L−L0 is extremal
with respect to the variation of S, ρ, ϑ, ϕ,

δ

∫
dt

∫
dqρ (L− L0) = 0. (141)

Furthermore, the four field equations (123), (139), (131), (132) must also be
fulfilled; we write this condition symbolically for the sake of brevity in the form

Ea = 0, a = ρ, S, ϑ, ϕ. (142)

The two conditions (141) and (142) lead to differential equations for Gi, L0.
As shown in detail in [27], the physically relevant solution of these equations
is given by

L0 =
~2

2m

[
1
√
ρ

∂

∂qk

∂

∂qk

√
ρ− 1

4

∑
k

{
sin2 ϑ

(
∂ϕ

∂qk

)2

+

(
∂ϑ

∂qk

)2}]
, (143)

~G1 =
~2

2m

1

ρ

∂

∂qk
ρ

(
1

2
sin 2ϑ sinϕ

∂ϕ

∂qk
− cosϕ

∂ϑ

∂qk

)
, (144)

~G2 =
~2

2m

1

ρ

∂

∂qk
ρ

(
1

2
sin 2ϑ cosϕ

∂ϕ

∂qk
+ sinϕ

∂ϑ

∂qk

)
, (145)
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~G3 = − ~2

2m

1

ρ

∂

∂qk

(
ρ sin2 ϑ

∂ϕ

∂qk

)
. (146)

A new adjustable parameter appears on the right-hand-sides of these expres-
sions which has been identified with ~2/2m. Let us recall here that two
different adjustable parameters appeared in the course of our developments
both of which were identified with ~. The first ~ was associated with the
length of the spin vector s. The second ~ is associated with the quantum-
mechanical principle of maximal disorder. The physical meaning of these two
adjustable parameters is different, but they must both be identified with
Planck’s constant in order to enable the transition to QT.

As may be easily checked, the conditions (133), (137), (140) for the L0, Gi
are all fulfilled. In particular, L0 = L′0 + ∆L0, where

L′0 = − ~2

8m

[∑
k

{
sin2 ϑ

(
∂ϕ

∂qk

)2

+

(
∂ϑ

∂qk

)2}]
, ∆L0 =

~2

2m

1
√
ρ

∂

∂qk

∂

∂qk

√
ρ,

(147)
and L′0 fulfills (137). One can also show that the mean value of L0 agrees with
the Fisher functional [55], [27]. If the above solution for L0 is inserted, then
the variational principle (141) leads to the correct field equations (142). We
did not use the principle of variation here in the usual way, as a mathematical
tool to derive field equations from a given Lagrangian function, but we use it
instead to construct the Lagrangian itself.

Finally, we should compare the above field theory, which is based on sta-
tistical postulates, with the earlier one generated by linearization. The easily
verifiable relations

LS = L0, (148)

Lϑ = − 1

sinϑ
G3, (149)

Lϕ =
cosϕ

sinϑ
G1 −

sinϕ

sinϑ
G2. (150)

show that both theories are identical. We have thus shown that one may obtain
the Pauli equation[

~
ı
∂t − eΦ−

~2

2m

3∑
k=1

(
∂k − ı

e

~c
Ak

)2

+ µBσ
kBk + V

]
ψ = 0. (151)

either through the “formal” process of linearization or through the implemen-
tation of some plausible statistical postulates. The first way is a discontinuous
process that destroys the possibility of describing particle motion and thus
has the physical meaning of a randomization. With the second way, we have
replaced this discontinuous process with a continuous one. This enabled us
to understand the detailed nature of this randomization. The second way is
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longer and “less elegant” than the first, but allows a more precise insight into
the transition from QA to QT.

9 Discussion

The second version of the HLLK reported here starts from PM, generates the
theory QA by projection onto configuration space, and then realizes the tran-
sition to QT by a linearization or randomization. The theory QA, appearing
only in this second version of the HLLK, represents the transition area, the
“borderland”, between classical physics and QT [56]. This theory is unphys-
ical in that the particle trajectories that occur are only locally valid and are
not realized in nature (although they may be a good approximation in cer-
tain situations). The importance of this theory is that it represents a clearly
defined and justifiable intermediate step in the construction of the QT.

Let us first summarize what has been achieved so far by looking at the list
of essential properties of QT already given in II:

1. Schrödinger’s equation as fundamental dynamical law - and eigenvalues as
observable numbers.

2. The nonstandard probabilistic structure of QT - in particular non-
commuting observables.

3. Born’s rule - the law which tells us how to extract probabilistic predictions
from the theory.

4. The minimal-coupling rule - the way interactions are formulated in QT.
5. The existence of spin - a particularly mysterious phenomenon believed to

belong to QT exclusively
6. The anomalous value of the magnetic moment of the electron - a spin related

phenomenon
7. The spin-statistics connection - a spin related multi-particle phenomenon

Points 1, 2 and 3 were derived in papers I and II. Without going into detail,
we mention that the generalization of Born’s rule to degenerate states may
be obtained in a straightforward way (the classical counterpart of degener-
ate states are non-connected level sets). In contrast to I and II, only a single
observable, namely the Hamilton function H(q, p), is studied in III and the
present work. Our research in the “borderland” created a new derivation of the
Schrödinger equation, which allows for a deeper understanding of the relation-
ship between QT and classical physics. We found, as most important result of
the present work, that spin is not a purely quantum mechanical phenomenon
and that the value 1/2, which is experimentally observed for the spin of all
massive structureless particles, is a consequence of the three-dimensionality of
space. An associated result is the value g = 2 for the gyromagnetic ratio the
electron. We have thus essentially understood points 5 and 6. In the course of
our second derivation of the Schrödinger equation (in which statistical assump-
tions were used) we were also able to understand why in QT the influence of
external force fields must be described with the help of potentials. Of course,
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we do not claim to have explained all the details related to points 1− 6. The
last point 7, the spin-statistics connection for massive particles, remains open
at the moment, but we have little doubt that this point can also be explained
in the framework of the HLLK. In the remainder of this section, we continue
to discuss some relevant points in more detail.

9.1 The meaning of spin

“Pls tell me why is spin of an
electron +1/2 or -1/2 and not
something like +1 or -1?”

Tridib Banerjee (age 16)

In this work it was possible to identify the origin of spin. This property is
not, as has long been assumed, to be regarded as a purely quantum mechan-
ical phenomenon. Rather, its origin may be found in the quasi-classical (or
quasi-quantum) theory QA, which represents the borderland between classical
physics and QT. As this theory is not realized in nature it would not be correct
to claim that spin has a classical origin. There is no such phenomenon in phase
space (although it is formally possible to introduce corresponding degrees of
freedom) since no self-rotation of individual particles exists in nature.

The possibility of discovering the origin of spin arises by replacing the
particle momenta p by momentum fields M(q, t), and thus halving the number
of degrees of freedom. A necessary prerequisite for the occurrence of spin is the
simple fact that all degrees of freedom of the momentum fields M(q, t) have
to be taken into account, in particular those which result in a non-vanishing
rotation. The origin of the quantum spin is thus a collective property of the
probabilistic ensemble in configuration space, which is associated with the
rotational degrees of freedom. The idea that spin should better be understood
as a non-localized phenomenon has already been expressed several times in
the literature [50], [57].

A simple and extremely important property of nature is that spin-1/2
particles are fermions, which means they obey Fermi-Dirac statistics. When
asked about this fact, Richard Feynman suggested that there should be a
simple explanation for such a fundamental fact. And that if we cannot find
such a simple explanation, we should admit that we have not understood the
phenomenon. We cannot give an answer to Feynman’s question in the present
work. But we can answer an even more fundamental question, a question so
fundamental that it is hardly ever asked by professionals. Namely the question,
why all massive structureless particles in nature have spin 1/2. Based on the
present reconstruction of QT for the case of a single particle, the reason is the
three-dimensionality of space. As a consequence of this three-dimensionality
we have to introduce three functionally independent potentials in order to
represent the momentum field in a correct way. Together with the probability
density, we have four independent real functions that is a 2-component spinor,
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in other words a spin 1/2 particle. This answer is hard to beat in terms of
simplicity.

According to the current state of knowledge in the theory of elementary
particles, (almost) all structureless massive particles are actually spin 1/2
particles. One would justifiably object that reality has a relativistic space-time
structure that is not correctly described by our non-relativistic theory. But
it is also a fact that our conclusion is essentially based only on the number
of spatial dimensions. It is therefore not unreasonable to assume that our
conclusion remains valid even when moving to a relativistic theory.

9.2 The limit ~ → 0 of the Pauli-Schrödinger equation

In this section we discuss the question of which theory the Pauli-Schrödinger
theory “reduces” to in the limit ~→ 0. There are two types of reduction which
Rosaler called formal and empirical reduction [58]; a similar distinction was
made by Berry [56]. The important difference between these two concepts was
discussed in detail in III. Here we are only examining the concept of formal
reduction, that is, we are examining the behavior of the basic equations of our
theory in the limit of small ~.

The above question was decided for a long time on the basis of philosoph-
ical postulates. Also, no distinction was made between formal and empirical
reduction. The first mathematically precise investigation of the question of
formal reduction was carried out in [59] and II and led to the conclusion that
QT (without spin) cannot be reduced to either CM or PM. This conclusion
meant that - quite contrary to the prevailing opinion - QT cannot (formally)
be reduced to classical physics, but, on the contrary, it must be possible to
derive it from classical physics. This conclusion thus provided the basis for the
reconstruction of QT carried out in I-III and here. The general conclusion that
QT reduces for small ~ neither to CM nor to PM but to a (quasi-classical)
probabilistic theory in configuration space, does not depend on whether we
take spin into account or not. The presence of spin leads however to some
peculiarities, which we want to summarize in the following.

The version of the Pauli-Schrödinger equation that is best suited for exam-
ining the limit of small ~ is given by Eqs. (139), (130), (123) for the potentials
S, ϑ, ϕ and the probability density ρ. To make the dependence on ~ visible,
we write Eqs. (139), (130) in the form

∂tS + eΦ +
~
2

cosϑ∂tϕ+
1

2m

∑
k

(
∂kS −

e

c
Ak +

~
2

cosϑ∂kϕ

)2

− ~
2

e

mc
siBi = L0,

(152)[
∂t +

1

m

(
∂iS −

e

c
Ai +

~
2

cosϑ (∂iϕ)

)
∂i

]
hk +

e

mc
εkijBihj = Gk, (153)

where L0 and Gk are of the order ~2 and ~, respectively and the mechanical
potential has been ommitted. We do not write down the continuity equation,
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which behaves in an obvious way. If we set ~ = 0 in these equations, we obtain
the equations

∂tS + eΦ +
1

2m

∑
k

(
∂kS −

e

c
Ak

)2

= 0, (154)[
∂t +

1

m

(
∂iS −

e

c
Ai

)
∂i

]
hk +

e

mc
εkijBihj = 0, (155)

which, together with the continuity equation, represent the classical limit of
the Pauli-Schrödinger equation. This is a classical (deterministic) field theory
defined by the Hamilton-Jacobi equation (154) for a spinless charged particle
in an electromagnetic field and the equation of motion (155) of the variable
hk which is associated with the vortical component of the momentum field.
The change of hk with time is determined by the solution S of (154), while
conversely (154) does not depend on hk .

The “survival” of spin variables in the case ~ = 0 is no surprise in our the-
ory, since we have identified the vortical components of the momentum field
as origin of quantum spin. In all works in which Eqs. (152), (153) were derived
so far, the starting point was the quantum mechanical Pauli-Schrödinger
equation (151), which was then rewritten, using a representation like (75) (see
[38], [26], [60]). The limiting case ~ = 0 was rarely dealt with in these theo-
ries, see however [60]. One reason for this might be that this limiting case is
not compatible with the prevailing interpretation of spin as a purely quantum
mechanical phenomenon. Due to this interpretation, all spin variables (or the
corresponding terms in a Lagrangian function) should disappear from the the-
ory in the limit ~ = 0. The fact that this is not the case led Yahalom to the
conclusion that the Pauli theory “has no standard classical limit” [60]. In fact,
one could have concluded from this fact that spin cannot be a purely quantum
mechanical phenomenon.

A second difficulty is as follows. If one wants to eliminate only terms of
order ~2 in Eqs. (152), (153) and keep all terms of order ~, then one finds
that this is not possible, since it destroys the structure of the kinetic energy.
A meaningful theory, namely the Eqs. (90)-(94) which were the starting point
for our last step to QT, can only be obtained if one eliminates only the terms
L0 ~Gk and keeps terms of any order in ~ that come from the spin amplitude.
The present derivation from classical physics provides us automatically with
a physically meaningful distinction between these two kinds of ~2 terms.

9.3 The role of potentials

Why does the minimal coupling rule apply in QT? The point where it appears
in our formalism is the projection from phase space to configuration space.
This projection introduces an energy field M0 and three components of the
momentum field Mk [we may write these in the simplest case as derivatives
with respect to t and qk of an action variable s(q, t), see Eq. (15)]. An external
field can then no longer be taken into account by introducing a force field,
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as in Newton’s equations. Such an external influence can actually only be
taken into account by modifying the fields M0 and Mk. The minimal coupling
rule represents the simplest possible modification of these fields, namely the
addition of externally specified fields (potentials) eΦ and − ecAk to M0 and Mk.
Konopinski has already pointed out that potentials provide field energy and
momentum for exchange with charged matter [61]. In the context of the present
derivation, there seems to be almost no alternative to this interpretation.

In the present framework of the ensemble interpretation of QT, it is clear
that a local argument based on potentials is questionable. Rather, the non-
gauge-invariant quantities eΦ and − ecAk should be interpreted as describing
the influence of an external electromagnetic field on a statistical ensemble as
a whole. This fact requires a fundamental reconsideration of the Aharonov-
Bohm effect, which will not be undertaken here.

9.4 Concerning the interpretation

Large parts of the scientific community are still dominated by the idea that
the “single-particle Schrödinger equation” describes the behavior of a single
particle. This idea is incompatible with the fact that one can only derive statis-
tical predictions about the behavior of a single particle from the single-particle
Schrödinger equation. All attempts to remove this logical contradiction with
the help of complicated constructions have been unsuccessful and always will
be. It can only be removed by abandoning certain philosophical principles, such
as the belief that any “complete” description of nature must be deterministic.
Then one can accept that the one-particle Schrödinger equation describes only
a statistical ensemble of individual particles. This statistical interpretation
forms the basis for the theory described in this series of works, which allows
for an almost complete reconstruction of QT. This reconstruction includes not
only the formal aspects but also all essential questions of the interpretation of
the formalism. This high degree of agreement is a strong argument in favor of
the ensemble interpretation.
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