
HAL Id: hal-04079883
https://hal.science/hal-04079883

Preprint submitted on 24 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extended version: Tamarin-based Analysis of Bluetooth
Uncovers Two Practical Pairing Confusion Attacks

Tristan Claverie, Gildas Avoine, Stéphanie Delaune, José Lopes Esteves

To cite this version:
Tristan Claverie, Gildas Avoine, Stéphanie Delaune, José Lopes Esteves. Extended version: Tamarin-
based Analysis of Bluetooth Uncovers Two Practical Pairing Confusion Attacks. 2023. �hal-04079883�

https://hal.science/hal-04079883
https://hal.archives-ouvertes.fr

Tamarin-based Analysis of Bluetooth Uncovers Two Practical
Pairing Confusion Attacks∗

Tristan Claverie
ANSSI, IRISA, INSA de Rennes

Paris, France
tristan.claverie@ssi.gouv.fr

Gildas Avoine
IRISA, INSA de Rennes

Rennes, France
gildas.avoine@irisa.fr

Stéphanie Delaune
Université de Rennes, CNRS, IRISA

Rennes, France
stephanie.delaune@irisa.fr

José Lopes Esteves
ANSSI

Paris, France
jose.lopes-esteves@ssi.gouv.fr

ABSTRACT
This paper provides a Tamarin-based formal analysis of all key-
agreement protocols available in Bluetooth technologies, i.e., Blue-
tooth Classic, Bluetooth Low Energy, and Bluetooth Mesh. The
automated analysis finds several unreported attacks, including two
attacks (reported by Bluetooth SIG as CVEs) that exploit the confu-
sion of pairing modes, i.e., when a communicating party uses the
secure pairing mode while the other one uses the legacy pairing
mode. They have been validated in practice using off-the-shelf im-
plementations for the genuine communicating parties, and a custom
BR/EDR machine-in-the-middle framework for the attacker.

CCS CONCEPTS
• Security and privacy→ Formal security models;Mobile and
wireless security; Security protocols.

KEYWORDS
Protocol security, Formal models, Bluetooth, Attacks

1 INTRODUCTION
Bluetooth technologies are more and more deployed in the world
as ways to transmit data over-the-air. In 2021, 4.7 billion Bluetooth
devices were shipped according to the Bluetooth Special Interest
Group (SIG) [23]. There are actually three distinct Bluetooth tech-
nologies: Bluetooth Classic (BR/EDR), Bluetooth Low Energy (BLE),
and Bluetooth Mesh (BM). While the details differ significantly, all
of them allow to secure communications, providing confidentiality,
integrity, and authentication.

Many flaws have been discovered over the years in Bluetooth
standards, including vulnerabilities in the protocols that are dis-
covered regularly. All those flaws are not equivalent, some of them
being related to the use of improper cryptographic primitives [29–
31], others are purely protocol-level flaws [2, 3, 14, 35, 36], and
a few ones rely on incorrect implementations of cryptographic
primitives [7, 17, 33]. The behaviour of Bluetooth stacks was also
studied, especially on mobile platforms [4, 38, 39], revealing so
vulnerabilities in implementations.

Bluetooth communication securitymostly relies on the key agree-
ment step, where two devices exchange a cryptographic key. Many

∗This work received funding from the France 2030 program managed by the French
National Research Agency under grant agreement No. ANR-22-PECY-0006.

different protocols and sub-protocols can be used to perform this
step in Bluetooth, which makes the security analysis highly com-
plex. It is worth noting that analyses of vulnerabilities usually focus
on a subset of protocols: whether or not these vulnerabilities also
impact other Bluetooth protocols remain so unresponded.

The pairing confusion introduced in [35] is an attack that exploits
the interaction of two key-agreement protocols in Bluetooth. It
consists of a scenario where an entity uses Protocol A while the
other communicating entity uses Protocol B, such that they are
not aware of this protocol mismatch. Usually, such a mismatched
interaction ends with a failure. However, for some protocol pairs,
the attacker can exploit messages sent in Protocol A to break the
security properties of Protocol B, and conversely.

Formal protocol verification is the process of abstracting a proto-
col to prove that the considered security properties hold. Tamarin
Prover [27] and ProVerif [8] are state-of-the-art tools that automat-
ically perform this formal protocol verification. They have been
used for verifying complex protocols such as TLS 1.3 [6, 16] and 5G-
AKA [15]. When their analyses complete, they grant either a formal
proof that the considered security property hold, or an attack.

Automated formal verification tools can be used to study proto-
col confusion, in particular pairing confusion, which is done in [36]
using ProVerif. This paper does not provide a systematic analy-
sis, though, and only considers perfect cryptographic primitives.
Although it is common in the litterature to consider perfect crypto-
graphic primitives, this is far from reflecting the ground truth.

Contributions. In this paper, comprehensive Tamarin models of
all Bluetooth key-agreement protocols are detailed. Those models
are enhanced with representations of cryptographic imperfections
that affect Bluetooth. In particular, they are used to systematically
analyse pairing confusions in Bluetooth key agreements. Tamarin so
automatically identifies previously published attacks and identifies
five new attacks, including four novel cases of protocol confusion.
We highlight that the Bluetooth SIG assigned two CVEs for two
of those attacks that defeat currently known mitigations against
pairing confusions. To explore the practicality of these attacks, a
BLE and a BR/EDRMachine-in-the-Middle (MitM) are implemented
on the respective pairing methods of those technologies. Two addi-
tional attacks defeat proposed patches of BM Provisioning. To the
best of our knowledge, this is the first practical MitM implementa-
tion on the BR/EDR pairing.

1

Outline. Section 2 provides an introduction to Bluetooth key-
agreement protocols and their known flaws. Section 3 introduces
formal verification with Tamarin and Section 4 details the modelling
choicesmade for this study. The results are detailed and compared to
previous works in Section 5. New attacks are presented in Section 6
and their implementation in Section 7. Section 8 concludes this
paper.

2 BACKGROUND
In this section, we introduce the three distinct Bluetooth tech-
nologies: Bluetooth Basic Rate / Enhanced Data Rate (BR/EDR),
Bluetooth Low Energy (BLE), and Bluetooth Mesh (BM).

2.1 BR/EDR and BLE
Bluetooth Basic Rate / Enhanced Data Rate (BR/EDR) and Blue-
tooth Low Energy (BLE) were standardised in 1999 and 2010 respec-
tively [10]. BR/EDR is routinely used in audio devices (e.g., earbuds,
speakers) while BLE is commonly used in other smart devices (e.g.,
watches). They have a similar security architecture.

2.1.1 Security properties. In BR/EDR and BLE, the specification
defines confidentiality, integrity and authenticity of the commu-
nication. Confidentiality and integrity are granted with the use of
symmetric keys to protect the communication. Those symmetric
keys are generated through a key agreement step. Authenticity is
an optional property that depends on whether the key agreement
used is authenticated or not.

2.1.2 Key Agreement. In BR/EDR and BLE, the key agreement step
is called Pairing and is performed between devices respectively
called Initiator and Responder. To uniquely identify each protocol,
two concepts are introduced. The term Pairing mode refers to the
type of Pairing, it can be Legacy or Secure. The term Pairing method
refers to the protocol name as standardized in the specification.

Table 1: BR/EDR and BLE Pairing protocols

BR/EDR BLE
Pairing
Mode

Legacy Secure Legacy Secure

Pairing
Method

PIN Pairing

JustWorks
Passkey Entry
Numeric Comparison
Out of Band

JustWorks
Passkey Entry
Out of Band

JustWorks
Passkey Entry
Numeric Comparison
Out of Band

Table 1 lists the Pairing protocols standardised. The Secure Pair-
ing mode of both technologies contains 4 distinct methods that
may be run. The differences between methods lie in the messages
required to complete them and input/output capabilities of devices.
This mode contains the method JustWorks which is not authenti-
cated, Passkey Entry and Numeric Comparison which are authenti-
cated, and the method Out of Band which may be authenticated.
In terms of messages exchanged, the Secure Pairing protocols are
identical in BR/EDR and BLE, e.g., Passkey Entry involves the same
user interaction and messages exchanged whether in BR/EDR or in
BLE, though the cryptographic primitives used are not the same.

The Legacy Pairing mode, on the other hand, is drastically dif-
ferent depending on the technology. In BR/EDR, there is a single
Legacy protocol called PIN Pairing. In BLE, there are three distinct

protocols, depending on the input/output capabilities of pairing
devices: JustWorks, Passkey Entry, and Out of Band. Because meth-
ods names have been reused between BLE Legacy Pairing and BLE
Secure Pairing modes, this paper uses the mode and the method to
identify a specific protocol (e.g., Legacy JustWorks, Secure Out of
Band, etc.).

In total, in the latest version of the specification1, there are five
distinct Pairing protocols in BR/EDR and seven in BLE, not counting
the variations in user interaction inside a given protocol. A device
may use all of them or only a subset of them depending on its
configuration. For the sake of conciseness, only the Legacy PIN
Pairing protocol in BR/EDR and Legacy Passkey Entry protocol in
BLE are detailed below.

Initiator

𝐴𝑑𝑑𝑟𝑖

Responder

𝐴𝑑𝑑𝑟𝑟

new 𝑖𝑛_𝑟𝑎𝑛𝑑 𝑖𝑛_𝑟𝑎𝑛𝑑 1

User inputs
the 𝑃𝐼𝑁

User inputs
the 𝑃𝐼𝑁 2

𝐾𝑖𝑛𝑖𝑡 = 𝐸22(𝑃𝐼𝑁, 𝑖𝑛_𝑟𝑎𝑛𝑑) 𝐾𝑖𝑛𝑖𝑡 = . . .

new 𝑐𝑜𝑚𝑏_𝑘𝑒𝑦𝑖
𝑐𝑜𝑚𝑏_𝑘𝑒𝑦𝑖 ⊕ 𝐾𝑖𝑛𝑖𝑡

new 𝑐𝑜𝑚𝑏_𝑘𝑒𝑦𝑟
𝑐𝑜𝑚𝑏_𝑘𝑒𝑦𝑟 ⊕ 𝐾𝑖𝑛𝑖𝑡

3

𝐾𝑖 = 𝐸21(𝑐𝑜𝑚𝑏_𝑘𝑒𝑦𝑖 , 𝐴𝑑𝑑𝑟𝑖)
𝐾𝑟 = 𝐸21(𝑐𝑜𝑚𝑏_𝑘𝑒𝑦𝑟 , 𝐴𝑑𝑑𝑟𝑟)
𝐿𝐾 = 𝐾𝑖 ⊕ 𝐾𝑟

𝐾𝑖 = . . .

𝐾𝑟 = . . .

𝐿𝐾 = . . .

4

new 𝑎𝑢_𝑟𝑎𝑛𝑑𝑖
𝑎𝑢_𝑟𝑎𝑛𝑑𝑖

𝐸1(𝐿𝐾,𝑎𝑢_𝑟𝑎𝑛𝑑𝑖 , 𝐴𝑑𝑑𝑟𝑟)

5new 𝑎𝑢_𝑟𝑎𝑛𝑑𝑟
𝑎𝑢_𝑟𝑎𝑛𝑑𝑟

𝐸1(𝐿𝐾,𝑎𝑢_𝑟𝑎𝑛𝑑𝑟 , 𝐴𝑑𝑑𝑟𝑖)

Figure 1: BR/EDR Legacy PIN Pairing and Mutual Legacy
Authentication

The protocol Legacy PIN Pairing for BR/EDR is depicted in Fig. 1.
Functions 𝐸1, 𝐸21, and 𝐸22 are defined in the specification [10, Vol
2, Part H, §6]. The key agreement starts when the Initiator sends
a nonce 𝑖𝑛_𝑟𝑎𝑛𝑑 to the Responder 1 . The user has to exchange
a numeric code between devices, called the 𝑃𝐼𝑁 2 . This 𝑃𝐼𝑁 is
used alongside 𝑖𝑛_𝑟𝑎𝑛𝑑 and the Initiator address to derive 𝐾𝑖𝑛𝑖𝑡 .
𝐾𝑖𝑛𝑖𝑡 is used to mask two nonces 𝑐𝑜𝑚𝑏_𝑘𝑒𝑦𝑖 and 𝑐𝑜𝑚𝑏_𝑘𝑒𝑦𝑟 3
which are used to derive the Link Key (𝐿𝐾) 4 . According to the
specification, the Pairing process is over once 𝐿𝐾 is created, but a
mutual authentication procedure has to follow 5 .

BLE Legacy Passkey Entry is depicted in Fig. 2. Functions 𝑐1
and 𝑠1 are defined in the specification [10, Vol 3, Part H, §2.2]. The
protocol starts with a Feature Exchange step 1 , which is used
to provide information about input-output capabilities, key size
to be negotiated, etc. In Legacy Passkey Entry, the user has to
exchange a numeric code between the devices 2 . Typically, one
device displays a code that the user enters in the other one. This
1At the time of writing, Bluetooth Core specification v5.3

2

Initiator Responder
PairingRequest
PairingResponse 1

new 𝑝𝑎𝑠𝑠𝑘𝑒𝑦

Initiator displays
𝑝𝑎𝑠𝑠𝑘𝑒𝑦

User inputs
𝑝𝑎𝑠𝑠𝑘𝑒𝑦

2

new 𝑁𝑖
𝑐1(𝑝𝑎𝑠𝑠𝑘𝑒𝑦, 𝑁𝑖 , ...)

new 𝑁𝑟
𝑐1(𝑝𝑎𝑠𝑠𝑘𝑒𝑦, 𝑁𝑟 , ...)

𝑁𝑖

𝑁𝑟

3

𝑆𝑇𝐾 = 𝑠1(𝑝𝑎𝑠𝑠𝑘𝑒𝑦, 𝑁𝑖 , 𝑁𝑟) 𝑆𝑇𝐾 = . . .

Figure 2: BLE Legacy Passkey Entry

code is used as a symmetric key in a commitment scheme 3 . This
step is used to authenticate the capabilities and respective addresses
of the devices. Finally, they use the nonces exchanged in step 3
to derive a Short-Term Key (𝑆𝑇𝐾) that is then used to encrypt the
communication.

2.2 Bluetooth Mesh
Bluetooth Mesh, standardised in 2017 [9], is a networking protocol
that creates a Mesh network out of BM devices. BM is dedicated to
smart home networks, with applications such as connected lighting,
door locks, etc. There are three main communication types in a
Mesh network: devices can exchange network-level data, they can
exchange application-level data, and they can be each configured
by a specific device named "configuration center".

2.2.1 Security properties. The specification defines confidential-
ity, integrity and authenticity of each communication type. The
Network Key (NetKey) is common to all devices in the network, it
is used to protect network-level communication. Application Key
(AppKey) is common to the set of devices belonging to the same
application, it is used to protect application-level communication.
There may be several applications in a network, hence several Ap-
plication Keys. The Device Key (DevKey) is used to protect the
communication between a device and the configuration center. The
configuration center uses it to perform privileged operations on
devices (e.g., to install an AppKey, to rotate NetKey, etc.)

The Network Key and the Device Key are respectively provi-
sioned and generated through a key agreement step. Application
Key are sent afterwards, encrypted with the Device Key. Authen-
ticity of the communication depends on the initial key agreement,
whether it is authenticated or not.

2.2.2 Key agreement. The key agreement procedure in BM is used
to provide each device with the necessary secrets to communicate
on this network. It is called Provisioning procedure, it runs between
a Device and the Provisioner.

There are variants of Provisioning, which depend on how the key
exchange is performed (in-band or out-of-band) and how authen-
tication data are exchanged. The possibilities for authentication

are No OOB, Input OOB, Output OOB, and Static OOB; where No
OOB means no authentication at all. Those two parameters are
combined, hence there are eight Provisioning protocols.

Provisioner

𝑁𝑒𝑡𝐾𝑒𝑦
Device

ProvisioningInvite
ProvisioningCapabilities

ProvisioningStart

new ⟨𝑠𝑘𝑝 , 𝑃𝑘𝑝 ⟩
𝑃𝑘𝑝

new ⟨𝑠𝑘𝑑 , 𝑃𝑘𝑑 ⟩
𝑃𝑘𝑑

𝐶𝐾 = ...𝐶𝐾 = ...

new𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎

Provisioner outputs
𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎

User inputs
𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎

new 𝑁𝑝 AES-CMAC𝐶𝐾 (𝑁𝑝 , 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎)

new 𝑁𝑑AES-CMAC𝐶𝐾 (𝑁𝑑 , 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎)
𝑁𝑝

𝑁𝑑

ProvisioningData (encrypted 𝑁𝑒𝑡𝐾𝑒𝑦)
𝑁𝑒𝑡𝐾𝑒𝑦ProvisioningComplete

1

2

3

4

5

Figure 3: BM Provisioning - In-band key exchange/Input OOB

Fig. 3 depicts a Provisioning variant involving in-band key ex-
change and Input OOB. First, both devices perform a Feature Ex-
change step to initiate Provisioning 1 . Then, both devices complete
an ECDH key exchange and derive a Confirmation Key (CK) 2 .
The user has to exchange 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎 between both devices 3 . For
example, in Input OOB mode, the Provisioner outputs data (e.g., a
numeric code) and the user inputs it in the Device. A commitment
protocol is run to authenticate the peers, their respective capa-
bilities, and addresses 4 . A new session key is derived from the
Confirmation Key and the nonces exchanged in the commitment
protocol. Finally, this session key is used to encrypt 𝑁𝑒𝑡𝐾𝑒𝑦 5
and the Provisioning ends.

2.3 Related Work
Bluetooth technologies have been subject to lots of attacks over
the years, a survey of those affecting BLE can be found in [18].
Some studies have focused on the security of the reconnection step:
BIAS [2] considers the authentication protocol during reconnec-
tion in BR/EDR, KNOB [5] the key size reduction in BR/EDR, and
BLESA [37] the reconnection in BLE.

There are also passive attacks on Bluetooth technologies. In
BR/EDR, Legacy Pairing is vulnerable to offline key recovery from
a capture of exchanged messages [31]. Legacy Pairing in BLE has
the same flaw although the details differ [30]. In a Secure Pairing
protocol, Lindell showed the possibility to retrieve passively an
authentication secret [24], which applies to BLE and BR/EDR.

Rosa [29] proposed an active attack on Legacy Pairing in BLE
that relies on a flawed cryptographic primitive. Researchers studied

3

the use of ECDH in the Pairing protocols [7, 17], found flaws in
the authentication of public keys and discussed possible attacks.
Key size reduction is also studied in BLE [3], which proved to be
vulnerable to some extent.

BlueMirror [14] proposed an extensive study of reflection attacks
in Bluetooth technologies and showed their applicability to all of
them. It also showed cryptographic problems in Bluetooth Mesh
Provisioning, breaking its authentication protocol. On Bluetooth
Mesh, a reflection attack is independently detailed in [14] and [36].
The security of the Friendship concept in BM is studied in [1].

In [35], the authors define the concept of Pairing Confusion,
where the attacker forces two devices to use two different Pairing
protocols. In their attack, an attacker forces device A to complete
Secure Passkey Entry while device B completes Secure Numeric
Comparison. They show that in this setup, implementations do not
allow the user to distinguish between both protocols. As a result,
the attacker can complete them and retrieve the encryption key
derived by each device.

Bluetooth was also studied from a formal perspective. Some
studies performed manual proofs of some parts of Bluetooth, in
various contexts. In [25], a proof of Secure Numeric Comparison
is done. A formal analysis of Secure Passkey Entry is proposed
in [34]. The security of the reconnection step in BR/EDR and BLE
is studied in [20]. Formal studies using automated tools are also
detailed in [12], [13], [28], [17], [22], and [36]. They are discussed
in depth in Section 5.2.

3 FORMAL VERIFICATIONWITH TAMARIN
An introduction to Tamarin is provided in this section.

3.1 Modelling protocols
Tamarin is a tool dedicated to the proof of cryptographic protocols.
It represents themessages exchanged and computations as algebraic
terms. From a protocol specification and a number of properties
expressed in Tamarin’s input language, it is able to verify that the
protocol matches the stated properties.

At its core, Tamarin is based on multiset rewriting. This means a
protocol is represented using a series of multiset rewriting rules. A
rule essentially dictates the labelled transition from one set of facts
to another.

rule RespSendPublicKey:
RespDoECDH(idR, idI), Fr(~s), In(pkI)
LabRespEndECDH(idR, idI, 'g'^~s, pkI, pkI^~s)
RespEndECDH(idR, idI, 'g'^~s, pkI, pkI^~s), Out('g'^~s)

Example 1: Tamarin rewriting rule
A Tamarin rule is composed of four elements, namely its name,

the set of facts that are input to the rule, the set of labels that are
produced by the rule, and the set of facts that are output by the
rule. In Example 1, if there exists a fact RespDoECDH(𝑖𝑑𝑅, 𝑖𝑑𝐼) and
there is an input message 𝑝𝑘𝐼 in Tamarin’s state, it is possible to ap-
ply this rewriting rule. This consumes the facts RespDoECDH(...),
the fact RespEndECDH(...) is then added to the state. The label
LabRespEndECDH(...) is generated by the application of this rule.
Out(...) is a special fact and represents the emission of a message
over a public channel. In(...) is also a special fact that denotes the

reception of a message and Fr(...) represents the generation of a
random (fresh) value. The notation~s denotes a unique and unguess-
able random number, the operation ^ represents the exponentiation,
and ’g’ represents a public constant. In this rule, 𝑖𝑑𝐼 , 𝑖𝑑𝑅, and 𝑝𝑘𝐼
are variables, hence can be terms of any form or type.

Tamarin analyses protocols in the so-called Dolev-Yaomodel [19]
where the attacker has full control over the communication channel:
it is able to receive, intercept, modify, and forge messages. Tamarin
automatically generates rules for the attacker, which enables it
to perform common operations, like splitting and concatenating
messages, etc. The attacker’s knowledge is updated with each mes-
sage sent on the public channel, hence with each Out(...) produced.
Similarly, each message known to the attacker can be sent over the
public channel, hence received in any In(...) fact.

In order to represent cryptographic operations, Tamarin enables
to define function symbols and their relations through equations.
It comes with existing symbols such as xor, symmetric encryption
(and decryption), Diffie-Hellman, etc. The set of equations that
relate functions together is called an equational theory.

3.2 Modelling security properties
The combined use of rewriting rules, functions, and equations is suf-
ficient to create models of cryptographic protocols. To gain insight
and knowledge about those protocols, Tamarin allows encoding
logical properties that it then tries to verify. These properties are
called lemmas and are expressed using labels that are produced by
rewriting rules.

lemma InitiatorKeySecrecy:
"∀ id, ioCap, stk #i.
InitFinishedPairing(id, ioCap, stk)@#i =⇒ � #j . K(stk)@#j"

Example 2: Tamarin lemma
Intuitively, Example 2 expresses that if an Initiator ends the

Pairing with a certain key 𝑠𝑡𝑘 at time #i, the attacker is unable
to retrieve it at any point in time. The lemmas are expressed as
logical formulas and the attacker knowledge is represented with
fact K. The formulas are expressed naturally as logical formulas,
using quantifiers and negations, which allow describing security
properties about a protocol. The example formula matches a simple
weak secrecy claim about a protocol, namely that the attacker must
be unable to retrieve the key 𝑠𝑡𝑘 . The lemmas can make use of all
the labels defined, but cannot include any fact that is used in the
description of the protocol.

3.3 Restricting studied executions
In some protocols, not all executions are valid for a given configura-
tion. For example, some protocols use actions that can be executed
only one time (e.g., generation of a master key). In those cases, it is
necessary to prevent Tamarin from considering some executions:
for one, the model will be closer to the protocol and second, it will
improve the computation time to do the proof.

restriction UniqueRestr:
"∀ #i #j. Unique() @#i ∧ Unique()@#j =⇒ #i = #j"

Example 3: Tamarin restriction

4

This can be modelled with restrictions, which also use labels.
Restrictions are lemmas that forbid Tamarin to study some execu-
tions. In Example 3, if a rule were producing a Unique() label, the
restriction would prevent it from being used twice. Restrictions are
also logical formulas, so more elaborated formulas could be used.

3.4 Proving protocols with Tamarin
When provided with a lemma, Tamarin tries to prove it is true in
all cases or provide an execution trace that contradicts the lemma.
This execution trace illustrates the different rules that are applied
and the actions the attacker took to contradict the property. From
an attack trace, it is possible to manually identify the messages and
computations an attacker does to invalidate the property studied.
To gain insight into the protocol, the attack can then be analysed to
identify its root cause (e.g., lack of integrity of a specific parameter),
as well as possible patches.

Another possibility is that Tamarin may not finish the proof
within the allocated resources (time, memory). When Tamarin does
not finish, it is possible to use an interactive mode and to prove
the property manually by guiding Tamarin about the states to ex-
plore. Because Tamarin is, at its core, a prover, it does not yield all
counterexamples of a lemma for a model. This means that when
knowingly studying a flawed protocol, Tamarin is not able to enu-
merate all the attacks on this protocol.

When modelling complex protocols, it is common that Tamarin
takes several days to complete or runs out of resources due to an
explosion of states to consider. Restrictions can be used to prevent
state explosion, but they have to be carefully created so the model
remains correct.

Furthermore, by default Tamarin considers cryptographic primi-
tives to be perfect. However, some primitives have known weak-
nesses and some protocols use primitives in an incorrect way. Rep-
resenting cryptographic imperfections requires an extra modelling
step so Tamarin can include them in the model.

4 TAMARIN MODELS
This section details the choices made to model Bluetooth key agree-
ments, cryptographic imperfections and patches.

4.1 Bluetooth key agreement protocols
When modelling key agreements in Bluetooth, one needs to tackle
the diversity of protocols. In order to model them accurately, one
needs to model the user interaction required to complete each of
them. In the specification, a single protocol may have several user
interaction variations, depending on the input/output capabilities
of both devices. For example, in BLE Legacy Passkey Entry, a device
may have an input, an output or both. Whether the device outputs
or waits for a numeric code depends on the other device’s input-
output capabilities. To address this variation, Legacy Passkey Entry
is modelled as three sub-protocols to represent the different user
interaction required. This also applies to other Pairing protocols,
increasing so the number of protocols that are represented. In total,
there are 13 BLE protocols, 11 BR/EDR protocols, and 8 BM protocol
that are modelled to consider all the identified variations.

Pairing Confusion is part of the set of identified vulnerabilities
and a systematic study of possible confusions in Bluetooth key

agreements is performed. Thus, the interaction of all possible pro-
tocols with all possible protocols is studied, with one model per
study. This improves the precision and completeness of the analysis,
at the cost of a quadratic number of cases to consider. In BLE the
interaction of all 13 modelled protocols with all of them is studied,
which makes 169 (13×13) cases. Similarly, there are 121 (11×11)
cases studied in BR/EDR and 64 (8×8) in BM. Although the term
Pairing confusion is used across this paper for conciseness, it is
noted that in the case of Bluetooth Mesh what is actually studied is
Provisioning confusion.

It is noted that in practice, the choice of the protocol to use
between two legitimate devices is done in the very first step, which
is the Feature Exchange. An active attacker has the ability to modify
the features sent by each device, hence has the ability to force the
protocol to use on each side of the connection. Therefore, studying
each pair of protocol makes sense from a Bluetooth’s point of view,
as this is an accurate representation of an attacker’s capabilities.

4.2 Security properties
Confidentiality and integrity of communications come from a shared
symmetric key. Those properties are modelled with a key leakage
lemma. If the attacker has complete knowledge of the key used
by one device after the key agreement, then this property is false.
For authentication, the specific property modelled is non-injective
agreement. This property is false if an attacker can reach the end
of a protocol while impersonating another device.

Some attacks end with an attacker retrieving the symmetric key
used by one device and not the other, or simply impersonating a
device. In those cases, a user could notice that the key agreement
did not complete legitimately because the two legitimate devices
cannot communicate together. However, other attacks allow an
attacker to compromise the symmetric keys and authentication of
both devices at the same time. With those attacks, the user would
not notice that its communication are being eavesdropped and
could be impersonated, which represents a critical problem for the
protocol. To represent these, another property is introduced, called
Compromise Resistance (CR).

lemmaWeakSecretInit:
"∀ idI idR ltk #k1 .
InitFinishedSecPairing(idI, idR, ltk)@#k1 =⇒
� #k2 . K(ltk)@#k2"

lemma CR:
"∀ idI idR ltk1 ltk2 #j1 #j2 .

InitFinishedSecPairing(idI, idR, ltk1)@#j1 ∧
RespFinishedSecPairing(idI, idR, ltk2)@#j2 =⇒
� #k1 #k2 . K(ltk1)@#k1 ∧ K(ltk2)@#k2"

Example 4: Tamarin lemmas in BR/EDR

In Example 4, two security lemmas are displayed. The lemma
WeakSecretInit represents the secrecy of the key derived by the
Initiator and the lemma CR represents compromise resistance of
the protocol. In BLE and BR/EDR, there are five security properties
of interest per interaction studied: secrecy of Initiator/Responder
key, authenticity of Initiator/Responder and compromise resistance.

5

In BM, there are nine security properties of interest per interac-
tion studied: secrecy of NetKey/AppKey/DevKey for Device/Pro-
visioner, authenticity of Device/Provisioner and compromise re-
sistance. For each interaction, a functional property is added, it
represents whether the interaction can complete successfully in
presence of an attacker.

4.3 Modular models
As noted in Paragraph 4.1, studying Pairing confusion requires to
study the interaction of all pairs of protocols. This vulnerability
also arises from a confusion of the user about its required action,
such that the user cannot distinguish two distinct protocols. On
the model side, this is represented with a module of rules dedicated
to user interactions, used by all sub-protocols. User interactions
are modelled through the use of a private channel implemented
with Tamarin facts. It is considered that the user acts as defined in
the specification and will input/output/confirm data when needed.
This represents the confusion from the user’s side, who may be
unknowingly accepting the key agreement between two distinct
protocols if they have matching user interactions.

Bluetooth protocols are not entirely disjoint and share several
common parts. For example, each Secure Pairing protocol whether
in BLE or BR/EDR starts with the same Feature Exchange and
ECDH Key Exchange. In the proposed models, there is a single
set of rules that represents those steps, which is used by each
appropriate protocol. Another example would be the key derivation
steps, which are common to several protocols depending on the
technology. In the same spirit, the Tamarin rules corresponding to
those steps are common to several protocols and not duplicated.

This approach helps considering the model as a set of modules
and not as a simple set of rules. Typically, there is the authentication
module, the ECDH module, the key generation module, etc. Each
module has a kind of "interface" in the form of one or several facts
that are used as input facts or output facts.

To study each pair of protocols independently, it is needed to
force Tamarin to consider only the rewriting rules used for a defined
protocol and not the others. This is implemented using the Tamarin
pre-processor, through Tamarin macros. Macros consist in adding
#ifdef and #endif in the model. Before processing the model, the
pre-processor of Tamarin writes the block between macros in the
studied file only if a command-line flag is provided. Each module
of rules is thus surrounded by a macro and is processed only if
explicitly stated. Because each case is built as a suite of modules,
this approach is used to prevent Tamarin from considering the rest
of the model.

4.4 Representing cryptographic imperfections
By default, Tamarin assumes that cryptography is perfect, but Blue-
tooth is known to be vulnerable to several attacks which rely on
cryptographic flaws in the specification. This paragraph details
the Tamarin model of cryptographic imperfections, which allow
Tamarin to identify attacks based on those vulnerabilities.

4.4.1 Brute-force of low-entropy secrets. Some Bluetooth key agree-
ments use low-entropy secrets, which can be brute-forced by an
attacker. Depending on the technology and key agreement, this

kind of vulnerability has various shapes, but can be found in each
technology [14, 24, 30, 31].

In Tamarin, the names used to represent nonces/passwords are
perfect and unguessable by default: if there is a generated value
𝑠𝑒𝑐𝑟𝑒𝑡 and the attacker has access to h (𝑠𝑒𝑐𝑟𝑒𝑡), without further rule
the attacker is unable to retrieve the value of 𝑠𝑒𝑐𝑟𝑒𝑡 . While this
assumption is reasonable for some protocols (e.g., if the secret value
is 128-bit long), Bluetooth uses several low-entropy secrets that
can be brute-forced in a practical time. To model this capability,
special Oracle rules are created to output the targeted secret when
the attacker has provided enough information.

rule Oracle_f4:
let val = f4(pk1, pk2, n, s) in
LowEntropyf4(pk1, pk2, n, s), In(pk1), In(pk2), In(n), In(val)
AttackerRecoveredPasskey(s)
Out(s)

Example 5: Oracle rule in Tamarin

The implementation of the passkey recovery [24] from BLE
Secure Passkey Entry protocol is done with the rule depicted in
Example 5. The function f4 is defined in the specification and is
common to several Pairing methods. Only the methods that use a
low-entropy secret generate the fact LowEntropyf4 (𝑝𝑘1, 𝑝𝑘2, 𝑛, 𝑠)
that allows to enter this rule. The attacker also needs to prove
knowledge of all the elements to the Oracle by sending them on
the public channel. When used, this rule outputs the secret, which
becomes available to the attacker. The use of an explicit oracle rule
makes it appear in Tamarin’s execution traces, therefore one may
follow easily the type and number of oracles called in a specific
attack.

4.4.2 Malleable Commitment. This issue is present in BLE Legacy
Pairing [29] and in BM Provisioning [14]. While both instances of
commitment functions in Bluetooth have different cryptographic
details, they are conceptually very similar. Both affected commit-
ment procedures use four messages. Those are displayed in step 3
of Figure 2 for BLE and in step 4 of Figure 3 for BM: both de-
vices exchange a commitment value computed from a key, a nonce,
an authentication secret, and additional data. Device A sends the
first commitment, followed by B. Then both devices exchange their
nonces: Device A sends its nonce, and then B replies with its own.

The vulnerabilities rely on the attacker posing as device B. After
receiving A’s commitment, the attacker needs to send an arbitrary
value for A to send its nonce. From A’s nonce and commitment,
the attacker is able to recover an authentication secret. Then, the
attacker crafts a nonce from the sent commitment and recovered
authentication secret.

functions:
aes_cmac/2, // Representation of cmac
get_b1/3, // Used to retrieve first block

equations:
get_b1(aes_cmac(k, <b1, b2>), k, b2) = b1,
aes_cmac(k, <get_b1(c, k, b2), b2>) = c,

Example 6: Representing malleability in Tamarin

6

In this paper, the choice is made to implementmalleable commit-
ments with a pure equational theory. In Example 6, one can see the
implementation of this problem that is done for BM. In particular, it
is necessary to define an equation to craft a nonce, represented here
with get_b1. Then, one has to explicitly state that a confirmation
that is used in this way is equal to a proper aes_cmac term. With
this type of representation, Tamarin is indeed able to find this class
of attacks on the studied protocols.

This type of cryptographic problem is very dependant on the
underlying cryptographic specification, and those equations are
not suitable for all protocols. In Tamarin, it is impossible to state
that this equation holds only if 𝑏1 and 𝑏2 have a specific size, in
this case the block size of the underlying block cipher: 16 bytes.
As a result, those equations give the attacker more power than it
has in practice and are not a generic representation of this kind of
problem. In the results, it is verified that these equations are applied
correctly by the attacker and not in unrealistic cases.

4.4.3 Small subgroup attack on ECDH implementation. In Blue-
tooth, incorrect ECDH implementations have led to some attacks
on implementations [7, 17]. This attack is a type of small subgroup
attack that affects BR/EDR and BLE when the validity of received
public keys is not verified. The representation of this type of attacks
and more generally of incorrect implementations of Diffie-Hellman
with Tamarin is extensively discussed in [17]. The authors provide
a model of Secure Numeric Comparison with their representation.

In all Bluetooth technologies, the elliptic curves used are P-192
or/and P-256, which are defined over a field of prime order. There-
fore, the representation of ECDH provided in their model can be
adapted to all Bluetooth technologies. Basically, each public key is
represented as a group identifier, the neutral element of the group
and the group element. When deriving a Diffie-Hellman key, if the
attacker has managed to send an invalid element with respect to
the correct group, the key is considered leaked to the attacker. This
is representative of elliptic curve cryptography on the groups used
in Bluetooth, because an appropriate modification of a public key
yields a Diffie-Hellman secret that is on a group of low order (as
low as 2). In that case, the secret becomes easily retrievable using
brute-force. This representation is adopted in all models of this
article.

4.5 Using the models
Using the approach outlined in Section 4.1, studying the interac-
tion of all possible pairs of protocols for all technologies requires
studying 354 (169 + 121 + 64) distinct cases, each case containing
several properties to analyse. This forms the baseline of the models
presented in this paper.

Our first attempt was a version of the model that did rely on
the modularization but without using macros. On such a version of
the BLE model, proving the simplest lemma required several hours
of CPU time but with the current model, 5.74 seconds suffice to
study all lemmas for the same interaction. Therefore, macros not
only help to specify an interaction to study, but also help to obtain
results in practical time by avoiding Tamarin to load all the rules
and to compute their refined sources.

Moreover, to gainmore insight into the strengths andweaknesses
of each protocol, one may want to study the effects of specific im-
perfections. Similarly, to study the effects of a patch, one may want
to study the impact if only one of the two devices is patched. For
example, in [17] the authors analyse the outcome of having one
device with a patched ECDH implementation and another with a
flawed one. The proposed models support this type of configura-
tion through macros. For example, it is possible to study all the
mentioned protocols while preventing the attacker to brute-force
low-entropy secrets using specific macros. Likewise, it is possible
to study all the relevant protocols where one device has a patched
version of ECDH using another macro. Overall, using different sets
of macros enable to analyse different configurations of the baseline
models. The macros that can be used and their effects are detailed
in Appendix A.

Table 2: Sizes of the Tamarin models

Model # rules # restrictions # macros # lemmas # lines
BR/EDR 117 13 165 605 ∼11000
BLE 110 12 219 845 ∼14300
BM 57 8 100 576 ∼6600

In total, there is one model per technology, containing all sub-
protocols identified for this technology. Their respective size is
detailed in Table 2. Although the models are large, the analysis of
all lemmas of all protocols is efficient. The configuration analysed
in this paper completed in less than 77 hours of CPU time.

5 RESULTS AND COMPARISON
The results of the study are provided in this section before being
compared to the literature.

5.1 Achieved results
This section details the results for BR/EDR and BLE. Results ob-
tained for BM, including a new attack, are detailed in Appendix B.
We also slightly modify our model to analyse patches proposed
in [36] for BM and uncover several attacks that were overlooked in
their study.

The configuration of the models is that devices have a patched
ECDH implementation but are vulnerable to all other imperfec-
tions. This configuration matches an up-to-date specification. The
analysis of BR/EDR and BLE with regards to unpatched ECDH im-
plementations is discussed in Paragraph 5.2.1. The results displayed
consider only functional interactions where both devices can reach
the end of their protocol.

There are 5 security properties studied for BR/EDR and BLE so
a total of 1450 (121 × 5 + 169 × 5) lemmas. There are 9 security
properties studied for BM so a total of 576 (64 × 9) lemmas studied.
For the configuration considered, Tamarin identifies 659 attack
traces. All attack traces are manually analysed to identify which
result they are related to. Annotated result tables match each attack
trace to the underlying weakness used, some of which are new.

5.1.1 BR/EDR Pairing. Properties AuthI and AuthR represent the
authentication of the Initiator and Responder respectively. Proper-
ties SecI and SecR represent the secrecy of the key derived by the

7

Initiator and the Responder respectively. Compromise resistance is
also studied.

Table 3 presents the results of functional interactions in BR/EDR.
Several attacks are related to cryptographic issues. In cells identified
withA1, a reflection attack is identified where the attacker is able to
retrieve the encryption key. This attack relies on a specific property
of the xor operator which is built-in in Tamarin, it is presented
in [14]. The attacks A2 and A5 rely on the brute-force of low-
entropy secrets. A variant of the former is described in [31] while
the latter is described in [14]. Tamarin finds attack traces that extend
these results to compromise the authenticity and secrecy of the
protocol. This analysis provides a more accurate view of the impact
of this vulnerability with regards to Pairing security.

Several confusion attacks are identified. The original attack [35],
identified with A4, describes a confusion between Secure Passkey
Entry and Secure Numeric Comparison. Tamarin identifies two
novel confusion attacks for distinct pairs of protocols. The first one
occurs between Legacy PIN Pairing and Secure Numeric Compari-
son (A6). The second one occurs between Legacy PIN Pairing and
Secure Passkey Entry (A7). Those are discussed in Section 6.

5.1.2 BLE Pairing. The studied properties for BLE are the same as
for BR/EDR.

Table 4 presents the results on BLE. Because the Secure Pairing
mode contains the same protocols in BR/EDR and BLE, the results
of the analysis of Secure Pairing methods interacting with each
other (cases Sec*Sec* from Table 3) are identical hence they are
not included in this table. As in BR/EDR, JustWorks protocol is
vulnerable to MitM attacks by design (A3).

Several attacks are related to cryptographic issues. There is a
reflection attack against the Initiator in Legacy Pairing (A8) which
invalidates the AuthI property, it is described in [14]. Attack A9 re-
lies on the brute-force of low entropy secrets and is presented
in [30]. Attack A5 is similar between Tables 3 and 4. In BLE, it
occurs in interactions of type SecPE/LegPE and is an extension of
the results presented in [14].

The original confusion attack is correctly identified as for BR/EDR,
although the line isn’t displayed in Table 4 because it is redundant
with lines Sec*Sec* of Table 3. Two novel confusion attacks are
identified by Tamarin. A confusion between Legacy Passkey Entry
and Secure Numeric Comparison (A11) is found. The analysis also
demonstrates a possible confusion between Legacy Passkey Entry
and Secure Passkey Entry (A12). Those are discussed in Section 6.

5.1.3 BM Provisioning. There are 9 security properties studied for
BM. We consider 2 authentication properties, and 6 secrecy prop-
erties as there are 3 distinct keys (NetKey, AppKey, and DevKey),
and secrecy is analysed from the point of view of both entities
(Provisioner and Device). Compromise resistance is also studied.
Results obtained for BM, including a new attack, are detailed in
Appendix B. This new attack allows a desynchronization between
the Device and the Provisioner, where the Provisioner successfully
completes the protocol while the legitimate Device is prevented
from joining the network.

In addition, our model is also used to analyse the patches pro-
posed by [36] to overcome the reflection attack affecting Provision-
ing protocols. To analyse them in our model, only two specific rules

Table 3: BR/EDR - results of the analysis

Name AuthI AuthR SecI SecR CR CPU Time
LegPINiLegPINi A1 A2 A1 A2 A2 2204.32s
LegPINiLegPINio A1 A2 A1 A2 A2 2771.19s
LegPINiLegPINo A1 A2 A1 A2 A2 2560.88s
LegPINiSecNC A1 A6 A1 A6 A6 735.61s
LegPINiSecPEi A1 A7 A1 A7 A7 546.90s
LegPINiSecPEio A1 A7 A1 A7 A7 646.76s
LegPINiSecPEo A1 A7 A1 A7 A7 647.84s
LegPINioLegPINi A1 A2 A1 A2 A2 2211.90s
LegPINioLegPINio A1 A2 A1 A2 A2 2325.81s
LegPINioLegPINo A1 A2 A1 A2 A2 2412.69s
LegPINioSecNC A1 A6 A1 A6 A6 724.13s
LegPINioSecPEi A1 A7 A1 A7 A7 595.35s
LegPINioSecPEio A1 A7 A1 A7 A7 632.32s
LegPINioSecPEo A1 A7 A1 A7 A7 671.47s
LegPINoLegPINi A1 A2 A1 A2 A2 2464.72s
LegPINoLegPINio A1 A2 A1 A2 A2 2332.12s
LegPINoSecPEi A1 A7 A1 A7 A7 658.38s
LegPINoSecPEio A1 A7 A1 A7 A7 637.28s
SecJWSecJW A3 A3 A3 A3 A3 145.38s
SecNCLegPINi A6 A6 A6 A6 A6 490.50s
SecNCLegPINio A6 A6 A6 A6 A6 497.64s
SecNCSecNC 129.63s
SecNCSecPEi A4 A4 A4 A4 A4 245.42s
SecNCSecPEio A4 A4 A4 A4 A4 254.56s
SecOOBiSecOOBo 127.79s
SecOOBioSecOOBio 147.53s
SecOOBoSecOOBi 122.87s
SecPEiLegPINi A5 A5 A7 A5 A7 3849.83s
SecPEiLegPINio A5 A5 A7 A5 A7 4139.86s
SecPEiLegPINo A5 A5 A7 A5 A7 3193.64s
SecPEiSecNC A5 A4 A4 A4 A4 603.87s
SecPEiSecPEi A5 A5 A5 8355.98s
SecPEiSecPEio A5 A5 A5 8859.41s
SecPEiSecPEo A5 A5 A5 9403.78s
SecPEioLegPINi A5 A5 A7 A5 A7 3035.24s
SecPEioLegPINio A5 A5 A7 A5 A7 3131.78s
SecPEioLegPINo A5 A5 A7 A5 A7 3173.94s
SecPEioSecNC A5 A4 A4 A4 A4 626.34s
SecPEioSecPEi A5 A5 A5 8231.80s
SecPEioSecPEio A5 A5 A5 8011.33s
SecPEioSecPEo A5 A5 A5 8087.07s
SecPEoLegPINi A5 A5 A7 A5 A7 3086.12s
SecPEoLegPINio A5 A5 A7 A5 A7 3433.14s
SecPEoSecPEi A5 A5 A5 7707.09s
SecPEoSecPEio A5 A5 A5 8058.43s

A1: Reflection attack on Legacy PIN Pairing, CVE-2020-26555 [14]
A2: Brute-force PIN from exchange [31]
A3: JustWorks is not authenticated
A4: Pairing Method confusion, CVE-2020-10134 [35]
A5: Reflection attack on Secure Passkey Entry, CVE-2020-26558 [14]
A6: (new) Extension to Pairing Method confusion
A7: (new) Pairing Mode Confusion

8

Table 4: BLE - results of the analysis

Name AuthI AuthR SecI SecR CR CPU Time
LegJWLegJW A3 A3 A3 A3 A3 5.79s
LegJWSecJW A3 A3 A3 A3 A3 37.87s
LegOOBLegJW A8 A3 A3 9.30s
LegOOBLegOOB A8 12.84s
LegOOBSecJW A8 A3 A3 14.49s
LegPEiLegPEi A8 A9 A10 A9 A10 70.70s
LegPEiLegPEio A8 A9 A10 A9 A10 80.45s
LegPEiLegPEo A8 A9 A10 A9 A10 81.58s
LegPEiSecNC A10 A11 A10 A11 A11 132.66s
LegPEiSecPEi A10 A12 A10 A12 A12 166.26s
LegPEiSecPEio A10 A12 A10 A12 A12 179.27s
LegPEiSecPEo A10 A12 A10 A12 A12 175.63s
LegPEioLegPEi A8 A9 A10 A9 A10 75.88s
LegPEioLegPEio A8 A9 A10 A9 A10 80.70s
LegPEioLegPEo A8 A9 A10 A9 A9 92.69s
LegPEioSecNC A10 A11 A10 A11 A11 137.03s
LegPEioSecPEi A10 A12 A10 A12 A12 181.66s
LegPEioSecPEio A10 A12 A10 A12 A12 190.45s
LegPEioSecPEo A10 A12 A10 A12 A12 196.86s
LegPEoLegPEi A8 A9 A10 A9 A10 85.66s
LegPEoLegPEio A8 A9 A10 A9 A10 82.15s
LegPEoSecPEi A10 A12 A10 A12 A12 188.58s
LegPEoSecPEio A10 A12 A10 A12 A12 192.86s
SecJWLegJW A3 A3 A3 A3 A3 43.53s
SecNCLegPEi A11 A11 A11 A11 A11 123.56s
SecNCLegPEio A11 A11 A11 A11 A11 122.80s
SecPEiLegPEi A5 A5 A5 613.19s
SecPEiLegPEio A5 A5 A5 632.12s
SecPEiLegPEo A5 A5 A5 653.31s
SecPEioLegPEi A5 A5 A5 638.30s
SecPEioLegPEio A5 A5 A5 658.42s
SecPEioLegPEo A5 A5 A5 662.97s
SecPEoLegPEi A5 A5 A5 647.77s
SecPEoLegPEio A5 A5 A5 647.99s

A3: JustWorks is not authenticated
A5: Reflection attack on Secure Passkey Entry, CVE-2020-26558 [14]
A8: Reflection attack in Legacy Pairing [14]
A9: Passkey can be brute-forced in Legacy Passkey Entry [30]
A10: Impersonation in Legacy Passkey Entry [29]
A11: (new) Extension to Pairing Method confusion
A12: (new) Pairing Mode Confusion

need modification. The existing representation of cryptographic im-
perfections directly applies to their proposed patch, without further
effort. The analysis of the patch confirms that the reflection attack
is prevented, but other existing attacks remain possible due to two
cryptographic imperfections (retrieval of authentication secrets
and malleable commitment). The effect of those attacks is that all
studied security properties are invalidated: the proposed protocols
do not grant key secrecy, authenticity, nor compromise resistance.
The flaws in their patch are detailed in Appendix B.2. The ProVerif
analysis conducted by [36] missed these attacks as cryptography
was assumed to be perfect.

5.2 Comparison with existing models
There are few published formal symbolic analyses of the Bluetooth
protocol involving automated tools. For completeness, it is noted
that [13] performed a ProVerif [8] analysis of Numeric Comparison
but did not identify any weakness. In [12] the authors demonstrated
that injective key-agreement does not hold in Numeric Comparison.
A study of misbinding attacks is performed in [28] using ProVerif.
All those studies focus on various definitions of authentication for
one or two Pairing protocols, while the present paper considers all
Bluetooth key agreements. The relevance of our model and results
are discussed with respect to more accurate models of Bluetooth
key agreements in [17], [36], and [22].

5.2.1 Model of the ECDH key exchange. In [17], the authors mod-
ify Tamarin to study the security of the Secure Numeric Compari-
son protocol with regards to small subgroup attacks on the Diffie-
Hellman key exchange. This study is an extension of [7] which
identified the initial problem with ECDH in Bluetooth Pairing.

In the present study, the analysis of BR/EDR and BLE is also done
considering two, one or none of the devices patched. Combined
with other problems, this allows identifying more possible attack
scenarios where some attacks are combined. It is verified that the
patches work with BR/EDR and BLE and for all Secure Pairing
methods instead of just one. The results for those configurations
are not displayed in this paper.

5.2.2 Analysis of BR/EDR, BLE and BM in ProVerif. In [36], the
authors study the key agreements and reconnection step in the three
Bluetooth technologies, BR/EDR, BLE, and BM. The first difference
is therefore the inclusion of the reconnection step, which they
verify in their study and we do not. In their study, they intertwine
two different elements. The first is Cross-Transport Key Derivation
which is a design choice of Bluetooth to create BR/EDR keys with
a BLE Pairing and conversely. The second is the ability in BLE
to refuse the establishment of an encrypted connection. In both
cases, studying formally this reconnection step requires to make
hypotheses on implementations behaviour (e.g., how some error
messages are handled by implementations), which they did in [36]
and [37]. Because we choose not to perform such hypotheses, the
reconnection step is out of scope of the present article.

In terms of protocol analysed, [36] focused on the Secure Pairing
protocols for BR/EDR and BLE, omitting all the Legacy protocols.
As a result, they did not study the interaction between Legacy
protocols and Secure protocols. By contrast, our model contains
all standardised protocols, yielding more comprehensive results.
Whereas our model is enriched with cryptographic imperfections,
the ProVerif model proposed in [36] is not, and as a result, there
are several attacks that are missed on Secure Passkey Entry and
on Mesh Provisioning. This leads the authors to the erroneous
conclusion that Secure Passkey Entry is correctly authenticated.
This also means that only the reflection attack is found on Bluetooth
Mesh, but more impactful attacks breaking secrecy and authenticity
of both the Provisioner and the Device are not identified.

Lastly, in the model proposed in [36], the attacker is unable to
act during the Feature Exchange step. It means that both devices
would pair using unique addresses and input-output capabilities.
This assumption is wrong in the context of an active attacker on

9

Bluetooth as those two elements can be spoofed. The effect is that a
reflection attack on the Secure Passkey Entry protocol is missed [14]
(A5 in Tables 3 and 4), which could be found even under the perfect
cryptography assumption.

5.2.3 Analysis of Secure Passkey Entry in Tamarin. In [22], the au-
thors analyse Secure Passkey Entry in Tamarin. Among the attacks
they identified, there are Pairing Confusion [35] and the reflection
attack on this protocol [14] that we also retrieved in our analysis.
The other attacks they identified rely on the hypothesis that the
attacker gains the passkey in other ways, due to implementation
problems (e.g., bad randomness). In our model we choose not to
make any assumptions about implementations, hence do not pick
up those attacks.

It is noted that the modelling choice for passkey recovery is
different from ours. They consider that the passkey is sent in an
encrypted form, that can be decrypted later in the protocol. In our
model, we use aMAC function2 as stated in the specification, and an
oracle rule is used to model the fact that the secret can be recovered
by brute-forcing.

Furthermore, their study tackles only one Pairing protocol, while
ours encompasses all Bluetooth key agreements and considers more
cryptographic imperfections.

6 NEW ATTACKS
The model developed in this paper identified several new attacks
on Bluetooth key agreements. On BM, an attack on the standard-
ised protocol and two attacks on patches from the literature are
discussed along BM results in Appendix B. Four new instances
of Pairing confusion are identified on BR/EDR and BLE, they are
discussed in this section.

6.1 Overview
All identified Pairing confusion break all security properties studied,
including compromise resistance. The different confusions identi-
fied by the models are:
• Original: Secure Passkey Entry / Secure Numeric Comparison
(BR/EDR, BLE) [35]

• Attack A: Legacy PIN Pairing / Secure Passkey Entry (BR/EDR)
• Attack B: Legacy Passkey Entry / Secure Passkey Entry (BLE)
• Attack C: Legacy PIN Pairing / Secure Numeric Comparison
(BR/EDR)

• Attack D: Legacy Passkey Entry / Secure Numeric Comparison
(BLE)
The original attack is a pairing confusion regarding the method,

whereas the new ones are pairing confusion regarding the mode.
More importantly, the original attack, as well as attacks C and D
can be mitigated by improving the display of expected user ac-
tions. In Numeric Comparison, the expected action is for the user
to confirm that two numeric codes are equal, while for Passkey
Entry the expected action is that the user inputs a numeric code
displayed by one device on the other. Some implementations do
not have a correct display of expected user actions, which leads
to the possible confusion: users input the confirmation code into
another device [35].

2HMAC-SHA256 in BR/EDR and AES-CMAC in BLE

By contrast, attacks A and B bypass this mitigation because all
involved protocol have identical user actions. This section describes
attacks A and B as they have the most impact. Each has been
attributed one CVE by the Bluetooth SIG.

Both attacks share a similar setup, but rely on different crypto-
graphic weaknesses. The attacker forces one device to use a Legacy
protocol which has the same user interaction as Secure Passkey En-
try. The attacker uses a cryptographic issue to complete the Legacy
protocol, retrieving the encryption key and the passkey/PIN used.
Then, the attacker uses the gained knowledge of the passkey to
complete the Secure Passkey Entry protocol.

6.2 Attack A: Pairing Mode Confusion in
BR/EDR

Initiator

𝐴𝑑𝑑𝑟𝑖
Attacker

Responder

𝐴𝑑𝑑𝑟𝑟

new 𝑖𝑛_𝑟𝑎𝑛𝑑 𝑖𝑛_𝑟𝑎𝑛𝑑

Feature & ECDH Exchange

new 𝑝𝑎𝑠𝑠𝑘𝑒𝑦

Initiator displays
𝑝𝑎𝑠𝑠𝑘𝑒𝑦

User inputs
𝑝𝑎𝑠𝑠𝑘𝑒𝑦 as 𝑃𝐼𝑁

𝐾𝑖𝑛𝑖𝑡 = 𝐸22(. . .)
new 𝑟

𝑟

new 𝑐𝑜𝑚𝑏_𝑘𝑒𝑦𝑟

𝐾𝑖𝑛𝑖𝑡 ⊕ 𝑐𝑜𝑚𝑏_𝑘𝑒𝑦𝑟
𝐾𝑖 = 𝐸21(. . .)
𝐾𝑟 = 𝐸21(. . .)
𝐿𝐾 = 𝐾𝑖 ⊕ 𝐾𝑟

new 𝑎𝑢_𝑟𝑎𝑛𝑑𝑖
𝑎𝑢_𝑟𝑎𝑛𝑑𝑖

𝐸1(𝐿𝐾,𝑎𝑢_𝑟𝑎𝑛𝑑𝑖 , 𝐴𝑑𝑑𝑟𝑟)

new 𝑎𝑢_𝑟𝑎𝑛𝑑𝑟
𝑎𝑢_𝑟𝑎𝑛𝑑𝑟

From 𝑎𝑢_𝑟𝑎𝑛𝑑𝑖 and 𝐸1(𝐿𝐾,𝑎𝑢_𝑟𝑎𝑛𝑑𝑖 , 𝐴𝑑𝑑𝑟𝑟),
attacker brute-forces 𝑃𝐼𝑁 and retrieves 𝐿𝐾

𝐸1(𝐿𝐾,𝑎𝑢_𝑟𝑎𝑛𝑑𝑟 , 𝐴𝑑𝑑𝑟𝑖)

Attacker uses 𝑃𝐼𝑁 as 𝑝𝑎𝑠𝑠𝑘𝑒𝑦 to complete
the Secure Passkey Entry protocol

Secure Passkey Entry
authentication

𝐿𝑇𝐾
𝐿𝑇𝐾
𝐿𝐾 𝐿𝐾

Figure 4: Pairing Mode Confusion in BR/EDR (Attack 1)

The attack is depicted in Figure 4. The attacker forces the Initiator
to use the Secure Passkey Entry protocol and the Responder to use
the PIN Pairing protocol. To do so, the attacker sends the first
message of the PIN Pairing protocol to the Responder which forces
it to use this protocol. Then, upon connection of the Initiator, the
attacker announces support for Secure Pairing in its features. By
modifying its input-output capabilities, the attacker forces a valid

10

user interaction between PIN Pairing and Secure Passkey Entry,
for example the Initiator may display a numeric code (the passkey)
and the Responder asks the user to input a numeric code (the PIN).

The PIN can be recovered from the values exchanged in the PIN
Pairing protocol and the authentication protocol which serves as
key confirmation [31]. Because the PIN is the passkey in the Secure
Passkey Entry protocol, the attacker completes the key agreement
with the Initiator. In the end, the attacker has successfully completed
Pairing with both devices and shares a different encryption key
with each of them.

6.3 Attack B: Pairing Mode Confusion in BLE

Initiator Attacker Responder

PairingRequest
(secure=true) PairingRequest

(secure=true)
PairingResponse
(secure=true)PairingResponse

(secure=false)

ECDH Key Exchange
new 𝑝𝑎𝑠𝑠𝑘𝑒𝑦

Initiator displays 𝑝𝑎𝑠𝑠𝑘𝑒𝑦 User inputs 𝑝𝑎𝑠𝑠𝑘𝑒𝑦

new 𝑁𝑖

𝑐1(𝑝𝑎𝑠𝑠𝑘𝑒𝑦, 𝑁𝑖 , ...)

new 𝑟
𝑟

𝑁𝑖

Attacker brute-forces
𝑝𝑎𝑠𝑠𝑘𝑒𝑦 from𝐶𝑖 , 𝑁𝑖

get_n(𝑝𝑎𝑠𝑠𝑘𝑒𝑦, 𝑟, ...)

Secure Passkey Entry
authentication

𝑆𝑇𝐾 𝑆𝑇𝐾
𝐿𝑇𝐾

𝐿𝑇𝐾

Figure 5: Pairing Mode Confusion in BLE (Attack 2)

The attack is depicted in Figure 5. Function 𝑐1 is defined in the
specification, function get_n computes a correct nonce given a
confirmation value: 𝑐1(𝑝𝑎𝑠𝑠𝑘𝑒𝑦, get_n(𝑝𝑎𝑠𝑠𝑘𝑒𝑦, 𝑐, 𝑑𝑎𝑡𝑎), 𝑑𝑎𝑡𝑎) = 𝑐 .
This results in the malleability of the commitment function in
Legacy Passkey Entry protocol, as found by Rosa [29].

The attacker can force the Initiator to use the Legacy Passkey
Entry protocol and the Responder to use the Secure Passkey Entry
protocol by modifying the input-output capabilities and the Secure
flag during Feature Exchange. The attacker then completes the
protocol on the Legacy side, which makes use of the ability to brute-
force the passkey and of the malleability of the commitment in
Legacy Pairing. This enables the attacker to recover the passkey,
thus to have a legitimate Secure Passkey Entry interaction with
the Responder. In the end, the attacker has completed Pairing with
both devices while sharing a different encryption key with each of
them.

7 PRACTICAL IMPLEMENTATION
To assess their applicability, the attacks have been tested on off-the-
shelf devices. This section details those implementations.

7.1 Machine-in-the-Middle attacks
In BR/EDR and BLE, the specification defines a complete protocol
stack, from the physical layer to the application layer. It also defines
the concept of Controller, which is the entity managing the radio
state of the device and Host, the entity that creates logical channels
and handles application data. The Host and Controller commu-
nicate through an Host-Controller Interface (HCI). On standard
Bluetooth-enabled devices such as computers and smartphones, the
Controller is implemented by the Bluetooth chipset and the Host is
implemented by the operating system.

Pairing happens in the intermediate layers of the protocol stack.
Both attacks described in Section 6 require the attacker to imple-
ment a custom Pairing procedure. Hence, to perform the attack one
needs the ability to receive and craft Pairing messages. In terms of
MitM, this means it has to be performed at or below the protocol
layer responsible for Pairing.

Figure 6: Protocol stacks in BR/EDR and BLE

Figure 6 depicts the protocol stacks of BR/EDR and BLE. The
location of Pairing in the protocol stack has major implications
on the ability to perform MitM attacks on it. When implemented
by the Host in BLE, one may modify the code of the Bluetooth
stack to implement those attacks. In BR/EDR, one has to modify
the firmware running in a Controller chipset to implement them.

7.2 Pairing Mode Confusion in BR/EDR
In BR/EDR, the Pairing process is implemented by the Controller
inside the LMP layer as seen on Figure 6. While messages are
completely distinct between Legacy and Secure Pairing, this is the
LMP layer which handles all of them.

In order to implement this attack, one needs the ability to act
on the LMP layer. To the best of the authors knowledge, only the
projects InternalBlue [26] and BrakTooth [21] allow to do so reli-
ably3. The official BrakTooth firmware is used without modifica-
tions as it already contains the commands to inject LMP messages.
3In BrakTooth, LMP message injection is an undocumented feature.

11

To implement the attacks, the associated driver is modified and
enhanced with a custom processing of HCI and LMP messages.
The custom driver reimplements the LMP messages necessary to
attack the Legacy PIN Pairing protocol. It also implements the HCI
messages necessary to control a dongle and complete the Secure
Passkey Entry protocol.

To setup the MitM, two BrakTooth dongles are necessary. Two
Android devices are used as targets. An adaptation to BR/EDR of
the preconnect strategy implemented by Mirage in BLE [11] is used.
The first dongle creates a connection (i.e., Page) to the target slave
device. Another dongle is used to respond to the Inquiry and Page
of the target master device. When this setup is complete, custom
code can be used to transfer LMP messages from one target to the
other.

After the MitM is set up, the Feature Exchange step is controlled
such that one dongle accepts Secure Pairing and the other accepts
Legacy Pairing. When the legitimate master initiates Pairing, the
use of Secure Passkey Entry is enforced while a Legacy PIN Pairing
procedure is initiated with the legitimate slave. Doing so, the user
is presented with a valid interaction on both sides: the legitimate
master displays a code to be input in the slave and the slave waits
for a code. The custom PIN Pairing implementation completes the
protocol while retrieving the PIN and LK. The PIN is then used by
the fake slave to complete the Secure Passkey Entry protocol.

This setup is able to perform MitM on BR/EDR, to complete the
Pairing with both sides simultaneously, and to retrieve encryption
keys at the end. It was observed that the target slave used keeps
responding to Inquiries even after being paged. As a result, to set
up the MitM sometimes a few trials were required as the target
master did connect with the target slave instead of the fake slave.

To the authors knowledge, this is the first MitM attack imple-
mented in BR/EDR, where two connections are created and syn-
chronised. This is thus the first MitM attack on the Pairing process
of BR/EDR to be implemented. This demonstrates that this kind of
attacks on BR/EDR is a threat that needs to be protected against.

7.3 Pairing Mode Confusion in BLE
As seen in Figure 6, the Pairing process in BLE is implemented by
the Host. More specifically, Pairing is implemented by the Security
Manager Protocol (SMP), which is encapsulated inside HCI mes-
sages. To implement the attack, the framework Mirage [11] is used.
First, Mirage has a built-in support of MitM in BLE through the use
of two BLE dongles. Second, Mirage allows to reimplement its own
handling of HCI and SMP messages, making it a suitable candidate
to perform attacks on the Pairing process.

Two legitimate Android phones are loaded with the nRF Connect
application. This application allows to scan, connect, and pair to
nearby BLE devices. Mirage is used to perform a MitM between
those two devices, then custom code allows to complete the attack.

Because Mirage does not support Secure Pairing, the support of
Secure Passkey Entry is added to the framework, which includes the
definition of relevant SMP messages and cryptographic primitives.
Then, the logic of the attack is implemented. First, the legitimate
Initiator is forced to perform a Legacy Passkey Entry protocol while
the legitimate Responder is forced to perform a Secure Passkey
Entry protocol. The user is presented with a valid Passkey Entry

interaction and completes it. Then, Rosa’s attack [29] is used on
the Legacy side to recover the passkey. This is used to complete the
Secure Passkey Entry side.

This setup is able to perform the MitM on BLE, complete the
Pairing with both devices and retrieve the encryption keys at the
end. The implementation of the brute-force is naive and takes a
few seconds, yet none of the legitimate device did timeout dur-
ing Pairing. Overall, this implementation validates the real-world
applicability of this attack.

8 CONCLUSION
Bluetooth has a concept of security mode. In BLE and BR/EDR, a
mode exists to restrict connections to use only Secure Pairingmodes
and 128-bit keys. Those modes may be implemented in devices to
restrict access to sensitive services. Whether those are implemented
and enforced remains an implementation and configuration matter.

The attacks presented in this paper demonstrate that the knowl-
edge of the configuration of one of the two devices is not enough
to have complete security guarantees. If one device is configured
to use only Secure Pairing but the peer device still allows Legacy
Pairing, then the communication between them is not immune to
attacks. Also, the user is not able to observe the difference because
the proposed mode confusion keeps an identical user interaction
as a legitimate exchange.

The original confusion attack relies on similar user interactions
that may be confused by users. The statement from the SIG [32]
recommends to device manufacturers to make it more obvious
which interaction is expected from users, to avoid confusions. They
did not modify the underlying protocols, hence no patch is enforced
for this problem. The confusions presented in this paper bypass
this mitigation because the user interaction is not only similar but
identical between both protocols.

The confusion identified in this paper is not done on the Pairing
Method, but on the Pairing Mode. When applicable, a possible patch
could be to indicate the PairingMode used (Legacy or Secure) on the
user interface, with specific instructions to not mix them. Still on
the user interface, devices supporting Legacy Pairing could indicate
that it is an unsecure Pairing mode anyway.

Another possibility would be to restrict the use of Legacy Pairing
completely, but this change must be enforced on both devices. The
response of Bluetooth SIG to those vulnerabilities is to disable
Legacy Pairing on devices, but it will not modify the protocols.

In our opinion, to completely fix those vulnerabilities, changes
at the protocol’s level are needed. Legacy Pairing could be removed
from the specification and the certification of newer devices may
include a test to verify it is not implemented. Modifying the protocol
to prevent confusion attacks would likely pose compatibility issues,
but would adequately solve the problem.

Disclosure process. The attacks were disclosed to the Bluetooth
SIG in September, 2021. The SIG accepted Pairing Mode confusion
attacks on BLE and BR/EDR and made a public statement on Decem-
ber, 2022. CVE numbers 2022-25836 (resp. 2022-25837) was assigned
to the Pairing Mode confusion in BLE (resp. BR/EDR).

12

REFERENCES
[1] Flor Álvarez, Lars Almon, Ann-Sophie Hahn, and Matthias Hollick. Toxic Friends

in Your Network: Breaking the Bluetooth Mesh Friendship Concept. In Proceed-
ings of the 5th ACM Workshop on Security Standardisation Research Workshop,
SSR’19, page 1–12, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

[2] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. BIAS: bluetooth
impersonation attacks. In 2020 IEEE Symposium on Security and Privacy, SP 2020,
San Francisco, CA, USA, May 18-21, 2020, pages 549–562. IEEE, 2020.

[3] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. Key negotiation
downgrade attacks on bluetooth and bluetooth low energy. ACM Trans. Priv.
Secur., 23(3):14:1–14:28, 2020.

[4] Daniele Antonioli, Nils Ole Tippenhauer, Kasper Rasmussen, and Mathias Payer.
Blurtooth: Exploiting cross-transport key derivation in bluetooth classic and
bluetooth low energy. In Yuji Suga, Kouichi Sakurai, Xuhua Ding, and Kazue Sako,
editors, ASIA CCS ’22: ACM Asia Conference on Computer and Communications
Security, Nagasaki, Japan, 30 May 2022 - 3 June 2022, pages 196–207. ACM, 2022.

[5] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Bonne Rasmussen. The
KNOB is broken: Exploiting low entropy in the encryption key negotiation of
bluetooth BR/EDR. In Nadia Heninger and Patrick Traynor, editors, 28th USENIX
Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16,
2019, pages 1047–1061. USENIX Association, 2019.

[6] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified models
and reference implementations for the TLS 1.3 standard candidate. In IEEE
Symposium on Security and Privacy (S&P’17), pages 483–503, San Jose, CA, May
2017. IEEE. Distinguished paper award.

[7] Eli Biham and Lior Neumann. Breaking the bluetooth pairing - the fixed coordi-
nate invalid curve attack. In Kenneth G. Paterson and Douglas Stebila, editors,
Selected Areas in Cryptography - SAC 2019 - 26th International Conference, Wa-
terloo, ON, Canada, August 12-16, 2019, Revised Selected Papers, volume 11959 of
Lecture Notes in Computer Science, pages 250–273. Springer, 2019.

[8] Bruno Blanchet. Automatic verification of security protocols in the symbolic
model: The verifier proverif. In Alessandro Aldini, Javier López, and Fabio
Martinelli, editors, Foundations of Security Analysis and Design VII - FOSAD
2012/2013 Tutorial Lectures, volume 8604 of Lecture Notes in Computer Science,
pages 54–87. Springer, 2013.

[9] Bluetooth SIG. Mesh Profile Bluetooth Specification, 01 2019. v1.0.1.
[10] Bluetooth SIG. Bluetooth Core Specification, 07 2021. v5.3.
[11] Romain Cayre, Jonathan Roux, Eric Alata, Vincent Nicomette, and Guillaume

Auriol. Mirage : un framework offensif pour l’audit du Bluetooth Low Energy. In
Symposium sur la Sécurité des Technologies de l’Information et de la Communication,
SSTIC 2019, Rennes, France, pages 229–258, June 2019.

[12] Richard Chang and Vitaly Shmatikov. Formal Analysis of Authentication in
Bluetooth Device Pairing. In in "Proceedings of the Joint Workshop on Foundations
of Computer Security and Automated Reasoning for Security Protocol Analysis
(FCS-ARSPA’07, pages 45–62, 2007.

[13] Tom Chothia, Ben Smyth, and Chris Staite. Automatically checking commitment
protocols in proverif without false attacks. In Riccardo Focardi and Andrew
Myers, editors, Principles of Security and Trust, pages 137–155, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

[14] Tristan Claverie and José Lopes-Esteves. Bluemirror: Reflections on bluetooth
pairing and provisioning protocols. In IEEE Security and Privacy Workshops, SP
Workshops 2021, San Francisco, CA, USA, May 27, 2021, pages 339–351. IEEE, 2021.

[15] Cas Cremers and Martin Dehnel-Wild. Component-Based Formal Analysis of
5G-AKA: Channel Assumptions and Session Confusion. In NDSS. The Internet
Society, 2019.

[16] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. Automated
analysis and verification of tls 1.3: 0-rtt, resumption and delayed authentication.
In 2016 IEEE Symposium on Security and Privacy (SP), pages 470–485, 2016.

[17] Cas Cremers and Dennis Jackson. Prime, order please! revisiting small subgroup
and invalid curve attacks on protocols using diffie-hellman. In 32nd IEEE Computer
Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019,
pages 78–93. IEEE, 2019.

[18] Matthias Cäsar, Tobias Pawelke, Jan Steffan, and Gabriel Terhorst. A survey on
Bluetooth Low Energy security and privacy. Computer Networks, 205:108712,
March 2022.

[19] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key protocols.
IEEE Trans. Inf. Theory, 29(2):198–207, 1983.

[20] Marc Fischlin and Olga Sanina. Cryptographic analysis of the bluetooth secure
connection protocol suite. In Mehdi Tibouchi and Huaxiong Wang, editors,
Advances in Cryptology - ASIACRYPT 2021 - 27th International Conference on the

Theory and Application of Cryptology and Information Security, Singapore, Decem-
ber 6-10, 2021, Proceedings, Part II, volume 13091 of Lecture Notes in Computer
Science, pages 696–725. Springer, 2021.

[21] Matheus E. Garbelini, Sudipta Chattopadhyayi, Vaibhav Bedi, Sumei Sun, and
Ernest Kurniawan. BrakTooth: Causing Havoc on Bluetooth Link Manager.
Technical report, Singapore University of Technology and Design, 2021.

[22] Mohit Kumar Jangid, Yue Zhang, and Zhiqiang Lin. Extrapolating Formal Analy-
sis to Uncover Attacks in Bluetooth Passkey Entry Pairing. 2023.

[23] Marcel Jason. New Wireless Trends and Forecasts for the Next 5 Years. https:
//www.bluetooth.com/blog/new-trends-and-forecasts-for-the-next-5-years/.

[24] Andrew Y Lindell. Attacks on the Pairing Protocol of Bluetooth
v2.1. https://www.blackhat.com/presentations/bh-usa-08/Lindell/BH_US_08_
Lindell_Bluetooth_2.1_New_Vulnerabilities.pdf, June 2008. BlackHat USA.

[25] Andrew Y. Lindell. Comparison-Based Key Exchange and the Security of the
Numeric Comparison Mode in Bluetooth v2.1. In Marc Fischlin, editor, Topics in
Cryptology – CT-RSA 2009, volume 5473, pages 66–83. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[26] Dennis Mantz, Jiska Classen, Matthias Schulz, and Matthias Hollick. InternalBlue
- Bluetooth Binary Patching and Experimentation Framework. In Proceedings
of the 17th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’19, page 79–90, New York, NY, USA, 2019. Association for
Computing Machinery.

[27] SimonMeier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The TAMARIN
prover for the symbolic analysis of security protocols. In Natasha Sharygina and
Helmut Veith, editors, Computer Aided Verification - 25th International Conference,
CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of
Lecture Notes in Computer Science, pages 696–701. Springer, 2013.

[28] Aleksi Peltonen, Mohit Sethi, and Tuomas Aura. Formal verification of misbinding
attacks on secure device pairing and bootstrapping. Journal of Information
Security and Applications, 51:102461, April 2020.

[29] Tomás Rosa. Bypassing passkey authentication in bluetooth low energy. IACR
Cryptol. ePrint Arch., page 309, 2013.

[30] Mike Ryan. Bluetooth: With Low Energy Comes Low Security. In 7th USENIX
Workshop on Offensive Technologies (WOOT 13), Washington, D.C., August 2013.
USENIX Association.

[31] Yaniv Shaked and Avishai Wool. Cracking the bluetooth PIN. In Kang G. Shin,
David Kotz, and Brian D. Noble, editors, Proceedings of the 3rd International
Conference on Mobile Systems, Applications, and Services, MobiSys 2005, Seattle,
Washington, USA, June 6-8, 2005, pages 39–50. ACM, 2005.

[32] Bluetooth SIG. Bluetooth SIG Statement Regarding theMethod-Confusion Pairing
Vulnerability. https://www.bluetooth.com/learn-about-bluetooth/key-attributes/
bluetooth-security/method-vulnerability/.

[33] Jörn Tillmanns, Jiska Classen, Felix Rohrbach, and Matthias Hollick. Firmware
insider: Bluetooth randomness is mostly random. In Yuval Yarom and Sarah
Zennou, editors, 14th USENIX Workshop on Offensive Technologies, WOOT 2020,
August 11, 2020. USENIX Association, 2020.

[34] Michael Troncoso and Britta Hale. The Bluetooth CYBORG: Analysis of the
Full Human-Machine Passkey Entry AKE Protocol. In 28th Annual Network and
Distributed System Security Symposium, NDSS 2021, virtually, February 21-25, 2021.
The Internet Society, 2021.

[35] Maximilian von Tschirschnitz, Ludwig Peuckert, Fabian Franzen, and Jens
Grossklags. Method confusion attack on bluetooth pairing. In 42nd IEEE Sympo-
sium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021,
pages 1332–1347. IEEE, 2021.

[36] Jiangliang Wu, Ruoyu Wu, Dongyan Xu, Dave (Jing) Tian, and Antonio Bianchi.
Formal model-driven discovery of bluetooth protocol design vulnerabilities. In
43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA, 23-
26 May 2022, pages 879–897, Los Alamitos, CA, USA, may 2022. IEEE Computer
Society.

[37] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Dave (Jing) Tian, Antonio Bianchi,
Mathias Payer, and Dongyan Xu. BLESA: spoofing attacks against reconnec-
tions in bluetooth low energy. In Yuval Yarom and Sarah Zennou, editors, 14th
USENIXWorkshop on Offensive Technologies, WOOT 2020, August 11, 2020. USENIX
Association, 2020.

[38] Fenghao Xu, Wenrui Diao, Zhou Li, Jiongyi Chen, and Kehuan Zhang. Badblue-
tooth: Breaking android security mechanisms via malicious bluetooth peripherals.
In 26th Annual Network and Distributed System Security Symposium, NDSS 2019,
San Diego, California, USA, February 24-27, 2019. The Internet Society, 2019.

[39] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen Fu. On
the (in)security of bluetooth low energy one-way secure connections only mode.
CoRR, abs/1908.10497, 2019.

13

https://www.bluetooth.com/blog/new-trends-and-forecasts-for-the-next-5-years/
https://www.bluetooth.com/blog/new-trends-and-forecasts-for-the-next-5-years/
https://www.blackhat.com/presentations/bh-usa-08/Lindell/BH_US_08_Lindell_Bluetooth_2.1_New_Vulnerabilities.pdf
https://www.blackhat.com/presentations/bh-usa-08/Lindell/BH_US_08_Lindell_Bluetooth_2.1_New_Vulnerabilities.pdf
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/method-vulnerability/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/method-vulnerability/

A TAMARIN CONFIGURATIONS
Tamarin macros are heavily used in all models. Overall, using dif-
ferent sets of macros enable to analyse different configurations of
the baseline models. We describe here the macros that can be used
to configure each model and their effects.

A.1 Tamarin macros in a nutshell
This paragraph uses two examples to illustrate how Tamarinmacros
work.

#ifdef Macro1
rule Rule1: [...] ... [...]
#endif

rule Rule2: [...] ... [...]

Example 7: Basic use of Tamarin macro

In Example 7, if Tamarin is started with the flag -DMacro1 the
rule Rule1 is used, else it is discarded. In all cases the rule Rule2 is
part of the analysis.

#ifdef NoOracle
#else
rule OracleRule: [...] ... [...]
#endif

Example 8: Implementing ifndef with Tamarin macro

Example 8 shows a simple implementation of an equivalent of
#ifndef in Tamarin. In the example, the rule OracleRule is used in
every case, except if the macro NoOracle is used on the command
line.

A.2 BR/EDR model
In BR/EDR, the following configuration macros are defined:

• NoLowEntropyLegacy: Disables the ability for an attacker
to brute-force the PIN used in Legacy PIN Pairing [31];

• NoLowEntropySecure: Disables the ability for an attacker to
brute-force the passkey used in Secure Passkey Entry [24];

• InitECDHUnpatched: Represents the fact that the Initia-
tor does not verify the validity of the Responder’s public
key [17];

• RespECDHUnpatched: Represents the fact that the Respon-
der does not verify the validity of the Initiator’s public key [17];

A.3 BLE model
In BLE, the following configuration macros are defined:

• NoLowEntropyLegacy: Disables the ability for an attacker to
brute-force the passkey used in Legacy Passkey Entry [30];

• NoLowEntropySecure: Disables the ability for an attacker to
brute-force the passkey used in Secure Passkey Entry [24];

• NoMalleableC1: Disables the malleability of the 𝑐1 commit-
ment function in BLE Legacy Pairing [29];

• InitECDHUnpatched: Represents the fact that the Initia-
tor does not verify the validity of the Responder’s public
key [17];

• RespECDHUnpatched: Represents the fact that the Respon-
der does not verify the validity of the Initiator’s public key [17].

A.4 BM model
In BM, the following configuration macros are defined:

• NoLowEntropyAuthValue: Disables the ability for an attacker
to brute-force AuthData used in the Provisioning proto-
col [14].

• NoMalleableCMAC: Disables the malleability of the 𝐶𝑀𝐴𝐶
commitment function in Provisioning [14]

• ProvECDHUnpatched: Represents the fact that the Provi-
sioner does not verify the validity of the Device’s public
key [17];

• DevECDHUnpatched: Represents the fact that the Device
does not verify the validity of the Provisioner’s public key [17];

• PatchProvisioning1: Represents the first patch proposed in [36]:
the Provisioner should not accept a reflected confirmation
value;

• PatchProvisioning2: Represents the second patch proposed
in [36]: the Device computes the commitment value using
an inversion of parameters.

B MESH PROVISIONING
The complete Provisioning protocol is shown in Figure 3.

B.1 Results on Provisioning
Mesh Provisioning was analysed with regards to patched ECDH im-
plementations. All other cryptographic imperfections are included
in the model. Properties AuthP and AuthD refer respectively to
the authentication of the provisioner and of the device. Properties
SecPN, SecPA, and SecPD refer to the secrecy of NetKey, App-
Key, and DevKey of the provisioner. Properties SecDN, SecDA, and
SecDD refer to the secrecy of NetKey, AppKey, and DevKey of the
device. Compromise resistance is also studied for Mesh Provision-
ing.

Table 5 presents the results obtained on BM. The aforementioned
9 properties defined are studied for each pair of the 64 protocols,
that is 576 (64×9) lemmas are analysed using Tamarin. For brevity,
only the results that lead to functional interactions are displayed.
For example, when NoOOB is used by a device an attacker can
always conduct an active attack as it is not authenticated (A13).

Tamarin correctly identifies a reflection attack (A14) on Mesh
Provisioning, which is published in [14] and [36]. It also finds at-
tacks which rely on brute-forcing a low-entropy AuthData (A15).
Finally, Tamarin combines existing results into complete attacks.
For example, A17 uses reflection to complete the key agreement
with the Provisioner and brute-forces AuthData [14] to complete
with key agreement with the Device. Other combinations of results
are identified (A18 and A19), relying on the complete retrieval of
AuthData or the malleability of the commitment function. Those
results were published in [14]. It is noted that although A17 and
A18 are combination of existing vulnerabilities of the protocol, the
ability to combine them is currently unaccounted for.

Another problem highlighted by this work is the lack of key
confirmation in Provisioning. In cells containing A16, the attacker
can prevent the transmission of NetKey from the Provisioner to
the Device and still complete the protocol with the Provisioner.
Therefore, even if the provisioner completes the protocol, the device

14

Table 5: Mesh - results of the analysis

Name AuthP AuthD SecPN SecPA SecPD SecDN SecDA SecDD CR CPU Time
EiOOBiEiOOBi A16 A15 A14 A14 A14 A15 A15 A15 A17 12191.64s
EiOOBnoEiOOBno A14 A13 A14 A13 A14 A13 A13 A13 A13 554.07s
EiOOBoEiOOBo A16 A15 A14 A14 A14 A15 A15 A15 A17 12140.49s
EiOOBsEiOOBno A14 A13 A14 A19 A14 A13 A13 A13 A14 568.60s
EiOOBsEiOOBs A14 A19 A14 A19 A14 A19 A19 A19 A18 4771.21s
EoOOBiEoOOBi A16 6244.17s
EoOOBnoEiOOBno A14 A13 A13 A13 A13 570.58s
EoOOBnoEoOOBno A14 590.67s
EoOOBoEoOOBo A16 5982.47s
EoOOBsEiOOBno A14 A13 A13 A13 A13 671.94s
EoOOBsEoOOBs A14 2337.05s

A13: OOBno is not authenticated
A14: Reflection attack on Provisioning, CVE-2020-26560 [14, 36]
A15: AuthData may be brute-forced, CVE-2020-26557 [14]
A16: (new) Lack of key confirmation in Provisioning
A17: (combination) Reflection and AuthData brute-force
A18: (combination) Reflection and AuthData retrieval
A19: (combination) AuthData retrieval and malleable commitment

Provisioner
𝐶𝐾

Device
𝐶𝐾

new𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎

Provisioner outputs
𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎

User inputs
𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎

new 𝑁𝑝 AES-CMAC𝐶𝐾 (𝑁𝑝 , 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎)

new 𝑁𝑑AES-CMAC𝐶𝐾 (𝑁𝑑 , 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎)
𝑁𝑝

𝑁𝑑

Abort if 𝑁𝑝 == 𝑁𝑑

Figure 7: Patch 1 proposed against the Provisioning reflection
attack

Provisioner
𝐶𝐾

Device
𝐶𝐾

new𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎

Provisioner outputs
𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎

User inputs
𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎

new 𝑁𝑝 AES-CMAC𝐶𝐾 (𝑁𝑝 , 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎)

new 𝑁𝑑AES-CMAC𝐶𝐾 (𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎, 𝑁𝑑)
𝑁𝑝

𝑁𝑑

Figure 8: Patch 2 proposed against the Provisioning reflection
attack

may not have joined the Mesh network. However, the attacker does
not gain any information nor any secret doing so. This demonstrates
a new flaw in the protocol, leading to a possible impersonation of a
device towards the provisioner.

B.2 Analysis of Provisioning patches
Bluetooth Mesh Provisioning was found vulnerable to a reflection
attack in [14, 36]. In [36], the authors propose two patches for this
attack by modifying the commitment protocol of the Provisioning.
The first patch depicted in Figure 7 consists in a verification that
the confirmation and nonce values were not reflected. The second
patch, in Figure 8 modifies the computation of the confirmation
value sent by the device: the order of arguments in the function are
reversed.

The patches are included in the Tamarin model of Bluetooth
Mesh. Tamarin identifies possible attacks in both cases due to com-
mitment malleability, which also applies in this case. Those attacks
contradict all security properties studied, including compromise
resistance. The identified attack on Patch 1 is shown in Figure 9.
This exact attack affects the original Provisioning protocol and is
already detailed in [14].

The initial analysis of the patches in [36] is performed assuming
perfect primitives, hence those attacks were not picked up by the
initial analysis. The core problem is that the commitment function
used is AES-CMAC, where up to one plaintext block can be re-
trieved. In the Provisioning protocol, the confirmation is computed

15

Provisioner
𝑁𝑒𝑡𝐾𝑒𝑦

Attacker Device

ProvisioningInvite

ProvisioningCapabilities

ProvisioningStart

new ⟨𝑠𝑘𝑝 , 𝑃𝑘𝑝 ⟩ new ⟨𝑠𝑘𝑎, 𝑃𝑘𝑎⟩𝑃𝑘𝑝 𝑃𝑘𝑎

new ⟨𝑠𝑘𝑑 , 𝑃𝑘𝑑 ⟩𝑃𝑘𝑑𝑃𝑘𝑎
𝐶𝐾𝑝𝑎 = ... 𝐶𝐾𝑝𝑎 = . . .

𝐶𝐾𝑎𝑑 = . . .

𝐶𝐾𝑎𝑑 = ...

new 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎

Provisioner outputs
𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎

User inputs
𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎

new 𝑁𝑝

𝐶𝑝 = AES-CMAC𝐶𝐾𝑝𝑎 (𝑁𝑝 , 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎)

new 𝑅𝑎
𝑅𝑎
𝑁𝑝

Compute𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎 from𝐶𝐾𝑝𝑎 ,𝐶𝑝 , 𝑁𝑝

Compute 𝑁𝑅𝑎 from𝐶𝐾𝑝𝑎 , 𝑅𝑎 ,𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎

𝑁𝑅𝑎

Abort if 𝑁𝑝 == 𝑁𝑅𝑎

ProvisioningData (encrypted 𝑁𝑒𝑡𝐾𝑒𝑦)
𝑁𝑒𝑡𝐾𝑒𝑦

ProvisioningComplete

new 𝑁𝑎 AES-CMAC𝐶𝐾𝑎𝑑 (𝑁𝑎, 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎)

new 𝑁𝑑

AES-CMAC𝐶𝐾𝑎𝑑 (𝑁𝑑 , 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎)
𝑁𝑎
𝑁𝑑

ProvisioningData (encrypted 𝑁𝑒𝑡𝐾𝑒𝑦)
𝑁𝑒𝑡𝐾𝑒𝑦ProvisioningComplete

Figure 9: MitM attack against Provisioning patch 1

on two blocks of plaintext: the nonce and 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎 are both 16-
bytes long. Therefore, to retrieve 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎 the attacker retrieves
the second block of the computation of the confirmation value.
Retrieving the first block allows the attacker to compute a correct
nonce for the sent confirmation value, thus successfully completing
the protocol.

The attack on patch 2 is almost identical as the one displayed in
Figure 9. The only difference is that 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎 and the nonce have
been swapped in the computation. Therefore to get a matching
nonce, the attacker needs to recover the second block of the AES-
CMAC instead of the first block for Patch 1. Apart from that, the
attack is the same.

16

	Abstract
	1 Introduction
	2 Background
	2.1 BR/EDR and BLE
	2.2 Bluetooth Mesh
	2.3 Related Work

	3 Formal verification with Tamarin
	3.1 Modelling protocols
	3.2 Modelling security properties
	3.3 Restricting studied executions
	3.4 Proving protocols with Tamarin

	4 Tamarin models
	4.1 Bluetooth key agreement protocols
	4.2 Security properties
	4.3 Modular models
	4.4 Representing cryptographic imperfections
	4.5 Using the models

	5 Results and comparison
	5.1 Achieved results
	5.2 Comparison with existing models

	6 New attacks
	6.1 Overview
	6.2 Attack A: Pairing Mode Confusion in BR/EDR
	6.3 Attack B: Pairing Mode Confusion in BLE

	7 Practical implementation
	7.1 Machine-in-the-Middle attacks
	7.2 Pairing Mode Confusion in BR/EDR
	7.3 Pairing Mode Confusion in BLE

	8 Conclusion
	References
	A Tamarin Configurations
	A.1 Tamarin macros in a nutshell
	A.2 BR/EDR model
	A.3 BLE model
	A.4 BM model

	B Mesh Provisioning
	B.1 Results on Provisioning
	B.2 Analysis of Provisioning patches

