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This paper provides a Tamarin-based formal analysis of all keyagreement protocols available in Bluetooth technologies, i.e., Bluetooth Classic, Bluetooth Low Energy, and Bluetooth Mesh. The automated analysis finds several unreported attacks, including two attacks (reported by Bluetooth SIG as CVEs) that exploit the confusion of pairing modes, i.e., when a communicating party uses the secure pairing mode while the other one uses the legacy pairing mode. They have been validated in practice using off-the-shelf implementations for the genuine communicating parties, and a custom BR/EDR machine-in-the-middle framework for the attacker.

INTRODUCTION

Bluetooth technologies are more and more deployed in the world as ways to transmit data over-the-air. In 2021, 4.7 billion Bluetooth devices were shipped according to the Bluetooth Special Interest Group (SIG) [START_REF] Jason | New Wireless Trends and Forecasts for the Next 5 Years[END_REF]. There are actually three distinct Bluetooth technologies: Bluetooth Classic (BR/EDR), Bluetooth Low Energy (BLE), and Bluetooth Mesh (BM). While the details differ significantly, all of them allow to secure communications, providing confidentiality, integrity, and authentication.

Many flaws have been discovered over the years in Bluetooth standards, including vulnerabilities in the protocols that are discovered regularly. All those flaws are not equivalent, some of them being related to the use of improper cryptographic primitives [START_REF] Rosa | Bypassing passkey authentication in bluetooth low energy[END_REF][START_REF] Ryan | Bluetooth: With Low Energy Comes Low Security[END_REF][START_REF] Shaked | Cracking the bluetooth PIN[END_REF], others are purely protocol-level flaws [START_REF] Antonioli | BIAS: bluetooth impersonation attacks[END_REF][START_REF] Antonioli | Key negotiation downgrade attacks on bluetooth and bluetooth low energy[END_REF][START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF][START_REF] Maximilian Von Tschirschnitz | Method confusion attack on bluetooth pairing[END_REF][START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF], and a few ones rely on incorrect implementations of cryptographic primitives [START_REF] Biham | Breaking the bluetooth pairing -the fixed coordinate invalid curve attack[END_REF][START_REF] Cremers | Prime, order please! revisiting small subgroup and invalid curve attacks on protocols using diffie-hellman[END_REF][START_REF] Tillmanns | Firmware insider: Bluetooth randomness is mostly random[END_REF]. The behaviour of Bluetooth stacks was also studied, especially on mobile platforms [START_REF] Antonioli | Blurtooth: Exploiting cross-transport key derivation in bluetooth classic and bluetooth low energy[END_REF][START_REF] Xu | Badbluetooth: Breaking android security mechanisms via malicious bluetooth peripherals[END_REF][START_REF] Zhang | On the (in)security of bluetooth low energy one-way secure connections only mode[END_REF], revealing so vulnerabilities in implementations.

Bluetooth communication security mostly relies on the key agreement step, where two devices exchange a cryptographic key. Many different protocols and sub-protocols can be used to perform this step in Bluetooth, which makes the security analysis highly complex. It is worth noting that analyses of vulnerabilities usually focus on a subset of protocols: whether or not these vulnerabilities also impact other Bluetooth protocols remain so unresponded.

The pairing confusion introduced in [START_REF] Maximilian Von Tschirschnitz | Method confusion attack on bluetooth pairing[END_REF] is an attack that exploits the interaction of two key-agreement protocols in Bluetooth. It consists of a scenario where an entity uses Protocol A while the other communicating entity uses Protocol B, such that they are not aware of this protocol mismatch. Usually, such a mismatched interaction ends with a failure. However, for some protocol pairs, the attacker can exploit messages sent in Protocol A to break the security properties of Protocol B, and conversely.

Formal protocol verification is the process of abstracting a protocol to prove that the considered security properties hold. Tamarin Prover [START_REF] Meier | The TAMARIN prover for the symbolic analysis of security protocols[END_REF] and ProVerif [START_REF] Blanchet | Automatic verification of security protocols in the symbolic model: The verifier proverif[END_REF] are state-of-the-art tools that automatically perform this formal protocol verification. They have been used for verifying complex protocols such as TLS 1.3 [START_REF] Bhargavan | Verified models and reference implementations for the TLS 1.3 standard candidate[END_REF][START_REF] Cremers | Automated analysis and verification of tls 1.3: 0-rtt, resumption and delayed authentication[END_REF] and 5G-AKA [START_REF] Cremers | Component-Based Formal Analysis of 5G-AKA: Channel Assumptions and Session Confusion[END_REF]. When their analyses complete, they grant either a formal proof that the considered security property hold, or an attack.

Automated formal verification tools can be used to study protocol confusion, in particular pairing confusion, which is done in [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF] using ProVerif. This paper does not provide a systematic analysis, though, and only considers perfect cryptographic primitives. Although it is common in the litterature to consider perfect cryptographic primitives, this is far from reflecting the ground truth.

Contributions. In this paper, comprehensive Tamarin models of all Bluetooth key-agreement protocols are detailed. Those models are enhanced with representations of cryptographic imperfections that affect Bluetooth. In particular, they are used to systematically analyse pairing confusions in Bluetooth key agreements. Tamarin so automatically identifies previously published attacks and identifies five new attacks, including four novel cases of protocol confusion. We highlight that the Bluetooth SIG assigned two CVEs for two of those attacks that defeat currently known mitigations against pairing confusions. To explore the practicality of these attacks, a BLE and a BR/EDR Machine-in-the-Middle (MitM) are implemented on the respective pairing methods of those technologies. Two additional attacks defeat proposed patches of BM Provisioning. To the best of our knowledge, this is the first practical MitM implementation on the BR/EDR pairing.

Outline. Section 2 provides an introduction to Bluetooth keyagreement protocols and their known flaws. Section 3 introduces formal verification with Tamarin and Section 4 details the modelling choices made for this study. The results are detailed and compared to previous works in Section 5. New attacks are presented in Section 6 and their implementation in Section 7. Section 8 concludes this paper.

BACKGROUND

In this section, we introduce the three distinct Bluetooth technologies: Bluetooth Basic Rate / Enhanced Data Rate (BR/EDR), Bluetooth Low Energy (BLE), and Bluetooth Mesh (BM).

BR/EDR and BLE

Bluetooth Basic Rate / Enhanced Data Rate (BR/EDR) and Bluetooth Low Energy (BLE) were standardised in 1999 and 2010 respectively [START_REF] Bluetooth | [END_REF]. BR/EDR is routinely used in audio devices (e.g., earbuds, speakers) while BLE is commonly used in other smart devices (e.g., watches). They have a similar security architecture.

Security properties.

In BR/EDR and BLE, the specification defines confidentiality, integrity and authenticity of the communication. Confidentiality and integrity are granted with the use of symmetric keys to protect the communication. Those symmetric keys are generated through a key agreement step. Authenticity is an optional property that depends on whether the key agreement used is authenticated or not.

Key Agreement.

In BR/EDR and BLE, the key agreement step is called Pairing and is performed between devices respectively called Initiator and Responder. To uniquely identify each protocol, two concepts are introduced. The term Pairing mode refers to the type of Pairing, it can be Legacy or Secure. The term Pairing method refers to the protocol name as standardized in the specification. 1 lists the Pairing protocols standardised. The Secure Pairing mode of both technologies contains 4 distinct methods that may be run. The differences between methods lie in the messages required to complete them and input/output capabilities of devices. This mode contains the method JustWorks which is not authenticated, Passkey Entry and Numeric Comparison which are authenticated, and the method Out of Band which may be authenticated. In terms of messages exchanged, the Secure Pairing protocols are identical in BR/EDR and BLE, e.g., Passkey Entry involves the same user interaction and messages exchanged whether in BR/EDR or in BLE, though the cryptographic primitives used are not the same.

The Legacy Pairing mode, on the other hand, is drastically different depending on the technology. In BR/EDR, there is a single Legacy protocol called PIN Pairing. In BLE, there are three distinct protocols, depending on the input/output capabilities of pairing devices: JustWorks, Passkey Entry, and Out of Band. Because methods names have been reused between BLE Legacy Pairing and BLE Secure Pairing modes, this paper uses the mode and the method to identify a specific protocol (e.g., Legacy JustWorks, Secure Out of Band, etc.).

In total, in the latest version of the specification1 , there are five distinct Pairing protocols in BR/EDR and seven in BLE, not counting the variations in user interaction inside a given protocol. A device may use all of them or only a subset of them depending on its configuration. For the sake of conciseness, only the Legacy The user has to exchange a numeric code between devices, called the 𝑃𝐼 𝑁 2 . This 𝑃𝐼 𝑁 is used alongside 𝑖𝑛_𝑟𝑎𝑛𝑑 and the Initiator address to derive 𝐾 𝑖𝑛𝑖𝑡 . 𝐾 𝑖𝑛𝑖𝑡 is used to mask two nonces 𝑐𝑜𝑚𝑏_𝑘𝑒𝑦 𝑖 and 𝑐𝑜𝑚𝑏_𝑘𝑒𝑦 𝑟 3 which are used to derive the Link Key (𝐿𝐾) 4 . According to the specification, the Pairing process is over once 𝐿𝐾 is created, but a mutual authentication procedure has to follow 5 .

𝐾 𝑖𝑛𝑖𝑡 = 𝐸 22 (𝑃𝐼 𝑁 , 𝑖𝑛_𝑟𝑎𝑛𝑑) 𝐾 𝑖𝑛𝑖𝑡 = . . . new 𝑐𝑜𝑚𝑏_𝑘𝑒𝑦 𝑖 𝑐𝑜𝑚𝑏_𝑘𝑒𝑦 𝑖 ⊕ 𝐾 𝑖𝑛𝑖𝑡 new 𝑐𝑜𝑚𝑏_𝑘𝑒𝑦 𝑟 𝑐𝑜𝑚𝑏_𝑘𝑒𝑦 𝑟 ⊕ 𝐾 𝑖𝑛𝑖𝑡 3 𝐾 𝑖 = 𝐸 21 (𝑐𝑜𝑚𝑏_𝑘𝑒𝑦 𝑖 , 𝐴𝑑𝑑𝑟 𝑖 ) 𝐾 𝑟 = 𝐸 21 (𝑐𝑜𝑚𝑏_𝑘𝑒𝑦 𝑟 , 𝐴𝑑𝑑𝑟 𝑟 ) 𝐿𝐾 = 𝐾 𝑖 ⊕ 𝐾 𝑟 𝐾 𝑖 = . . . 𝐾 𝑟 = . . . 𝐿𝐾 = . . .
BLE Legacy Passkey Entry is depicted in Fig. 2. Functions 𝑐 1 and 𝑠 1 are defined in the specification [10, Vol 3, Part H, §2.2]. The protocol starts with a Feature Exchange step 1 , which is used to provide information about input-output capabilities, key size to be negotiated, etc. In Legacy Passkey Entry, the user has to exchange a numeric code between the devices 2 . Typically, one device displays a code that the user enters in the other one. This code is used as a symmetric key in a commitment scheme 3 . This step is used to authenticate the capabilities and respective addresses of the devices. Finally, they use the nonces exchanged in step 3 to derive a Short-Term Key (𝑆𝑇 𝐾) that is then used to encrypt the communication.

Bluetooth Mesh

Bluetooth Mesh, standardised in 2017 [START_REF] Bluetooth | Mesh Profile Bluetooth Specification[END_REF], is a networking protocol that creates a Mesh network out of BM devices. BM is dedicated to smart home networks, with applications such as connected lighting, door locks, etc. There are three main communication types in a Mesh network: devices can exchange network-level data, they can exchange application-level data, and they can be each configured by a specific device named "configuration center".

Security properties.

The specification defines confidentiality, integrity and authenticity of each communication type. The Network Key (NetKey) is common to all devices in the network, it is used to protect network-level communication. Application Key (AppKey) is common to the set of devices belonging to the same application, it is used to protect application-level communication.

There may be several applications in a network, hence several Application Keys. The Device Key (DevKey) is used to protect the communication between a device and the configuration center. The configuration center uses it to perform privileged operations on devices (e.g., to install an AppKey, to rotate NetKey, etc.)

The Network Key and the Device Key are respectively provisioned and generated through a key agreement step. Application Key are sent afterwards, encrypted with the Device Key. Authenticity of the communication depends on the initial key agreement, whether it is authenticated or not.

Key agreement.

The key agreement procedure in BM is used to provide each device with the necessary secrets to communicate on this network. It is called Provisioning procedure, it runs between a Device and the Provisioner.

There are variants of Provisioning, which depend on how the key exchange is performed (in-band or out-of-band) and how authentication data are exchanged. The user has to exchange 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎 between both devices 3 . For example, in Input OOB mode, the Provisioner outputs data (e.g., a numeric code) and the user inputs it in the Device. A commitment protocol is run to authenticate the peers, their respective capabilities, and addresses 4 . A new session key is derived from the Confirmation Key and the nonces exchanged in the commitment protocol. Finally, this session key is used to encrypt 𝑁 𝑒𝑡𝐾𝑒𝑦 5 and the Provisioning ends.

Related Work

Bluetooth technologies have been subject to lots of attacks over the years, a survey of those affecting BLE can be found in [START_REF] Cäsar | A survey on Bluetooth Low Energy security and privacy[END_REF]. Some studies have focused on the security of the reconnection step: BIAS [START_REF] Antonioli | BIAS: bluetooth impersonation attacks[END_REF] considers the authentication protocol during reconnection in BR/EDR, KNOB [START_REF] Antonioli | The KNOB is broken: Exploiting low entropy in the encryption key negotiation of bluetooth BR/EDR[END_REF] the key size reduction in BR/EDR, and BLESA [START_REF] Wu | BLESA: spoofing attacks against reconnections in bluetooth low energy[END_REF] the reconnection in BLE.

There are also passive attacks on Bluetooth technologies. In BR/EDR, Legacy Pairing is vulnerable to offline key recovery from a capture of exchanged messages [START_REF] Shaked | Cracking the bluetooth PIN[END_REF]. Legacy Pairing in BLE has the same flaw although the details differ [START_REF] Ryan | Bluetooth: With Low Energy Comes Low Security[END_REF]. In a Secure Pairing protocol, Lindell showed the possibility to retrieve passively an authentication secret [START_REF] Andrew | Attacks on the Pairing Protocol of Bluetooth v2[END_REF], which applies to BLE and BR/EDR.

Rosa [START_REF] Rosa | Bypassing passkey authentication in bluetooth low energy[END_REF] proposed an active attack on Legacy Pairing in BLE that relies on a flawed cryptographic primitive. Researchers studied the use of ECDH in the Pairing protocols [START_REF] Biham | Breaking the bluetooth pairing -the fixed coordinate invalid curve attack[END_REF][START_REF] Cremers | Prime, order please! revisiting small subgroup and invalid curve attacks on protocols using diffie-hellman[END_REF], found flaws in the authentication of public keys and discussed possible attacks. Key size reduction is also studied in BLE [START_REF] Antonioli | Key negotiation downgrade attacks on bluetooth and bluetooth low energy[END_REF], which proved to be vulnerable to some extent.

BlueMirror [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF] proposed an extensive study of reflection attacks in Bluetooth technologies and showed their applicability to all of them. It also showed cryptographic problems in Bluetooth Mesh Provisioning, breaking its authentication protocol. On Bluetooth Mesh, a reflection attack is independently detailed in [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF] and [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF]. The security of the Friendship concept in BM is studied in [START_REF] Álvarez | Toxic Friends in Your Network: Breaking the Bluetooth Mesh Friendship Concept[END_REF].

In [START_REF] Maximilian Von Tschirschnitz | Method confusion attack on bluetooth pairing[END_REF], the authors define the concept of Pairing Confusion, where the attacker forces two devices to use two different Pairing protocols. In their attack, an attacker forces device A to complete Secure Passkey Entry while device B completes Secure Numeric Comparison. They show that in this setup, implementations do not allow the user to distinguish between both protocols. As a result, the attacker can complete them and retrieve the encryption key derived by each device.

Bluetooth was also studied from a formal perspective. Some studies performed manual proofs of some parts of Bluetooth, in various contexts. In [START_REF] Andrew | Comparison-Based Key Exchange and the Security of the Numeric Comparison Mode in Bluetooth v2.1[END_REF], a proof of Secure Numeric Comparison is done. A formal analysis of Secure Passkey Entry is proposed in [START_REF] Troncoso | The Bluetooth CYBORG: Analysis of the Full Human-Machine Passkey Entry AKE Protocol[END_REF]. The security of the reconnection step in BR/EDR and BLE is studied in [START_REF] Fischlin | Cryptographic analysis of the bluetooth secure connection protocol suite[END_REF]. Formal studies using automated tools are also detailed in [START_REF] Chang | Formal Analysis of Authentication in Bluetooth Device Pairing[END_REF], [START_REF] Chothia | Automatically checking commitment protocols in proverif without false attacks[END_REF], [START_REF] Peltonen | Formal verification of misbinding attacks on secure device pairing and bootstrapping[END_REF], [START_REF] Cremers | Prime, order please! revisiting small subgroup and invalid curve attacks on protocols using diffie-hellman[END_REF], [START_REF] Kumar | Extrapolating Formal Analysis to Uncover Attacks in Bluetooth Passkey Entry Pairing[END_REF], and [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF]. They are discussed in depth in Section 5.2.

FORMAL VERIFICATION WITH TAMARIN

An introduction to Tamarin is provided in this section.

Modelling protocols

Tamarin is a tool dedicated to the proof of cryptographic protocols. It represents the messages exchanged and computations as algebraic terms. From a protocol specification and a number of properties expressed in Tamarin's input language, it is able to verify that the protocol matches the stated properties.

At its core, Tamarin is based on multiset rewriting. This means a protocol is represented using a series of multiset rewriting rules. A rule essentially dictates the labelled transition from one set of facts to another.

rule RespSendPublicKey:

RespDoECDH(idR, idI), Fr(~s), In(pkI) LabRespEndECDH(idR, idI, 'g'^~s, pkI, pkI^~s) RespEndECDH(idR, idI, 'g'^~s, pkI, pkI^~s), Out('g'^~s)

Example 1: Tamarin rewriting rule A Tamarin rule is composed of four elements, namely its name, the set of facts that are input to the rule, the set of labels that are produced by the rule, and the set of facts that are output by the rule. In Example 1, if there exists a fact RespDoECDH(𝑖𝑑𝑅, 𝑖𝑑𝐼 ) and there is an input message 𝑝𝑘𝐼 in Tamarin's state, it is possible to apply this rewriting rule. This consumes the facts RespDoECDH(...), the fact RespEndECDH(...) is then added to the state. The label LabRespEndECDH(...) is generated by the application of this rule. Out(...) is a special fact and represents the emission of a message over a public channel. In(...) is also a special fact that denotes the reception of a message and Fr(...) represents the generation of a random (fresh) value. The notation~s denotes a unique and unguessable random number, the operation ^represents the exponentiation, and 'g' represents a public constant. In this rule, 𝑖𝑑𝐼 , 𝑖𝑑𝑅, and 𝑝𝑘𝐼 are variables, hence can be terms of any form or type.

Tamarin analyses protocols in the so-called Dolev-Yao model [START_REF] Dolev | On the security of public key protocols[END_REF] where the attacker has full control over the communication channel: it is able to receive, intercept, modify, and forge messages. Tamarin automatically generates rules for the attacker, which enables it to perform common operations, like splitting and concatenating messages, etc. The attacker's knowledge is updated with each message sent on the public channel, hence with each Out(...) produced. Similarly, each message known to the attacker can be sent over the public channel, hence received in any In(...) fact.

In order to represent cryptographic operations, Tamarin enables to define function symbols and their relations through equations. It comes with existing symbols such as xor, symmetric encryption (and decryption), Diffie-Hellman, etc. The set of equations that relate functions together is called an equational theory.

Modelling security properties

The combined use of rewriting rules, functions, and equations is sufficient to create models of cryptographic protocols. To gain insight and knowledge about those protocols, Tamarin allows encoding logical properties that it then tries to verify. These properties are called lemmas and are expressed using labels that are produced by rewriting rules. lemma InitiatorKeySecrecy: "∀ id, ioCap, stk #i.

InitFinishedPairing(id, ioCap, stk) @#i =⇒ #j . K(stk) @#j"

Example 2: Tamarin lemma Intuitively, Example 2 expresses that if an Initiator ends the Pairing with a certain key 𝑠𝑡𝑘 at time #i, the attacker is unable to retrieve it at any point in time. The lemmas are expressed as logical formulas and the attacker knowledge is represented with fact K. The formulas are expressed naturally as logical formulas, using quantifiers and negations, which allow describing security properties about a protocol. The example formula matches a simple weak secrecy claim about a protocol, namely that the attacker must be unable to retrieve the key 𝑠𝑡𝑘. The lemmas can make use of all the labels defined, but cannot include any fact that is used in the description of the protocol.

Restricting studied executions

In some protocols, not all executions are valid for a given configuration. For example, some protocols use actions that can be executed only one time (e.g., generation of a master key). In those cases, it is necessary to prevent Tamarin from considering some executions: for one, the model will be closer to the protocol and second, it will improve the computation time to do the proof.

restriction UniqueRestr: "∀ #i #j. Unique() @#i ∧ Unique() @#j =⇒ #i = #j"

Example 3: Tamarin restriction

This can be modelled with restrictions, which also use labels. Restrictions are lemmas that forbid Tamarin to study some executions. In Example 3, if a rule were producing a Unique() label, the restriction would prevent it from being used twice. Restrictions are also logical formulas, so more elaborated formulas could be used.

Proving protocols with Tamarin

When provided with a lemma, Tamarin tries to prove it is true in all cases or provide an execution trace that contradicts the lemma. This execution trace illustrates the different rules that are applied and the actions the attacker took to contradict the property. From an attack trace, it is possible to manually identify the messages and computations an attacker does to invalidate the property studied. To gain insight into the protocol, the attack can then be analysed to identify its root cause (e.g., lack of integrity of a specific parameter), as well as possible patches.

Another possibility is that Tamarin may not finish the proof within the allocated resources (time, memory). When Tamarin does not finish, it is possible to use an interactive mode and to prove the property manually by guiding Tamarin about the states to explore. Because Tamarin is, at its core, a prover, it does not yield all counterexamples of a lemma for a model. This means that when knowingly studying a flawed protocol, Tamarin is not able to enumerate all the attacks on this protocol.

When modelling complex protocols, it is common that Tamarin takes several days to complete or runs out of resources due to an explosion of states to consider. Restrictions can be used to prevent state explosion, but they have to be carefully created so the model remains correct.

Furthermore, by default Tamarin considers cryptographic primitives to be perfect. However, some primitives have known weaknesses and some protocols use primitives in an incorrect way. Representing cryptographic imperfections requires an extra modelling step so Tamarin can include them in the model.

TAMARIN MODELS

This section details the choices made to model Bluetooth key agreements, cryptographic imperfections and patches.

Bluetooth key agreement protocols

When modelling key agreements in Bluetooth, one needs to tackle the diversity of protocols. In order to model them accurately, one needs to model the user interaction required to complete each of them. In the specification, a single protocol may have several user interaction variations, depending on the input/output capabilities of both devices. For example, in BLE Legacy Passkey Entry, a device may have an input, an output or both. Whether the device outputs or waits for a numeric code depends on the other device's inputoutput capabilities. To address this variation, Legacy Passkey Entry is modelled as three sub-protocols to represent the different user interaction required. This also applies to other Pairing protocols, increasing so the number of protocols that are represented. In total, there are 13 BLE protocols, 11 BR/EDR protocols, and 8 BM protocol that are modelled to consider all the identified variations.

Pairing Confusion is part of the set of identified vulnerabilities and a systematic study of possible confusions in Bluetooth key agreements is performed. Thus, the interaction of all possible protocols with all possible protocols is studied, with one model per study. This improves the precision and completeness of the analysis, at the cost of a quadratic number of cases to consider. In BLE the interaction of all 13 modelled protocols with all of them is studied, which makes 169 (13×13) cases. Similarly, there are 121 (11×11) cases studied in BR/EDR and 64 (8×8) in BM. Although the term Pairing confusion is used across this paper for conciseness, it is noted that in the case of Bluetooth Mesh what is actually studied is Provisioning confusion.

It is noted that in practice, the choice of the protocol to use between two legitimate devices is done in the very first step, which is the Feature Exchange. An active attacker has the ability to modify the features sent by each device, hence has the ability to force the protocol to use on each side of the connection. Therefore, studying each pair of protocol makes sense from a Bluetooth's point of view, as this is an accurate representation of an attacker's capabilities.

Security properties

Confidentiality and integrity of communications come from a shared symmetric key. Those properties are modelled with a key leakage lemma. If the attacker has complete knowledge of the key used by one device after the key agreement, then this property is false. For authentication, the specific property modelled is non-injective agreement. This property is false if an attacker can reach the end of a protocol while impersonating another device.

Some attacks end with an attacker retrieving the symmetric key used by one device and not the other, or simply impersonating a device. In those cases, a user could notice that the key agreement did not complete legitimately because the two legitimate devices cannot communicate together. However, other attacks allow an attacker to compromise the symmetric keys and authentication of both devices at the same time. With those attacks, the user would not notice that its communication are being eavesdropped and could be impersonated, which represents a critical problem for the protocol. To represent these, another property is introduced, called Compromise Resistance (CR). lemma WeakSecretInit: "∀ idI idR ltk #k1 .

InitFinishedSecPairing(idI, idR, ltk)@#k1 =⇒ #k2 . K(ltk)@#k2" In BM, there are nine security properties of interest per interaction studied: secrecy of NetKey/AppKey/DevKey for Device/Provisioner, authenticity of Device/Provisioner and compromise resistance. For each interaction, a functional property is added, it represents whether the interaction can complete successfully in presence of an attacker.

lemma CR: "∀ idI idR ltk1 ltk2 #j1 #j2 . InitFinishedSecPairing(idI, idR, ltk1)@#j1 ∧ RespFinishedSecPairing(idI, idR, ltk2)@#j2 =⇒ #k1 #k2 . K(ltk1)@#k1 ∧ K(ltk2)@#k2"

Modular models

As noted in Paragraph 4.1, studying Pairing confusion requires to study the interaction of all pairs of protocols. This vulnerability also arises from a confusion of the user about its required action, such that the user cannot distinguish two distinct protocols. On the model side, this is represented with a module of rules dedicated to user interactions, used by all sub-protocols. User interactions are modelled through the use of a private channel implemented with Tamarin facts. It is considered that the user acts as defined in the specification and will input/output/confirm data when needed. This represents the confusion from the user's side, who may be unknowingly accepting the key agreement between two distinct protocols if they have matching user interactions.

Bluetooth protocols are not entirely disjoint and share several common parts. For example, each Secure Pairing protocol whether in BLE or BR/EDR starts with the same Feature Exchange and ECDH Key Exchange. In the proposed models, there is a single set of rules that represents those steps, which is used by each appropriate protocol. Another example would be the key derivation steps, which are common to several protocols depending on the technology. In the same spirit, the Tamarin rules corresponding to those steps are common to several protocols and not duplicated.

This approach helps considering the model as a set of modules and not as a simple set of rules. Typically, there is the authentication module, the ECDH module, the key generation module, etc. Each module has a kind of "interface" in the form of one or several facts that are used as input facts or output facts.

To study each pair of protocols independently, it is needed to force Tamarin to consider only the rewriting rules used for a defined protocol and not the others. This is implemented using the Tamarin pre-processor, through Tamarin macros. Macros consist in adding #ifdef and #endif in the model. Before processing the model, the pre-processor of Tamarin writes the block between macros in the studied file only if a command-line flag is provided. Each module of rules is thus surrounded by a macro and is processed only if explicitly stated. Because each case is built as a suite of modules, this approach is used to prevent Tamarin from considering the rest of the model.

Representing cryptographic imperfections

By default, Tamarin assumes that cryptography is perfect, but Bluetooth is known to be vulnerable to several attacks which rely on cryptographic flaws in the specification. This paragraph details the Tamarin model of cryptographic imperfections, which allow Tamarin to identify attacks based on those vulnerabilities. 4.4.1 Brute-force of low-entropy secrets. Some Bluetooth key agreements use low-entropy secrets, which can be brute-forced by an attacker. Depending on the technology and key agreement, this kind of vulnerability has various shapes, but can be found in each technology [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF][START_REF] Andrew | Attacks on the Pairing Protocol of Bluetooth v2[END_REF][START_REF] Ryan | Bluetooth: With Low Energy Comes Low Security[END_REF][START_REF] Shaked | Cracking the bluetooth PIN[END_REF].

In Tamarin, the names used to represent nonces/passwords are perfect and unguessable by default: if there is a generated value 𝑠𝑒𝑐𝑟𝑒𝑡 and the attacker has access to h (𝑠𝑒𝑐𝑟𝑒𝑡), without further rule the attacker is unable to retrieve the value of 𝑠𝑒𝑐𝑟𝑒𝑡. While this assumption is reasonable for some protocols (e.g., if the secret value is 128-bit long), Bluetooth uses several low-entropy secrets that can be brute-forced in a practical time. To model this capability, special Oracle rules are created to output the targeted secret when the attacker has provided enough information. The implementation of the passkey recovery [START_REF] Andrew | Attacks on the Pairing Protocol of Bluetooth v2[END_REF] from BLE Secure Passkey Entry protocol is done with the rule depicted in Example 5. The function f4 is defined in the specification and is common to several Pairing methods. Only the methods that use a low-entropy secret generate the fact LowEntropyf4 (𝑝𝑘1, 𝑝𝑘2, 𝑛, 𝑠) that allows to enter this rule. The attacker also needs to prove knowledge of all the elements to the Oracle by sending them on the public channel. When used, this rule outputs the secret, which becomes available to the attacker. The use of an explicit oracle rule makes it appear in Tamarin's execution traces, therefore one may follow easily the type and number of oracles called in a specific attack.

Malleable Commitment. This issue is present in BLE Legacy

Pairing [START_REF] Rosa | Bypassing passkey authentication in bluetooth low energy[END_REF] and in BM Provisioning [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF]. While both instances of commitment functions in Bluetooth have different cryptographic details, they are conceptually very similar. Both affected commitment procedures use four messages. Those are displayed in step 3 of Figure 2 for BLE and in step 4 of Figure 3 for BM: both devices exchange a commitment value computed from a key, a nonce, an authentication secret, and additional data. Device A sends the first commitment, followed by B. Then both devices exchange their nonces: Device A sends its nonce, and then B replies with its own.

The vulnerabilities rely on the attacker posing as device B. After receiving A's commitment, the attacker needs to send an arbitrary value for A to send its nonce. From A's nonce and commitment, the attacker is able to recover an authentication secret. Then, the attacker crafts a nonce from the sent commitment and recovered authentication secret. In this paper, the choice is made to implement malleable commitments with a pure equational theory. In Example 6, one can see the implementation of this problem that is done for BM. In particular, it is necessary to define an equation to craft a nonce, represented here with get_b1. Then, one has to explicitly state that a confirmation that is used in this way is equal to a proper aes_cmac term. With this type of representation, Tamarin is indeed able to find this class of attacks on the studied protocols.

This type of cryptographic problem is very dependant on the underlying cryptographic specification, and those equations are not suitable for all protocols. In Tamarin, it is impossible to state that this equation holds only if 𝑏1 and 𝑏2 have a specific size, in this case the block size of the underlying block cipher: 16 bytes. As a result, those equations give the attacker more power than it has in practice and are not a generic representation of this kind of problem. In the results, it is verified that these equations are applied correctly by the attacker and not in unrealistic cases.

4.4.3 Small subgroup attack on ECDH implementation. In Bluetooth, incorrect ECDH implementations have led to some attacks on implementations [START_REF] Biham | Breaking the bluetooth pairing -the fixed coordinate invalid curve attack[END_REF][START_REF] Cremers | Prime, order please! revisiting small subgroup and invalid curve attacks on protocols using diffie-hellman[END_REF]. This attack is a type of small subgroup attack that affects BR/EDR and BLE when the validity of received public keys is not verified. The representation of this type of attacks and more generally of incorrect implementations of Diffie-Hellman with Tamarin is extensively discussed in [START_REF] Cremers | Prime, order please! revisiting small subgroup and invalid curve attacks on protocols using diffie-hellman[END_REF]. The authors provide a model of Secure Numeric Comparison with their representation.

In all Bluetooth technologies, the elliptic curves used are P-192 or/and P-256, which are defined over a field of prime order. Therefore, the representation of ECDH provided in their model can be adapted to all Bluetooth technologies. Basically, each public key is represented as a group identifier, the neutral element of the group and the group element. When deriving a Diffie-Hellman key, if the attacker has managed to send an invalid element with respect to the correct group, the key is considered leaked to the attacker. This is representative of elliptic curve cryptography on the groups used in Bluetooth, because an appropriate modification of a public key yields a Diffie-Hellman secret that is on a group of low order (as low as 2). In that case, the secret becomes easily retrievable using brute-force. This representation is adopted in all models of this article.

Using the models

Using the approach outlined in Section 4.1, studying the interaction of all possible pairs of protocols for all technologies requires studying 354 (169 + 121 + 64) distinct cases, each case containing several properties to analyse. This forms the baseline of the models presented in this paper.

Our first attempt was a version of the model that did rely on the modularization but without using macros. On such a version of the BLE model, proving the simplest lemma required several hours of CPU time but with the current model, 5.74 seconds suffice to study all lemmas for the same interaction. Therefore, macros not only help to specify an interaction to study, but also help to obtain results in practical time by avoiding Tamarin to load all the rules and to compute their refined sources.

Moreover, to gain more insight into the strengths and weaknesses of each protocol, one may want to study the effects of specific imperfections. Similarly, to study the effects of a patch, one may want to study the impact if only one of the two devices is patched. For example, in [START_REF] Cremers | Prime, order please! revisiting small subgroup and invalid curve attacks on protocols using diffie-hellman[END_REF] the authors analyse the outcome of having one device with a patched ECDH implementation and another with a flawed one. The proposed models support this type of configuration through macros. For example, it is possible to study all the mentioned protocols while preventing the attacker to brute-force low-entropy secrets using specific macros. Likewise, it is possible to study all the relevant protocols where one device has a patched version of ECDH using another macro. Overall, using different sets of macros enable to analyse different configurations of the baseline models. The macros that can be used and their effects are detailed in Appendix A. In total, there is one model per technology, containing all subprotocols identified for this technology. Their respective size is detailed in Table 2. Although the models are large, the analysis of all lemmas of all protocols is efficient. The configuration analysed in this paper completed in less than 77 hours of CPU time.

RESULTS AND COMPARISON

The results of the study are provided in this section before being compared to the literature.

Achieved results

This section details the results for BR/EDR and BLE. Results obtained for BM, including a new attack, are detailed in Appendix B. We also slightly modify our model to analyse patches proposed in [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF] for BM and uncover several attacks that were overlooked in their study.

The configuration of the models is that devices have a patched ECDH implementation but are vulnerable to all other imperfections. This configuration matches an up-to-date specification. The analysis of BR/EDR and BLE with regards to unpatched ECDH implementations is discussed in Paragraph 5.2.1. The results displayed consider only functional interactions where both devices can reach the end of their protocol.

There are 5 security properties studied for BR/EDR and BLE so a total of 1450 (121 × 5 + 169 × 5) lemmas. There are 9 security properties studied for BM so a total of 576 (64 × 9) lemmas studied. For the configuration considered, Tamarin identifies 659 attack traces. All attack traces are manually analysed to identify which result they are related to. Annotated result tables match each attack trace to the underlying weakness used, some of which are new. Table 3 presents the results of functional interactions in BR/EDR. Several attacks are related to cryptographic issues. In cells identified with A1, a reflection attack is identified where the attacker is able to retrieve the encryption key. This attack relies on a specific property of the xor operator which is built-in in Tamarin, it is presented in [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF]. The attacks A2 and A5 rely on the brute-force of lowentropy secrets. A variant of the former is described in [START_REF] Shaked | Cracking the bluetooth PIN[END_REF] while the latter is described in [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF]. Tamarin finds attack traces that extend these results to compromise the authenticity and secrecy of the protocol. This analysis provides a more accurate view of the impact of this vulnerability with regards to Pairing security.

Several confusion attacks are identified. The original attack [START_REF] Maximilian Von Tschirschnitz | Method confusion attack on bluetooth pairing[END_REF], identified with A4, describes a confusion between Secure Passkey Entry and Secure Numeric Comparison. Tamarin identifies two novel confusion attacks for distinct pairs of protocols. The first one occurs between Legacy PIN Pairing and Secure Numeric Comparison (A6). The second one occurs between Legacy PIN Pairing and Secure Passkey Entry (A7). Those are discussed in Section 6. Several attacks are related to cryptographic issues. There is a reflection attack against the Initiator in Legacy Pairing (A8) which invalidates the AuthI property, it is described in [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF]. Attack A9 relies on the brute-force of low entropy secrets and is presented in [START_REF] Ryan | Bluetooth: With Low Energy Comes Low Security[END_REF]. Attack A5 is similar between Tables 3 and4. In BLE, it occurs in interactions of type SecPE/LegPE and is an extension of the results presented in [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF].

The original confusion attack is correctly identified as for BR/EDR, although the line isn't displayed in Table 4 because it is redundant with lines Sec*Sec* of Table 3. Two novel confusion attacks are identified by Tamarin. A confusion between Legacy Passkey Entry and Secure Numeric Comparison (A11) is found. The analysis also demonstrates a possible confusion between Legacy Passkey Entry and Secure Passkey Entry (A12). Those are discussed in Section 6.

BM Provisioning.

There are 9 security properties studied for BM. We consider 2 authentication properties, and 6 secrecy properties as there are 3 distinct keys (NetKey, AppKey, and DevKey), and secrecy is analysed from the point of view of both entities (Provisioner and Device). Compromise resistance is also studied. Results obtained for BM, including a new attack, are detailed in Appendix B. This new attack allows a desynchronization between the Device and the Provisioner, where the Provisioner successfully completes the protocol while the legitimate Device is prevented from joining the network.

In addition, our model is also used to analyse the patches proposed by [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF] to overcome the reflection attack affecting Provisioning protocols. To analyse them in our model, only two specific rules need modification. The existing representation of cryptographic imperfections directly applies to their proposed patch, without further effort. The analysis of the patch confirms that the reflection attack is prevented, but other existing attacks remain possible due to two cryptographic imperfections (retrieval of authentication secrets and malleable commitment). The effect of those attacks is that all studied security properties are invalidated: the proposed protocols do not grant key secrecy, authenticity, nor compromise resistance. The flaws in their patch are detailed in Appendix B.2. The ProVerif analysis conducted by [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF] missed these attacks as cryptography was assumed to be perfect.

Comparison with existing models

There are few published formal symbolic analyses of the Bluetooth protocol involving automated tools. For completeness, it is noted that [START_REF] Chothia | Automatically checking commitment protocols in proverif without false attacks[END_REF] performed a ProVerif [START_REF] Blanchet | Automatic verification of security protocols in the symbolic model: The verifier proverif[END_REF] analysis of Numeric Comparison but did not identify any weakness. In [START_REF] Chang | Formal Analysis of Authentication in Bluetooth Device Pairing[END_REF] the authors demonstrated that injective key-agreement does not hold in Numeric Comparison.

A study of misbinding attacks is performed in [START_REF] Peltonen | Formal verification of misbinding attacks on secure device pairing and bootstrapping[END_REF] using ProVerif.

All those studies focus on various definitions of authentication for one or two Pairing protocols, while the present paper considers all Bluetooth key agreements. The relevance of our model and results are discussed with respect to more accurate models of Bluetooth key agreements in [START_REF] Cremers | Prime, order please! revisiting small subgroup and invalid curve attacks on protocols using diffie-hellman[END_REF], [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF], and [START_REF] Kumar | Extrapolating Formal Analysis to Uncover Attacks in Bluetooth Passkey Entry Pairing[END_REF].

Model of the ECDH key exchange.

In [START_REF] Cremers | Prime, order please! revisiting small subgroup and invalid curve attacks on protocols using diffie-hellman[END_REF], the authors modify Tamarin to study the security of the Secure Numeric Comparison protocol with regards to small subgroup attacks on the Diffie-Hellman key exchange. This study is an extension of [START_REF] Biham | Breaking the bluetooth pairing -the fixed coordinate invalid curve attack[END_REF] which identified the initial problem with ECDH in Bluetooth Pairing.

In the present study, the analysis of BR/EDR and BLE is also done considering two, one or none of the devices patched. Combined with other problems, this allows identifying more possible attack scenarios where some attacks are combined. It is verified that the patches work with BR/EDR and BLE and for all Secure Pairing methods instead of just one. The results for those configurations are not displayed in this paper.

Analysis of BR/EDR, BLE and BM in ProVerif.

In [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF], the authors study the key agreements and reconnection step in the three Bluetooth technologies, BR/EDR, BLE, and BM. The first difference is therefore the inclusion of the reconnection step, which they verify in their study and we do not. In their study, they intertwine two different elements. The first is Cross-Transport Key Derivation which is a design choice of Bluetooth to create BR/EDR keys with a BLE Pairing and conversely. The second is the ability in BLE to refuse the establishment of an encrypted connection. In both cases, studying formally this reconnection step requires to make hypotheses on implementations behaviour (e.g., how some error messages are handled by implementations), which they did in [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF] and [START_REF] Wu | BLESA: spoofing attacks against reconnections in bluetooth low energy[END_REF]. Because we choose not to perform such hypotheses, the reconnection step is out of scope of the present article.

In terms of protocol analysed, [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF] focused on the Secure Pairing protocols for BR/EDR and BLE, omitting all the Legacy protocols. As a result, they did not study the interaction between Legacy protocols and Secure protocols. By contrast, our model contains all standardised protocols, yielding more comprehensive results. Whereas our model is enriched with cryptographic imperfections, the ProVerif model proposed in [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF] is not, and as a result, there are several attacks that are missed on Secure Passkey Entry and on Mesh Provisioning. This leads the authors to the erroneous conclusion that Secure Passkey Entry is correctly authenticated. This also means that only the reflection attack is found on Bluetooth Mesh, but more impactful attacks breaking secrecy and authenticity of both the Provisioner and the Device are not identified.

Lastly, in the model proposed in [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF], the attacker is unable to act during the Feature Exchange step. It means that both devices would pair using unique addresses and input-output capabilities. This assumption is wrong in the context of an active attacker on Bluetooth as those two elements can be spoofed. The effect is that a reflection attack on the Secure Passkey Entry protocol is missed [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF] (A5 in Tables 3 and4), which could be found even under the perfect cryptography assumption.

5.2.3

Analysis of Secure Passkey Entry in Tamarin. In [START_REF] Kumar | Extrapolating Formal Analysis to Uncover Attacks in Bluetooth Passkey Entry Pairing[END_REF], the authors analyse Secure Passkey Entry in Tamarin. Among the attacks they identified, there are Pairing Confusion [START_REF] Maximilian Von Tschirschnitz | Method confusion attack on bluetooth pairing[END_REF] and the reflection attack on this protocol [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF] that we also retrieved in our analysis. The other attacks they identified rely on the hypothesis that the attacker gains the passkey in other ways, due to implementation problems (e.g., bad randomness). In our model we choose not to make any assumptions about implementations, hence do not pick up those attacks.

It is noted that the modelling choice for passkey recovery is different from ours. They consider that the passkey is sent in an encrypted form, that can be decrypted later in the protocol. In our model, we use a MAC function 2 as stated in the specification, and an oracle rule is used to model the fact that the secret can be recovered by brute-forcing.

Furthermore, their study tackles only one Pairing protocol, while ours encompasses all Bluetooth key agreements and considers more cryptographic imperfections.

NEW ATTACKS

The model developed in this paper identified several new attacks on Bluetooth key agreements. On BM, an attack on the standardised protocol and two attacks on patches from the literature are discussed along BM results in Appendix B. Four new instances of Pairing confusion are identified on BR/EDR and BLE, they are discussed in this section. The original attack is a pairing confusion regarding the method, whereas the new ones are pairing confusion regarding the mode. More importantly, the original attack, as well as attacks C and D can be mitigated by improving the display of expected user actions. In Numeric Comparison, the expected action is for the user to confirm that two numeric codes are equal, while for Passkey Entry the expected action is that the user inputs a numeric code displayed by one device on the other. Some implementations do not have a correct display of expected user actions, which leads to the possible confusion: users input the confirmation code into another device [START_REF] Maximilian Von Tschirschnitz | Method confusion attack on bluetooth pairing[END_REF]. 2 HMAC-SHA256 in BR/EDR and AES-CMAC in BLE By contrast, attacks A and B bypass this mitigation because all involved protocol have identical user actions. This section describes attacks A and B as they have the most impact. Each has been attributed one CVE by the Bluetooth SIG.

Overview

Both attacks share a similar setup, but rely on different cryptographic weaknesses. The attacker forces one device to use a Legacy protocol which has the same user interaction as Secure Passkey Entry. The attacker uses a cryptographic issue to complete the Legacy protocol, retrieving the encryption key and the passkey/PIN used. Then, the attacker uses the gained knowledge of the passkey to complete the Secure Passkey Entry protocol. The attack is depicted in Figure 4. The attacker forces the Initiator to use the Secure Passkey Entry protocol and the Responder to use the PIN Pairing protocol. To do so, the attacker sends the first message of the PIN Pairing protocol to the Responder which forces it to use this protocol. Then, upon connection of the Initiator, the attacker announces support for Secure Pairing in its features. By modifying its input-output capabilities, the attacker forces a valid user interaction between PIN Pairing and Secure Passkey Entry, for example the Initiator may display a numeric code (the passkey) and the Responder asks the user to input a numeric code (the PIN).

Attack

The PIN can be recovered from the values exchanged in the PIN Pairing protocol and the authentication protocol which serves as key confirmation [START_REF] Shaked | Cracking the bluetooth PIN[END_REF]. Because the PIN is the passkey in the Secure Passkey Entry protocol, the attacker completes the key agreement with the Initiator. In the end, the attacker has successfully completed Pairing with both devices and shares a different encryption key with each of them. The attack is depicted in Figure 5. Function 𝑐1 is defined in the specification, function get_n computes a correct nonce given a confirmation value: 𝑐1(𝑝𝑎𝑠𝑠𝑘𝑒𝑦, get_n(𝑝𝑎𝑠𝑠𝑘𝑒𝑦, 𝑐, 𝑑𝑎𝑡𝑎), 𝑑𝑎𝑡𝑎) = 𝑐. This results in the malleability of the commitment function in Legacy Passkey Entry protocol, as found by Rosa [START_REF] Rosa | Bypassing passkey authentication in bluetooth low energy[END_REF].

Attack B: Pairing Mode Confusion in BLE

The attacker can force the Initiator to use the Legacy Passkey Entry protocol and the Responder to use the Secure Passkey Entry protocol by modifying the input-output capabilities and the Secure flag during Feature Exchange. The attacker then completes the protocol on the Legacy side, which makes use of the ability to bruteforce the passkey and of the malleability of the commitment in Legacy Pairing. This enables the attacker to recover the passkey, thus to have a legitimate Secure Passkey Entry interaction with the Responder. In the end, the attacker has completed Pairing with both devices while sharing a different encryption key with each of them.

PRACTICAL IMPLEMENTATION

To assess their applicability, the attacks have been tested on off-theshelf devices. This section details those implementations.

Machine-in-the-Middle attacks

In BR/EDR and BLE, the specification defines a complete protocol stack, from the physical layer to the application layer. It also defines the concept of Controller, which is the entity managing the radio state of the device and Host, the entity that creates logical channels and handles application data. The Host and Controller communicate through an Host-Controller Interface (HCI). On standard Bluetooth-enabled devices such as computers and smartphones, the Controller is implemented by the Bluetooth chipset and the Host is implemented by the operating system.

Pairing happens in the intermediate layers of the protocol stack. Both attacks described in Section 6 require the attacker to implement a custom Pairing procedure. Hence, to perform the attack one needs the ability to receive and craft Pairing messages. In terms of MitM, this means it has to be performed at or below the protocol layer responsible for Pairing. 

Pairing Mode Confusion in BR/EDR

In BR/EDR, the Pairing process is implemented by the Controller inside the LMP layer as seen on Figure 6. While messages are completely distinct between Legacy and Secure Pairing, this is the LMP layer which handles all of them.

In order to implement this attack, one needs the ability to act on the LMP layer. To the best of the authors knowledge, only the projects InternalBlue [START_REF] Mantz | InternalBlue -Bluetooth Binary Patching and Experimentation Framework[END_REF] and BrakTooth [START_REF] Matheus | BrakTooth: Causing Havoc on Bluetooth Link Manager[END_REF] allow to do so reliably 3 . The official BrakTooth firmware is used without modifications as it already contains the commands to inject LMP messages.

To implement the attacks, the associated driver is modified and enhanced with a custom processing of HCI and LMP messages. The custom driver reimplements the LMP messages necessary to attack the Legacy PIN Pairing protocol. It also implements the HCI messages necessary to control a dongle and complete the Secure Passkey Entry protocol.

To setup the MitM, two BrakTooth dongles are necessary. Two Android devices are used as targets. An adaptation to BR/EDR of the preconnect strategy implemented by Mirage in BLE [START_REF] Cayre | Mirage : un framework offensif pour l'audit du Bluetooth Low Energy[END_REF] is used. The first dongle creates a connection (i.e., Page) to the target slave device. Another dongle is used to respond to the Inquiry and Page of the target master device. When this setup is complete, custom code can be used to transfer LMP messages from one target to the other.

After the MitM is set up, the Feature Exchange step is controlled such that one dongle accepts Secure Pairing and the other accepts Legacy Pairing. When the legitimate master initiates Pairing, the use of Secure Passkey Entry is enforced while a Legacy PIN Pairing procedure is initiated with the legitimate slave. Doing so, the user is presented with a valid interaction on both sides: the legitimate master displays a code to be input in the slave and the slave waits for a code. The custom PIN Pairing implementation completes the protocol while retrieving the PIN and LK. The PIN is then used by the fake slave to complete the Secure Passkey Entry protocol.

This setup is able to perform MitM on BR/EDR, to complete the Pairing with both sides simultaneously, and to retrieve encryption keys at the end. It was observed that the target slave used keeps responding to Inquiries even after being paged. As a result, to set up the MitM sometimes a few trials were required as the target master did connect with the target slave instead of the fake slave.

To the authors knowledge, this is the first MitM attack implemented in BR/EDR, where two connections are created and synchronised. This is thus the first MitM attack on the Pairing process of BR/EDR to be implemented. This demonstrates that this kind of attacks on BR/EDR is a threat that needs to be protected against.

Pairing Mode Confusion in BLE

As seen in Figure 6, the Pairing process in BLE is implemented by the Host. More specifically, Pairing is implemented by the Security Manager Protocol (SMP), which is encapsulated inside HCI messages. To implement the attack, the framework Mirage [START_REF] Cayre | Mirage : un framework offensif pour l'audit du Bluetooth Low Energy[END_REF] is used. First, Mirage has a built-in support of MitM in BLE through the use of two BLE dongles. Second, Mirage allows to reimplement its own handling of HCI and SMP messages, making it a suitable candidate to perform attacks on the Pairing process.

Two legitimate Android phones are loaded with the nRF Connect application. This application allows to scan, connect, and pair to nearby BLE devices. Mirage is used to perform a MitM between those two devices, then custom code allows to complete the attack.

Because Mirage does not support Secure Pairing, the support of Secure Passkey Entry is added to the framework, which includes the definition of relevant SMP messages and cryptographic primitives. Then, the logic of the attack is implemented. First, the legitimate Initiator is forced to perform a Legacy Passkey Entry protocol while the legitimate Responder is forced to perform a Secure Passkey Entry protocol. The user is presented with a valid Passkey Entry interaction and completes it. Then, Rosa's attack [START_REF] Rosa | Bypassing passkey authentication in bluetooth low energy[END_REF] is used on the Legacy side to recover the passkey. This is used to complete the Secure Passkey Entry side.

This setup is able to perform the MitM on BLE, complete the Pairing with both devices and retrieve the encryption keys at the end. The implementation of the brute-force is naive and takes a few seconds, yet none of the legitimate device did timeout during Pairing. Overall, this implementation validates the real-world applicability of this attack.

CONCLUSION

Bluetooth has a concept of security mode. In BLE and BR/EDR, a mode exists to restrict connections to use only Secure Pairing modes and 128-bit keys. Those modes may be implemented in devices to restrict access to sensitive services. Whether those are implemented and enforced remains an implementation and configuration matter.

The attacks presented in this paper demonstrate that the knowledge of the configuration of one of the two devices is not enough to have complete security guarantees. If one device is configured to use only Secure Pairing but the peer device still allows Legacy Pairing, then the communication between them is not immune to attacks. Also, the user is not able to observe the difference because the proposed mode confusion keeps an identical user interaction as a legitimate exchange.

The original confusion attack relies on similar user interactions that may be confused by users. The statement from the SIG [START_REF] Bluetooth | Bluetooth SIG Statement Regarding the Method-Confusion Pairing Vulnerability[END_REF] recommends to device manufacturers to make it more obvious which interaction is expected from users, to avoid confusions. They did not modify the underlying protocols, hence no patch is enforced for this problem. The confusions presented in this paper bypass this mitigation because the user interaction is not only similar but identical between both protocols.

The confusion identified in this paper is not done on the Pairing Method, but on the Pairing Mode. When applicable, a possible patch could be to indicate the Pairing Mode used (Legacy or Secure) on the user interface, with specific instructions to not mix them. Still on the user interface, devices supporting Legacy Pairing could indicate that it is an unsecure Pairing mode anyway.

Another possibility would be to restrict the use of Legacy Pairing completely, but this change must be enforced on both devices. The response of Bluetooth SIG to those vulnerabilities is to disable Legacy Pairing on devices, but it will not modify the protocols.

In our opinion, to completely fix those vulnerabilities, changes at the protocol's level are needed. Legacy Pairing could be removed from the specification and the certification of newer devices may include a test to verify it is not implemented. Modifying the protocol to prevent confusion attacks would likely pose compatibility issues, but would adequately solve the problem. 

A TAMARIN CONFIGURATIONS

Tamarin macros are heavily used in all models. Overall, using different sets of macros enable to analyse different configurations of the baseline models. We describe here the macros that can be used to configure each model and their effects. 

A.1 Tamarin macros in a nutshell

A.2 BR/EDR model

In BR/EDR, the following configuration macros are defined:

• NoLowEntropyLegacy: Disables the ability for an attacker to brute-force the PIN used in Legacy PIN Pairing [START_REF] Shaked | Cracking the bluetooth PIN[END_REF]; • NoLowEntropySecure: Disables the ability for an attacker to brute-force the passkey used in Secure Passkey Entry [START_REF] Andrew | Attacks on the Pairing Protocol of Bluetooth v2[END_REF]; • InitECDHUnpatched: Represents the fact that the Initiator does not verify the validity of the Responder's public key [START_REF] Cremers | Prime, order please! revisiting small subgroup and invalid curve attacks on protocols using diffie-hellman[END_REF]; • RespECDHUnpatched: Represents the fact that the Responder does not verify the validity of the Initiator's public key [START_REF] Cremers | Prime, order please! revisiting small subgroup and invalid curve attacks on protocols using diffie-hellman[END_REF];

A.3 BLE model

In BLE, the following configuration macros are defined:

• NoLowEntropyLegacy: Disables the ability for an attacker to brute-force the passkey used in Legacy Passkey Entry [START_REF] Ryan | Bluetooth: With Low Energy Comes Low Security[END_REF]; • NoLowEntropySecure: Disables the ability for an attacker to brute-force the passkey used in Secure Passkey Entry [START_REF] Andrew | Attacks on the Pairing Protocol of Bluetooth v2[END_REF]; • NoMalleableC1: Disables the malleability of the 𝑐1 commitment function in BLE Legacy Pairing [START_REF] Rosa | Bypassing passkey authentication in bluetooth low energy[END_REF]; • InitECDHUnpatched: Represents the fact that the Initiator does not verify the validity of the Responder's public key [START_REF] Cremers | Prime, order please! revisiting small subgroup and invalid curve attacks on protocols using diffie-hellman[END_REF]; • RespECDHUnpatched: Represents the fact that the Responder does not verify the validity of the Initiator's public key [START_REF] Cremers | Prime, order please! revisiting small subgroup and invalid curve attacks on protocols using diffie-hellman[END_REF].

A.4 BM model

In BM, the following configuration macros are defined:

• NoLowEntropyAuthValue: Disables the ability for an attacker to brute-force AuthData used in the Provisioning protocol [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF]. • NoMalleableCMAC: Disables the malleability of the 𝐶𝑀𝐴𝐶 commitment function in Provisioning [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF] • ProvECDHUnpatched: Represents the fact that the Provisioner does not verify the validity of the Device's public key [START_REF] Cremers | Prime, order please! revisiting small subgroup and invalid curve attacks on protocols using diffie-hellman[END_REF]; • DevECDHUnpatched: Represents the fact that the Device does not verify the validity of the Provisioner's public key [START_REF] Cremers | Prime, order please! revisiting small subgroup and invalid curve attacks on protocols using diffie-hellman[END_REF]; • PatchProvisioning1: Represents the first patch proposed in [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF]:

the Provisioner should not accept a reflected confirmation value; • PatchProvisioning2: Represents the second patch proposed in [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF]: the Device computes the commitment value using an inversion of parameters.

B MESH PROVISIONING

The complete Provisioning protocol is shown in Figure 3.

B.1 Results on Provisioning

Mesh Provisioning was analysed with regards to patched ECDH implementations. All other cryptographic imperfections are included in the model. Properties AuthP and AuthD refer respectively to the authentication of the provisioner and of the device. Properties SecPN, SecPA, and SecPD refer to the secrecy of NetKey, App-Key, and DevKey of the provisioner. Properties SecDN, SecDA, and SecDD refer to the secrecy of NetKey, AppKey, and DevKey of the device. Compromise resistance is also studied for Mesh Provisioning. Table 5 presents the results obtained on BM. The aforementioned 9 properties defined are studied for each pair of the 64 protocols, that is 576 (64×9) lemmas are analysed using Tamarin. For brevity, only the results that lead to functional interactions are displayed. For example, when NoOOB is used by a device an attacker can always conduct an active attack as it is not authenticated (A13).

Tamarin correctly identifies a reflection attack (A14) on Mesh Provisioning, which is published in [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF] and [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF]. It also finds attacks which rely on brute-forcing a low-entropy AuthData (A15). Finally, Tamarin combines existing results into complete attacks. For example, A17 uses reflection to complete the key agreement with the Provisioner and brute-forces AuthData [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF] to complete with key agreement with the Device. Other combinations of results are identified (A18 and A19), relying on the complete retrieval of AuthData or the malleability of the commitment function. Those results were published in [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF]. It is noted that although A17 and A18 are combination of existing vulnerabilities of the protocol, the ability to combine them is currently unaccounted for.

Another problem highlighted by this work is the lack of key confirmation in Provisioning. In cells containing A16, the attacker can prevent the transmission of NetKey from the Provisioner to the Device and still complete the protocol with the Provisioner. Therefore, even if the provisioner completes the protocol, the device 

B.2 Analysis of Provisioning patches

Bluetooth Mesh Provisioning was found vulnerable to a reflection attack in [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF][START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF]. In [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF], the authors propose two patches for this attack by modifying the commitment protocol of the Provisioning. The first patch depicted in Figure 7 consists in a verification that the confirmation and nonce values were not reflected. The second patch, in Figure 8 modifies the computation of the confirmation value sent by the device: the order of arguments in the function are reversed.

The patches are included in the Tamarin model of Bluetooth Mesh. Tamarin identifies possible attacks in both cases due to commitment malleability, which also applies in this case. Those attacks contradict all security properties studied, including compromise resistance. The identified attack on Patch 1 is shown in Figure 9. This exact attack affects the original Provisioning protocol and is already detailed in [START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF].

The initial analysis of the patches in [START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF] is performed assuming perfect primitives, hence those attacks were not picked up by the initial analysis. The core problem is that the commitment function used is AES-CMAC, where up to one plaintext block can be retrieved. In the Provisioning protocol, the confirmation is computed The attack on patch 2 is almost identical as the one displayed in Figure 9. The only difference is that 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎 and the nonce have been swapped in the computation. Therefore to get a matching nonce, the attacker needs to recover the second block of the AES-CMAC instead of the first block for Patch 1. Apart from that, the attack is the same.

Provisioner

Figure 1 :

 1 Figure 1: BR/EDR Legacy PIN Pairing and Mutual Legacy Authentication The protocol Legacy PIN Pairing for BR/EDR is depicted in Fig. 1. Functions 𝐸 1 , 𝐸 21 , and 𝐸 22 are defined in the specification [10, Vol 2, Part H, §6].The key agreement starts when the Initiator sends a nonce 𝑖𝑛_𝑟𝑎𝑛𝑑 to the Responder 1 . The user has to exchange a numeric code between devices, called the 𝑃𝐼 𝑁 2 . This 𝑃𝐼 𝑁 is used alongside 𝑖𝑛_𝑟𝑎𝑛𝑑 and the Initiator address to derive 𝐾 𝑖𝑛𝑖𝑡 . 𝐾 𝑖𝑛𝑖𝑡 is used to mask two nonces 𝑐𝑜𝑚𝑏_𝑘𝑒𝑦 𝑖 and 𝑐𝑜𝑚𝑏_𝑘𝑒𝑦 𝑟 3 which are used to derive the Link Key (𝐿𝐾) 4 . According to the specification, the Pairing process is over once 𝐿𝐾 is created, but a mutual authentication procedure has to follow 5 .BLE Legacy Passkey Entry is depicted in Fig.2. Functions 𝑐 1 and 𝑠 1 are defined in the specification [10, Vol 3, Part H, §2.2]. The protocol starts with a Feature Exchange step 1 , which is used to provide information about input-output capabilities, key size to be negotiated, etc. In Legacy Passkey Entry, the user has to exchange a numeric code between the devices 2 . Typically, one device displays a code that the user enters in the other one. This

Figure 2 :

 2 Figure 2: BLE Legacy Passkey Entry

Figure 3 :

 3 Figure 3: BM Provisioning -In-band key exchange/Input OOB Fig. 3 depicts a Provisioning variant involving in-band key exchange and Input OOB. First, both devices perform a Feature Exchange step to initiate Provisioning 1 . Then, both devices complete an ECDH key exchange and derive a Confirmation Key (CK) 2 .The user has to exchange 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎 between both devices 3 . For example, in Input OOB mode, the Provisioner outputs data (e.g., a numeric code) and the user inputs it in the Device. A commitment protocol is run to authenticate the peers, their respective capabilities, and addresses 4 . A new session key is derived from the Confirmation Key and the nonces exchanged in the commitment protocol. Finally, this session key is used to encrypt 𝑁 𝑒𝑡𝐾𝑒𝑦 5 and the Provisioning ends.

Example 4 :

 4 Tamarin lemmas in BR/EDRIn Example 4, two security lemmas are displayed. The lemma WeakSecretInit represents the secrecy of the key derived by the Initiator and the lemma CR represents compromise resistance of the protocol. In BLE and BR/EDR, there are five security properties of interest per interaction studied: secrecy of Initiator/Responder key, authenticity of Initiator/Responder and compromise resistance.

  rule Oracle_f4: let val = f4(pk1, pk2, n, s) in LowEntropyf4(pk1, pk2, n, s), In(pk1), In(pk2), In(n), In(val) AttackerRecoveredPasskey(s) Out(s) Example 5: Oracle rule in Tamarin

functions: aes_cmac/ 2 ,

 2 // Representation of cmac get_b1/3, // Used to retrieve first block equations: get_b1(aes_cmac(k, <b1, b2>), k, b2) = b1, aes_cmac(k, <get_b1(c, k, b2), b2>) = c, Example 6: Representing malleability in Tamarin

5. 1

 1 .1 BR/EDR Pairing. Properties AuthI and AuthR represent the authentication of the Initiator and Responder respectively. Properties SecI and SecR represent the secrecy of the key derived by the Initiator and the Responder respectively. Compromise resistance is also studied.

5. 1

 1 .2 BLE Pairing. The studied properties for BLE are the same as for BR/EDR.

  All identified Pairing confusion break all security properties studied, including compromise resistance. The different confusions identified by the models are: • Original: Secure Passkey Entry / Secure Numeric Comparison (BR/EDR, BLE) [35] • Attack A: Legacy PIN Pairing / Secure Passkey Entry (BR/EDR) • Attack B: Legacy Passkey Entry / Secure Passkey Entry (BLE) • Attack C: Legacy PIN Pairing / Secure Numeric Comparison (BR/EDR) • Attack D: Legacy Passkey Entry / Secure Numeric Comparison (BLE)

Figure 4 :

 4 Figure 4: Pairing Mode Confusion in BR/EDR (Attack 1)

Figure 5 :

 5 Figure 5: Pairing Mode Confusion in BLE (Attack 2)

Figure 6 :

 6 Figure 6: Protocol stacks in BR/EDR and BLE Figure 6 depicts the protocol stacks of BR/EDR and BLE. The location of Pairing in the protocol stack has major implications on the ability to perform MitM attacks on it. When implemented by the Host in BLE, one may modify the code of the Bluetooth stack to implement those attacks. In BR/EDR, one has to modify the firmware running in a Controller chipset to implement them.

  Disclosure process. The attacks were disclosed to the Bluetooth SIG in September, 2021. The SIG accepted Pairing Mode confusion attacks on BLE and BR/EDR and made a public statement on December, 2022. CVE numbers 2022-25836 (resp. 2022-25837) was assigned to the Pairing Mode confusion in BLE (resp. BR/EDR).

  This paragraph uses two examples to illustrate how Tamarin macros work. #ifdef Macro1 rule Rule1: [ ... ] ... [ ... ] #endif rule Rule2: [ ... ] ... [ ... ] Example 7: Basic use of Tamarin macro In Example 7, if Tamarin is started with the flag -DMacro1 the rule Rule1 is used, else it is discarded. In all cases the rule Rule2 is part of the analysis. #ifdef NoOracle #else rule OracleRule: [ ... ] ... [ ... ] #endif Example 8: Implementing ifndef with Tamarin macroExample 8 shows a simple implementation of an equivalent of #ifndef in Tamarin. In the example, the rule OracleRule is used in every case, except if the macro NoOracle is used on the command line.

Figure 7 :Figure 8 :

 78 Figure 7: Patch 1 proposed against the Provisioning reflection attack Provisioner 𝐶𝐾

Figure 9 :

 9 Figure 9: MitM attack against Provisioning patch 1

Table 1 :

 1 BR/EDR and BLE Pairing protocols

			BR/EDR		BLE
	Pairing Mode	Legacy	Secure	Legacy	Secure
	Pairing Method	PIN Pairing	JustWorks Passkey Entry Numeric Comparison Out of Band	JustWorks Passkey Entry Out of Band	JustWorks Passkey Entry Numeric Comparison Out of Band
	Table				

  PIN Pairing protocol in BR/EDR and Legacy Passkey Entry protocol in BLE are detailed below.

	Initiator	Responder	
	𝐴𝑑𝑑𝑟 𝑖	𝐴𝑑𝑑𝑟 𝑟	
	new 𝑖𝑛_𝑟𝑎𝑛𝑑	𝑖𝑛_𝑟𝑎𝑛𝑑	1
	User inputs	User inputs	
	the 𝑃𝐼 𝑁	the 𝑃𝐼 𝑁	2

  𝑆𝑇 𝐾 = 𝑠 1 (𝑝𝑎𝑠𝑠𝑘𝑒𝑦, 𝑁 𝑖 , 𝑁 𝑟 ) 𝑆𝑇 𝐾 = . . .

	Initiator		Responder
		PairingRequest	
		PairingResponse		1
	new 𝑝𝑎𝑠𝑠𝑘𝑒𝑦		
	Initiator displays		User inputs	2
	𝑝𝑎𝑠𝑠𝑘𝑒𝑦		𝑝𝑎𝑠𝑠𝑘𝑒𝑦
	new 𝑁 𝑖	𝑐 1 (𝑝𝑎𝑠𝑠𝑘𝑒𝑦, 𝑁 𝑖 , ...)	
		𝑐 1 (𝑝𝑎𝑠𝑠𝑘𝑒𝑦, 𝑁 𝑟 , ...)	new 𝑁 𝑟	3
		𝑁 𝑖	
		𝑁 𝑟	

  The possibilities for authentication are No OOB, Input OOB, Output OOB, and Static OOB; where No OOB means no authentication at all. Those two parameters are combined, hence there are eight Provisioning protocols.

	Provisioner	
	𝑁 𝑒𝑡𝐾𝑒𝑦	Device
	ProvisioningInvite	
	ProvisioningCapabilities	
	ProvisioningStart	
	new ⟨𝑠𝑘 𝑝 , 𝑃𝑘 𝑝 ⟩	
	𝑃𝑘 𝑝	
		new ⟨𝑠𝑘 𝑑 , 𝑃𝑘 𝑑 ⟩
	𝑃𝑘 𝑑	
	𝐶𝐾 = ...	𝐶𝐾 = ...
	Provisioner outputs	User inputs
	𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎	𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎

new 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎 new 𝑁 𝑝 AES-CMAC 𝐶𝐾 (𝑁 𝑝 , 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎) new 𝑁 𝑑 AES-CMAC 𝐶𝐾 (𝑁 𝑑 , 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎) 𝑁 𝑝 𝑁 𝑑 ProvisioningData (encrypted 𝑁 𝑒𝑡𝐾𝑒𝑦) 𝑁 𝑒𝑡𝐾𝑒𝑦 ProvisioningComplete

Table 2 :

 2 Sizes of the Tamarin models

	Model	# rules # restrictions # macros # lemmas # lines
	BR/EDR	117	13	165	605	∼11000
	BLE	110	12	219	845	∼14300
	BM	57	8	100	576	∼6600

Table 4

 4 presents the results on BLE. Because the Secure Pairing mode contains the same protocols in BR/EDR and BLE, the results of the analysis of Secure Pairing methods interacting with each other (cases Sec*Sec* from Table3) are identical hence they are not included in this table. As in BR/EDR, JustWorks protocol is vulnerable to MitM attacks by design (A3).

Table 3 :

 3 BR/EDR -results of the analysis

	Name	AuthI AuthR SecI SecR CR CPU Time
	LegPINiLegPINi	A1	A2	A1	A2	A2	2204.32s
	LegPINiLegPINio	A1	A2	A1	A2	A2	2771.19s
	LegPINiLegPINo	A1	A2	A1	A2	A2	2560.88s
	LegPINiSecNC	A1	A6	A1	A6	A6	735.61s
	LegPINiSecPEi	A1	A7	A1	A7	A7	546.90s
	LegPINiSecPEio	A1	A7	A1	A7	A7	646.76s
	LegPINiSecPEo	A1	A7	A1	A7	A7	647.84s
	LegPINioLegPINi	A1	A2	A1	A2	A2	2211.90s
	LegPINioLegPINio	A1	A2	A1	A2	A2	2325.81s
	LegPINioLegPINo	A1	A2	A1	A2	A2	2412.69s
	LegPINioSecNC	A1	A6	A1	A6	A6	724.13s
	LegPINioSecPEi	A1	A7	A1	A7	A7	595.35s
	LegPINioSecPEio	A1	A7	A1	A7	A7	632.32s
	LegPINioSecPEo	A1	A7	A1	A7	A7	671.47s
	LegPINoLegPINi	A1	A2	A1	A2	A2	2464.72s
	LegPINoLegPINio	A1	A2	A1	A2	A2	2332.12s
	LegPINoSecPEi	A1	A7	A1	A7	A7	658.38s
	LegPINoSecPEio	A1	A7	A1	A7	A7	637.28s
	SecJWSecJW	A3	A3	A3	A3	A3	145.38s
	SecNCLegPINi	A6	A6	A6	A6	A6	490.50s
	SecNCLegPINio	A6	A6	A6	A6	A6	497.64s
	SecNCSecNC						129.63s
	SecNCSecPEi	A4	A4	A4	A4	A4	245.42s
	SecNCSecPEio	A4	A4	A4	A4	A4	254.56s
	SecOOBiSecOOBo						127.79s
	SecOOBioSecOOBio						147.53s
	SecOOBoSecOOBi						122.87s
	SecPEiLegPINi	A5	A5	A7	A5	A7	3849.83s
	SecPEiLegPINio	A5	A5	A7	A5	A7	4139.86s
	SecPEiLegPINo	A5	A5	A7	A5	A7	3193.64s
	SecPEiSecNC	A5	A4	A4	A4	A4	603.87s
	SecPEiSecPEi	A5	A5		A5		8355.98s
	SecPEiSecPEio	A5	A5		A5		8859.41s
	SecPEiSecPEo	A5	A5		A5		9403.78s
	SecPEioLegPINi	A5	A5	A7	A5	A7	3035.24s
	SecPEioLegPINio	A5	A5	A7	A5	A7	3131.78s
	SecPEioLegPINo	A5	A5	A7	A5	A7	3173.94s
	SecPEioSecNC	A5	A4	A4	A4	A4	626.34s
	SecPEioSecPEi	A5	A5		A5		8231.80s
	SecPEioSecPEio	A5	A5		A5		8011.33s
	SecPEioSecPEo	A5	A5		A5		8087.07s
	SecPEoLegPINi	A5	A5	A7	A5	A7	3086.12s
	SecPEoLegPINio	A5	A5	A7	A5	A7	3433.14s
	SecPEoSecPEi	A5	A5		A5		7707.09s
	SecPEoSecPEio	A5	A5		A5		8058.43s
	A1: Reflection attack on Legacy PIN Pairing, CVE-2020-26555 [14]
	A2: Brute-force PIN from exchange [31]			
	A3: JustWorks is not authenticated				
	A4: Pairing Method confusion, CVE-2020-10134 [35]		

A5: Reflection attack on Secure Passkey Entry, CVE-2020-26558 [14] A6: (new) Extension to Pairing Method confusion A7: (new) Pairing Mode Confusion

Table 4 :

 4 BLE -results of the analysis

	Name	AuthI AuthR SecI SecR CR CPU Time
	LegJWLegJW	A3	A3	A3	A3	A3	5.79s
	LegJWSecJW	A3	A3	A3	A3	A3	37.87s
	LegOOBLegJW	A8	A3		A3		9.30s
	LegOOBLegOOB	A8					12.84s
	LegOOBSecJW	A8	A3		A3		14.49s
	LegPEiLegPEi	A8	A9	A10	A9	A10	70.70s
	LegPEiLegPEio	A8	A9	A10	A9	A10	80.45s
	LegPEiLegPEo	A8	A9	A10	A9	A10	81.58s
	LegPEiSecNC	A10	A11	A10 A11 A11	132.66s
	LegPEiSecPEi	A10	A12	A10 A12 A12	166.26s
	LegPEiSecPEio	A10	A12	A10 A12 A12	179.27s
	LegPEiSecPEo	A10	A12	A10 A12 A12	175.63s
	LegPEioLegPEi	A8	A9	A10	A9	A10	75.88s
	LegPEioLegPEio	A8	A9	A10	A9	A10	80.70s
	LegPEioLegPEo	A8	A9	A10	A9	A9	92.69s
	LegPEioSecNC	A10	A11	A10 A11 A11	137.03s
	LegPEioSecPEi	A10	A12	A10 A12 A12	181.66s
	LegPEioSecPEio	A10	A12	A10 A12 A12	190.45s
	LegPEioSecPEo	A10	A12	A10 A12 A12	196.86s
	LegPEoLegPEi	A8	A9	A10	A9	A10	85.66s
	LegPEoLegPEio	A8	A9	A10	A9	A10	82.15s
	LegPEoSecPEi	A10	A12	A10 A12 A12	188.58s
	LegPEoSecPEio	A10	A12	A10 A12 A12	192.86s
	SecJWLegJW	A3	A3	A3	A3	A3	43.53s
	SecNCLegPEi	A11	A11	A11 A11 A11	123.56s
	SecNCLegPEio	A11	A11	A11 A11 A11	122.80s
	SecPEiLegPEi	A5	A5		A5		613.19s
	SecPEiLegPEio	A5	A5		A5		632.12s
	SecPEiLegPEo	A5	A5		A5		653.31s
	SecPEioLegPEi	A5	A5		A5		638.30s
	SecPEioLegPEio	A5	A5		A5		658.42s
	SecPEioLegPEo	A5	A5		A5		662.97s
	SecPEoLegPEi	A5	A5		A5		647.77s
	SecPEoLegPEio	A5	A5		A5		647.99s
	A3: JustWorks is not authenticated				
	A5: Reflection attack on Secure Passkey Entry, CVE-2020-26558 [14]
	A8: Reflection attack in Legacy Pairing [14]		
	A9: Passkey can be brute-forced in Legacy Passkey Entry [30]
	A10: Impersonation in Legacy Passkey Entry [29]		
	A11: (new) Extension to Pairing Method confusion	
	A12: (new) Pairing Mode Confusion			

  𝐾 𝑖 ⊕ 𝐾 𝑟 new 𝑎𝑢_𝑟𝑎𝑛𝑑 𝑖 𝑎𝑢_𝑟𝑎𝑛𝑑 𝑖 𝐸 1 (𝐿𝐾, 𝑎𝑢_𝑟𝑎𝑛𝑑 𝑖 , 𝐴𝑑𝑑𝑟 𝑟 ) new 𝑎𝑢_𝑟𝑎𝑛𝑑 𝑟 𝑎𝑢_𝑟𝑎𝑛𝑑 𝑟 From 𝑎𝑢_𝑟𝑎𝑛𝑑 𝑖 and 𝐸 1 (𝐿𝐾, 𝑎𝑢_𝑟𝑎𝑛𝑑 𝑖 , 𝐴𝑑𝑑𝑟 𝑟 ), attacker brute-forces 𝑃𝐼 𝑁 and retrieves 𝐿𝐾 𝐸 1 (𝐿𝐾, 𝑎𝑢_𝑟𝑎𝑛𝑑 𝑟 , 𝐴𝑑𝑑𝑟 𝑖 ) Attacker uses 𝑃𝐼 𝑁 as 𝑝𝑎𝑠𝑠𝑘𝑒𝑦 to complete the Secure Passkey Entry protocol

	A: Pairing Mode Confusion in
	BR/EDR		
	Initiator		Responder
	Attacker	
	𝐴𝑑𝑑𝑟 𝑖		𝐴𝑑𝑑𝑟 𝑟
	new 𝑖𝑛_𝑟𝑎𝑛𝑑	𝑖𝑛_𝑟𝑎𝑛𝑑
	Feature & ECDH Exchange		
	new 𝑝𝑎𝑠𝑠𝑘𝑒𝑦		
	Initiator displays		User inputs
	𝑝𝑎𝑠𝑠𝑘𝑒𝑦		𝑝𝑎𝑠𝑠𝑘𝑒𝑦 as 𝑃𝐼 𝑁
	𝐾 Secure Passkey Entry
	authentication		
		𝐿𝑇 𝐾	
	𝐿𝑇 𝐾	𝐿𝐾	𝐿𝐾

𝑖𝑛𝑖𝑡 = 𝐸 22 (. . .) new 𝑟 𝑟 new 𝑐𝑜𝑚𝑏_𝑘𝑒𝑦 𝑟 𝐾 𝑖𝑛𝑖𝑡 ⊕ 𝑐𝑜𝑚𝑏_𝑘𝑒𝑦 𝑟 𝐾 𝑖 = 𝐸 21 (. . .) 𝐾 𝑟 = 𝐸 21 (. . .) 𝐿𝐾 =

Table 5 :

 5 Mesh -results of the analysisNameAuthP AuthD SecPN SecPA SecPD SecDN SecDA SecDD CR CPU Time OOBno is not authenticated A14: Reflection attack on Provisioning, CVE-2020-26560[START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF][START_REF] Wu | Formal model-driven discovery of bluetooth protocol design vulnerabilities[END_REF] A15: AuthData may be brute-forced, CVE-2020-26557[START_REF] Claverie | Bluemirror: Reflections on bluetooth pairing and provisioning protocols[END_REF] A16: (new) Lack of key confirmation in Provisioning A17: (combination) Reflection and AuthData brute-force A18: (combination) Reflection and AuthData retrieval A19: (combination) AuthData retrieval and malleable commitment 𝑁 𝑑 AES-CMAC 𝐶𝐾 (𝑁 𝑑 , 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎) 𝑁 𝑝 𝑁 𝑑 Abort if 𝑁 𝑝 == 𝑁 𝑑

	EiOOBiEiOOBi	A16 A15 A14 A14 A14 A15 A15 A15 A17 12191.64s
	EiOOBnoEiOOBno A14 A13 A14 A13 A14 A13 A13 A13 A13 554.07s
	EiOOBoEiOOBo	A16 A15 A14 A14 A14 A15 A15 A15 A17 12140.49s
	EiOOBsEiOOBno	A14 A13 A14 A19 A14 A13 A13 A13 A14 568.60s
	EiOOBsEiOOBs	A14 A19 A14 A19 A14 A19 A19 A19 A18 4771.21s
	EoOOBiEoOOBi	A16		6244.17s
	EoOOBnoEiOOBno A14 A13	A13 A13 A13	570.58s
	EoOOBnoEoOOBno A14		590.67s
	EoOOBoEoOOBo	A16		5982.47s
	EoOOBsEiOOBno	A14 A13	A13 A13 A13	671.94s
	EoOOBsEoOOBs	A14		2337.05s
	A13: Provisioner	Device		
	𝐶𝐾	𝐶𝐾		
	new 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎			
	Provisioner outputs	User inputs		
	𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎	𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎		

new 𝑁 𝑝 AES-CMAC 𝐶𝐾 (𝑁 𝑝 , 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎) new

  𝑝 , 𝑃𝑘 𝑝 ⟩ new ⟨𝑠𝑘 𝑎 , 𝑃𝑘 𝑎 ⟩ 𝑃𝑘 𝑝 𝑃𝑘 𝑎 new ⟨𝑠𝑘 𝑑 , 𝑃𝑘 𝑑 ⟩ 𝑃𝑘 𝑑 𝑃𝑘 𝑎 𝐶𝐾 𝑝𝑎 = ... 𝐶𝐾 𝑝𝑎 = . . . 𝐶𝐾 𝑎𝑑 = . . . 𝐶 𝑝 = AES-CMAC 𝐶𝐾 𝑝𝑎 (𝑁 𝑝 , 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎) Compute 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎 from 𝐶𝐾 𝑝𝑎 , 𝐶 𝑝 , 𝑁 𝑝 Compute 𝑁 𝑅𝑎 from 𝐶𝐾 𝑝𝑎 , 𝑅 𝑎 , 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎 𝑁 𝑅 𝑎 Abort if 𝑁 𝑝 == 𝑁 𝑅 𝑎 ProvisioningData (encrypted 𝑁 𝑒𝑡𝐾𝑒𝑦) 𝑁 𝑒𝑡𝐾𝑒𝑦 ProvisioningComplete new 𝑁 𝑎 AES-CMAC 𝐶𝐾 𝑎𝑑 (𝑁 𝑎 , 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎) new 𝑁 𝑑 AES-CMAC 𝐶𝐾 𝑎𝑑 (𝑁 𝑑 , 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎)

	𝑁 𝑒𝑡𝐾𝑒𝑦	Attacker	Device
	ProvisioningInvite		
		ProvisioningCapabilities	
	ProvisioningStart		
	new ⟨𝑠𝑘 𝐶𝐾 𝑎𝑑 = ...
	new 𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎		
	Provisioner outputs		User inputs
	𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎		𝐴𝑢𝑡ℎ𝐷𝑎𝑡𝑎
	new 𝑁 𝑝		
	𝑅𝑎	new 𝑅𝑎	
	𝑁 𝑝		
		𝑁 𝑎	
		𝑁 𝑑	
		ProvisioningData (encrypted 𝑁 𝑒𝑡𝐾𝑒𝑦)	
		ProvisioningComplete	𝑁 𝑒𝑡𝐾𝑒𝑦

At the time of writing, Bluetooth Core specification v5.[START_REF] Antonioli | Key negotiation downgrade attacks on bluetooth and bluetooth low energy[END_REF] 

In BrakTooth, LMP message injection is an undocumented feature.

* This work received funding from the France 2030 program managed by the French National Research Agency under grant agreement No. ANR-22-PECY-0006.