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ABSTRACT

In the first-order query model for zero-sum K × K matrix games, players observe the expected
pay-offs for all their possible actions under the randomized action played by their opponent. This is
a classical model, which has received renewed interest after the discovery by Rakhlin and Sridharan
that ε-approximate Nash equilibria can be computed efficiently from O( lnK

ε ) instead of O( lnK
ε2 )

queries. Surprisingly, the optimal number of such queries, as a function of both ε and K, is not
known. We make progress on this question on two fronts. First, we fully characterise the query
complexity of learning exact equilibria (ε = 0), by showing that they require a number of queries
that is linear in K, which means that it is essentially as hard as querying the whole matrix, which can
also be done with K queries. Second, for ε > 0, the current query complexity upper bound stands
at O(min( ln(K)

ε ,K)). We argue that, unfortunately, obtaining matching lower bound is not possible
with existing techniques: we prove that no lower bound can be derived by constructing hard matrices
whose entries take values in a known countable set, because such matrices can be fully identified by
a single query. This rules out, for instance, reducing to a submodular optimization problem over the
hypercube by encoding it as a binary matrix. We then introduce a new technique for lower bounds,
which allows us to obtain lower bounds of order Ω̃(log( 1

Kε ) for any ε ⩽ 1
cK4 , where c is a constant

independent of K. We further discuss possible future directions to improve on our techniques in
order to close the gap with the upper bounds.

1 Introduction

Computing the saddle point
min
x∈X

max
y∈Y

f(x, y)

for convex-concave functions f : X ×Y → R is of general interest throughout optimization, economics and ma-
chine learning. We study the computation of an approximate saddle point (x⋆, y⋆), satisfying maxy∈Y f(x⋆, y) −
minx∈Y f(x, y⋆) ⩽ 2ε for some given ε ⩾ 0. Starting with an unknown f from a known class F , we consider sequen-
tial learning in the first-order feedback model, where the learner gets to observe gradients of the objective. Formally,
each query (x, y) results in feedback (∇xf(x, y),∇yf(x, y)). We are interested in the following question:

How many first-order queries are necessary and sufficient for a sequential learner to output an approximate saddle
point for any f ∈ F?
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Characterizing the query complexity of learning saddle points is of theoretical interest for certifying optimality of
upper bounds. Moreover, for algorithms that process queries efficiently, the number of queries is a good proxy for
their runtime, so the query complexity is also a model for computational complexity. We do not consider computation
directly here, and focus only on the number of queries.

In this work, we restrict attention to the special case of zero-sum matrix games, where X and Y are finite-dimensional
probability simplices and f is bilinear. For this canonical setting, the query complexity is, surprisingly, unresolved.
Indeed, in this particular setting, efficient computation algorithms are known since Brown (1951). These methods
provide upper bounds on the query complexity. However, lower bounds remain elusive, leaving the optimal query
complexity still unknown. Obtaining lower bounds is not just of fundamental interest in itself, but may also lead to
interesting new techniques because no existing approaches are sufficient.

First-order Query Complexity of Minimax Optimization Existing lower bounds (Ouyang and Xu, 2021; Ibrahim
et al., 2020) for minmax optimization are specific to finite-dimensional Euclidean spaces where X ,Y are either rota-
tional invariant sets, e.g., Euclidean balls or the whole space. Both these cases benefit from the property that the action
sets are invariant under rotation, allowing for a step-by-step reduction to lower dimensional instances, as shown in the
seminal work of Nemirovsky (1991, 1992). The notable exception of Daskalakis et al. (2021b) does not cover the case
we study: they consider the computational hardness of non-convex non-concave optimisation.

In the unconstrained case with curvature, that is, if F is the set of strongly convex, strongly concave functions with
marginal condition numbers κx and κy , the optimal query complexity is settled to be Θ(

√
κxκy log(1/ε)); see Ibrahim

et al. (2020); Zhang et al. (2022) for lower bounds and Lin et al. (2020) and references therein for upper bounds.

For the constrained case, Ouyang and Xu (2021) provide lower bounds for bilinear saddle-point problems. They es-
tablish a query complexity of order Ω(LfDXDY/ε), where DX and DY are the respective diameters of the constraint
sets X and Y , and Lf measures the Lipschitz regularity of f . However, their techniques rely crucially on rotational
invariance and sequentially adapted constraint sets. These assumptions do not allow for simplex domains, hence they
can not be applied to our setting. Indeed, they pose the open question whether similar lower bounds can also be shown
for fixed constraint sets.

Other Query Models The query complexity of minimax optimization has also been studied under different feedback
models. Recall that we focus on the bilinear case, where f : p, q 7→ p⊺Mq for some game matrix M . Fearnley et al.
(2015) study the query complexity of (approximate) Nash equilibria of the game, i.e., (approximate) saddle points of
f , under a query model where the learner chooses single entries of the matrix to observe. They show, among other
results, that in order to compute an ε-equilibrium in K×K zero-sum games, the number of entries queried needs to be
at least Ω(K logK) when ε = O(1/ logK). Hazan and Koren (2016) consider a setting in which the learner observes
a best reponse to their query (p, q), i.e., i⋆ ∈ argmin(Mq)i and j⋆ ∈ argmin−(M⊺p)j . In that setting, they show that
to compute a 1/4-equilibrium, at least Ω(

√
K/(logK)2) best-response queries are necessary. Since a first-order query

brings strictly more information than either a best-response query or an entry query, these lower bounds do not have
direct consequences for our query model. Then again, these feedback models being fairly close to first-order queries,
one might expect to leverage the techniques used there to derive a lower bound in our setting. Strikingly, we find
that this cannot be done straightforwardly. Indeed, both of these references prove their lower bounds by building hard
matrices with entries in a known finite set (e.g., {0, 1}). In Theorem 4, we show that the first-order query complexity
of approximate Nash equilibria for game matrices with entries in a fixed countable set is 1, showing a salient separation
between these query models and ours.

1.1 Contributions

We make progress towards characterizing the first-order query complexity of approximate Nash equilibria in finite-
action zero-sum games, as a function of the number of actions K and approximation level ε. Our contributions are the
following:

Lower bounds We provide the first lower bounds on the first-order query complexity for zero-sum matrix games
with bounded entries. We show that K − 2 queries are necessary to compute an exact equilibrium (Theorem 11 in
Section 4), and at least Ω(log(1/εK)/ log(K)) queries are required for an ε-equilibrium if ε ⩽ 1/K4 (Theorem 17 in
Section 4). More than the concrete rates, we believe that the structure of our proof is of particular interest, and might
be of use beyond this specific setting.

Upper Bounds We show that if the game matrix has entries in a known countable set, then the learner can recover
the full matrix in one single first-order query (Theorem 4 in Section 3). This result can be interpreted both as an upper
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bound on the query complexity for matrices on countable entry sets, and as an impossibility result, precluding the use
of simple predefined sets of matrices as candidate objectives for proving lower bounds. This, together with the lack of
rotational invariance of the action sets, sheds light on why this setting turns out to be surprisingly resistant to proving
lower bounds using well-established techniques.

1.2 Related Work

Upper Bounds for Finite Action Zero-Sum Games Early on, Brown (1951); Robinson (1951) show that under
best-response dynamics, the average plays converge to an equilibrium. The connection to regret bounds was estab-
lished by Freund and Schapire (1999), who deduce a O(log(K)/ε2) query complexity, by means of a construction
akin to online-to-batch conversion. More recently, Daskalakis et al. (2011, 2015) obtained the first fast rates of order
O(c(K)/ε), through an ingenious learning mechanism. Rakhlin and Sridharan (2013) rediscovered the Optimistic
Online Mirror Descent algorithm (Popov, 1980), and pioneered optimistic online learning regret bounds; they yield to
this the day the fastest rates of O(log(K)/ε) and the simplest algorithm.

The instance-dependent linear-rate upper bounds of order λ(M) ln(1/ε) by Gilpin et al. (2008); Wei et al. (2020) are
essentially incomparable to the worst-case O(log(K)/ε); they are superior when λ(M) ≪ K, and vacuous in the
typical case λ(M) ≈ K (see the discussion below Theorem 1).

Our focus is the quality of the inferred saddle point (this optimization perspective is sometimes called pure explo-
ration). Part of the literature regards the queries as actual moves made, and consequently prioritizes other objectives.
In particular, many focus on studying uncoupled dynamics, that is, sequences of actions that separate the observations
of the individual p and q players without allowing communication between the players. Another recent theme of
interest is the last-iterate convergence of such dynamics, see e.g., Hsieh et al. (2021).

Upper Bounds for Minmax Optimization The vast majority of the known upper bounds in minimax optimization
(and more generally in variational inequality problems), outside of finite-action zero-sum games mentioned above,
concern unconstrained settings (Golowich et al., 2020; Azizian et al., 2020; Mokhtari et al., 2020). The literature on
constrained settings is more sparse: Cai et al. (2022) recently proved the rate of convergence of the projected extra-
gradient method (Korpelevich, 1976). Yang et al. (2022) adapt interior methods to handle constraints. Gidel et al.
(2017) propose a fast algorithm when either the action sets are strongly convex, or the objective is strongly-convex
strongly-concave. In recent years, non-convex-concave settings have also attracted attention, see Lin et al. (2020) and
references therein.

Upper Bounds for General-Sum Games and Correlated Equilibria For multiplayer games, uncoupled dynamics
do not converge (in any sense) to Nash equilibria. However, regret-based procedures can find correlated and coarse
correlated equilibria (Cesa-Bianchi and Lugosi, 2006; Stoltz and Lugosi, 2007). In particular, internal regret guaran-
tees for individual players in general-sum multiplayer games were recently improved from the generic O(1/ε2) for
any sequences of losses, to O(1/ε4/3) in (Syrgkanis et al., 2015), to O(1/ε6/5) in (Chen and Peng, 2020) and to
O(log(1/ε)/ε) in (Daskalakis et al., 2021a; Farina et al., 2022) (we omit the dependence on the number of actions
and players). Polynomial-time methods for efficient computation of exact correlated equilibria are designed by Pa-
padimitriou and Roughgarden (2008); Jiang and Leyton-Brown (2011), using their formulation as solutions to a linear
program.

Other Lower Bounds in Saddle Point and Equilibria Computation As mentioned earlier in the introduction, it
is tempting to look for lower bound techniques from different but related settings. For multiplayer games, strong
lower bounds on the computational complexity of exact Nash equilibria have been uncovered. Showing computational
hardness by reduction to a known hard problem is a very common technique in classical complexity theory. This
technique is for example used to establish PPAD-hardness for computing the Nash-equilibrium in a general game,
see Daskalakis et al. (2009a); Chen et al. (2009, 2006), or in a non-convex-concave zero-sum game Daskalakis et al.
(2021b). Regarding query complexity, Babichenko (2016); Hart and Nisan (2018) study the single-entry query com-
plexity for approximate correlated equilibria and Nash equilibria of games with a large number of players. As in other
references mentioned in the introduction, all these bounds are built on matrices with entries in a finite set. Due to their
intrinsically combinatorial nature, these techniques are less common for numerical algorithms. One of the classical
methods for sample complexity lower bounds was introduced by Nesterov (2014) for first-order optimization. It was
successfully extended to saddle-point problems Zhang et al. (2022) and recently also to unconstrained zero-sum games
by Ibrahim et al. (2020). However, these techniques rely on the assumption that the next iterate is chosen in the span
of the previous oracle information (cf. Definition 1 in (Ibrahim et al., 2020) or Assumption 2.1.4 in (Nesterov, 2014)).
Although this approach has similarities with ours, there are several important differences. First, we do not restrict the
learner to to choose its next iterates within the span of the previous feedback. Indeed, there is evidence that the span
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assumption excludes optimal first-order methods, see (Hannah et al., 2018), and would therefore make it significantly
easier to obtain lower bounds. Secondly, the game constructed by Ibrahim et al. (2020) for a Nesterov-style lower
bound results in matrices with entries from a finite alphabet. As we show in Section 3.2, any such approach for our
setting is doomed to fail. For the same reason, no proof technique inspired by lower bounds via Rademacher random
variables, as in Orabona and Pál (2018), can ever work.

2 Setting and Notation

General Notation Given a set of numbers A ⊂ R, we denote by MK(A) the set of K × K matrices with entries
in A; we mainly consider the bounded-entries class MK([−1, 1]). A K ×K zero-sum game between a minimizing
p-player (or row player) and a maximizing q-player (or column player) is represented by a matrix M ∈ MK(R); we
restrict our attention to square K × K games. For any pair of plays (p, q), the expected loss vector of the p-player
(resp. q-player) is Mq ∈ RK (resp. −M⊺p ∈ RK). The suboptimality gap at (p, q) is

g(M,p, q) = max
j∈[K]

(M⊺p)j − min
i∈[K]

(Mq)i .

The gap g(M,p, q) is non-negative for any M,p and q. The pair of plays (p, q) is said to be an ε-Nash equilibrium
if g(M,p, q) ⩽ 2ε; Nash equilibria are 0-Nash equilibria. Most games we will consider will possess a unique Nash
equilibrium p, q, and this equilibrium will be fully supported, i.e., all components of p and q are positive. Fully
supported equilibria in finite games are also equalizing strategies, meaning that the loss vectors are then isotropic;
in finite zero-sum games, this entails that M⊺p = Mq = v1, where v is the game-value. We follow the notation
convention to abbreviate min(x, v) = x ∧ v and to hide polylogarithmic terms by Ω̃ or Õ.

First-Order Query Model and Objectives The first-order query model is an interaction protocol between a learner
and a game matrix, defined as follows. Fix a time horizon T ∈ N, and a set of candidate matrices M ⊆ MK(R).
Over the course of T rounds, the learner sequentially picks (queries) pairs of plays (pt, qt) and observes the expected
losses (Mqt,−M⊺pt), where the matrix M ∈ M is fixed and unknown to the learner.

We examine the number of interactions necessary to compute an approximate equilibrium. At the end of the T
rounds, the learner recommends a pair (p, q). Given a fixed gap level ε ⩾ 0 and a set of candidate matrices M, we
say a strategy achieves query complexity T (ε;M) if for any matrix M ∈ M, the strategy outputs a pair p, q such
that g(M,p, q) ⩽ 2ε when T ⩾ T (ε;M). (The dependence on M is omitted when clear from context.) We also
occasionally refer to the query complexity of recovering the full matrix, which is a different task but in the same query
model. In this case, the learner recommends a full matrix and achieves query complexity T if the matrix guess is
correct for any true matrix M ∈ M.

The topic of this paper is the study of the optimal query complexity of finding ε-Nash equilibria in the first-order
model, for the set of matrices with bounded entries MK([−1, 1]).

3 Upper Bounds

In this section we collect upper bounds for the first-order query complexity of approximate Nash equilibria. These
bounds are either well-established, trivial or exploit in a miraculously striking fashion the difference between learning
saddle points for matrix games taking entries in a countable (e.g., Q) or uncountable (e.g., [−1, 1]) sets of values.

3.1 Query Complexity over MK([−1, 1]): Regret and Elementary Strategies

We list some well-known results from the literature and state them in terms of first-order query complexity. The results
described here are compiled in Figure 1. We use the notation un:m to denote the family (uk)n⩽k⩽m.

O(ε−1 logK) Queries from Optimistic Online Learning The current best upper bounds on the query complexity
of ε-equilibria for zero-sum games are derived from online learning methods. As is well-known (Cesa-Bianchi and
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Figure 1: Upper (blue) and lower (red) bounds on the first-order query complexity of computing an ε-equilibrium for K × K
matrix games with entries in [−1, 1]. See Sections 3 and 4 for details.

Lugosi, 2006, Chapter 7), if we denote by p̂T (resp. q̂T ) the average of p1:T (resp. q1:T ) then

Tg(M, p̂T , q̂T ) = T max
j∈[K]

(M⊺p̂T )j − T min
i∈[K]

(Mq̂T )i

=

T∑
t=1

⟨pt,Mqt⟩ − T min
i∈[K]

(Mq̂T )i +

T∑
t=1

⟨qt,−M⊺pt⟩ − T min
i∈[K]

(−M⊺p̂T )j

⩽
T∑

t=1

⟨pt,Mqt⟩ −
T∑

t=1

min
i∈[K]

(Mqt)i +

T∑
t=1

⟨qt,−M⊺pt⟩ −
T∑

t=1

min
i∈[K]

(−M⊺pt)j .

This last term is exactly the sum of the regrets suffered by each player on their respective losses: the gap of the average
plays is smaller than the sum of the average regrets over T rounds. This relationship between regret and gap provides a
fruitful way to upper bound the query complexity of computing equilibiria. Specifically, Rakhlin and Sridharan (2013)
observed that if players follow the Optimistic Mirror Descent strategy then the sum of the regrets stays smaller than
O(logK); see the paragraph following Proposition 6 in the mentioned reference.

Theorem 1 (Consequence of Rakhlin and Sridharan (2013)). There exists an absolute constant c > 0 such that the
first-order query complexity over MK([−1, 1]) is

T (ε) ⩽
(
c
logK

ε

)
∧K .

A wide stream of literature leverages the connection between regret and equilibria, and study the dynamics of pairs
of learning algorithms, including the two principal flavors of optimistic online algorithms, Optimistic Mirror Descent
and Optimistic Follow-the-Regularized-Leader, cf. Section 1.2.

Instance-Dependent Rates of Convergence Many existing bounds show rates of convergence that are exponential
in T , with instance-dependent constants1, see, e.g., Gilpin et al. (2008); Wei et al. (2020). However, we infer in
Example 18 that for a zero-sum two-player bilinear game, these constants can be large, even on simple game matrices.
If the constants are too large, the consequences on query complexity are vacuous, as they might require more than
K queries to obtain non-trivial (ε < 1) equilibria. Although these results give a very interesting analysis beyond the
worst-case, since our focus is on worst-case guarantees, they are beyond the scope of this work.

Upper Bounds for Large ε We conclude this section with two elementary strategies that provide equilibria with
large approximation values of ε ⩾ 1

2 .

1More precisely: a parameter similar to a condition number of the game matrix
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Theorem 2 (Theorem. 3.1 in Daskalakis et al. (2009b)). For any ε ⩾ 1/2, the query complexity over MK([−1, 1])
of finding an ε-equilibrium is T (ε) ⩽ 2.

The following proposition is a well-known observation (see, e.g., Fearnley et al. (2015)) that having the learner select
a pair of uniform plays always gives an approximate equilibrium.

Proposition 3. For any ε ⩾ 1−1/K, the query complexity over MK([−1, 1]) of finding an ε-equilibrium is T (ε) = 0.

3.2 Recovering the Matrix: Upper and Lower Bounds

In this section we show that the first-order query complexity for recovering the full game matrix (a task harder than
computing an equilibrium) is between Θ(1), independent of the number of actions, and Θ(K), depending on the set of
candidate matrices. An important consequence of these results is that several known standard lower bound techniques
cannot be applied to provide lower bounds on the easier task of learning equilibria.

Matrix Sets with Countable Alphabet Many existing methods rely on building hard matrices with entries in a finite
alphabet: we prove this cannot lead to a lower bound.

Theorem 4. Let A ⊂ R be a countable set of at least two numbers. Then the first-order query complexity over
MK(A) of recovering the full matrix is 1.

This result exploits infinite precision in the feedback, and as such does not provide a reasonable algorithm that the
players would use should they know that the matrix belongs to MK(A). The intent of this statement is to show that
any attempt at a lower bound that builds matrices with entries in a fixed countable set (and in particular with integer
entries) is doomed to fail after one query.

Remark 5. The proof of Theorem 4 does not provide an explicit algorithm. However, if the learner knows that the
entries of the matrix are in a finite set A ⊂ Q, an explicit strategy can be easily described. In this case, A is of the
form {a1/r, . . . , an/r} with ai ∈ Z and r ∈ N. Consider a base b = max(a1:n) −min(a1:n) and consider a query
with p ∝ (b−1, b−2, . . . , b−K) (the choice for q is irrelevant here). The learner can deduce the full matrix M from
the single observation M⊺p. Of course, this strategy has no practical interest as soon as either A or K is moderately
large, since it requires arbitrary precision in the outputs.

Difficulty of Recovering the Matrix Exactly In the first-order query model, the learner receives 2K numbers every
round, so in order to fully determine an arbitrary K ×K matrix one needs at least K2/(2K) = K/2 rounds. It turns
out that this bound is not tight, and we may need exactly K rounds in the worst case, because of redundancies between
the 2K numbers we observe per round:

Theorem 6. The first-order query complexity over MK([−1, 1]) of recovering the full matrix is K.

Intuitively, it is overkill to recover the matrix exactly to output an ε-Nash equilibrium. In the next section, when
ε ≪ 1/KK (in particular when ε = 0), we show that first-order queries do not provide useful information to find an
ε-equilibrium faster than it takes to reveal the whole matrix.

4 A New Lower Bound on the Query Complexity of Approximate Equilibria

We switch perspective, attempting to make the life of any learner hard. For this, we need to think about responding to
queries to keep the learner unwitting.

4.1 Overview and Notation

After t time steps, queries p1:t and q1:t have been made and the outputs provided to the learner are ℓ
(q)
1:t and ℓ

(p)
1:t . Let

us denote the set of matrices with entries in [−1, 1] that are consistent with the observations after t time steps by

Et =
{
M ∈ MK([−1, 1])

∣∣ ∀s ∈ [t] , M⊺ps = −ℓ(q)s and Mqs = ℓ(p)s

}
;

we sometimes refer to this as the set of candidate matrices after t rounds of observations. We omit the dependence on
the sequence of queries (ps, qs) and outputs (ℓ(p)s , ℓ

(q)
s ) to reduce clutter, as it will always be clear from the context.

We say a sequence of matrices M1:T is adapted to the queries p1:T , q1:T , if it gives consistent outputs to the queries,
i.e., if for all s, t ⩽ T such that s ⩽ t, M⊺

t pt = M⊺
s pt and Mtqt = Msqt ;in other words, M1:T is adapted if

Mt+1 ∈ Et for all t.

6
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Instead of defining directly the answers to the queries, we equivalently build a sequence of adapted matrices. For-
mally, at round t + 1, given Et and (pt+1, qt+1), we select a matrix Mt+1 ∈ Et and output (ℓ

(q)
t+1, ℓ

(p)
t+1) =

(−M⊺
t+1pt+1,M

⊺
t+1qt+1).

Let us fix some common technical notation that we use in the proofs, to measure distances in matrix space. For a matrix
M ∈ MK(R), and for r, s ∈ [1,∞], we denote the operator norm of M by ∥M∥r,s = supx∈RK : ∥x∥r=1 ∥Mx∥s .
Recall that for y, z ∈ RK , we have ∥yz⊺∥r,s = ∥y∥s∥z∥r′ , where r′ ∈ [1,∞] is such that 1/r+1/r′ = 1. In particular
∥M∥1,∞ = maxi,j∈[K] |Mi,j |, and ∥yz⊺∥1,∞ = ∥y∥∞∥z∥∞. If F is a closed convex set subset of RK , we denote by
ProjF (x) the orthogonal projection of x on F .

We now summarize the structure of the proof of our two main results.

Common Structure of the Proofs The proofs of Theorem 11 and Theorem 17 both follow the same template:

– Assume an ε-equilibrium is found after T first-order queries.
– Find a necessary condition on this equilibrium formulated as constraints on the observed losses and the

sequence of queries. Precisely, we observe that under some initial assumptions on the game matrix, the all-
ones vector 1 needs to lie near the span of the outputs observed by the player, regardless of the queries and
outputs.

– Ensure that this necessary condition cannot be met by any pair of mixed actions (p, q) by building an appro-
priate adapted sequence of matrices. In our case, we ensure that the span of the losses of the q-player stays
far from the all-ones vector 1.

This proof structure is a promising way to derive the exact query complexity of (approximate) Nash equilibria. We
use it to provide the first non-trivial lower bound for this setting.

The next two sections implement this template to prove query complexity lower bounds for exact ε = 0 (Theorem 11)
and approximate ε > 0 (Theorem 17) equilibria. Detailed proofs are in Section C. While we could have deduced the
final lower bound for exact equilibria directly from the approximate equilibria case, we describe the result separately
to ease exposition. Indeed, the bound for the exact case contains the main ideas but is technically simpler.

4.2 Proof: Exact Equilibrium Case

Step I: Common Equilibria are in the Span of Past Queries We start by defining an initial set of candidate
matrices with some special properties. These properties are used to ensure that the common equilibrium is fully
mixed, and therefore an equalizing strategy for both players.

Definition 7. A set of matrices B0 ⊂ MK([−1, 1]) satisfies the assumptions A(0) if

– For all M ∈ B0, all equilibria of M are fully mixed,
– There exists a matrix M ∈ B0 with non-zero value.

By Lemma 20 (App. C), any ball centered at (1/2)IK with small enough radius satisfies A(0), e.g.,

B0 = B∥·∥1,∞

(1
2
IK ,

1

16K2

)
=

{
M ∈ MK(R) :

∣∣∣Mi,j −
1

2
δi=j

∣∣∣ ⩽ 1

16K2
∀i, j ∈ [K]

}
.

The following lemma states that after t first-order queries, if at least one matrix in B0 is still a candidate matrix, then
any common equilibrium to all candidate matrices must lie in the span of the queries. Since equilibria of matrices in
B0 are fully mixed, and are thus equalizing strategies, this further implies that the all-ones vector 1 must lie in the
span of the outputs to the queries.

Lemma 8. Let B0 be a set of matrices satisfying A(0). Assume in addition that Et ∩ B0 ̸= ∅ and that
Et ∩ MK((−1, 1)) ̸= ∅. Let (p, q) be a common Nash equilibrium to all matrices in Et. Then p ∈ Span(p1:t)
and q ∈ Span(q1:t).

Proof. of Lemma 8 Since p, q is an equilibrium to at least one matrix in B0 ∩ Et, it is fully supported; in particular
p is an equalizing strategy for any M ∈ Et and M⊺p = vM1 for some number vM ∈ R. Furthermore, the value vM
is actually independent of M ∈ Et since, vM = ⟨M⊺p, q1⟩ = ⟨p, ℓ(p)1 ⟩. Therefore, for any M,M ′ ∈ Et, we have
(M −M ′)⊺p = 0 . Let us now define p̄ = p− ProjSpan(p1:t)(p), and consider the direction p̄u⊺

q ∈ MK(R) for some
arbitrary non-zero vector uq orthogonal to q1, . . . , qt. Fix some matrix M ∈ Et ∩MK((−1, 1)); a non-empty set by

7
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assumption. Then for α ∈ R small enough, the matrix M ′ = M + αp̄e⊺q is still in Et, since M is not on its border (all
entries are away from {−1, 1}). Therefore,

0 = (M −M ′)⊺p = α⟨p, p̄⟩eq = α∥p̄∥2uq ;

implying that ∥p̄∥ = 0, i.e. that p ∈ Span(p1:t); similar reasoning shows that q ∈ Span(q1:t).

Corollary 9. Under the assumptions of Lemma 8, there exists a value v ̸= 0 such that

v1 ∈ Span(ℓ
(q)
1:t ) ∩ Span(ℓ

(p)
1:t ) .

Step II: Sequential construction Given Corollary 9, to prove a query complexity lower bound, it suffices to build
the answers to the queries p1:t and q1:t in a way that ensures that

– the vector 1 never belongs to the span of the observations of (say) the q-player,
– there is at least one remaining candidate matrix in B0, i.e., Et ∩B0 ̸= ∅ .

For technical reasons (cf. the assumptions of Lemma 8), we also need to make sure that there is enough space left
in Et. We do so by keeping a candidate matrix Mt ∈ Et ∩ MK((−1, 1)), away from the border of the initial set of
candidate matrices (i.e., with entries stricly between −1 and 1).
Lemma 10. Fix a time horizon T ⩽ K − 2. For any sequence of queries p1:t, q1:t, there exists a sequence of matrices
M1:T in MK((−1, 1)) adapted to p1:T , q1:T that defines losses ℓ(q)1:T for which, for any v ̸= 0,

v1 /∈ Span(ℓ
(q)
1:T ) .

Proof. of Lemma 10 We build the sequence M1:T incrementally by moving at step t + 1 in directions chosen as a
function of the new queries pt+1 and qt+1, ensuring by induction that 1 /∈ Span(ℓq1:T ).

Initialize the sequence at M0 = 0. Now for t ⩾ 0, let us assume that we have correctly built M1:t, inducing losses
such that 1 /∈ Span(ℓq1:t), and let us define Mt+1.

If pt+1 is in the span of p1:t, then set Mt+1 = Mt and the induction holds, since the span of the losses is left
unchanged. Otherwise set Mt+1 = Mt +

p̄t+1

∥p̄t+1∥2u
⊺
t ,where p̄t+1 = pt+1 −ProjSpan(p1:t)(pt+1), and ut is a non-zero

vector orthogonal to the vectors q1:t, and to 1 − Πt(1); the existence of such a ut is guaranteed since t ⩽ K − 2.
By choosing the norm of ut to be small enough, we can make sure that Mt+1 ∈ Et ∩ MK((−1, 1)). Then, ℓ(q)t+1 =

M⊺
t+1pt+1 = M⊺

t pt+1 + ut .Note that the vector 1 − Πt(1) is orthogonal to ℓ
(q)
1:t by definition of Πt, and to ℓ

(q)
t+1 by

definition of ℓqt+1. Therefore, if we assume by contradiction that 1 ∈ Span(ℓ
(q)
1:t+1), then 1− Πt(1) ∈ Span(ℓ

(q)
1:t+1),

implying that the vector 1− Πt(1) is orthogonal to itself, leading to a contradiction of our induction assumption that
1−Πt(1) ̸= 0. Therefore 1 /∈ Span(ℓ

(q)
1:t ) at all times t ⩽ T .

Conclusion Combining Lemmas 8 and 10, against any learning strategy, we have built a sequence of outputs for
which there is no common equilibrium to all remaining candidate matrices after T rounds, as long as T ⩽ K − 2; this
proves the following theorem.
Theorem 11. The first-order query complexity over MK([−1, 1]) of finding a Nash equilibrium is

T (0) ⩾ K − 2 .

The next section tackles the lower bound for approximate equilibria. Its proof follows the same template as for the
exact case, although the technical complexity increases.

4.3 Proof: Approximate Equilibria Case

Step I: Common Equilibria Are Close to the Span of Queries In the following, we say a probability distribution
over [K] is δ-supported if p(i) ⩾ δ for all i. We say a pair of distributions (p, q) is δ-supported if both p and q are
δ-supported. We start by defining a quantitative version of Definition 7 for approximate equilibria. In order to retain
the property that losses at ε-equilibria stay close to an isotropic vector, we add a requirement on the support of the
equilibria.
Definition 12. A set of matrices Bε,δ ⊂ MK([−1, 1]) satisfies the assumption A(ε, δ) if

– For all M ∈ Bε,δ , all ε-equilibria of M are δ-supported,

8
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– There exists a matrix M ∈ Bε,δ with non-zero value.

For example, by Corollary 21, the ∥ · ∥1,∞-ball centered at (1/2)IK and of radius (1/16)K2 satisfies this condition
for any ε ⩽ 1/(16K2) and δ ⩽ 1/(2K).

The following proposition is a quantitative version of Lemma 8 for approximate equilibria, in which we show that any
common approximate equilibrium to all matrices in Et needs to be close to the span of the queries.

Lemma 13. For ε, δ > 0, let Bε,δ be a set of matrices satisfying A(ε, δ), cf. Definition 12. Assume that Et∩Bε,δ ̸= ∅,
and that the relative interior of Et contains a ball of radius rt measured in ∥ · ∥1,∞-norm. Let (p, q) be a common
ε-Nash equilibrium to all matrices in Et, then

∥p− ProjSpan(p1:t)(p)∥ ⩽
2ε

δrt
and ∥q − ProjSpan(q1:t)(q)∥ ⩽

2ε

δrt
.

Corollary 14. Under the assumptions of Lemma 13, there exists a game matrix M ∈ Bε,δ such that the value v ∈ R
of M satisfies ∥v1− Proj

Span(ℓ
(q)
1:t )

(v1)∥ ⩽ 4
√
Kε

δrt
.

Step II: Construction of Matrices We design an adapted sequence of matrices that keeps v1 away from the span
of the observed losses.

Lemma 15. Let B be a closed ball in ∥ · ∥1,∞-norm of radius r ⩽ 1/2 contained in MK([−1, 1]). Fix a time horizon
T ⩽ K−3. For any sequence of queries (pt, qt)t⩽T , there exists a sequence of matrices M1:T in B adapted to (pt, qt)

that defines losses ℓ(q)1:T for which, for any v ⩾ 0,

∥v1− Proj
Span(ℓ

(q)
1:T )

(v1)∥2 ⩾ v2K
( r2

8KT 2

)T+1

,

and such that Et contains a ball of radius r/2 in its relative interior.

The proof relies on a decomposition of the squared distance of v1 to the span of observed losses at time t+ 1 through
a Pythagorean identity, relating it to the span at time t. By carefully choosing the new matrix Mt+1 as a function of
the query pt+1, qt+1, we manage to ensure that the squared distance decreases only by a constant factor.

Remark 16. Note that the radius of the ball inside Et stays constant at r/2, even though Et gets smaller as t increases.
This is made possible by choosing Mt very close to Mt−1 (roughly at a distance of r/(KT ) measured in ∥ · ∥1,∞),
effectively ensuring that Mt stays far from the boundary of MK([−1, 1]).

Step III: Conclusion We now combine Corollary 14 and Lemma 15 to obtain a lower bound on the best achievable
gap after T rounds, which directly translates to a query complexity lower bound.

Theorem 17. In the first-order query model on MK([−1, 1]), for any algorithm the worst-case gap after T ⩽ K − 3
time steps is at least

ε ⩾
1

210K4

( 1

211/2K5/2T

)T+1

.

Therefore, the query complexity of finding an ε-equilibrium for any ε ⩽ 1/(e 211K4) is at least

T (ε) ⩾
( − log(211K4ε)

log(211/2K5/2) + log(− log(211K4ε))
− 1

)
∧ (K − 3) .

4.4 Potential Improvement and Discussion

There is still a wide disparity between upper and lower bounds on first-order query complexity. The lower bound
Theorem 17 is most probably not tight, so let us discuss potential ways to improve it.

We believe the most promising approach for improvement is to find a different proxy for the gap. Our proof uses the
distance to the span of the losses ∥v1−ProjSpan(ℓ(q)1:t )

∥2 for v ⩾ 1/(2K), which is convenient because it is a distance,
but we need to introduce a strong restriction on the set of candidate matrices Bε,δ to be able to relate it to the gap,
namely the restriction to a ball around 1

2IK of radius O(1/K2). In order to make significant progress it is therefore
essential to enlarge the class of candidate matrices significantly compared to Bε,δ , and therefore a different proxy for
the gap is required.
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5 Discussion: Future Work and Conclusion

We study the first-order query complexity of computing approximate Nash equilibria for two-player zero-sum matrix
games. We review upper bounds coming from online learning, and discuss existing lower bounds for related problems
including alternative query models. Taking stock, we arrive at the surprising state of affairs that for this fundamental
problem no lower bounds are known. We then offer some explanation for this current state of affairs: the first-order
query model is powerful enough to identify any matrix from a fixed countable set in a single query; this rules out many
techniques. We then turn to lower bounds. We design an adaptive adversary that answers incoming learner queries in
such a way that the remaining consistent matrices do not share a common Nash equilibrium for as long as possible.
Our approach is based on a quantity serving as a “potential function”: namely the distance of the all-ones vector to the
span of the observations. We discuss in detail the result, future scope and limits of our proposed technique.

As can be seen in Figure 1, we are still far from matching lower and upper bounds. The most intriguing possibility for
resolution would be if it were to turn out that the upper bounds (i.e. algorithms) are improvable. Current upper bounds
come from online learning regret bounds, with algorithms falling in the category of uncoupled dynamics. We would
love to know if these algorithm templates are in fact optimal for query complexity.

To cycle back to our motivation of computing saddle points in general, future work could attempt to extend our lower
bound technique to different constraint sets, to functions possibly exhibiting curvature, and to instance-dependent
rates. Another direction would be to generalize to multi-player games and investigate the query complexity of weaker
solution concepts.

Finally, we see that all game matrices arising in our lower bound have Nash equilibria with full support. But are such
matrices in fact hard cases? To know, we are very interested in the query complexity of learning approximate Nash
equilibria in zero-sum matrix games under the promise that there is an equilibrium of small support.
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A Details for Upper bounds

A.1 Instance-Dependent Query Complexity

The following example shows that the bounds in Gilpin et al. (2008) can be vacuous for our setting. Since, as noted by
the authors, Theorem 5 by Wei et al. (2020) is equivalent to the results in Gilpin et al. (2008), the following example
is only with respect to the latter.
Example 18. For this example, we use the notation from Gilpin et al. (2008). Consider the game matrix M = IK .
Observe that M has a unique Nash-equilibrium, hence, by considering p = 1

K 1 and q = δi it can be seen that δ(M)

is at most
√

K
K−1

1
K ≈ 1

K . The bound is defined with respect to the condition number κ(M) =
√
λmaxM⊺M/δ(M),

where λmax(M) denotes the largest eigenvalue of M . Hence, for our example, κ(M) is at least of the order of K,
which makes a bound of κ(M) log 1

ε for this specific example vacuous. Note that for other game matrices, the results
give valuable insights into guarantees beyond the worst-case.

A.2 Constant Queries for Games from a Finite Alphabet

Proof. Let F be the smallest subfield of R that contains A, then F is countable and, R can be seen as an infinite-
dimensional vector space over F . Recall that a family of real numbers (x1, . . . , xn) (each seen as a vector over
the field F ) is linearly independent if for any λ1, . . . , λn ∈ F we have λ1x1λ1 + · · · + λnxn = 0 if and only if
λ1 = · · · = λn = 0.

We claim that if a player, say the q-player, queries an action such that the components q1, . . . , qK form a linearly
independent family, then they can compute the whole matrix M with just one observation. Indeed, if M,M ′ ∈
MK(A), yield the same output after one query, then for any i ∈ [K]:

K∑
i=1

(Mi,j −M ′
i,j)qi = 0.

Therefore, by the independence of (qi)i∈[K], this implies that Mi,j = M ′
i,j for any (i, j). In other words, no two

different matrices can give the same output after one query under q.

We are now left to show that there exists a play (q1, . . . , qK) with coordinates forming a linearly independent family.
We prove this using the probabilistic method. Consider a sequence of random variables (U1, . . . , UK) i.i.d. and
uniformly distributed over [0, 1]. Then with probability 1, the Ui are independent over F . Indeed, we can upper bound
the probability that they are dependent by a union bound and use of the tower rule as

P
[
∃i ∈ [K] s.t. Ui ∈ SpanF {Uj | j ̸= i}

]
⩽

K∑
i=1

P
[
Ui ∈ SpanF {Uj | j ̸= i}

]
=

K∑
i=1

E
[
P
[
Ui ∈ SpanF {Uj |j ̸= i} | {Uj | j ̸= i}

]]
= 0 .

The last equality holds because, for any i ∈ [K], conditionally on {Uj | j ̸= i}, the span of {Uj | j ̸= i} is a countable
set, therefore the probability that Ui belongs to that set is null. This concludes the proof.

B First-Order Query Complexity of Recovering the Game Matrix

Proof. of Theorem 6 Clearly, we can fully reconstruct M from the queries pt = qt = et for t = 1, . . . ,K, where
et denotes the standard basis vector in direction t. It turns out that this is optimal.

To show this, note that each query (p, q) provides us with constraints

p⊺M = a, Mq = b,

for some loss vectors a and b. These may equivalently be expressed as linear constraints in the Hilbert space of
matrices A ∈ RK×K , with inner product ⟨A,B⟩ = Tr(A⊺B):

⟨M⊺, eip
⊺⟩ = ai (i = 1, . . . ,K),

⟨M⊺, qe⊺j ⟩ = bj (j = 1, . . . ,K).
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Among these 2K constraints on M , there is (at least) one redundant constraint, because there always exist numbers
λ1, . . . , λK and γ1, . . . , γK , at least one of which is nonzero, such that

K∑
i=1

λieip
⊺ +

K∑
i=1

γjqe
⊺
j = 0.

Specifically, this holds for λi = qi and γj = −pj . It follows that a query (pt, qt) in round t will provide at most
2(K − t)+ 1 new constraints on top of the queries from rounds 1, . . . , t− 1. To see this, note that pt will have at least
one constraint in common with q1, . . . , qt−1 and qt will have at least one constraint in common with p1, . . . , pt, so the
total number of new constraints is at most nt := 2K − (t− 1)− t = 2(K − t) + 1.

We now provide the following scenario in which M cannot be fully determined by strictly less than K queries. In
rounds t = 1, . . . ,K − 1, the answer to queries (pt, qt) is always the two loss vectors ℓ(p)t = ℓ

(q)
t = 1

21, which are
compatible with the possibility that M equals 1

211
⊺, i.e. the matrix with all entries equal to 1/2. We will show by

induction that the dimension of the null-space (i.e. the number of unconstrained dimensions of M ) of all constraints
up to round t is at least (K − t)2. This is true for t = 0, because the domain of M has K2 dimensions, and, whenever
it is true for t, then for t+ 1 it is at least

(K − t)2 − nt+1 = (K − t)2 − 2(K − t− 1)− 1 = (K − t)2 − 2(K − t) + 1 = (K − t− 1)2.

Thus, after K − 1 rounds, there remains at least one direction V ∈ RK×K in this null space with V ̸= 0. This means
that the learner cannot distinguish the case M = 1

211
⊺ from the case M = 1

211
⊺ + 1

2V/maxi,j |Vi,j |, thus K − 1
queries are not sufficient to fully determine M .

C Proofs and Technical Results for Section 4

C.1 Approximate Equilibria

C.1.1 Proofs of Main Results

Proof. of Corollary 14 If (p, q) is a common ε-NE to all matrices in Et, then we have for any game matrix M ∈ Et,

M⊺(p− p̄) ∈ Span
(
ℓ
(q)
1:t

)
and therefore for any v > 0,

∥v1− Proj
Span(ℓ

(q)
1:t )

(v1)∥ ⩽ ∥v1−M⊺(p− p̄)∥ ⩽ ∥v1−M⊺p∥+ ∥M⊺p̄∥ ⩽ ∥v1−M⊺p∥+
√
K∥p̄∥ .

Now as δ > 0, any M ∈ Bε,δ has a unique Nash equilibrium p⋆, q⋆, which is fully supported. Therefore, the value of
M is v = p⊺Mq⋆, as q⋆ is a an equalizing strategy. Now, using (1) in the proof of Lemma 13, which is valid for any
matrix that admits p, q as an ε-NE,

∥v1−M⊺p∥ ⩽
√
K∥v1−M⊺p∥∞ ⩽

√
Kε

δ
.

Proof. of Lemma 13 First note that p and q are δ-supported, as (p, q) is an ε-equilibrium of at least one matrix in
Et ∩B(ε, δ). For M ∈ Et, pick any j⋆ ∈ argminj∈[K](M

⊺p)j . As (p, q) is an ε-equilibrium for M ,

(
1− q(j⋆)

)
max
j∈[K]

(M⊺p)j + q(j⋆) min
j∈[K]

(M⊺p)j ⩾
K∑
i=1

q(j)(M⊺p)j ⩾ max
j∈[K]

(M⊺p)j − ε ,

and therefore, dividing by q(j⋆) ⩾ δ,

max
j∈[K]

(M⊺p)j − min
j∈[K]

(M⊺p)j ⩽
ε

q(j⋆)
⩽

ε

δ
. (1)

Hence, as minj∈[K](M
⊺p)j ⩽ p⊺Mq1 ⩽ maxj ∈[K](M

⊺p)j ,

∥M⊺p− (p⊺Mq1)1∥∞ ⩽
ε

δ
.

14
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Since p⊺Mq1 = p⊺ℓ
(p)
1 has the same value for any M ∈ Et, we apply this inequality for any pair of matrices

M,M ′ ∈ Et to deduce that

∥(M −M ′)⊺p∥∞ ⩽
2ε

δ
. (2)

Let us now instantiate this identity with some well-chosen M and M ′. Let u ∈ RK be a vector orthogonal to q1, . . . , qt,
such that ∥u∥∞ = 1 (such a u exists as long as q1, . . . , qt do not span the whole of RK). Next consider M and M ′ in
Et such that

M −M ′ =
rt

∥p̄∥∞
p̄u⊺ .

Such M and M ′ are guaranteed to exist in Et as ∥M −M ′∥ = rt . Then, applying (2), we obtain

2ε

δ
⩾ ∥(M −M ′)⊺p∥∞ =

rt
∥p̄∥∞

∥p̄∥22∥u∥∞ ⩾ rt∥p̄∥2 ,

from which the claim follows. The same reasoning applies to obtain the bound on q.

Proof. of Lemma 15 Denote by Πt the projection on the span of the observed losses ℓ
(q)
1:t for the q-player at time

step t. We build the sequence (Mt) incrementally by moving at step t + 1 in directions chosen as a function of the
new queries pt+1 and qt+1.

We initialize the sequence at M0 the center of B. Now for t ⩾ 0, if pt+1 is in the span of p1:t, then set Mt+1 = Mt,
otherwise set

Mt+1 = Mt +
p̄t+1

∥p̄t+1∥2
u⊺
t ,

where p̄t+1 = pt+1 − ProjSpan(p1:t)(pt+1), and ut is a non-zero vector orthogonal to the vectors q1:t, to 1 − Πt(1),
and to M⊺

t pt+1; the existence of such a ut is guaranteed since t ⩽ K − 3. (Note that ut does not depend on the value
of v.) We set the norm of ut at a later stage of the proof. Then,

ℓ
(q)
t+1 = M⊺

t+1pt+1 = M⊺
t pt+1 + ut .

Then for any v ∈ R, the squared distance from the vector v1 to the space Span(ℓ
(q)
1:t+1) can be decomposed thanks to

the Pythagorean equality, as the squared distance to the previous span minus the squared norm of the projection on the
new orthogonal direction ℓ

(q)
t+1 −Πt(ℓ

(q)
t+1):

∥v1−Πt+1(v1)∥2 = ∥v1−Πt(v1)∥2 −
⟨v1, M⊺

t pt+1 + ut −Πt(M
⊺
t pt+1 + u)⟩2

∥M⊺
t pt+1 + ut −Πt(M

⊺
t pt+1 + ut)∥2︸ ︷︷ ︸

:=Dt

.

Observe that for any vectors a, b, we have ⟨a − Πt(a), b⟩ = ⟨a − Πt(a), b − Πt(b)⟩ = ⟨a, b − Πt(b)⟩, as Πt is an
orthogonal projection on a linear subspace. Using this identity, as well as the orthogonality conditions used to define
ut, we obtain after applying Cauchy-Schwarz,

Dt =
⟨v1−Πt(v1), M

⊺
t pt+1 + ut⟩2

∥M⊺
t pt+1 + ut −Πt(M

⊺
t pt+1 + u)∥2

⩽
⟨v1−Πt(v1), M

⊺
t pt+1 + ut⟩2

∥M⊺
t pt+1 + ut∥2

=
⟨v1−Πt(v1), M

⊺
t pt+1⟩2

∥M⊺
t pt+1∥2 + ∥ut∥2

⩽ ∥v1−Πt(v1)∥2
∥M⊺

t pt+1∥2

∥M⊺
t pt+1∥2 + ∥ut∥2

.

Using this bound on Dt to lower bound the distance to the span, we obtain

∥(IK −Πt+1)v1∥2 ⩾ ∥(IK −Πt)v1∥2
(
1− 1

1 + ∥ut∥2/∥M⊺
t pt+1∥2

)
. (3)

We are now left to choose the norm of ut; the objective is to make it as big as possible under the constraint that the
sequence Mt stays in B. We set the norm of ut to be a constant multiple of ∥M⊺

t pt+1∥, i.e.,

∥ut∥ =
√
α∥M⊺

t pt+1∥ .

15
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For α small enough, we can ensure that the whole sequence Mt stays in the ball B, as

∥Mt −M0∥1,∞ ⩽
t∑

s=1

1

∥p̄s+1∥2
∥p̄s+1u

⊺
s∥1,∞ =

t∑
s=1

∥p̄s+1∥∞
∥p̄s+1∥2

∥us∥∞ =

t∑
s=1

∥p̄s+1∥∞
∥p̄s+1∥2

∥us∥∞

⩽
t∑

s=1

∥us∥
∥p̄s+1∥

=
√
α

t∑
t=1

∥Mtp̄t+1∥
∥p̄t+1∥

⩽
√
α
√
Kt ,

where we used ∥Mtx∥ ⩽ ∥Mt∥2,2∥x∥ ⩽
√
K∥x∥, and M⊺

t p̄t+1 = M⊺
t pt+1 since Mt ∈ Et. Therefore by taking,

α = (r/2)2/(KT 2) , we ensure that Mt ∈ B as B contains a ball of radius r centered at M0. Furthermore, this choice
ensures that Et contains the ball of radius r/2 centered at Mt in its relative interior as for any matrix U with norm less
than r/2, we have ∥Mt + U −M0∥ ⩽ ∥Mt −M0∥+ ∥U∥ ⩽ r/2, so Mt + U ∈ B ⊂ MK([0, 1]).

Plugging back the value of α into (3), we get

∥(IK −Πt+1)v1∥2 ⩾ ∥(IK −Πt)v1∥2
α

1 + α
⩾ ∥(IK −Πt)v1∥2

α

2
.

After T time steps, this implies that for any v ⩾ 0,

∥(IK −ΠT )v1∥2 ⩾ ∥(IK −Π0)v1∥2
(α
2

)T

= ∥v1∥2
( r2

8KT 2

)T+1

.

This is the claimed result.

Proof. of Theorem 17 Define Bε,δ = B∥·∥1,∞

(
1
2IK , 1

16K2

)
, which is a ball of radius r = 1/(16K2). Given an

algorithm, consider the sequence of matrices M1:T generated by Lemma 15, applied with B = Bε,δ; we know in
particular that Mt ∈ Bε,δ , so Bε,δ ∩ Et ̸= ∅.

Assume now that the algorithm outputs a common ε-equilibrium to all matrices in ET . The assumptions of Corollary 14
hold, instantiated with Bε,δ and rt = 1/(32K2). Therefore there exists M ∈ Bε,δ , with value v such that

∥v1− ProjSpan(ℓq1:t)(v1)∥ ⩽
4
√
Kε

δrt
.

On the other hand, by Lemma 15 also instantiated with B = Bε,δ , we know that

∥v1− Proj
Span(ℓ

(q)
1:T )

(v1)∥ ⩾ v
√
K
( r2

8KT 2

)(T+1)/2

.

This implies that

ε ⩾
vδrt
4

( r2

8KT 2

)(T+1)/2

.

Finally, since v is the value of a matrix M ∈ Bε,δ ,

v = min
p∈∆K

max
q∈∆K

p⊺Mq ⩾ min
p∈∆K

max
q∈∆K

p⊺q

2
−Kr ⩾

1

2K
− K

16K2
⩾

1

4K
.

We conclude by replacing the constants by their values, δ = 1/(2K), and rt = r/2 = 1/(32K2). By Lemma 19 in
Appendix C, we deduce that for (2ε) ⩽ 1/(e 210K4),

T + 1 ⩾
− log(211K4ε)

log(211/2K5/2) + log(− log(211=K4ε))
.

C.1.2 Technical Lemmas

Lemma 19. For any a, b, x > 0, for any ε ⩽ a/e,

if ε ⩾ a (1/(bx))x, then x ⩾
log(a/ε)

log(b log(a/ε))
.

16
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Proof. of Lemma 19 Assume
ε ⩾ a (1/(bx))x = e−x log(bx)

then
(ε/a)b ⩾ e−bx log(bx)

thus, applying logarithms to both sides,
b log(ε/a) ⩾ −bx log bx .

Reformulate as, since a ⩾ eε
bx log bx ⩾ b log(a/ε) ⩾ b > 0 .

We now apply Lambert’s W0 function, which is increasing on its main branch [−1/e,+∞), and use a standard lower
bound on W0 to obtain

log bx ⩾ W0(−b log(ε/a)) ⩾ log(−b log(ε/a))− log log(−b log(ε/a))

thus
bx ⩾ −b log(ε/a)/ log(−b log(ε/a)) ,

which is the claimed bound.

Lemma 20. Let α ⩾ 0 and s > 0 be real numbers, let M ∈ MK(R) be a matrix such that

max
i,j∈[K]

∣∣Mi,j − sIK
∣∣ ⩽ α .

Then for any ε-Nash equilibrium (p, q) of M we have for any i, j ∈ [K]

min
(
p(i), q(j)

)
⩾

1

K
− 2(α+ ε)(K − 1)

s
.

Proof. Let (p, q) denote an ε-NE of M . Then

max
j∈[K]

(M⊺p)j − min
i∈[K]

(Mq)i ⩽ 2ε . (4)

Now for any j ∈ [K], since M is close to sIK ,

(M⊺p)j ⩾ s p(j)− α

thus, using the fact that p is a probability vector,

max
j∈[K]

(M⊺p)j ⩾ s max
j∈[K]

p(j)− α ⩾
s

K
− α . (5)

Similarly,
min
i∈[K]

(Mq)i ⩽ s min
i∈[K]

q(i) + α (6)

Combining the equations (4), (5) and (6) above, we have
s

K
− α− ε ⩽ s min

i∈[K]
q(i) + α+ ε ,

i.e., after rearranging,

min
i∈[K]

q(i) ⩾
1

K
− 2(α+ ε)

s
.

Similarly

max
j∈[K]

p(j) ⩽
1

s
max
j∈[K]

(
M⊺p)j +

α

s
⩽ min

i∈[K]
q(i) + 2

α+ ε

s
⩽

1

K
+

2(α+ ε)

s

Therefore

min
j∈[K]

p(k) ⩾ 1− (K − 1) max
j∈[K]

p(j) ⩾ 1− K − 1

K
− (K − 1)

2(α+ ε)

s

=
1

K
− (K − 1)

2(α+ ε)

s
.

Completing the proof.
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Corollary 21. For any ε ⩽ 1/(16K2), for any game matrix M such that

max
i,j∈[K]

∣∣∣Mi,j −
1

2
IK

∣∣∣ ⩽ 1

16K2

all ε-NE (p, q) of M satisfy for all i, j ∈ [K]

min
(
p(i), q(j)

)
⩾

1

2K
.

Corollary 22. For any game matrix M such that

max
i,j∈[K]

∣∣∣Mi,j −
1

2
IK

∣∣∣ ⩽ 1

16K2

all exact Nash equilibria (p, q) are fully supported.
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