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Abstract. In-situ (tomography) experiments are generally based on scans reconstructed from a large number

of projections acquired under constant deformation of samples. Standard digital volume correlation (DVC)

methods are based on a limited number of scans due to acquisition duration. They thus prevent analyses

of time-dependent phenomena. In this paper, a modal procedure is proposed that allows time-dependent

occurrences to be analyzed. It estimates spacetime displacement fields during the whole loading history.

The spatial modes are based on standard DVC, which is subsequently enriched using projection-based

digital volume correlation (P-DVC) to measure the temporal amplitudes. The method is applied to two

cases, namely, a virtual experiment mimicking wedge splitting and an actual shear test on a pantographic

metamaterial inducing large motions. With the proposed method, the temporal amplitude in the real test

was measured for each projection leading to a temporal resolution of one tenth of a second and the analysis

of 16,400 time steps. For the proposed algorithm, the sensitivity to the acquisition angle of the sample was

investigated and measurement uncertainties were assessed.
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1. Introduction

X-ray computed tomography is an imaging technique that enables to reconstruct volumes of

material absorption from series of projections [1, 2]. The developments of in-situ testing ma-

chines, which are placed inside X-ray scanners, give access to images of loaded samples [3]. The

quantitative analysis of sample deformations may be assessed with Digital Volume Correlation

(DVC) [4–6] with the measurement of displacement fields between discrete states. One signifi-

cant limitation of such a procedure is the acquisition time of each scan. The reconstruction of

a digital volume requires the sample to be steady during acquisitions of typically one thousand

projections [3]. Depending on the imaging device, this acquisition may take few minutes up to

few hours. This observation forbids in-situ experiments to image time-dependent phenomena

such as creep or relaxation that occur when viscoelastic/viscoplastic materials are investigated.

Furthermore, relaxation in in-situ experiments may result in motion artifacts. Currently, this is

generally avoided by starting the acquisition of projections only after the measured force has sta-

bilized [3, 7].

To circumvent the aforementioned restrictions, two routes are followed. First, fast scan ac-

quisitions are carried out in synchrotron facilities with extremely bright X-ray beams [8, 9] us-

ing high-speed cameras [10, 11] at the expense of degraded reconstruction quality (due to blur

induced by vibrations [10]). Another route consists in performing projection-based measure-

ments leveraging the projection temporal sampling instead of their reconstruction. Compared

to volume-based registration, the number of projections used to measure displacement fields

in projection-based registrations can be reduced by typically three orders of magnitude [12–15],
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which allows sub-minute in-situ experiments to be conducted in a lab scanner [16]. For such ap-

proaches, the spatial resolutions of the displacement fields are reduced [12, 15], a temporal regu-

larization is introduced [14], or mechanical regularization is added to decrease the measurement

uncertainties [13, 14].

In projection-based approaches, no standard DVC measurements were considered. This pa-

per presents an enhanced DVC procedure by significantly increasing the temporal sampling of

measured displacement fields. Thus, the spatial discretization of the displacement field is totally

controlled by standard DVC procedures [6]. By acquiring on-the-fly projections during the load-

ing phases between full scans, it is shown that it is possible to measure temporal amplitudes of

the displacement field by projection-based registrations [12]. This method is essentially restricted

to the number of frames a tomograph can acquire, which resulted in a temporal resolution of one

tenth of a second in the present study. Following a continuous Galerkin finite element discretiza-

tion in space [17], a discontinuous Galerkin discretization in time is developed such that the new

method is compatible with standard practices of in-situ experiments and their analyses. By com-

puting the displacement field at certain loading steps and not with a projection-based measure-

ment strategy, the presented approach allows for high spatial resolutions and high temporal res-

olution while keeping the uncertainties low. Conceptually, a 4D spacetime framework is designed

in which temporal and spatial components are formulated simultaneously. In modern numerical

simulations, spacetime concepts and the corresponding discretizations are currently intensively

investigated [18–20]. In projection-based DVC (P-DVC), 4D concepts were proposed as well by

using proper generalized decomposition concepts [21, 22]. The following study introduces an al-

ternative route constructing spatial modes via DVC, and then temporal modes via P-DVC. To this

end, one of the goals is to formulate such 4D concepts within a spacetime setting.

The outline is as follows. In Section 2, the principle of the proposed procedure is presented

by introducing the corresponding variational formulations of DVC and Projection-based DVC (P-

DVC) methods, and formulating the sequential solution algorithm. The method is tested on a

synthetic experiment and applied to a shear test on a pantographic metamaterial in Section 3.
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2. Projection-enhanced DVC

2.1. Spacetime framework

The general aim of kinematic measurements is to determine how some material domain Ω̂ ⊂

R3 (or region of interest) deforms during time interval [0, tend], which forms the spacetime

cylinder [18–20]. One is seeking a displacement field û : Ω̂× (0, tend) → R3 that describes the

change of the reference domain Ω̂ to the deformed configurationΩ(t ), such that

Ω(t ) = {
x = x̂+ û(x̂, t ) : x̂ ∈ Ω̂, t ∈ [0, tend]

}
, (1)

where x̂ denotes the position of any material point in the reference configuration Ω̂, and x the

position at time t . The displacement at spatial location x ∈Ω(t ) is defined by

u(x, t ) := x− x̂ = û(x̂, t ), (2)

which completes the notations needed to describe the motion in Lagrangian and Eulerian

frameworks.

A classical approach to measure û requires Ω̂ and Ω(t ) to be represented by a series of 3D

images [4, 6, 23]

I : D × [0, tend] →R≥0, (3)

where D ⊂ R3 is the field of view, with Ω(t ) ⊂ D for all t ∈ [0, tend]. In practice, an image It (x) :=

I (x, t ) cannot be acquired instantaneously at time t (Figure 1). To reconstruct such an image by

X-Ray computed tomography, hundreds if not thousands, of radiographs (i.e. projections) are

needed over a full revolution (or turn) of the sample with respect to the detector [1].

Figure 1. DVC and P-DVC temporal frames. In present case, n radiographs are acquired per

turn. The temporal delay between two radiographic acquisitions is d t .

Conveniently, standard in-situ tomography experiments are designed to have phases when

the loading is kept steady and the sample is rotated for one turn to acquire enough projections
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for a full 3D reconstruction of volumes in deformed configurations [3]. These 3D images are no

longer an instantaneous representation of the configurationΩ(t ). Instead, they are reconstructed

over the time needed for a turn T (Figure 1). To emphasize the different time scale, an image

reconstructed from a set of radiographs acquired over a turn T is denoted by IT . For displacement

fields describing the 3D image IT of the deformed configuration, capital letters will be used i.e.

Û(x̂,T ).

To measure the spacetime displacement field û, separable variables are assumed. Hence, û is

decomposed as

û(x̂, t ) =α(t )Ŵ(x̂), (4)

with α : (0, tend) → R, and Ŵ : Ω̂→ R3. Let T f and Tg be turns in [0, tend] with T f < Tg , Û(x̂,T f )

and Û(x̂,Tg ) the corresponding displacement fields, respectively, which are measured using

standard DVC methods. Then, the space component of the displacement field is defined from

DVC analyses as follows

Ŵ(x̂) = Û(x̂,Tg )− Û(x̂,T f ). (5)

Having Ŵ(x̂) assessed, only the temporal amplitude α(t ) is left unknown.

Remark 1. The freedom to choose T f and Tg allows the displacement field to be computed at

any point in time, before, after or even during reconstruction intervals. For example, when a sam-

ple is tested until failure, performing a final full scan is difficult, whereas it is simple to perform

scans before and only acquire projections until failure to measure pre-failure displacement fields.

A full acquisition of the initial state can also be challenging since the sample may need to be pre-

loaded to ensure minimal motion for the first scan. Here one can exploit the fact that measure-

ments are possible when t < tT f .

2.2. Digital volume correlation

As for most of the algorithms used for digital volume correlation, the conservation of gray levels

of I is assumed. This hypothesis states that the gray level of each material point x̂ is considered

constant in time. Hence, for each image ITg (x̂) := I (x̂,Tg ) there is a displacement field Û(x̂,Tg )

such that

IT f (x̂) = ITg (x̂+ Û(x̂,Tg )) ∀x̂ ∈ Ω̂,Tg ∈ [0, tend], (6)
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where IT f is the image of the reference state, i.e. Û(x̂,T f ) ≡ 0. Then, by considering another

image ITg (x̂) and applying decomposition (4) with condition (5), it follows that Û(x̂,Tg ) = Ŵ(x̂).

Consequently, assumption (6) reads as follows. There is a displacement field Ŵ such that

IT f (x̂) = ITg (x̂+Ŵ(x̂)) =: ITg ,Ŵ(x̂) ∀x̂ ∈ Ω̂. (7)

One seeks for a solution of the following minimization problem [24]. Find Ŵ ∈V(Ω̂) := L2(Ω̂) such

that

J A(Ŵ) = inf
V̂∈V(Ω̂)

J A(V̂) with J A(V̂) := 1
2∥IT f − ITg ,V̂∥2

L2(Ω̂)
. (8)

Here, Ŵ is a solution to Equation (8) only if it fulfills the following first-order optimality condition

A(Ŵ)(V̂) :=
∫
Ω̂

(ITg ,Ŵ − IT f )(∇̂∇∇ITg ,Ŵ · V̂ ) dx̂ = 0 ∀V̂ ∈V(Ω̂). (9)

This is a nonlinear problem, and a Gauss-Newton scheme (see e.g. Ref. [25]) will be utilized for

the minimization problem (9), the Hessian is needed

A′(Ŵ)(δŴ, V̂) =
∫
Ω̂

(∇̂∇∇ITg ,Ŵ ·δŴ)(∇̂∇∇ITg ,Ŵ · V̂)+ (ITg ,Ŵ − IT f ) δŴ · (∇̂∇∇2
ITg ,Ŵ) · V̂ dx̂. (10)

This solution strategy is standard and explained in more details in Ref. [26].

2.3. Projection-based digital volume correlation

In the same spirit as the presented DVC framework, the underlying hypothesis of P-DVC is

again the conservation of gray levels. Contrary to Equation (6), the problem is not stated in

the Lagrangian framework, but in the Eulerian system [12]. With IT f (x) := I (x,T f ), there is a

displacement field u(x, t ) such that

IT f ,u(t )(x) := I (x−u(x, t ),T f ) = I (x, t ) ∀x ∈Ω(t ), t ∈ [0, tend]. (11)

Instead of assuming that there is another 3D image, only one projection is considered to be

available for any considered time t . Let Πθ be the linear projection operator of the underlying

X-ray setup (Figure 2), which maps any 3D gray level image It (x) := I (x, t ) defined on the volume

domain D to a 2D gray level imageΠθ[It ] defined on the detector domainΞ at angle θ(t ) ∈ [0,2π].

Then, assuming Equation (11) holds, it follows that

Πθ(t )[IT f ,u(t )](r) =Πθ(t )[It ](r) ∀r ∈Ξ, t ∈ [0, tend], (12)



Viktor Kosin, Amélie Fau, Clément Jailin, Benjamin Smaniotto, Thomas Wick and François Hild 7

where r denotes a pixel coordinate defined on the detector plane Ξ. The projections acquired

during an experiment are defined as

pt (r,θ(t )) :=Πθ(t )[It ](r). (13)

θ

D∗
X-Ray
Source

Ξ

Figure 2. Schematic view of X-Ray Computed Tomography with a point source. A projec-

tion operator Πθ maps the volume It defined on the domain D onto a 2D gray level image

pt defined on the detector plane Ξ.

Let ω(t ) := Πθ(t )[Ω(t )] ⊂ Ξ be the domain of the projection of Ω(t ) at time t . Then, the gray

level conservation assumption for the P-DVC problem is expressed as follows. There is a time-

dependent amplitude α(t ) such that

Πθ(t )[IT f ,α,W](r) = pt (r,θ(t )) ∀r ∈ω(t ), t ∈ [0, tend], (14)

with

IT f ,α,W(x, t ) := IT f (x−α(t )W(x)). (15)

Since Ŵ is computed using DVC and W(x) = Ŵ(x̂), only α(t ) needs to be computed to assess

u(x, t ). Consequently, the corresponding minimization problem consists in finding α ∈ Q :=

L2((0, tend)) such that

JB (α) = inf
β∈L2((0,tend))

JB (β) with JB (β) := 1
2∥Πθ(t )[IT f ,β,w]−pt∥2

L2((0,tend);L2(ω(t ))), (16)

where the norm is defined as

∥•∥2
L2((0,tend);L2(ω(t ))) :=

∫
(0,tend)

∫
ω(t )

•2 dr dt . (17)
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This time, the corresponding optimality condition is given by

B(α)(β) =
∫

(0,tend)

∫
ω(t )

β(Πθ(t )[IT f ,α,W]−pt )Πθ(t )[∇∇∇IT f ,α,w ·W] dr dt
!= 0, ∀β ∈ L2((0, tend)).

(18)

To use again a Gauss-Newton scheme to solve this nonlinear problem, the Hessian is computed

B ′(α)(δα,β) =
∫

(0,tend)

∫
ω(t )

δαβΠθ(t )[∇∇∇IT f ,α,W·W]2+δαβ(Πθ(t )[IT f ,α,W]−pt )Πθ(t )[W·(∇∇∇2IT f ,α,W)·W]dr dt .

(19)

Remark 2. In theory, the projected domain ω(t ) and the projection pt represent a projection of

an image It of the deformed volume Ω(t ). But It is not known. Further, Ω(t ) is unknown as well,

and thus ω(t ). This feature has to be taken into account in the devised algorithm.

2.4. Solution algorithm

Summarizing the previous sections, two minimization problems are solved successively. For both

minimization problems, a Gauss-Newton scheme is considered. The procedure is described in

Algorithm 1.
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Algorithm 1 P-DVC enhanced DVC algorithm

1: Choose an initial guess Ŵ0

2: Choose an initial guess α0

3: while ∥δŴ∥ > T OLŴ do ▷DVC minimization problem

4: Solve

A′(Ŵl )(δŴ, V̂) =−A(Ŵl , V̂) ∀V̂ ∈V (20)

5: Ŵl+1 ← δŴ+Ŵl

6: end while

7: W(x) ← Ŵ(x̂)

8: while ∥ul −ul−1∥ > T OLu do ▷ P-DVC minimization problem

9: ApproximateΩ(t ) by

Ωl (t ) ←
{

x̂+ ûl (x̂, t ) : x̂ ∈ Ω̂; ûl (x̂, t ) =αl (t )Ŵ(x̂)
}

. (21)

10: ωl (t ) ←Πθ(t )[Ω
l (t )]

11: Solve

B ′(αl )(δα,β) =−B(αl )(β) ∀β ∈Q (22)

12: αl+1 ←αl +δα

13: ûl+1(x̂, t ) ←αl+1(t )Ŵ(x)

14: end while

Remark 3. In practice, the Hessians A′ and B ′ given in Equations (10) and (19) are not exactly

computed as they were defined, but only approximated by their first term. First, the second term

is not always positive and therefore the Hessian itself could get indefinite. This could lead to a

search direction that does not follow a descent direction. Second, it includes the Hessian of the

current image, which itself is quite expensive to compute. To summarize, the two approximate

Hessians read

A′(Ŵ)(δŴ, V̂) ≈
∫
Ω̂

(∇̂∇∇ITg ,Ŵ ·δŴ)(∇̂∇∇ITg ,Ŵ · V̂) dx̂ (23)

and

B ′(α)(δα,β) ≈
∫

(0,tend)

∫
ω(t )

δαβΠθ(t )[∇∇∇IT f ,α,W ·W]2dr dt . (24)
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A detailed discussion about this point and other approximation approaches of the Hessian matrix

is found in Ref. [27].

2.5. Discretization

The variational formulations (20) and (22) in the previous sections are not computationally

accessible. Therefore Galerkin-type methods are introduced to solve the minimization problems

in a numerical manner. In space, a finite-element discretization is defined on a tetrahedral

discretization Th of Ω̂with elements K and piecewise linear functions P1

Vh(Ω̂) := {
Vh ∈C (Ω̂)∩L2(Ω̂) : Vh |K ∈P1 for all K ∈Th

}
. (25)

Let {Φ̂i } be the basis of Vh(Ω̂), then each element Vh ∈Vh(Ω̂) is of the form

V̂h(x̂) =
∑

i
ai Φ̂i (x̂). (26)

Then, the Galerkin ansatz (i.e. approximating partial differential equations in weak form using

a finite-dimensional function space [28]) is used to replace Equation (20), and solve instead the

following linear system

M l
i j a j = ml

i , (27)

with

M l
i j =

∫
Ω̂

(∇̂∇∇ITg ,Ŵl
h
· Φ̂ j )(∇̂∇∇ITg ,Ŵl

h
· Φ̂i ) dx̂ and ml

i =
∫
Ω̂

(IT f − ITg Ŵl
h

)(∇̂∇∇ITg ,Ŵl
h
· Φ̂i ) dx̂. (28)

In time, one wants to analyze each time step or more precisely each projection ptk separately.

Hence, the interval (0, tend) is subdivided into sub-intervals (tk −d t/2, tk +d t/2) for k = 1, ...,nt ,

and piecewise constant basis functions are selected. This decomposition results in the following

(discontinuous) finite element space

Qh((0, tend)) :=
{
βh ∈ L2((0, tend)) :βh(t )|(tk−d t/2,tk+d t/2) = const., k = 1, ...,nt

}
. (29)

As a basis ofQh , {ψk } is chosen as

ψk (t ) =


1 t ∈ (tk −d t/2, tk +d t/2) ,

0 otherwise.

(30)
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This setting allows each element βh ∈Qh to be written as

βh(t ) =
∑
k

bkψk (t ). (31)

Last, instead of solving Equation (22), the following linear system is considered

N l
i j b j = nl

i (32)

with

N l
i j =

∫
(0,tend)

∫
ωl (t )

ψ jψiΠθ(t )[∇∇∇IT f ,αl
h ,Wh

·Wh]2dr dt

nl
i =

∫
(0,tend)

∫
ωl (t )

ψi (pt −Πθ(t )[IT f ,αl
h ,Wh

])Πθ(t )[∇∇∇IT f ,αl
h ,Wh

·wh] dr dt .
(33)

Remark 4. Assembling Ni j and ni defined in Equation (33) is not straightforward. In a stan-

dard finite element code, one would simply choose some quadrature schemes. Without any pre-

liminaries, this would require that one can select arbitrary quadrature points tq in each interval

(tk −d t/2, tk +d t/2). Unfortunately one cannot evaluate pt at any point in time, but only at the

grid points tk , as pt is given by projections acquired during an experiment. In the present case,

this issue is bypassed by having constant shape functions and using the midpoint rule for inte-

gration. Matrix [N] then becomes diagonal, such that each degree of freedom is solved indepen-

dently and Equation (33) reduces to

bi =
nl

i

N l
i i

. (34)

One can freely choose the quadrature points when integrating over ω(t ) or Ω̂ by interpolating

over the grid.

3. Application

In this section the proposed method is tested. First, only the projection-based Gauss-Newton

scheme (Equations (21) and (22)) is applied to a synthetic experiment, where the displacement

field Ŵ is predefined. Then, the complete algorithm is run on a real experiment. The ASTRA

toolbox [29,30] was used for the cone beam projection operatorΠ and the DVC calculations were

performed with the FE-based DVC library Correli 3.0 [31].
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3.1. Synthetic experiment

For a first assessment of the proposed algorithm, a study of a predefined 3D image IT f of size

120×90×200 vx (Figure 3) was performed.

Figure 3. Sections of the phantom used in the synthetic experiment. The mesh is com-

posed of 198 T4 elements whose mean volume is equal to 183 vx.

The sample Ω̂was bounded by a box of size (Lx ,Ly ,Lz ) = (85,64,141) vx and its gray levels were

given by a uniform value

IT f |Ω̂ ≡ 5 ·10−3. (35)

The shape and motion of this synthetic case were inspired by wedge splitting tests [7], but for the

sake of simplicity the sample did not rotate. The displacement field was chosen as

û(x̂, t ) =α(t )Ŵ(x̂), (36)

where

Ŵ(x̂) = 10

Lz
(z −30)

2

Lx
(x −60.5) êx , (37)

and

α(t ) = 3τ2 −2τ3 with τ= t

tend
, (38)
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with all spatial numbers expressed in voxels. The analytical displacement field Ŵ was chosen such

that it was perfectly represented by the selected spatial finite element discretization (Figure 3);

the convergence and accuracy should thus only be restricted to gray level interpolation or

the projection algorithm. According to û, defined by Equations (36-38), synthetically deformed

images Itk were generated to compute projections pk at times τ = 0,1/4, ...,1, which are shown

in Figure 4. The field is scaled such that at the final time step t = tend a maximum amplitude of

about 10 vx was applied at the top of the sample, and no displacement at the bottom (z = 30 vx)

during the whole test.

(a) (b) (c) (d) (e)

Figure 4. Artificial projections of the 3D image Iτ at dimensionless times (a) τ = 0, (b) τ =

1/4, (c) τ= 1/2, (d) τ= 3/4, (e) τ= 1.

To validate the accuracy and speed of the computation of the temporal amplitude α with the

proposed method, the absolute difference of the solution α and the computed amplitude αh is

presented in Figure 5(a). Since each amplitude was computed by minimizing the L2-norm of

the residuals ρt , the convergence of the root mean square (RMS) of the residuals is displayed in

Figure 5(b). Even though no specific initialization was chosen for all projections (i.e. α0(tk ) = 0),

the algorithm converged extremely fast, i.e. exponential convergence rates were reached for all

time steps (Figure 5(a)), and with very low residuals (Figure 5(b)) essentially due to interpolation

errors. The Newton solver converged after a maximum of 10 iterations to a tolerance of 10−9 in

terms of amplitude corrections. A lower tolerance was not reached, because interpolation errors

started to dominate the residual. For the last projection, this result indicates that the algorithm

was not only fast but also robust for larger displacements (up to 10 vx in the present case).
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Figure 5. Convergence of the amplitudeα (a) and the projection (b) as functions of Newton

iterations. The (cyan) dashed lines show that exponential convergence is reached.

3.2. Shear test on pantographic metamaterial

The proposed algorithm was also studied on an actual experiment. An in-situ shear test on a

pantographic metamaterial, which was made of Polyamid PA2200 powder [32], was performed.

The geometry of the sample is shown in Figure 6(b) and the pantographic structure was of size

105 mm×35 mm×45 mm. The sample, which was mounted horizontally in the in-situ tension-

torsion-compression (TTC) testing machine (Figure 6(a)), was scanned in the North Star Imaging

X50+ tomograph of LMPS at a binned definition (i.e. 1944×1536 pixels, see Table 1). The shear

displacement was induced by clamping one side and pushing the other one down, such that a

maximum stroke of 30 mm was reached at the end of the test (Figure 6(c)). The clamps were made

of (3D printed) ABS and are visible in the reconstructed volumes as well as in the projections.

Therefore, one has to take the motion of the clamps into account to have good results for the

projection-based measurements. After flat-field corrections, the projections were further binned

by a factor of four such that their final definition was 486 × 344 pixels, and the reconstructed

volumes had a resolution of 372 µm per voxel. The reconstructions were performed with the

simultaneous iterative reconstruction algorithm (SIRT) for cone beams [30]. In the reference

configuration, the pantographic structure was in contact with the support. This contact zone
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was not ideally meshed such that there the gray level assumption could not be fulfilled anymore

(i.e. IT f ,ûh andΠθ(t )[IT f ,ûh ] were only approximated). This phenomenon led to oscillations in αh .

To exclude these zones, Πθ(t )[Ω] was not chosen as the region of interest, but a slightly smaller

subdomain ofΠθ(t )[Ω] (Figure 9(a)).

(a) (b) (c)

Figure 6. Sample inside the testing machine (a). Reconstructed volumes for scans 0 (b)

and 3 (c).

The in-situ experiment protocol was devised as follows:

• The sample was turned continuously with a rotation speed of 3◦/s during two revolu-

tions, and 2,400 projections were simultaneously acquired at a rate of 10 fps (i.e. n =

1,200, and d t = 0.1 s). Scan 0 corresponds to the second turn.

• Then, the sample was loaded with a constant vertical stroke rate of 56 µm/s until a vertical

displacement of 10 mm was reached while rotating at 3◦/s for two more turns acquiring

1,200 projections per turn. Scan 1 corresponds to turn 6.

• The procedure was repeated until a maximum vertical displacement of 30 mm was

reached considering 2 turns for each loading phase, and 2 turns for each stage with steady

stroke.

The finite element mesh had 7,234 elements with an average volume of 183 vx (Figure 7).
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Figure 7. Finite element mesh used for the DVC analyses of the pantograph. The mean

element volume is 183 vx.

For the analysis of the experiment, algorithm 1 was used with T OLW = 10−3 vx and T OLu =

10−3 vx. As the solution strategy was decoupled (Remark 4), the minimization was performed

for each projection separately. This separation allows the solution of the current projection to be

used for the following one, such that convergence was reached after 7 iterations on average. The

computation of each amplitudeα took about one minute. In Figure 8 (a), the measured maximum

vertical displacement is presented. One clearly sees the planned loading history with steady and

loading phases. Due to continuous rotation of the sample, the projections were acquired at an

increment of 0.3◦, which resulted in visible fluctuations because not every angle of the sample

was well suited for the registration procedure. For example, projections at some angles have more

artifacts than others and the norm of the projected gradient is much lower such that they became

more sensitive to acquisition noise.

Interestingly, the fluctuations did not increase over time and remained very low. The standard

deviations of the amplitudes α during the turns for which the stroke was steady were equal to

7.4× 10−3, 8.7× 10−3, 7.7× 10−3 and 7.1× 10−3), the corresponding standard deviations of the

maximum displacement in the loading direction (i.e. uz ) were 0.20 vx, 0.23 vx, 0.21 vx and 0.19 vx,

respectively.

Comparing the RMS of the projection residuals

ρt =Πθ(t )[It ,α,Ŵ]−pt (39)
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with the eigenvalue of the sensitivity B ′ (Equation (19)) at convergence (Figure 8(b)), it is observed

that the angles for which the RMS residuals were high were associated with low values of the

sensitivity and vice versa. This result indicates that the choice of the acquisition angle has an

impact on the quality of the solution.
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Figure 8. (a) Measured maximum vertical displacement uz during the whole test. (b) Com-

parison of the angular eigenvalue (EV) of the Hessian matrix [N] and the RMS residual with

respect to the angular position averaged over the first 6 revolutions (scans 0 to 1 analysis).

In Figure 9(a), one can see that the clamps are in front and behind the sample resulting in

projections with low contrast. Yet, the residuals were low with respect to the dynamic range of

the original radiographs even for angles that were not optimal (Figure 9(b-e)).
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(a) (b) (c) (d) (e)

Figure 9. (a) Flat-field corrected projections with the region of interest ω (blue) at 0◦ (top)

and 90◦ (bottom) angles. (b)-(e) Final residuals ρ for scans 0 to 3 for the 0◦ (top) and 90◦

(bottom) angles. The projections and final residuals are scaled by the maximum gray level

in the region of interest ω.

The remaining residuals, visible in the zoomed view of scan 0 and scan 3 (Figure 10), show that

the highest values are at the end of the beams of the pantograph. In these areas the macromesh,

which was used for the analysis (Figure 7), was not able to match the kinematic details of the

beams. Similar residuals were observed in the DVC analyses (for the same reasons).
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(a) (b)

Figure 10. Zoomed view of the residuals ρ for scans 0 (a) and 3 (b). At the top are the 0◦

views and at the bottom the 90◦ views. The gray level color bar is scaled to the full dynamic

range of the residuals inside the region of interest.

By comparing the maximum vertical displacement with the temporal history of the prescribed

stroke of the testing machine (Figure 11(a)), it is concluded that there is a very good agreement

between both signals. It is worth noting that the small differences (Figure 11(b)) were mostly

dominated by a systematic angular error that already existed for turn 2, namely, the time interval

corresponding to the reconstruction of the reference image. The measurements may be improved

by further adjusting the geometrical parameters of the tomography setup. Another source for the

error could be beam hardening. This effect was not corrected in the presented computations.
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Figure 11. (a) Measured maximum vertical displacement uz for scans 0 to 1 compared to

the prescribed stroke. (b) Difference between both signals for each turn.

4. Conclusion

A new spacetime framework was developed to measure 4D displacement fields by combining

DVC and P-DVC. Using a spatiotemporal separation of variables, the computation of the spatial

component (via DVC) was based on reconstructed volumes, and that of the temporal component

(via P-DVC) on the projections acquired on-the-fly during the whole experiment.

By acquiring projections not only during a scan but also during the loading phase, it was

possible to increase the temporal discretization of 4D measured displacement fields by more than

three orders of magnitude (i.e. from 4 scans to 16,400 time steps) with projection-enhanced DVC.

Since the choice of the acquisition angle had an impact on the quality of the solution, methods

for choosing optimal angles are highly interesting and should be investigated. Yet, having already

accurate results and the possibility of measuring a displacement of a volume at a speed of one

tenth of a second indicated that the proposed methodology may help to measure real time-

dependent phenomena such as, for example, viscous effects or crack propagation.
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Appendix: Hardware parameters

The hardware parameters of the in situ setup are gathered in Table 1. Once cropped, the recon-

structed volumes covered 180.6×106.2×146.4 mm3 with a 371 µm / vx resolution.

Table 1. DVC hardware parameters

Tomograph North Star Imaging X50+

X-ray source XRayWorX XWT-240-CT

Target / Anode W (reflection mode)

Filter none

Voltage 120 kV

Current 400 µA

Focal spot size 5 µm

Tube to detector 695.7 mm

Tube to object 430.9 mm

Detector Dexela 2923

Definition 1536×1944 pixels (2×2 binning)

Number of projections 1200

Angular amplitude 360°

Frame average 1 per projection

Frame rate 10 fps

Acquisition duration continous (1 turn lasted 2 min)

Reconstruction algorithm SIRT

Gray Levels amplitude 16 bits

Volume size 486×286×394 vx (after crop)

Field of view 180.6×106.2×146.4 mm3 (after crop)

Image scale 371 µm / vx
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