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Abstract

Constraint programming is a natural paradigm for many
combinatorial optimisation problems. The complexity
of constraint satisfaction for various forms of con-
straints has been widely-studied, both to inform the
choice of appropriate algorithms, and to understand bet-
ter the boundary between polynomial-time complexity
and NP-hardness.

In constraint programming it is well-known that any
constraint satisfaction problem can be converted to an
equivalent binary problem using the so-called dual en-
coding. Using this standard approach any fixed collec-
tion of constraints, of arbitrary arity, can be converted
to an equivalent set of constraints of arity at most two.

Here we show that this transformation, although it
changes the domain of the constraints, preserves all the
relevant algebraic properties that determine the com-
plexity. Moreover, we show that the dual encoding pre-
serves many of the key algorithmic properties of the
original instance. We also show that this remains true
for more general valued constraint languages, where
constraints may assign different cost values to differ-
ent assignments. Hence, we obtain a simple proof of the
fact that to classify the computational complexity of all
valued constraint languages it suffices to classify only
binary valued constraint languages.

Introduction

There are two well-known methods for transforming a non-
binary constraint satisfaction problem (CSP) into a binary
one; the dual encoding (Dechter and Pearl 1989) and the hid-
den variable encoding (Rossi, Dahr, and Petrie 1990). Both
encode the non-binary constraints to variables that have
as domains of possible values the valid tuples of the con-
straints. That is, the techniques derive a binary encoding of
a non-binary constraint by changing the domain of the vari-
ables to an extensional representation of the original con-
straints. A combination of these two encodings, known as
the double encoding, has also been studied (Smith, Stergiou,
and Walsh 2000). It was observed in (Larrosa and Dechter
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2000) that both of these standard encodings can be extended
to soft constraints.

In this paper we focus on the dual encoding for the val-
ued constraint satisfaction problem (VCSP). In particular,
we consider the effect of this encoding on the set of weighted
relations used to express the valued constraints.

Different subproblems of the VCSP can be obtained by
restricting, in various ways, the set of weighted relations
that can be used to express the constraints. Such a set of
weighted relations is generally called a valued constraint

language (Cohen et al. 2013; Jeavons, Krokhin, and Živný
2014). For any such valued constraint language Γ there is a
corresponding problem VCSP(Γ), and it has been shown that
the computational complexity of VCSP(Γ) is determined by
certain algebraic properties of the set Γ known as weighted
polymorphisms (Cohen et al. 2013).

Here we show that the dual encoding preserves many as-
pects of these algebraic properties. We show that there is a
one-to-one correspondence between the weighted polymor-
phisms of the original valued constraint language and the
weighted polymorphisms of the binary language obtained by
the dual encoding. Hence, as well as providing a way to con-
vert any given instance of the VCSP to an equivalent binary
instance, the dual encoding also provides a way to convert
any valued constraint language to a binary language with es-
sentially the same algebraic properties, and hence essentially
the same complexity and algorithmic properties.

Related work One special case of our results is the case
when all the weighted relations in the valued constraint lan-
guage we are considering are 0-weighted. This special case
corresponds to the standard constraint satisfaction problem
where constraints are specified by relations.

In this special case, (Feder and Vardi 1998) and (Atse-
rias 2008) showed that for any constraint language Γ there
exists a constraint language Γ′ containing a single binary
relation such that CSP(Γ) and CSP(Γ′) are polynomial-
time equivalent. Recently, (Bulı́n et al. 2013; 2014) have
given a different construction that gives the same result
but can be shown to preserve various types of identities
involving the polymorphisms of Γ. Building on this ap-
proach, (Powell and Krokhin 2014) have shown that es-
sentially the same construction as in (Bulı́n et al. 2013;
2014) extends to the VCSP; in this case the valued constraint



language Γ′ contains a single unary weighted relation and a
single binary relation.

Our construction based on the standard dual encoding is
considerably simpler. On the other hand, in our case the
resulting Γ′ contains a single unary weighted relation, and
more than one binary relation (in general). However, all the
binary relations that we include in Γ′ are of the same type
and correspond to enforcing equality on the shared variables
between different constraints in instances of VCSP(Γ).

Moreover, by allowing Γ′ to contain more than one bi-
nary relation we are able to preserve all identities involving
polymorphisms of Γ, where an identity is an equality be-
tween arbitrary expressions involving only polymorphisms
and all variables are universally quantified over the domain
D. This is in contrast with the reduction (for the CSP) de-
scribed in (Bulı́n et al. 2013; 2014) and its extension (to the
VCSP) described in (Powell and Krokhin 2014), which does
not preserve the identities defining Maltsev polymorphisms.
In fact it is impossible for any reduction to a single binary
relation to preserve such identities, without changing the al-
gorithmic nature of the problem, because it has been shown
that any single binary relation that has a Maltsev polymor-
phism also has a majority polymorphism (Kazda 2011).

A similar transformation from constraint languages of ar-
bitrary arity to sets of unary and binary relations was implic-
itly used in (Barto 2013), for the special case of the CSP.

In a related but different direction, (Cohen, Jeavons, and
Živný 2008) studied which valued constraint languages can
be transformed to binary valued constraint languages over

the same domain. It was shown in (Živný, Cohen, and Jeav-
ons 2009) that there are submodular valued constraint lan-
guages which cannot be expressed (using min and sum) by
binary submodular languages over the same domain.

The VCSP

Throughout the paper, let D be a fixed finite set and let Q =
Q ∪ {∞} denote the set of rational numbers with infinity.

Definition 1. An m-ary weighted relation over D is any

mapping φ : Dm → Q. We denote by Φ
(m)
D the set of all

m-ary weighted relations and let ΦD =
⋃

m≥1 Φ
(m)
D .

We call D the domain, the elements of D labels (for vari-
ables), and we say that the weighted relations in ΦD take

values (which are elements of Q).
It is convenient to highlight the special case when the val-

ues taken by a weighted relation are restricted to 0 and ∞.

Definition 2. Any mapping φ : Dm → {0,∞} will be
called a 0-weighted relation (or simply a relation) and will
often be identified with the set {x ∈ Dm | φ(x) = 0}.

We denote by Feas(φ) = {x ∈ Dm | φ(x) < ∞} the
underlying feasibility relation of a given m-ary weighted re-

lation. A weighted relation φ : Dm → Q is called finite-
valued if Feas(φ) = Dm.

Definition 3. Let V = {x1, . . . , xn} be a set of variables. A
valued constraint over V is an expression of the form φ(x)

where φ ∈ Φ
(m)
D and x ∈ V m, for some positive integer

m. The integer m is called the arity of the constraint, the

tuple x is called the scope of the constraint, and the weighted
relation φ is called the constraint weighted relation.

Definition 4. An instance of the valued constraint satis-
faction problem (VCSP) is specified by a finite set V =
{x1, . . . , xn} of variables, a finite set D of labels, and an
objective function Φ expressed as follows:

Φ(x1, . . . , xn) =

q
∑

i=1

φi(xi) (1)

where each φi(xi), 1 ≤ i ≤ q, is a valued constraint over
V . Each constraint can appear multiple times in Φ.

The goal is to find an assignment of labels (a labelling) to
the variables that minimises Φ.

Definition 5. Any set Γ ⊆ ΦD of weighted relations on
some fixed domain D is called a valued constraint language,
or simply a language.

We will denote by VCSP(Γ) the class of all VCSP in-
stances in which the constraint weighted relations are all
contained in Γ.

The classical constraint satisfaction problem
(CSP) (Dechter 2003) can be seen as a special case of
the VCSP in which all weighted relations are in fact simply
relations, (i.e., 0-weighted relations). A language containing
only 0-weighted relations is called crisp.

We will make use of the following simple but useful ob-
servation about arbitrary finite languages.

Proposition 1. For any valued constraint language Γ such
that |Γ| is finite, there is a valued constraint language Γ′

with |Γ′| = 1, such that VCSP(Γ) and VCSP(Γ′) are
polynomial-time equivalent.

Proof. Let Γ consist of q weighted relations, φ1, . . . , φq ,
with arities m1, . . . ,mq , respectively. Without loss of gen-
erality, we assume that none of the φi are the constant
function ∞. Let m =

∑q

i=1 mi. Define the weighted
relation φΓ, with arity m, by setting φΓ(x1, . . . , xm) =
φ1(x1, . . . , xm1

) + φ2(xm1+1, . . . , xm1+m2
) + . . . +

φq(xm−mq+1, . . . , xm), and set Γ′ = {φΓ}.
Any instance P ′ of VCSP(Γ′) can clearly be expressed

as an instance of VCSP(Γ). Conversely, for any instance
P of VCSP(Γ) we can obtain an equivalent instance P ′ of
VCSP(Γ′) by simply adding irrelevant variables to the scope
of each constraint φi(x), which are constrained by the ele-
ments of Γ \ {φi}, and then minimising over these. The as-
signments that minimise the objective function of P can then
be obtained by taking the assignments that minimise the ob-
jective function of P ′ and restricting them to the variables of
P . Hence we have shown that VCSP(Γ) and VCSP(Γ′) are
polynomial-time equivalent.

From a language Γ to a binary language Γd

A language Γ is called binary if all weighted relations from
Γ are of arity at most two. The goal of this paper is to study
a certain type of transformation from an arbitrary finite lan-
guage Γ to a binary language Γd such that VCSP(Γ) and
VCSP(Γd) are polynomial-time equivalent.

For any m-tuple x ∈ Dm we will write x[i] for its ith
component.



Definition 6. Let Γ be any valued constraint language over
D, and let φΓ be the corresponding weighted relation, of
arity m, as defined in the proof of Proposition 1.

The dual of Γ, denoted Γd, is the binary valued constraint
language with domain D′ = Feas(φΓ) ⊆ Dm, defined by

Γd = {φ′
Γ}

⋃

i,j∈{1,...,m}

{matchi,j} ,

where φ′
Γ : D′ → Q is the unary weighted relation on

D′ defined by φ′
Γ(x) = φΓ(x1, x2, . . . , xm) for every x =

(x1, x2, . . . , xm) ∈ D′, and each matchi,j : D
′ ×D′ → Q

is the binary 0-weighted relation on D′ defined by

matchi,j(x,y) =

{

0 if x[i] = y[j],

∞ otherwise.

The language Γd contains a single unary weighted rela-
tion, which returns only finite values, together with k2 bi-
nary 0-weighted relations, and hence is a binary language.

Example 1. Let Γ = {φeq}, where φeq is the equality rela-

tion on D, i.e., φeq : D×D → Q is defined by φeq(x, y) = 0
if x = y and φeq(x, y) = ∞ if x 6= y.

Then D′ = Feas(φeq) = {(a, a) |a ∈ D} and Γd consists
of a single unary finite-valued relation φ′, together with four
binary 0-weighted relations match1,1,match1,2,match2,1,
and match2,2.

Moreover, φ′(x) = 0 for every x ∈ D′, and hence is
trivial. All four of the other relations are in fact equal to the
equality relation on D′ defined by {((a, a), (a, a)) | (a, a) ∈
D′}. Thus, the dual of the equality relation on D consists of
a trivial unary relation, together with the equality relation
on D′, where |D| = |D′|.

Example 2. Let Γ = {φsum}, where φsum : {0, 1}3 → Q
is defined as follows:

φsum(x, y, z) =

{

x+ 2y + 3z if x+ y + z = 1,

∞ otherwise.

Then D′ = Feas(φsum) = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
and Γd consists of a single unary finite-valued rela-
tion φ′

sum, together with nine binary 0-weighted relations
match1,1,match1,2, . . . ,match3,3.

If we set a = (1, 0, 0), b = (0, 1, 0), c = (0, 0, 1), then
φ′
sum(a) = 1;φ′

sum(b) = 2 and φ′
sum(c) = 3. Also

match1,1(x, y) =







0 if (x, y) ∈ {(a, a), (b, b),

(b, c), (c, b), (c, c)}

∞ otherwise

match1,2(x, y) =







0 if (x, y) ∈ {(a, b), (b, a),

(b, a), (b, c), (c, a), (c, c)}

∞ otherwise

and so on.

The dual encoding using Γd

In this section we will describe the dual encoding described
in (Dechter and Pearl 1989) for the CSP and later extended
in (Larrosa and Dechter 2000) to soft constraint problems.

We will need the following notation. For any xi ∈ V m

with xi = (xi1 , . . . , xim), we write vars(xi) for the set
{xi1 , . . . , xim}.

By Proposition 1, without loss of generality we shall
assume that Γ contains a single weighted relation φΓ :
Dm → Q. Let P be an arbitrary instance of VCSP(Γ) with
variables V = {x1, . . . , xn}, domain D, and constraints
φΓ(x1), . . . , φΓ(xq), where xi ∈ V m for all 1 ≤ i ≤ q.
We now describe the instance Pd in VCSP(Γd) which we
call the dual of P .

• The domain of Pd is D′ = Feas(φΓ) ⊆ Dm.

• The variables V ′ = {x′
1, . . . , x

′
q} of Pd correspond to the

constraints of P .

• For every 1 ≤ i ≤ q, there is a unary constraint φ′
Γ(x

′
i),

where φ′
Γ : D′ → Q is as defined in Definition 6.

• If the scopes of two constraints of P , say φ(xi) and φ(xj),
overlap, then there are binary constraints between x′

i and
x′
j enforcing equality on the overlapping variables. More

specifically, if xi = (xi1 , . . . , xim), xj = (xj1 , . . . , xjm),
and vars(xi) ∩ vars(xj) 6= ∅ then there is a binary con-
straint matchk,l(x

′
i, x

′
j) for every k, l ∈ {1, . . . ,m} with

ik = jl.

The dual encoding provides a way to reduce instances of
VCSP(Γ) to instances of VCSP(Γd). Our next result extends
this observation to obtain the reverse reduction as well.

Proposition 2. For any valued constraint language Γ such
that |Γ| is finite, there is a binary valued constraint language
Γd, such that VCSP(Γ) and VCSP(Γd) are polynomial-time
equivalent.

Proof. By Proposition 1 we may assume that Γ consists of a

single weighted relation φΓ : Dm → Q. Moreover, since D
is finite, and m is fixed, we may assume that this weighted
relation is given extensionally as a table of values.

Hence, for any instance P of VCSP(Γ) we can construct
in polynomial-time the dual instance Pd in VCSP(Γd) as
defined above. It is straightforward to show that the as-
signments that minimise the objective function of Pd cor-
respond precisely to the assignments that minimise the ob-
jective function of P , and hence we have a polynomial-time
reduction from VCSP(Γ) to VCSP(Γd).

For the other direction, given any instance P ′ in
VCSP(Γd) we now indicate how to construct a correspond-
ing instance P in VCSP(Γ).

For each variable x′
i of P ′ we introduce a fresh set of m

variables for P . If there is a unary constraint φ′
Γ(x

′
i) in P’,

then we introduce the constraint φΓ on the corresponding
variables of P . If there is no unary constraint on x′

i, then
we introduce the constraint Feas(φΓ) on the corresponding
variables of P to code the fact that the domain of x′

i is D′.
If there is a binary constraint matchk,l(x

′
i, x

′
j) in P ′, then

we merge the kth and lth variables in the corresponding sets
of variables in P . This construction can be carried out in
polynomial time.

We have constructed an instance P in
VCSP({φΓ,Feas(φΓ)}) such that assignments min-
imising the objective function of P correspond precisely



to assignments minimising the objective function of P ′.
Hence we have established a polynomial time reduction
from VCSP(Γd) to VCSP(Γ ∪ {Feas(φΓ)}).

However, it follows from the proof of Theorem 4.3 of (Co-
hen et al. 2013) that VCSP(Γ∪{Feas(φΓ)}) can be reduced
to VCSP(Γ) in polynomial-time.

Algebraic properties of Γd

Over the past few years there has been considerable progress
in investigating the complexity of different kinds of con-
straint satisfaction problems and valued constraint satisfac-
tion problems by looking at the algebraic properties of the
relations and weighted relations that define the constraints
and valued constraints (Jeavons, Cohen, and Gyssens 1997;
Jeavons 1998; Feder and Vardi 1998; Bulatov, Krokhin, and
Jeavons 2005; Cohen et al. 2013)

Polymorphisms

It was shown in (Jeavons, Cohen, and Gyssens 1997; Jeav-
ons 1998) that the computational complexity of CSP(Γ), the
class of CSP instances where the constraint relations all be-
long to some fixed set Γ, is determined, up to polynomial-
time reductions, by a set of operations known as the poly-
morphisms of Γ, which we will now define.

We first need some standard terminology. A function
f : Dk → D is called a k-ary operation on D. The k-
ary projections, defined for all 1 ≤ i ≤ k, are the opera-

tions e
(k)
i such that e

(k)
i (x1, . . . , xk) = xi. For any tuples

x1, . . . ,xk ∈ Dm, we denote by f(x1, . . . ,xk) the tuple in
Dm obtained by applying f to x1, . . . ,xk componentwise.

Definition 7. Let φ : Dm → Q be a weighted relation. An
operation f : Dk → D is a polymorphism of φ if, for any

x1, . . . ,xk ∈ Feas(φ) we have f(x1, . . . ,xk) ∈ Feas(φ).
We denote by Pol(Γ) the set of all operations on D which

are polymorphisms of all φ ∈ Γ. We denote by Pol(k)(Γ) the
k-ary operations in Pol(Γ).

It follows directly from the definition that all projections
are polymorphisms of all valued constraint languages.

Our next result shows that the polymorphisms of Γd are
very closely related to the polymorphisms of Γ.

Theorem 1. Let Γ be a valued constraint language such that
|Γ| is finite, and let Γd be the dual of Γ.

The operation f ∈ Pol(k)(Γ) if and only if the operation

fd ∈ Pol(k)(Γd) where fd(x1, . . . ,xk) = f(x1, . . . ,xk)
for all xi in the domain of Γd.

Proof. By Proposition 1 we may assume that Γ consists of

a single weighted relation φΓ : Dm → Q, and hence that
the domain D′ of Γd is a subset of Dm. First, consider

any f : Dk → D ∈ Pol(k)(Γ), and the corresponding

fd : (D′)k → D given by fd(x1, . . . ,xk) = f(x1, . . . ,xk)
for all xi ∈ Dm. Since f is a polymorphism of φΓ, it is
also a polymorphism of the unary weighted relation φ′

Γ in
Γd. It is straightforward to check that fd is also a polymor-
phism of all binary matchi,j relations in Γd (since it will
return the same label at all positions where its arguments

have the same label). Hence fd ∈ Pol(k)(Γd). Now consider

any fd : (D′)k → D′ ∈ Pol(k)(Γd). Since fd is a polymor-
phism of matchi,i it must return an element of D′ whose
label in position i is a function, gi, of the labels in position
i of its arguments. Moreover, since fd is a polymorphism of
matchi,j , the functions gi and gj must return the same re-
sults for all possible arguments from D′. Hence, there is a
single function g : Dk → D such that the result returned
by fd(x1, . . . ,xk) is equal to g(x1, . . . ,xk). Now, since fd
must return an element of D′, it follows that g must be a
polymorphism of φΓ, which gives the result.

The individual weighted relations in Γd often have other
polymorphisms, that are not of the form indicated in Theo-
rem 1, but the only polymorphisms that are shared by every
weighted relation in Γd are those that correspond to poly-
morphisms of Γ in this way.

Example 3. Recall the language Γ = {φsum}, defined in
Example 2.

The weighted relation φsum has no polymorphisms, ex-
cept for the projection operations on D = {0, 1}.

However, the unary finite-valued relation φ′
sum, has every

operation on D′ = {a, b, c} as a polymorphism.
The binary 0-weighted relation match1,1 has many oper-

ations on D′ as polymorphisms, including all of the constant
operations.

The binary 0-weighted relation match1,2 also has many
operations on D′ as polymorphisms, including the ternary
majority operation g defined by

g(x, y, z) =







x if x = y or x = z

y if y = z

c otherwise

but not including the constant operation returning the label
a, or the constant operation returning the label b.

The only operations that are polymorphisms of every
weighted relation in Γd are the projection operations on D′.

For certain types of languages Γ there are known to be
polynomial-time algorithms to determine whether an in-
stance of CSP(Γ) has an assignment that is allowed by all
the constraints. In all known cases, these special-purpose
algorithms can be applied precisely when Γ has polymor-
phisms that satisfy certain identities. For example, it is
known (Feder and Vardi 1998; Jeavons, Cohen, and Cooper
1998) that enforcing 3-consistency can decide whether an
instance has a solution if and only if Γ has a polymorphism
g that satisfies the identities:

g(x, x, y) = g(x, y, x) = g(y, x, x) = x ∀x, y ∈ D.

In fact, it is known that any crisp language that is not NP-
complete must have a polymorphism that satisfies certain
kinds of identities (Bulatov, Krokhin, and Jeavons 2005).

One simple consequence of Theorem 1 is that the poly-
morphisms of Γ and the polymorphisms of Γd satisfy exactly
the same identities.

Corollary 1. Let Γ be a valued constraint language such
that |Γ| is finite, and let Γd be the dual of Γ.

The operations in Pol(Γ) and the operations in Pol(Γd)
satisfy exactly the same identities.



We will show below that it follows from Corollary 1
that essentially the same algorithms can be applied to either
CSP(Γ) or CSP(Γd). Hence, from the point of view of the
availability of known efficient algorithms, it does not matter
whether a CSP problem is formulated using constraints of
arbitrary arity, or using a dual (binary) formulation.

Although they satisfy the same identities, the polymor-
phisms of Γd do not, in general, share all the same proper-
ties as the polymorphisms of Γ. For example, Pol(Γ) might
include the binary operation min that returns the smaller
of its two arguments, according to some fixed ordering of
D. This operation has the property of being conservative,
which means that the result is always equal to one of the
arguments. However, the corresponding operation mind in
Pol(Γd) is not generally conservative, since, for example,
mind((a, b), (b, a)) = (a, a) for all a < b.

One way to simplify the analysis of valued constraint lan-
guages is to restrict our attention to certain special kinds of
languages that have desirable features. For example, a val-
ued constraint language Γ is not a core if there is a label
a ∈ D such that for any instance P ∈ VCSP(Γ) there is an
optimal solution to P that does not use the label a. In this
case, label a can be discarded.

Definition 8. A valued constraint language Γ is a core if all
unary polymorphisms of Γ are bijections. Moreover, Γ is a
rigid core if the only unary polymorphism of Γ is the identity
function.

We can restrict our attention to languages that are rigid
cores due to the following result.

Proposition 3 (Ochremiak 2014). For every valued con-
straint language Γ there is a valued constraint language
Γ′ that is a rigid core and VCSP(Γ) and VCSP(Γ′) are
polynomial-time equivalent.

An operation f : Dk → D is called idempotent if
f(x, . . . , x) = x for all x ∈ D. It is known that Γ is a
rigid core if and only if all polymorphisms of Γ are idempo-
tent (Ochremiak 2014).

Corollary 2. Let Γ be a valued constraint language such
that |Γ| is finite, and let Γd be the dual of Γ.

Γ is a rigid core if and only if Γd is a rigid core.

Proof. Follows immediately from Corollary 1, since the
property of being idempotent is specified by an identity.

A precise characterisation of rigid core languages Γ that
give rise to CSP instances solvable by any form of local
consistency has recently been established (Barto and Kozik
2014). This characterisation makes use of the following
identities for a k-ary (k ≥ 2) operation f :

f(y, x, . . . , x) = f(x, y, x, . . . , x) = f(x, . . . , x, y).

Any k-ary operation on D that satisfies these identities for
all x, y ∈ D, is called a weak near-unanimity operation.

Theorem 2 (Barto and Kozik 2014). Let Γ be a crisp lan-
guage that is a rigid core. CSP(Γ) is solvable by local con-
sistency if and only if Pol(Γ) contains weak near-unanimity
operations of all but finitely many arities.

A second polynomial-time algorithmic technique for the
CSP generalises the idea of using Gaussian elimination to
solve simultaneous linear equations. The most general ver-
sion of this approach is based on the property of having a
polynomial-sized representation for the solution set of any
instance (Bulatov and Dalmau 2006; Idziak et al. 2010).
Roughly, the algorithm works by starting from the empty
set and adding constraints in an instance one by one while
maintaining (in polynomial time) a small enough represen-
tation of the current solution set (of feasible assignments).
At the end (i.e., after all constraints have been added), ei-
ther this representation is non-empty and contains a solution
to the instance or else there is no solution. This algorithm
is called the “few subpowers” algorithm (because it is re-
lated to a certain algebraic property to do with the number
of subalgebras in powers of an algebra). Languages where
this algorithm is guaranteed to find a solution (or show that
none exists) were characterised by (Idziak et al. 2010). Once
again, this characterisation involves a set of identities on the
polymorphisms of the language. A k-ary (k ≥ 3) operation
f : Dk → D is called an edge operation if, for all x, y ∈ D,

f(y, y, x, x, . . . , x) = f(y, x, y, x, x, . . . , x) = x and

f(x, x, x, y, x, . . . , x) = f(x, x, x, x, y, x, . . . , x) =

. . . = f(x, . . . , x, y) = x.

Theorem 3 (Idziak et al. 2010). Let Γ be a crisp language.
Then CSP(Γ) is solvable by the few subpowers algorithm if
Pol(Γ) contains an edge operation.

The converse to this theorem is true in the following
sense: the absence of edge operations from Pol(Γ) implies
that the presence of small enough representations is not
guaranteed, see (Idziak et al. 2010) for details.

Combining Corollary 1 with Theorems 2 and 3 shows that
the property of being solvable using local consistency, or
the few subpowers algorithm, is possessed by a language Γ
if and only if it is also possessed by the associated binary
language Γd.

Weighted Polymorphisms

Polymorphisms are sufficient to analyse the complexity of
the CSP, but for the VCSP, it has been shown that in gen-
eral we need a more flexible notion that assigns weights to a
collection of polymorphisms (Cohen et al. 2013).

Definition 9. Let φ : Dm → Q be a weighted relation, and

let C ⊆ Pol(k)(φ) be some collection of polymorphisms of
φ. A function ω : C → Q is called a k-ary weighted poly-
morphism of φ on C if it satisfies the following conditions:

•
∑

f∈C ω(f) = 0;

• if ω(f) < 0, then f is a projection;

• for any x1, . . . ,xk ∈ Feas(φ)
∑

f∈C

ω(f)φ(f(x1, . . . ,xk)) ≤ 0 . (2)

We denote by wPol(k)(Γ) the set of all functions ω :

Pol(k)(Γ) → Q which are weighted polymorphisms of all
φ ∈ Γ.



Example 4. Let D = {0, 1}. Let Γ be the set of weighted

relations φ : Dm → Q that admit ωsub as a weighted
polymorphism, where ωsub is defined by ωsub(f) = −1 if

f ∈ {e
(2)
1 , e

(2)
2 }, ωsub(f) = +1 if f ∈ {min,max}, and

ωsub(f) = 0 otherwise; here min and max are the binary
operations returning the smaller and larger of their two ar-
guments, respectively, wrt the usual order 0 < 1.

In this case Γ is precisely the well-studied class of sub-
modular set functions (Schrijver 2003).

Our next result shows that the weighted polymorphisms of
Γd are closely related to the weighted polymorphisms of Γ.

Theorem 4. Let Γ be a valued constraint language such that
|Γ| is finite, and let Γd be the dual of Γ.

A function ω : Pol(k)(Γ) → Q ∈ wPol(k)(Γ) if and only

if the function ωd : Pol(k)(Γd) → Q ∈ wPol(k)(Γd), where

ωd(fd) = ω(f) for all f ∈ Pol(k)(Γ) and their correspond-

ing operations fd ∈ Pol(k)(Γd) (as defined in Theorem 1).

Proof. By Proposition 1 we may assume that Γ consists of a

single weighted relation φΓ : Dm → Q, and hence that the
domain D′ of Γd is a subset of Dm.

First, consider any ω : Pol(k)(Γ) → Q ∈ wPol(k)(Γ),

and the corresponding ωd : Pol(k)(Γd) → Q given by

ωd(fd) = ω(f) for all f ∈ Pol(k)(Γ). Since ω is a weighted
polymorphism of φΓ, it is easy to check that ωd satisfies all
three conditions in Definition 9, and hence is a weighted
polymorphism of the unary weighted relation φ′

Γ in Γd.
Since all other weighted relations in Γd are the 0-weighted
matchi,j relations, the third condition in Definition 9 holds
trivially for all these weighted relations, and hence ωd is a
weighted polymorphism of all weighted relations in Γd.

Now consider any ωd : Pol(k)(Γd) → Q ∈ wPol(k)(Γd).
Since ωd is a weighted polymorphism of φ′

Γ, the function

ω : Pol(k)(Γ) → Q that assigns the same weights to corre-

sponding elements of Pol(k)(Γ) satisfies all the conditions
of Definition 9, and hence is a weighted polymorphism of
φΓ.

Weighted polymorphisms capture the complexity of any
valued constraint language (Cohen et al. 2013). In fact, for
any valued constraint language Γ, it was shown that the as-
sociated class of problems VCSP(Γ) is NP-hard, unless Γ
has certain kinds of weighted polymorphisms.

Moreover, the weighted polymorphisms of Γ can be used
to select an appropriate algorithmic technique for VCSP(Γ).
The algorithmic technique for the VCSP that has been most
thoroughly investigated is based on linear programming: ev-
ery VCSP instance Φ has a natural linear programming re-
laxation called the basic LP relaxation, and denoted BLP(Φ)
- see (Kolmogorov, Thapper, and Živný 2013) and the refer-
ences therein.

Given a VCSP instance Φ, we say that BLP solves Φ if the
solution to BLP(Φ) is equal to the minimal value of Φ over
all assignments to the variables. Moreover, we say that BLP
solves a valued constraint language Γ if BLP solves every
instance Φ ∈ VCSP(Γ). It is shown in (Kolmogorov, Thap-

per, and Živný 2013) that in all cases where BLP solves Γ,

a standard self-reduction technique can be used to obtain an
assignment that minimises any Φ in VCSP(Γ) in polynomial
time.

The power of BLP for valued constraint languages was

fully characterised in (Thapper and Živný 2012). To state
this result, we first introduce some further terminology about
operations. A k-ary operation f : Dk → D is called sym-
metric if for every permutation π on {1, . . . , k}, it satisfies
the identity

f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)).

A weighted polymorphism ω is called symmetric if it assigns
positive weight to one or more symmetric operations, and no
others.

Theorem 5 (Thapper and Živný 2012). Let Γ be a valued
constraint language. VCSP(Γ) can be solved using the BLP
algorithm if and only if Γ has a k-ary symmetric weighted
polymorphism, for every k ≥ 2.

Example 5. A binary operation f : D2 → D is called a
semilattice operation if f is associative, commutative, and
idempotent. Example of semilattice operations include the
min and max operations on ordered sets that return the
smaller or larger of their two arguments. Since any semi-
lattice operation generates symmetric operations of all ari-
ties, Theorem 5 implies that any valued constraint language
with a binary weighted polymorphism that assigns posi-
tive weight to some semilattice operation is solvable using
the BLP. Such languages include the submodular languages
(Example 4) and several others - see (Jeavons, Krokhin, and
Živný 2014).

Combining Corollary 1 with Theorem 4 and Theorem 5
shows that the property of being solvable using BLP is pos-
sessed by a language Γ if and only if it is also possessed by
the associated binary language Γd.

Conclusion
Transforming a constraint satisfaction problem to a binary
problem has a number of advantages and disadvantages
which have been investigated by many authors (Rossi, Dahr,
and Petrie 1990; Bacchus et al. 2002; Stergiou and Samaras
2005). Such a transformation changes many aspects of the
problem, such as what inferences can be derived by various
kinds of propagation. One might expect that achieving the
simplicity of a binary representation would incur a corre-
sponding increase in the sophistication of the required solv-
ing algorithms.

However, we have shown here that the well-known dual
encoding of the VCSP converts any finite language, Γ, of ar-
bitrary arity to a binary language, Γd, of a very restricted
kind, such that there is a bijection between the polymor-
phisms of Γ and Γd, and the corresponding polymorphisms
satisfy exactly the same identities and weightings. Hence we
have shown that the algebraic analysis of valued constraint
languages can focus on a very restricted class of binary lan-
guages. Moreover, many important algorithmic properties,
such as the ability to solve problems using a bounded level
of consistency, or by a linear programming relaxation, are
also preserved by the dual encoding.
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