
HAL Id: hal-04079561
https://hal.science/hal-04079561

Submitted on 24 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification and validation of constitutive parameters
of a Hencky-type discrete model via experiments on

millimetric pantographic unit cells
Michele De Angelo, Nurettin Yilmaz, M. Erden Yildizdag, Anil Misra,

François Hild, Francesco Dell’isola

To cite this version:
Michele De Angelo, Nurettin Yilmaz, M. Erden Yildizdag, Anil Misra, François Hild, et al.. Identifi-
cation and validation of constitutive parameters of a Hencky-type discrete model via experiments on
millimetric pantographic unit cells. International Journal of Non-Linear Mechanics, 2023, pp.104419.
�10.1016/j.ijnonlinmec.2023.104419�. �hal-04079561�

https://hal.science/hal-04079561
https://hal.archives-ouvertes.fr


Identification and validation of constitutive parameters of a Hencky-type

discrete model via experiments on millimetric pantographic unit cells

Michele De Angeloa,b, Nurettin Yilmazc, M. Erden Yildizdagc,d,∗, Anil Misrab, François Hilde,
Francesco dell’Isolaa,c

aDipartimento di Ingegneria Civile, Edile-Architettura e Ambientale, Universita degli Studi dell’Aquila, Via
Giovanni Gronchi 18 - Zona Industriale di Pile, 67100 L’Aquila, Italy

bCivil, Environmental and Architectural Engineering Department, University of Kansas, 1530W 15th Street,
Learned Hall, Lawrence, KS 66045-7609, USA

cInternational Research Center on Mathematics and Mechanics of Complex Systems, University of L’Aquila,
L’Aquila, Italy

dFaculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
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Abstract

Pantographic metamaterial design benefits from model identification procedures starting from what

can be considered as the elementary unit cell of larger pantographic structures. Results from a ten-

sile experiment and digital image correlation are utilized to identify the constitutive parameters of

a discrete Hencky-type model for a millimetric pantographic cell. In the performed calibration, two

different cost functions are formulated. First, the cost function is based upon measured resultant

forces on the specimen boundaries. Then, the second cost function is based upon the measured

pivot displacements in addition to reaction forces. The second cost functions thus exploits the pivot

kinematics, which is a key feature of the deformation of pantographic structures. The identified

model is further validated by predicting the reaction forces and pivot displacements of the same

specimen subjected to compression. It is shown that the identification with the cost function in-

corporating pivot displacements is superior. It is also noted that the calibrated parameters deviate

considerably from their initial guess derived from the linear Saint Venant problem, thereby indicat-

ing microscale nonlinear affects in otherwise linear reaction force-precribed displacement responses

at the macroscale.
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1 Introduction

Recently developed technologies, such as additive manufacturing and powerful computing hard-

ware, allow objects with many shapes and constituent materials to be designed, and their behavior

to be analyzed with advanced numerical tools. These aspects are of fundamental importance in

continuum mechanics research, especially in the field of metamaterials, which focuses on materials5

(usually manufactured with 3D printing techniques) exhibiting unusual macroscopic properties for

designed mesostructures. In this context, pantographic metamaterials have recently been investi-

gated because they possess interesting theoretical, mechanical, manufacturing, and experimental

peculiarities [1, 2, 3]. A key property observed during experiments is their elastic elongation regime

that may become very large when compared to standard materials [4, 5]. Moreover, unlimited pos-10

sibilities seem to be open in the fabrication of lower-scale mesostructures for materials to be used

at larger scales [6].

From a theoretical perspective, the research on pantographic metamaterials originated from the

purpose of creating and developing mesostructured architectures whose strain energy functional

substantially depended on the second gradients of the displacement field [7, 8, 9, 10, 11]. Classi-15

cal continuum mechanics is not appropriate to describe structured media, unless one develops a

model that is extremely faithful to the chosen topology, and solves algebraic systems running into

excessively long computation time. Consequently, there is a need for developing higher gradient

or higher-order models [12, 13, 14, 15]. An example that deals with using a wider kinematic basis

rather than higher gradients of the same placement field are granular metamaterials and granular20

micromechanics [16, 17, 18, 19]. The crucial point is to conjecture the right mathematical model

that is faithful to a certain degree of the physical system under consideration and allows for the

evaluation up to a pre-established accuracy of some aspects of interest. For pantographic (i.e.,

mesostructured) materials, the following three approaches have been developed for describing their

mechanical behavior [20, 21, 22], each having its limitations and strengths:25

• continuum approach [23, 24, 25, 26];

• discrete approach [27, 28, 29];
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• experimental approaches using the potentialities of 3D printing processes [30, 31, 32, 33].

Common to both continuum and discrete descriptors, there is a need for estimating the constitu-

tive parameters. Recent studies revealed a rather satisfactory agreement between theoretical predic-30

tions and actual experimental evidence [34, 35, 36, 37, 38, 39, 40, 41]. Additionally, the strong con-

nection between discrete and continuous constitutive parameters must be noted when a macromodel,

which is meant as a generalized 2D continuum [42, 43], is deduced by heuristic identification from a

discrete model that provides detailed descriptions of the deformation mechanisms of the mesostruc-

ture [23] (for more details about identification procedures see Refs. [44, 45, 46, 47, 48, 49, 50, 51]).35

There have been few attempts relative to the links between constitutive parameters for contin-

uum and discrete models, or vice versa, and a satisfactory answer to the following questions is still

missing: how can constitutive parameters be estimated for a continuum or discrete model starting

from the results of experiments? What are the relationships between the constitutive parameters

for continuum and discrete models? The present work is a first attempt to partly address these40

questions.

The study of pantographic metamaterials requires identifying each of its elementary component

properties to optimize particular application performances. The overall properties of any consid-

ered metamaterial depend on their morphology and the mechanical properties of their elementary

constituents [52, 53]. The calibration procedure depends upon the development of an efficient con-45

ceptual framework that integrates all relevant design steps, thereby creating a collaborative feedback

loop between different techniques. In particular, the measurement of kinematic data in addition

to applied forces is very important. Among many different techniques, Digital Image Correlation

(DIC) plays a prominent role [54, 55, 56] to create the envisioned synergistic approach. DIC is an

(automatated) image analysis method that measures deformation fields and generates displacement50

and strain fields at prescribed resolution. In this non-contacting technique, mathematical/numerical

registration procedures are used to process digital images of specimens recorded during experiments.

Refined and detailed measurements of material deformations are essential to guide the synthesis

process and to validate its results. The DIC techniques have proven to be effective in analyzing

experimental results, and they can provide a rapid feedback to guide numerical and theoretical ap-55

plications in metamaterial design [2, 3, 57]. Further, DIC techniques are also capable of measuring
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displacement fields at different length scales [58, 2, 3, 59, 60].

In the following, parameter identification of a discrete Hencky-type model for a millimetric

pantographic unit cell is conducted. The procedure consists in using different types of objective

functions that contain data of different nature. To be specific, reaction force data of mechanical60

tests on millimetric pantographic unit cells were employed along with displacements measured via

DIC. The rationale of the investigation is to develop an identification procedure in the field of

pantographic metamaterials starting from what can be considered as the elementary unit of larger

pantographic structures. The content of this paper is organized as follows. Section 2 provides a

definition for a Hencky-type discrete model of a pantographic unit cell. Section 3 provides informa-65

tion about a specimen of millimetric pantograph and the process of 3D printing. Section 4 includes

the application of microscopic DIC analyses. Section 5 introduces the method of inverse analysis

for parameter identification. Section 6 is devoted to the representation of the results for validation

purposes with the predicted compressive behavior.

2 Hencky-type discrete model of pantographic unit cell70

Generally, a pantographic sheet is considered as a rectangular lattice made of square cells. The

cells, whose side length is ε, are formed by two orthogonal arrays of fibers. Arrays 1 and 2 are

forming π/4 and −π/4 angles with respect to the (horizontal) x1 axis (see Figure 1), respectively.

The discrete Lagrangian system, which is introduced to describe the pantographic unit cell, is

made up of a finite number N of material particles occupying the intersection points of the two75

arrays of beams. These particles are linked to one another by means of extensional and rotational

springs, whose arrangement is sketched in Figure 1. It is worth noting that this arrangement allows

for both pair-wise and triple-particle interactions. With respect to the reference configuration,

the position of the ith particle is indicated by vector Pi. The Lagrangian coordinates of this

system are the positions of the particles after deformation, which are denoted with lowercase letters80

pi. If the kinematics of the system is limited to planar motions, one just needs to introduce 2N

Lagrangian coordinates to describe the whole system. Once the kinematics of system has been

defined, Lagrangian functions are to be derived for this mechanical system such that, by requiring

the first variation of the associated functional to vanish, one obtains the equilibrium configurations
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Figure 1: Discrete Hencky-type mechanical model for the pantographic lattice.

of the system. Since equilibrium configurations are sought, the Lagrangian function will only contain85

the potential energy part (i.e. the contribution associated with the relevant deformation).

Every pantographic substructure considered hereafter mainly undergoes three deformation modes

(see Figure 2):

• extension of every beam segment of the fibres

• flexure of beam segments90

• microtorsion of interconnecting hinges.

Figure 2: Extensional, flexural and shear spring kinematics.
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Let us consider the discrete system depicted in Figure 3, which accounts for 11 hinges. The

(a)

(b)

Figure 3: (a) Planar pantographic sheet highlighting hinges. (b) Corresponding sketch of pantographic structure.

total energy of the pantographic sheet is expressed as

W(d) = Wint − Lext =
∑
e

(w0 + w1 + w2) − Lext (1)

where d is the vector collecting all the particle displacements, e an index labeling the springs of the

system (Figures 2 and 3), Lext the work done by external loads and

• w0 is the strain energy for axial springs

w0 =
1

2
K0 (∥pj − pi∥ − ε)2 (2)

where pi and pj are the current positions of particles i and j, respectively, and K0 the stiffness

of the extensional spring;95

• w1,2 are the strain energies for flexural springs along arrays 1 and 2, respectively

w1 = K1 (cos γ1,2 + 1) (3)

where angle γ1 is written in terms of the Lagrangian coordinates as

cos γ1 =
∥pj1,2 − pi1,2∥2 + ∥pk1,2 − pj1,2∥2 − ∥pk1,2 − pi1,2∥2

2∥pj1,2 − pi1,2∥∥pk1,2 − pj1,2∥
(4)

K1 the stiffness of the rotational springs involving arrays 1 and 2, assumed equal for both

arrays, pi1,2 , pj1,2 , and pk1,2 the current positions of three particles aligned along arrays 1 or 2;

• w2 is the strain energy for shear springs

w2 =
1

2
K2

(
γ3 −

π

2

)2
(5)
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where

cos γ3 =
∥pj1 − pk2∥2 + ∥pk1 − pj1∥2 − ∥pk1 − pk2∥2

2∥pj1 − pk2∥∥pk1 − pj1∥
(6)

and K2 the rigidity of the rotational springs that connect the two arrays, pk1 , pk2 , and pj1

the Lagrangian coordinates of the involved particles. One such shear spring will appear in all

the quadrants of Figure 1.100

The solution to the equilibrium equations is achieved by means of a Matlab code, which implements

an arc-length solution scheme [61].

3 Experiments

The structure under consideration is a millimetric pantograph shown in Figure 3 whose geomet-

rical features are depicted in Figure 4. Different configurations were tested and the data obtained105

were used for both identification and validation procedures. The numerical values of the parameters

Figure 4: Parameters defining the pantographic unit cell.

for the specimen are given and labeled in Table 1. In the following, the labels of Table 1 are used

to refer to the geometric configuration.

Table 1: Geometrical parameters (expressed in mm) of the specimen tested for the inverse procedure.

ℓ1 ℓ2 a b d h

8 8 1 1 1 3
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The geometry of the metamaterial was initially generated with the CAD software SolidWorks

(Dassault System SolidWroks Corporation, Waltham, MA, USA). The specimens were fabricated110

using a 3D printer Formiga P 100 (EOS GmbH, Munich, Germany) at the University of Technology,

Warsaw, Poland. The 3D printer used a selective laser sintering (SLS) technology to produce the

pantographic cells out of polyamide powder (PA2200), whose average grain size was 56 µm.

Two different tests, namely tensile and compressive, were performed on specimens having the

geometry shown in Figure 4. The tensile test was experimentally carried out by keeping fixed one115

side of the specimen and applying an axial displacement on the other side. The maximum value of

the prescribed displacement was ± 6 mm (with the convention that positive sign means extension

of the specimen), at a rate of 0.1 mm/s.

A Bose ElectroForce 3200 testing-device controlled by the software WinTest Material Testing

System was used to perform all the experiments reported herein. The load cell used to measure the120

reaction force had a range of ±22 N, a measurement uncertainty of 0.1%. The studied pantographic

metamaterial displayed a viscoelastic behavior. Therefore, the measured force-displacement curves

are specific to a loading rate of 0.1 mm/s. The built-in transducer measuring the prescribed dis-

placement has a range of ±6.5 mm, a measurement uncertainty of 0.1%. Pictures were acquired

at a rate of 1/3 fps during each experiment. To improve the sensitivity of the correlation analysis,125

a mate black speckle pattern was spray-painted upon the surface of the sample. Figure 5 shows

some cropped gray level pictures of the reference and deformed configurations of the tensile and

compressive tests. Details on the equipment employed for image acquisition are provided in Table 2.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Cropped gray level images of tensile (left) and compressive (right) tests. (a,b) Reference configurations,

(c,d) 2.1 mm stroke, and (e,f) 6 mm stroke.

Table 2: DIC hardware parameters

Camera NIKON D300

Definition 4288 × 2848 pixels (RGB image)

Gray Levels amplitude 8 bits

Lens AF-S VR Micro-Nikkor 105mm f/2.8G ED

Aperture f/4.5

Field of view 74 × 111 mm2

Image scale 14.3 µm/px (B&W image)

Stand-off distance ≈ 40 cm

Image acquisition rate 1/3 fps

Exposure time 20 ms

Patterning technique Sprayed black paint
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4 Microscopic DIC analysis

Digital Image Correlation (DIC) is used to measure displacement fields at prescribed resolution130

of deformed specimens. The surface of the specimen has generally to be first prepared to make

the motion of material hinges distinguishable by DIC [59]. During the experiments, digital images

were recorded. At the beginning of the experiment, reference images were acquired to evaluate

measurement uncertainties, and then the displacement field is measured with a correlation between

the reference image and subsequent ones (of the deformed configuration). Recently, this technique135

has been applied to extract displacement fields of pantographic metamaterials [58, 59]. For panto-

graphic metamaterials, FE-based DIC can be performed at least for three different length scale [59].

These displacement fields can then be compared with those predicted via numerical simulations,

and, eventually, to calibrate and validate the considered constitutive model.

4.1 Global DIC140

The registration of two gray level images in the reference (f) and deformed (g) configurations

is based on the conservation of gray levels

f(x) = g(x + u(x)) (7)

where u is the (unknown) displacement field to be measured, and x the position of pixels. The

sought displacement field minimizes the sum of squared differences Φ2
C over the region of interest

(ROI)

Φ2
c =

∑
ROI

ϕ2
c(x) (8)

where ϕC defines the gray level residuals ϕc(x) = f(x) − g(x + u(x)) that are computed at each

pixel position {x} of the ROI. The displacement field is expressed over a chosen kinematic basis

u(x) =
∑
n

unψn(x) (9)

where ψn are vector fields and un the associated degrees of freedom, which are gathered in the

column vector {u}. Thus the measurement problem consists in the minimization of Φ2
c with respect

to the unknown vector {u}.
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This problem is nonlinear and to obtain a solution a Gauss-Newton iterative scheme was imple-

mented. In the following analyses, the vector fields correspond to the shape functions of 3-noded145

triangular elements (i.e., T3 elements). Consequently, the unknown degrees of freedom are the

nodal displacements of the T3 elements.

4.2 Regularized DIC

The previous approach can be penalized when, for instance, the image contrast is not sufficient to

achieve low spatial resolutions [59]. It consists in adding to the cost function Φ2
c penalty terms [62].

In the following, the penalty is based on the local equilibrium gap

Φ2
m = {δu}⊤ [K]⊤ [K] {δu} (10)

where [K] is the rectangular stiffness matrix restricted to the inner nodes and those associated with

free edges [63], and {δu} the displacement increment between two analyzed images. Such type of150

regularization corresponds to the assumption of Hencky elasticity at the local level [59].

4.3 Hinge kinematics

In the present case, all beams were explicitly meshed (i.e., so-called microscopic DIC was carried

out [59]). For the bottom layer, a mask was added for the overlapping zones close to the hinges.

To be consistent with the selected model, the presence of the hinges between the two layers was155

accounted for through Lagrange multipliers, thereby enforcing no displacement jumps for each of

them. These constraints lead to an additional penalty term.

The global residual to minimize consisted of the weighted sum of the previous two cost functions

(i.e.,Φ2
c and Φ2

m) and the augmentation. Because the dimensions of the first two cost functions is

different, they need to be made dimensionless. The penalization weight acting on Φ2
m is proportional160

to a regularization length raised to the power 4 [63]. The larger the regularization length, the

more weight is put on Φ2
m. This penalization acts as a low-pass mechanical filter, namely, all high

frequency components of the displacement field that are not mechanically admissible are filtered out.

Similarly, for low-contrast areas mechanical regularization provides the displacement interpolation.
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4.4 Registration quality165

The root mean square (RMS) gray level residuals Φc of the DIC analyses of two tests are

shown in Figure 6. Overall they remained very small in comparison to identical analyses [59].

Such observation proves that the measurements were trustworthy, and that the hypothesis of zero

displacement jump at each hinge was consistent with the analyzed experiments.

(a) (b)

Figure 6: Gray level residuals of DIC analysis for the compressive (a) and tensile (b) tests.

5 Inverse analysis for parameter identification170

The problem addressed herein is to determine:

• the elongation stiffness K0 of each beam segment (characterized by the intersection points or

location of the hinges) of the fibers

• the bending stiffness K1 of beam segments,

• and the macroshear stiffness K2 of interconnecting hinges (corresponding to micro-torsional175

stiffness).

The effort is directed toward obtaining the best stiffness set with a method that aggregates mea-

surement results from difference sources into a single identification method while accounting for the

uncertainty of each measurement. In this approach, the proper weighting of each contribution is

important. In the following, the method employed is such that the weighting is not an arbitrary180
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choice, but instead naturally follows from a Bayesian formulation given the number of measurements

and their respective uncertainty. For the identification process at hand, the experimental data are

the force measured by the load cell of the testing machine and the hinge displacements obtained

from the recorded images of the sample surface.

Let us consider N observables, xi with i = 1, . . . , N , for which a model Gi(p) generates corre-

sponding estimates from a set of m parameters {p} = {p1,p2, . . . ,pm} [64]

xi = Gi(p) (11)

Note that the observables xi can be of different types with different units (e.g., a set of measured

forces and displacements). The measurement x̂i of the observable xi is corrupted by Gaussian

noise ζi

x̂i = xi + ζi (12)

where a normal distribution, N (0, σ2
i ), for ζi with zero mean and variance σ2

i is assumed. Thus, the

probability of the estimated observable to be equal to xi for each measurement x̂i reads

Pi =
1

(2π)1/2σi

exp

(
−(x̂i − xi)

2

2σ2
i

)
, (13)

Further, for the entire set of N measurements, assuming that they are statistically independent,

the probability reads

Pi =
1

(2π)N/2
∏N

i=1 σi

exp

(
−

N∑
i=1

(x̂i − xi)
2

2σ2
i

)
, (14)

Inference of the most likely set of parameters that corresponds to a given set of measurements is

equivalent to finding the maximum of Equation (14), or the minimum of the log-likelihood (up to

irrelevant constants)

χ2({p}) =
1

N

N∑
i=1

(x̂i − xi)
2

σ2
i

(15)

The choice of the prefactor is such that the expectation of χ2 at convergence is 1, assuming that185

the difference (x̂i − xi) is only due to noise. It is also noteworthy that the quadratic difference is

not any arbitrary choice among many convex functions that are minimum at the origin, but the

consequence of the Gaussian probability density function assumed for noise. At this point, (possibly

nonlinear) optimization methods are applied to find the optimal set of parameters that minimizes

Equation (15).190
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The most important conclusion from Equation (15) is that an identification using different

aggregated measurement sets (in the presence of white Gaussian noise) translates into minimizing

the weighted sum of squared differences. Taking the example of two sets of measurement data,

with N measurements and variances σ2
1 and σ2

2 respectively, and labeled sequentially from 1 to

N = N1 + N2, the total cost function is decomposed as

(N1 + N2)χ
2
total({p}) =

1

σ2
1

N1∑
i=1

(x̂i − xi({p}))2 +
1

σ2
2

N∑
j=N1+1

(x̂j − xj({p}))2 (16)

In the present case, the measured data sets and the respective counterparts predicted by the model

described above are (i) the reaction force set measured by the load cell, and (ii) the displacement

component sets of the hinges.

The stiffness parameters necessary to completely describe the discrete model are K0, K1 and

K2. Thus, the parameter vector becomes

{p} = {K0 K1 K2}⊤ (17)

The identification was carried out by means of the following two different cost functions to observe

the effect of including kinematic data in the identification process

χ2
F ({p}) =

∑N
n (F̂n − Fn({p}))2

σ2
F

(18)

χ2
total({p}) =

1

σ2
F

N∑
n

(F̂n − Fn({p}))2+

1

Rσ2
u

R∑
i

M∑
m

(ûim − uim({p}))2+

1

Rσ2
v

R∑
i

M∑
m

(v̂im − vim({p}))2

(19)

where F̂n and Fn({p}) are measured and simulated reaction forces at time step n, N the total

number of time steps of force measurements, and σF the standard force uncertainty. Further,195

ûim and uim({p}) are the measured and simulated values of the displacement component parallel

to the load application direction, while v̂im and vim({p}) are measured and simulated transverse

displacement components for the i − th hinge at time m. Parameter R denotes the total number

of hinges (11 in this case), M the total number of images, and σ2
u and σ2

v are the variances of
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Table 3: Standard force and displacement uncertainties.

σF (N) σu and σv(px)

0.022 0.02

displacement uncertainties for the two directions, respectively. The standard uncertainties are200

given in Table 3.

The cost functions defined in Equations (18) and (19) are related to identification procedure 1

(or procedure 1) and identification procedure 2 (or procedure 2), respectively, in the remainder of

this paper. From the viewpoint of model validity, it is noteworthy that the model parameters are

properly estimated such that the cost functions are close to 1. The solution to the inverse problem

defined by Equations (18) and (19) is obtained by iteratively minimizing the cost functions using

a Gauss-Newton method starting with an initial guess for the parameters {K0, K1, K2}. As a first

estimate, the stiffnesses were obtained from the Saint-Venant problem (which is rigorously valid

only for the linear case)

K0 =
EA

ℓ

K1 =

(
1 − ℓ

L

)
EI

ℓ

K2 =
GIp
ℓp

(20)

where E and G are the Young’s and shear moduli of polyamide, respectively, A and I the area

and inertia of the cross section, L the total length of the microbeams, and ℓ (i.e., 1
2

√
ℓ21 + ℓ22) the

distance between two neighboring hinges. The coefficient 1 − ℓ/L takes into account the number

of elastic hinges used to model the bending strain energy. The Young’s modulus E and Poisson’s205

ratio ν of polyamide [65] used in the 3D printing process are gathered in Table 4.

Table 4: Mechanical Properties of Polyamide PA 2200.

Young’s modulus, E Poisson’s ratio, ν

1000 MPa 0.3

In Table 5, the first guess of the set of stiffnesses is reported along with the values obtained from

identification procedures 1 and 2. It is notable that the axial stiffness K0 and the torsional stiffness
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K2 identified using the two procedures are significantly smaller than their initial guess, which were

estimated using linear approximation and ideal polyamide properties. In addition to the nonlinear210

effects, 3D printing of small objects may introduce defects that could result in considerably reducing

the stiffness.

Table 5: Initial and calibrated stiffnesses by inverse analyses.

K0 K1 K2

(N/mm) (Nmm) (Nmm)

Initial set 280 12 20

Procedure 1 4 12 5.3

Procedure 2 18 8 2.1

The calibrated stiffness set is expected to reproduce the tensile experiment with good approxi-

mation. Figure 7 compares the reaction forces for the initial set of stiffnesses and at convergence of

the two procedures. As the elastic regime was investigated, a limited range of data up to 2.1 mm215

of applied displacement was chosen. It is observed that the initial guess gives a considerably stiffer

response and greatly overestimates the constitutive parameters. On the other hand both proce-

dures 1 and 2 provide a significantly improved estimate of the measured load data. In particular

the identified constitutive parameter K0, related to beam extension, is found to be much smaller

than that estimated using initial guess. It appears that the linear approximation of initial guess220

emphasises the role of the extension parameter. It is also possible that the printing defects alter

the intrinsic properties of polyamide as well as the ideal behavior assumed in the initial guess. This

last point is also reflected in the constitutive parameter K2.
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Figure 7: Tensile force vs. prescribed displacement associated with the initial set of stifnesses and those with the

identification procedures 1 and 2.

To quantitatively compare the two identification procedures, Table 6 shows the normalized RMS

errors of the calculated force (normalized by the uncertainty of the load cell). It is observed that225

the two sets of identified parameters, even if they differ in their numerical values (Table 5), resulted

in good approximations of the measured reaction force. Procedure 1 led to slightly lower force

residuals since it was the quantity that was minimized. Instead, in procedure 2 for which kinematic

measurements were also included, the residuals are slightly higher. The fact that the two sets of

parameters significantly changed shows that the inclusion of kinematic data enabled the model to230

be more faithful to the deformation and reaction force response of the specimen.

Table 6: χF cost functions related to the tensile test.

initial guess procedure 1 procedure 2

30.5 1.1 1.2

Figure 8 shows the hinge displacement component parallel to the loading direction, indicated by

the symbol ux. Each graph refers to one hinge as labeled in Figure 3, and shows comparisons between

experimental and simulated displacements corresponding to the stiffnesses reported in Table 5.
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Differences between experiment and simulation are found for hinges 1 and 2. This observation235

shows that at those hinges the model predictions differed from the experimental results because the

model boundary conditions assumed at the two hinges was not identical to those in the experiment.

Alternatively, more realistic boundary conditions could be implemented in the numerical model by

incorporating the connection between the actual boundary support and hinges 1 and 2. An excellent

agreement is observed between experimental and numerical data on the displaced boundary, namely,240

at hinges 10 and 11, which provided evidence of the quality of the displacement measurements.

For the internal hinges and both procedures, very small discrepancies are observed between the

experimental and numerical data except for hinges 3, 4, and 5. Focusing on hinge 3, it is remarkable

to discover that procedure 2 provided a better agreement. This outcome was due to having included

the motion of the hinges within the calibration procedure.

Figure 8: Longitudinal displacement component of the 11 hinges. Comparison between DIC measurements and

simulations using the two sets of calibrated parameters.

245

A better appreciation of the previous effect is observed in Figure 9, which shows the hinge

displacement component perpendicular to the loading direction, indicated by the symbol uy. Apart

from the boundary hinges where experimental fluctuations could not be captured by the model,

in all other cases, the stiffness set derived via procedure 2 resulted in an improved correspondence

between model and experiment.250
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Figure 9: Transverse displacement component of the 11 hinges. Comparison between DIC measurements and simu-

lations using the two sets of calibrated parameters.

The RMS differences of displacement components regarding each hinge are reported in Fig-

ure 10. The global RMS value is reported, which describes the overall quality of the displacement

predictions. It is concluded that procedure 2 resulted in constitutive parameters that provided more

reliable predictions (i.e., a factor two lower differences) of the hinge displacement displacement.

(a) (b)

Figure 10: RMS displacement errors for each hinge of the tensile test. Comparison between experimental evidence

and simulation with the calibrated parameters of procedures 1 (a) and 2 (b).

19



6 Validation with compressive test255

It is desirable in material characterization that the calibrated parameters should allow satis-

factory predictions for tests different from those used within the identification procedure. In the

following, the results of a validation procedure are discussed in which the model prediction using

the identified parameters (Table 5) are compared with experimental measurements for a compres-

sive test. Figures 5 (b,d,f) show the reference and deformed configurations of the specimen under260

compressive loading. Important observations emerge when comparing experimental and predicted

reaction forces in Figure 11. From a very discordant prediction with the initial guess, a significant

improvement was obtained with the values calibrated with procedure 1, and an almost complete

agreement occurred for procedure 2.

Figure 11: Compressive force vs. prescribed displacement associated the three parameters sets calibrated in tension.

Table 7 gathers the dimensionless force residuals for the predictions with the three sets of265

material parameters. In the present case, there is an even more pronounced difference between the

two procedures, in favor of procedure 2, whose levels were very close to 1 (i.e., about five times

lower than procedure 1).

Figures 12 and 13 show comparisons between the measured and predicted hinge motions. As for

the tensile test, fluctuations in the hinges corresponding to the fixed side (i.e., 1 and 2), and a perfect270
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Table 7: χF cost functions related to compressive test.

Initial guess Procedure 1 Procedure 2

24.7 4.7 0.9

interpolation for the displaced side (i.e., hinges 10 and 11) are noteworthy. Regarding the inner

hinges, in most cases, there were no significant differences between the data. The set of stiffnesses

provided by procedure 1, generally, led to larger discrepancies from the experiments than the initial

guess. Figure 12 shows that hinge 3 was where marked differences occurred, which was also observed

for the tensile test. The simulated displacement of hinge 3 exhibited a substantial deviation from275

real measurements for the initial guess and a marked improvement using the identified values.

Figure 12: Longitudinal displacement component of the 11 hinges. Comparison between DIC measurements and

predictions with the two sets of calibrated parameters.

When the results are further examined, it is confirmed that procedure 2 yielded better predictions

than procedure 1. Similar observations apply for the transverse displacements in Figure 13.
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Figure 13: Transverse displacement component of the 11 hinges. Comparison between DIC measurements and

predictions with the two sets of calibrated parameters.

Figure 14 confirms that procedure 1 produced an overall worsening on the predicted hinge

displacements in both directions compared to the initial guess with procedure 2. An improvement280

in the RMS values is obtained.

(a) (b)

Figure 14: RMS displacement errors for each hinge of the compression test. Comparison between experimental

evidence and predictions with the calibrated parameters of procedures 1 (a) and 2 (b).
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7 Conclusion

In the present paper, the analysis of the deformation of millimetric pantographic unit cells

was studied for model identification purposes using the measured results from a bias extension

test. To this end, the measured deformation of the pantographic metamaterial was obtained using285

digital image correlation (DIC). Its behavior was modeled using a discrete Hencky-type framework.

The identification of the constitutive parameters followed two different procedures. While the

constitutive parameters were obtained by taking account of the reaction forces in both procedures

1 and 2, the measured displacements at the hinges in vertical and horizontal directions were also

used in procedure 2. The RMS error of hinge displacement components were assessed. In addition,290

the efficiency of the two procedures was assessed in their ability to capture the force-displacement

response. Procedure 2 was found to give closer agreement with the measurements.

The identified model was then applied to predict the response of the same specimen in compres-

sion. It was found that the identification carried out with procedure 2 resulted in more accurate

predictions as compared to procedure 1. The introduction of kinematic data within the identifi-295

cation procedure resulted in a set of stiffnesses that was more consistent with the experimental

evidence. This statement was true both regarding the tensile test that was used for calibration

purposes, and the compressive test used for validation.

It should also be noted that the largest differences from the kinematic point of view occurred at

hinges where the specimen failed in the tensile test (i.e., hinges 4 and 5). The latter observation sug-300

gests that the present model should include additional mechanisms that could have non-negligible

effects. A hypothesis on the nature of these mechanisms could be linked to the particular geometry

considered herein [34]. For pantographic structures having slender pivots, the flexibility of these

structural elements is no longer negligible, and the strain energy density may also consider that zero

displacement jump constrains between the two arrays of fibers does not hold [59]. In order to de-305

scribe the kinematics of metamaterials with slender hinges, a modified version of the bi-dimensional

model may be considered, which, in contrast to Ref. [23], takes into account relative displacements

between the two families of fibers. It is believed that such enrichment of the kinematics to enclose

these additional deformation mechanisms will lead to better results and identification performances.
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