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Abstract

The centred pyrochlore lattice is a novel geometrically frustrated lattice, realized in the
metal-organic framework Mn(ta), [1] where the basic unit of spins is a five site centred
tetrahedron. Here, we present an in-depth theoretical study of the J; —J, classical Heisen-
berg model on this lattice, using a combination of mean-field analytical methods and Monte
Carlo simulations. We find a rich phase diagram with low temperature states exhibiting fer-
rimagnetic order, partial ordering, and a highly degenerate spin liquid with distinct regimes
of low temperature correlations. We discuss in detail how the regime displaying broadened
pinch points in its spin structure factor is consistent with an effective description in terms
of a fluid of interacting charges. We also show how this picture holds in two dimensions
on the analogous centred kagome lattice and elucidate the connection to the physics of thin
films in (d + 1) dimensions. Furthermore, we show that a Coulomb phase can be stabi-
lized on the centred pyrochlore lattice by the addition of further neighbour couplings. This
demonstrates the centred pyrochlore lattice is an experimentally relevant geometry which
naturally hosts emergent gauge fields in the presence of charges at low energies.

Contents
1 Introduction 2
2 Lattice and Model 3
3 Summary of Results 4
4 Ground State Properties 5
4.1 Local Constraint 5
4.2 Ising Spins 6
4.3 Degeneracy and Flat Bands 7
4.3.1 Luttinger-Tisza method 8
4.3.2 Connectivity matrix 10
5 Phase Diagram 11



SciPost Physics Submission

6 Spin Liquid 13
6.1 Mean-field Structure Factor 13
6.2 Coulomb Physics 14

6.2.1 Charge Fluid Description 14
6.2.2 Analogy with pyrochlore thin films 16

7 Centred Kagome Lattice 19

8 J,—J,—J; Model 20
8.1 Ferromagnetic J3 20
8.2 Antiferromagnetic J3 21

9 Summary and Outlook 22

A Monte Carlo Simulations 24

References 24

1 Introduction

The study of frustrated magnetic systems [2] occupies an important position in modern condensed
matter physics as a route to realizing states of matter exhibiting fractionalization, topological or-
der and the emergence of gauge fields [3-5]. Such features can already emerge in classical sys-
tems, most famously in spin ice [6-8] where low-lying excitations may be described as magnetic
monopoles interacting via an energetic Coulomb potential and entropic emergent gauge field. A
similar picture extends to other spin models on the pyrochlore, such as the classical Heisenberg
model, where the excitations are not monopoles of a true magnetic field, rather scalar charges
of the emergent gauge field. This is known as a Coulomb phase [9, 10], since the low-energy
theory above the vacuum ground state is classical electrostatics with charges interacting via effec-
tive Coulomb interactions. The appearance of such a phase is readily diagnosed by pinch point
singularities in the spin structure factor and corresponding algebraic 1/r> correlations in real
space. To stabilize monopoles in ground states (of spin-ice systems) requires the use of magnetic
fields [11-13], further neighbour exchange [14, 15], artificial interactions [16-18] or magneto-
elastic coupling [19, 20], resulting in a monopole fluid, or, long-range order leading to the phe-
nomenon of magnetic fragmentation [21].

In the quantum case, although the ground state of the spin 1/2 Heisenberg model remains
ambiguous, see e.g [22,23] and references therein, one can realize a U(1) quantum spin liquid,
effectively described by (compact) quantum electrodynamics, in the spin 1/2 XXZ model close
to the Ising limit [24-28]. Here, the topological character of the ground state manifold of the
Ising model on the pyrochlore is supplemented by quantum fluctuations to stabilize a massive
superposition of topologically ordered states. Since the effective theory of the quantum spin liquid
is in (3 + 1) dimensions, the algebraic correlations go instead as 1/r*, destroying the sharp pinch
points in the structure factor [29].

Recent work [1] has established that the metal-organic framework Mn(ta), realizes a centred
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pyrochlore lattice, where the basic unit of spins is a five site centred tetrahedron. Comparison of
bulk thermodynamic measurements to MC simulations suggest that Mn(ta), is well approximated
above ~ 1K by a classical J; —J, Heisenberg model on the centred pyrochlore lattice, although
ultimately dipolar interactions lead to ordering at lower temperatures. This opens up new avenues
to explore frustrated magnetism beyond the pyrochlore lattice. In particular, the highly versatile
nature of metal-organic frameworks [30] raises the possibility of engineering desired quantum or
classical Hamiltonians on the centred pyrochlore lattice.

In this work, we perform a detailed theoretical study of the J; —J, classical Heisenberg model
on the centred pyrochlore lattice, finding a rich phase diagram with competition between ferri-
magnetic order on the one hand, and Coulomb physics on the other. This gives rise to unusual
low temperature states of matter. Furthermore, this introduces a new paradigm of geometrically
frustrated lattices based on centred units of spins where vertex sites are shared between adja-
cent clusters but central sites are not. Where a nearest neighbour spin model on the lattice made
up of vertex sites can realize a Coulomb phase ground state, the addition of central spins intro-
duces effective charges, exponentially screening spin correlations and causing the pinch points
to acquire a finite width, as discussed in ref. [1]. In this paper we elaborate on this point, also
demonstrating a similar effect on the 2D centred kagome lattice and making a connection to the
physics of pyrochlore thin films, seen by mapping the periodic lattice in d-dimensional space to a
d + 1-dimensional ‘slab’ with open boundaries in the additional dimension.

This article is organized as follows. In section 2 we introduce the lattice and model. Section
3 provides a brief summary of the main results. We then discuss our results for the J; —J, model,
describing the ground state properties from an analytic perspective in section 4, the phase diagram
obtained from Monte Carlo (MC) simulations in section 5 and finally describe the spin liquid in
more detail in section 6, including discussion of the appropriate low-energy theory. In section 7
we present results for the analogous model on the centred kagome lattice, the 2D analogue of
the centred pyrochlore lattice, before discussing the effect of an additional J; term on the centred
pyrochlore in section 8. We conclude in section 9 with a summary and outlook.

2 Lattice and Model

The centred pyrochlore lattice is obtained from the pyrochlore lattice [31] by the addition of a
lattice site at the centre of each tetrahedron (see fig. 1a). Explicitly, it is defined by sites at
positions

r =R +0, M

where R; = n;a; + nya, + nias are the sites of a face-centred cubic (fcc) lattice with integer n;
and lattice vectors a; = %(1, 1,0), a, = %(0, 1,1), a3 = %(1, 0,1), and u labels the six sublattices
with basis vectors

1 1
6a:0>6b:¢l1 1 :51:% 1 P
1 1
-1 1 -1
6,=3|-1],65=5|-1|,6,=3% 1 (2)
1 -1 -1
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Figure 1: a. The conventional 24 site cubic unit cell of the centred pyrochlore lattice
with the six basis sites labelled. b. Finite temperature phase diagram of eq. 3 for antifer-
romagnetic J;,J, obtained from MC simulations for L = 14. Crosses are where there is
a peak in the magnetic suceptibility, circles where d L,/ T is a maximum (see eq. 5). At
T = 0, the ferrimagnetic (ferri) phase is characterized by saturated ferrimagnetic order,
whereas the partial ferrimagnet (PF) remains unsaturated. No ordering is observed in
the spin liquid regime for the temperatures simulated. The spin structure factor evolves
continuously with 7 in the spin liquid regime.

All quantities are given in units where the side length of the conventional fcc unit cell a = 1. In
what follows, we will refer to the sites at the centre of a tetrahedron, u = a, b, as central sites and
those at the vertices of the tetrahedron, u = 1,2, 3,4, as vertex sites. The tetrahedra centred on
a(b) sites are referred to as a(b) tetrahedra.

We consider the classical Heisenberg model on the centred pyrochlore lattice,

H=1J,)8;"S;+J, > 88, (3)
) (i)

with exchange interactions of strength J; coupling nearest neighbours; the centre and vertex
spins of a tetrahedron, and J, coupling next-nearest neighbours; the vertex spins on the same
tetrahedron. In what follows we set J; = S = 1 and typically parametrize the model by n = %,
using y = % instead when we would like to work close to the pyrochlore limit (n = oo, where
centre and vertex spins are decoupled).

3 Summary of Results

The main result of this paper is the phase diagram presented in figure 1b. For n < }‘ the ground
state is a ferrimagnet with all vertex and centre spins antiparallel. On the other hand, for n > ‘l‘
the ground state is defined by a local constraint (eq. 6), where we find several unconventional
low temperature states.

In the region % < 1 < 0.343, we find a partially ordered state with unsaturated ferrimagnetic
order, retaining significant fluctuations in the magnetization. For 1) > 0.343 we find a disordered
state characterized by distinct regimes of correlations (see figs 4d-f). For n < 0.5, at low T, the
dominant features of the structure factor are diffuse, ferrimagnetic maxima which are indicative

4
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of short-ranged ferrimagnetic correlations. These correlations are not captured by mean-field cal-
culations, indicating that the microscopic enforcement of the constraint on the lattice determines
the correlation structure.

For n 2 0.5, the structure factor is characterized by broadened pinch points, which are well
captured by our mean-field calculations. These show that the pinch points are never sharp for any
finite 7, so is not strictly a Coulomb phase. Instead the central spins act as fluctuating sources of
flux, which leads to the broadening of the pinch points. Remarkably the width of the pinch points
scales linearly with % in the range 0.8 < 1 < oo (see fig. 6), which can be understood in terms
of Debye screening in a charged fluid, where the charge strength is parameterized by 7.

Similarly, we also compute the structure factor of the analogous J; — J, model on the 2D
centred kagome lattice and also find broadened pinch points (fig. 8), providing evidence that this
is a generic feature of lattices made up of centred corner-sharing units. Indeed, one can view the
centred lattices as thin films of a higher dimensional lattice, which makes clear the connection
between what we observe and previous examples of Coulomb phases destroyed by (reduced)
lattice symmetry [32].

In addition, we show that by adding a small ferromagnetic J5 one can stabilize a 3D Coulomb
phase on the centred pyrochlore lattice (fig. 9), an example of how adding perturbations to the
J; —J, Hamiltonian can pick out desired ground states. We also discuss the case of a large antifer-
romagnetic J; which leads to a state where Neel ordered centres and Coulomb phase vertex spins
are entirely decoupled.

4 Ground State Properties

4.1 Local Constraint

For J, < O the model is unfrustrated and the ground state is a simple ferro or ferrimagnet, de-
pending on the sign of J;. In the ferrimagnet all central spins are anti-parallel to vertex spins.
In this paper we focus on the (experimentally relevant [1]) quadrant of parameter space where
J; > 0,J5 > 0, which we call the centred pyrochlore Heisenberg antiferromagnet (CPHAF). We
can map from J; to —J; by a global flip of all central spins, so the results presented here can be
easily generalized to the J; < O region of the parameter space.

As for the pyrochlore Heisenberg antiferromagnet (PHAF) [33, 34], the Hamiltonian can be
rewritten in terms of the tetrahedral units, t, of the lattice,

2
Ja 2 N ( Ji )

H=2) LP—=( =2 +27,), 4
5 Zl =35 2 @)

however, due to the presence of the centre site, we require that L, be given by

4
Li=7vS;. .+ Z St (5)
v=1

where y rescales the contribution of the central spin. Centre sites are labelled by the index c,
and the sum over v runs over the vertices of the tetrahedron. The ground state is the state which
minimizes L, = |L;| on all tetrahedra. For n < ‘1‘, L, is minimized by the ferrimagnetic state,

whereas for n > %, the ground state is defined by the local constraint

L,=0, Vi ©)
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Figure 2: Ground states of the Ising model on the centred pyrochlore lattice. a-c Exam-
ples of the allowed single tetrahedron spin configurations in each of the ground states
and d. the ground state phase diagram. For n < 1/3 (a.), the ground state is a long
range ordered ferrimagnet. In the region 1/3 <7 < 1 (b.) the ground state manifold is
made up of 3-up,1-down and 3-down,1-up vertex spin configurations with central spins
correspondingly pointing opposite to the net polarization on each tetrahedron. Forn > 1
(c.) the ground state is the spin ice state of the pyrochlore lattice, but with paramagnetic
central spins which are decoupled from the vertex spins. d. Example of a move which
changes the parity of the winding number in the 3 : 1 ground state of the Ising model.
Cyan (pink) represents a site with spin —1(+1) and we use the spin-ice convention to
represent the spins at the vertices. All other spins remain unchanged. The move can be
viewed as switching the direction of a pair of directed strings (highlighted) which begin
and end on the same tetrahedra.

On the pyrochlore lattice, such a constraint gives rise to an emergent U(1) gauge field [9] and the
subsequent Coulomb phase description [10].

4.2 Ising Spins

To understand how the form of the Hamiltonian in equation 4 affects the possible ground states
of the model, it is instructive to consider the analogous Ising model, where we replace Heisenberg
spins by Ising spins, S; — o0; = £1. As for the Heisenberg Hamiltonian, the ground state is

obtained by minimizing
4
YOt Z Oty

y=1

Ll = Vt, 7

which gives the ground state phase diagram presented in figure 2d. Besides the ferrimagnetic
ground state, there are also a pair of extensively degenerate disordered ground states. For n > 1
the ground state is the familiar spin-ice state of the antiferromagnetic Ising model on the py-
rochlore lattice [6,8]. The vertex spins of each tetrahedron must satisfy the 2-up/2-down (2 : 2)
rule, but now with an additional free spin variable occupying the central sites. This doubles the
number of permutations of spin configurations allowed on a tetrahedron in the ground state to 12
and so by Pauling’s argument [35] gives a residual entropy of In (3) per tetrahedron.

In between the ferrimagnet and 2 : 2 state, from % < 7 < 1, the ground state is where the
vertex spins are either 3-up/1-down or 3-down/1-up configurations (3 : 1) on all tetrahedra,
with the correspoding central spins constrained to point antiparallel to the net moment of their

6
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vertex spins. There are 8 possible permutations of spin configurations giving a residual entropy of
In (2) per tetrahedron. Such 3 : 1 single tetrahedra configurations have previously been studied in
dilute concentrations in the context of excited states of spin ice, where the defects act as charges
of the emergent gauge field [10]. In the presence of dipolar interactions in spin-ice, these charges
become monopoles of a magnetic field. On the centred pyrochlore, the ‘monopoles’ (they are
not sources of a physical magnetic field) are stabilized in the ground state of a large region of the
parameter space, are disordered and have maximal density, with a monopole on each tetrahedron.

At, n = 1, the boundary of the 2 : 2 and 3 : 1 states, the ground state manifold contains any
combinations of 2 : 2 and 3 : 1 states, with a large residual entropy of In(5) per tetrahedron.
Therefore the ground state manifold contains densities of monopoles from 0 to N;, where N, is
the number of tetrahedra, albeit at a fine-tuned point in the parameter space.

The 2 : 2 and 3 : 1 ground states can be distinguished by the topological nature of the respective
ground state manifolds, characterized by a winding number or its parity respectively. For the 2 : 2
states, the central spins are entirely decoupled from the vertex spins so the U(1) topological order
of the spin ice ground state [24] is preserved. The connection to U(1) topological order can be seen
by mapping the vertex Ising spin variables 0 = +1(—1) to the presence (absence) of a dimer on
the links of the diamond lattice. Any local operation (not encircling the system) which maintains
the ground state condition will leave the number of dimers, w;, crossing the plane perpendicular
to k, invariant. This allows one to define the U(1) winding numbers, w = (w,,w,,w,), which
label distinct topological sectors. However, in the 3 : 1 ground state, only the parity of these
winding numbers are conserved by local operations, so one can instead define Z, topological
invariants. An example of a local operation which changes the winding number is presented in
fig. 2e. In general, any pair of strings of vertex spins which begin and end on the same tetrahedra
are now flippable, by flipping both of the centre spins at the beginning and end tetrahedra and all
vertex spins in between. This is easiest to see in the spin-ice representation, where o; = +1(—1)
corresponds to a directed link variable pointing from a to b (b to a tetrahedra).

Therefore, the Ising model hosts distinct classical topological spin liquids at zero temperature,
as seen for example in ref. [32] in spin ice thin films. As we discuss in section 6.2.2 there is also
a more explicit connection to such thin films as a consequence of the geometry of the centred
pyrochlore lattice. In the case of spin ice thin films, the transition between topologically ordered
spin liquids requires a change in sign of the orphan bonds, whereas here this transition can occur
by tuning the ratio of (antiferromagnetic) exchange couplings.

4.3 Degeneracy and Flat Bands

Returning to the Heisenberg model, we first consider how the form of the constraint (eq. 6)
restricts the possible ground states of the model. For a single tetrahedron, the degree of ferrimag-
netic correlation decreases continuously as 7 is increased, from a saturated ferrimagnet at ) < ‘1‘
to decoupled centre and vertex spins as 7 — 00. The corresponding Ising states form part of the
Heisenberg ground state manifold at n < ‘1‘, n= % and nn — 00. The degeneracy, D, of the ground
state manifold may be estimated for 1 ~ 1 using the counting argument of refs [33,36,37], yield-
ing D = 3N, [1]. This is a higher degeneracy than the PHAF ground state, where D = N,, with
the additional degeneracy arising from the additional degrees of freedom carried by the (fixed
length) central spin. Furthermore, the ground state degeneracy of a spin liquid can manifest itself
in momentum space as degenerate flat bands, for example in the kagome [38] and pyrochlore
( [39]) antiferromagnets, with 1 out of 3 and 2 out of 4 flat bands respectively.

Here, both the generalized Luttinger-Tisza method (sec. 4.3.1) and the rewriting of the Hamil-
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tonian in terms of a connectivity matrix (sec. 4.3.2) show that the disordered state of the CPHAF
is characterized by a ground state with 4 out of 6 flat bands. As a result, the disordered ground
state provides a large manifold of states to which perturbations could be added in order to stabi-
lize particular ground states. For example, in section 8 we show how a 3D Coulomb phase can be
stabilized by the addition of a small ferromagnetic J;. Furthermore, this large degeneracy means
that at finite temperature entropy can wash out the effect of small perturbations, maintaining the
behaviour of the unperturbed J; —J, model, as demonstrated in ref. [1] in the case of dipolar
interactions.

4.3.1 Luttinger-Tisza method

The generalized Luttinger-Tisza (LT) method [40, 41] is a mean-field method for obtaining the
energy spectrum of a classical spin Hamiltonian in momentum space. To apply the LT, we first
rewrite the Hamiltonian in Fourier space by introducing the momentum space spin variables

Sz _ —iq-(Rﬁ—ﬁu)S?, (8)

=

=——>c¢

N, 7

where I labels the primitive unit cell, u the sublattice of the spin and N, is the number of sites of
each sublattice. This yields the Hamiltonian

H
D IR ACATI ©)
1 q uv

with (Hermitian) coupling matrix

0 0 a, as as ay
k * *

YY) =
Kq (n) a; a, Cqa2 0 Co3  Cog (10)
az as €13 €3 0 3y
a a4 C14 Cq ¢34 O
and components
aM = %e_iq'su, (11)
Cuy =ncosq-(6,—0,). (12)

In the standard LT method [40], the strong constraint, that the spin on each lattice site is

normalized,
Si>=1, Vi (13)

is replaced by the weak constraint,

DolsiP=>">"sks" =N, (14)
u

i q

where the normalization is enforced only on average. Diagonalizing K.”, one can propose a
ground state of the system by putting all of the weight from equation 14 into the mode at mo-
mentum q which corresponds to the minimum eigenvalue. However, this state will only be a valid
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Figure 3: Energy spectrum obtained from the generalized LT method. For n < 0.25
(left), there is a unique ferrimagnetic ground state, corresponding to the band minimum
at @ =0. For n > 0.25 (right), the ground state is defined by a four-fold degenerate flat
band with a gap to excitations.

physical ground state of the system if it also respects equation 13. In models with inequivalent
spins, as is the case here, this standard method often fails to find physical states.
Lyons and Kaplan realized [41] that this can be remedied by modifying equation 14 to the

form )
u
7]

1
2.2 = 2 =N g (1%
I w q u w P

. . . Sa .
where we introduced the rescaled momentum space spin variables, tﬁ = ﬁ—“ {B,} are sublattice
w

dependent parameters and N; is the number of sites on each sublattice.
Using Lagrange multipliers to incorporate the constraint in equation 15 gives the condition
that the state which minimizes the energy must satisfy the eigenvalue equation

ZL‘évtg = ltg, (16)
v

with energy per unit cell
1
e=Ay. 5 17)
p Pu

where the matrix L‘;v =By ﬁvKg ”. As before, a candidate ground state can be found by placing all
of the weight into the mode corresponding to the minimum eigenvalue (over all q) of L‘év. But
now the eigenvalues and eigenvectors of sz depend on the {f3,} so these can be tuned to ensure
that the proposed ground state also satisfies equation 13.

For our model, we make the ansatz that

1, u=a,b
, 18
P {/5, u=1,..,4 (18)
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which means the matrices in the standard and generalized variants of the LT are related by

Ly (B,m) = BKy (et = Bn), 19

where KZ " is evaluated for a rescaled effective 7, dependent on the 8 we choose. For 0 <7 < %,
2
1-3n"
n== %, an important observation is that at N = % the spectrum of K’; ¥ consists of a lower four-

fold degenerate flat band and two higher dispersive bands. This degeneracy can be preserved in

the spectrum of L‘év for arbitrary 1) by choosing 3 = «/—%n’ ensuring

we recover the known ferrimagnetic ground state by setting 3 = On the other hand, for

1
uwy uv —
From eq. 17 one obtains the energy corresponding to the minimum eigenvalues

=—— - 1)

Comparing to eq. 4, we know that this is the ground state energy of the system for n > %.
Therefore, assuming that equation 13 can be satisfied by forming superpositions of the flat band
modes, we have found physical ground states of the system. Note that in this construction 3 is
continuous across the boundary at n = %.

To summarize, for n > %, the CPH ground state may be described in terms of a four-fold
degenerate flat band. The full energy spectrum obtained using the generalized LT method is
displayed in figure 3. Besides the increased number of flat bands, there is a gap in the mean-field

spectrum, whereas for the kagome [38] and pyrochlore [39] the spectrum is gapless.

4.3.2 Connectivity matrix

Here, we reiterate the application of the method from refs. [42, 43] to the centred pyrochlore
lattice, originally presented in [1], as it provides complementary evidence the ground state corre-
sponds to a four-fold degenerate flat band, as well as being useful from a pedagogical standpoint.
The Hamiltonian in the form of equation 4, can be rewritten in terms of an % x N connectivity
matrix, A, ,,

N/3 N

Jo
H="7 >0 AvaBomSy S (22)

t=1n,m=1

where the constant term has been dropped. The elements of A are given by

1, if n € vertices of t
Acn =17 if n € centre of t . (23)
0, otherwise

The labels n, m enumerate all sites of the lattice, whereas t enumerates the tetrahedra. The di-
mension of the null space of A imposes a limit on the number of zero modes of H and thus on the
number of flat bands. Since

rank(A) < %, 24)

10
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Figure 4: a-c. MC results of bulk thermodynamic quantities for various 7. a. The
ferrimagnetic order parameter. In the range 0.25 < n < 0.325 its (finite) T — 0 value
decreases continuously, until vanishing in the SL phase. b. The susceptibility exhibits a
low temperature Curie law, y T = const for n > %. The low T Curie constant decreases
to zero at n = 0.5 before increasing again. ¢. The specific heat, ¢c(T — 0) — 0.5 for
all n > %, indicative of soft fluctuation modes about the ground state manifold. d-f.
Structure factors calculated from mean-field (left panels) and MC at T = 0.005 (right
panels). For n < 0.4 (d.), the mean-field calculation does not capture the broad maxima
observed in MC. For n > 0.5 (e,f), the structure factor is characterized by broadened
pinch points whose width decreases as 7 is increased (see also [1]).

the dimension of the null space,
) N
Nullity(A) > N — 33 (25)

by the rank-nullity theorem [44,45]. The dimension of a band in momentum space is %, so 4 out
of 6 bands of the mean-field energy spectrum of the CPHAF must belong to the ground state.

5 Phase Diagram

Moving beyond mean-field methods, we obtain the finite temperature phase diagram in figure 1b
from MC simulations. In particular we identify distinct regimes of what (on the mean-field level) is

11
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expected to be the disordered region of the model. Some important thermodynamic quantities as
calculated from MC simulations for various 7 are displayed in figs. 4a-c. Definitions for quantities
computed in MC are given in appendix A. The various low temperature phases, which we define
by their features in the T — O limit, are described as follows.

Ferrimagnet, 0 < 1 < }T:

The state identified analytically in section 4.1, with saturated ferrimagnetic order as T — 0, mag-
netization my; = % and ferrimagnetic order parameter f = —1. Low energy excitations about the
ground state are transverse spin waves so the specific heatc - 1 as T — 0.

Partial Ferrimagnet (PF), %r <1 $0.343(3):

This phase is characterized by unsaturated ferrimagnetic order, m,; < % and f > —1, with both
continuously approaching zero as 7 is increased. Fluctuations which preserve the local constraint,
equation 6, are allowed, giving rise to zero modes which lower the heat capacity below 1 at
the boundary (n = 1/4) and to ¢ = % for n > 1/4. We also observe a low temperature Curie
law, y T = const, usually a signature of a spin liquid [46], below the ordering transition. In the
structure factor we do not observe any additional features beyond those associated with peaks
at momenta corresponding to ferrimagnetic ordering. The coexistence of long-range order and
fluctuations in the PF is superficially reminiscent of magnetic fragmentation in Coulomb spin lig-
uids [21], however as we discuss in section 6 we do not expect an emergent field description to
capture this.

Spin Liquid (SL), n < 0.343(3):

We do not identify long range order in the magnetization or nematic order parameter, Q) nor do
we find peaks in the specific heat or susceptibility. The susceptibility displays a Curie law crossover,
where the low temperature Curie constant decreases continuously as 7 increases, reaching zero at
1 = 0.5, before again increasing continuously with 7). As in the partial ferrimagnet, ¢ = %, indica-
tive of the zero modes allowed by the local constraint. We can further distinguish two different
regimes of the spin liquid by the spin structure factor. Firstly, for 0.343 < 1 < 0.5, the structure
factor is characterized by broad maxima at momenta associated with ferrimagnetic ordering (fig.
4d), indicative of short range ferrimagnetic correlations in the ground state. Secondly, for 1 2 0.5,
diffuse broadened pinch points are the key features of the structure factor (figs 4e,f). The width
of these pinch points decreases as the pyrochlore limit,  — 00, is approached. These regimes of
the structure factor evolve continuously into one another as 7 crosses 0.5.

We can qualitatively rationalize the location of the different correlation regimes in parameter
space by inspecting the single tetrahedron configurations allowed by the local constraint (eq. 6)
in more detail. For %r <n< ﬁ all vertex spins must have a component anti-parallel to the
central spin, as illustrated in fig. 5. Enforcing this on closed loops in the lattice would restrict the
degree to which the central spins may deviate from pointing along a global direction, giving rise
to long-range partial ferrimagnetic order. Then for n > 21%, a vertex spin may have a component
parallel to the central spin. This would weaken the correlations between neighbouring central
spins and could destroy any long-range order in the system. In MC simulations, extrapolating to
the L — oo limit at T = 0.005, the transition between the PF and SL occurs at 11 = 0.343(3), not
too far away from the predicted value of n = ﬁ ~ 0.354. A similar effect could be responsible
for the change in correlations across 11 = 0.5, with 1 or 2 vertex spins allowed components parallel
to the central spin for n < 0.5 and 1 > 0.5 respectively (see fig. 5).
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Figure 5: Diagrams representing the single tetrahedron spin configurations which sat-
isfy eq. 6 forn = ﬁ (left) and 1 = % (right) whilst allowing for one or two spins
respectively to be perpendicular to the central spin. Increasing 7} decreases the effective
central spin length, %SC, meaning that the perpendicular spins can acquire a finite com-
ponent parallel to the direction of the centre spin, whereas decreasing 7 leads to a finite
antiparallel component for at least one of these spins. We propose this as a qualitative
explanation for the different correlation regimes we observe in our MC simulations.

6 Spin Liquid

6.1 Mean-field Structure Factor

To calculate the ground state structure factor in the regime governed by the local constraint, we
employ Henley’s (approximate) projection-based approach [47]. This method is equivalent to the
lowest order of a large-N expansion (e.g ref. [9] on the pyrochlore) and was recently employed
to distinguish classical spin liquids from a topological perspective [48].

We are interested in the regime where the ground state is defined by eq. 6, so restrict our
attention to 1 > }‘. On the centred pyrochlore lattice, taking the Fourier transform of eq. 5 yields

4
L.(Q)=7S,, + Y e*4?ns, (q)=0, (26)

m=1

where x = a, b labels the tetrahedra centred on the corresponding sublattice, with spin S. occu-
pying the centre site. The exponent takes positive (negative) sign for x = a(b) and the second
equality is the ground state constraint. This may be rewritten in vector form as

L.(q)=L,(q)-S(q)=0, 27)
where
za(q) — (Y: 0’ eiq-51, eiq-ﬂz’ eiq~53’ eiq-54)T’ (28)
1,(q) = (0,7, e 191 =108z (~iaBs =iads)T
S(q) = (S, (a), S, (), $1(), S2(q), S3(a), S4(q))".

The key object is the 6 x 2 matrix
E=(L; I}), (29)

whose columns are the Z;“(. Assuming weakly interacting spins, such that the probability distribu-
tion of spin configurations is Gaussian in the spin variables and enforcing equation 27 by projecting
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onto the subspace orthogonal to the L}, the structure factor is given by

(S.(—@) - $,(@)) = s5P,,(q), (30)
where u, v label the sublattices, s% is a normalization constant and
P(@) = 6, — [E(E'E)'E],,. 31
Enforcing spin normalization on average, the structure factor over all sublattices (see eq. 60) is
N, 1
S(@Q) = —= > (S,(—q)-S,(q)) = ——M"PM, 32
(@= ;< W0 8,(@) = 75 (32)

where M =(1,1,1,1,1,1)7.
Pinch point singularities may arise in the structure factor at the q where E'E is singular. Since

4 2

Z eZlq-Em

m=1

det(E'E) = (y2 + 4)* — (33)

for any finite y, det(E'E) # 0 and thus we do not expect to find pinch point singularities in the
structure factor on the centred pyrochlore lattice. This is confirmed by our MC simulations.

Since these mean-field structure factors are for T = 0, results are displayed alongside those
from low T MC simulations in figs. 4d-f. We find good agreement for 1 > 0.5 so therefore expect
that a long wavelength effective description is appropriate in this regime. Although the structure
factor here does not have sharp pinch points for any finite 7, the finite width pinch points suggest
a close connection to the 3D Coulomb phase on the pyrochlore, which we explore in more detail in
the next section. On the other hand, for 0.25 < 1 < 0.5, we find mean-field deviates from MC; it
cannot properly capture the short-range ferrimagnetic correlations which result from microscopi-
cally satisfying the local constraint. Nevertheless at intermediate temperature T & 0.5, mean-field
and MC are in good agreement for all relevant 1), even in the 0.25 < 1 < 0.5 regime, likely due
to the large entropy of the long wavelength spin liquid. This crossover from long wavelength spin
liquid to short-range ferrimagnetic correlations could also explain the bump in specific heat seen
for these values of 1 around T ~ 0.1 in fig. 4c, which indicates a loss in entropy.

6.2 Coulomb Physics

6.2.1 Charge Fluid Description

Here, we first restate the mapping (initially proposed in ref. [9]) which allows one to describe
the PHAF ground state as a Coulomb phase, then explain how the centred pyrochlore geometry
modifies this picture. We pointed out the resulting charge fluid description in ref. [1], but here
we explain in more detail.

On each tetrahedron, at position R,, we define the three-component vector field

4
E“(R;) = ) 0, S*(R, £5,,), (34)

m=1
where there is one copy for each of the a = x,y,z spin components and use the orientation

A

a, = |g—m| which points from a to b tetrahedra. The ground state condition for the PHAF is eq. 5
with y = 0, which after coarse-graining translates to

V-E*=0. (35)
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Assuming a Gaussian effective free energy within the ground state manifold, the structure factor

1

< Z el"l'(Rr"Rr)(E;f(Rt)Ei‘(Rﬂ)), (36)

t t,t!

E; (@)=

where the E* are the vector components of E* and the sum runs over all tetrahedra, t, t’, will take
the form 0.
u4y
Eﬁv(q) S 5;”_ q2 > (37

giving rise to characteristic pinch points at the centre of the Brillouin zone. In real space this
corresponds to algebraic 1/r3 decay of correlations. The effective low energy theory is classical
electrostatics, where excitations above the ground state introduce charges which interact via an
(entropic in origin) Coulomb potential.

Now consider switching on a small, but finite, v in the local constraint on only n ‘defect’
tetrahedra, whilst maintaining y = 0 on all others. Provided these defects are well separated,
after coarse graining the central spins on the defects can be viewed as n charges

V-E*(R;) = Q*(R,) o< +yS*(R,) (38)

in each of the a channels with —(+) on a(b) tetrahedra. Q* € [—y,v] and therefore y parametrizes
the maximum charge strength. Now the low-energy picture is that of three copies of an emergent
U(1) gauge field, coupled to scalar charges on diamond lattice sites. Following the same argu-
ments for the PHAF, these charges will experience an entropic effective Coulomb interaction. Then
arguments from Debye-Hueckel theory [49-51] tell us that the field correlations must be screened
as e " with k o< v, as any charge in the system carries a factor of y. In momentum space, this
results in the pinch points acquiring a finite width parametrized by «

qudy
q2 +x2°

Eﬁv(Q) < 5,u,v - (39)
Remarkably when we compute the structure factor of the CPHAF in MC simulations and fit to
the form A
X — — —

Exx(qx:qy _O:qz _0)_ JZC+K21 (40)
wth A and « fitting parameters, we find that k o< y over a large region of the parameter space,
0 < y £ 1.25. These results are summarized in fig. 6. This is despite the fact that the cen-
tred pyrochlore lattice corresponds to taking the limit n — N, and Debye-Hueckel theory is used
to describe systems of dilute charges at high temperature. Here there are charges, albeit with
strength parametrized by v, in at least one a channel on every tetrahedron (the effective tem-
perature is a priori not known). The ground state can thus be viewed as the Heisenberg model
variant of a monopole fluid in spin ice, for example studied in refs. [52,53]. This description does
not impose any energetic constraints on the distribution of central spins, only accounting for how
the central spins entropically rearrange themselves according to the effective electrostatic inter-
actions between them. For small y, we expect that all possible configurations of central spins will
be allowed in the ground state. However for larger y, certain configurations may no longer be
energetically feasible and thus this view of the central spins as mobile charges will break down.
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Figure 6: a-c. Computing the width of pinch points in E}, (q) from MC simulations,
reproduced from [1]. a. The E (q) structure factor, eq. 36, as computed from MC
for y = 0.67, T = 0.005 in the [hkO] plane. A cut is taken along the red line shown.
b. Fitting the Lorentzian in eq. 40 to the MC data for various y (the same colours are
used in b and ¢). c. k which parametrizes the width of the pinch point against v, with
linear fit up to y = 1.25. The linear relation is characteristic of a dilute charge fluid with
charge strength parameterized by y.

6.2.2 Analogy with pyrochlore thin films

Finite width pinch points have a