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Abstract A relativistic Hartree-Fock Lagrangian in-

cluding a chiral potential and nucleon polarisation is

investigated in hopes of providing a better description

of dense nuclear matter. We fully consider the contri-

bution of the exchange Fock term to the energy and

the self-energies, and in addition we investigate the nu-

cleon’s compositeness and finite size effects (confine-

ment and form factors) and short range correlations

modeled by a Jastrow ansatz. These effects are added

step by step, such that their impact on the dense matter

properties can be analysed in details. The parameters

of the model are adjusted to reproduce fundamental

properties related to the QCD theory at low energy,

such as the chiral symmetry breaking, nucleon’s quark

substructure and Lattice-QCD predictions, as well as

two empirical properties at saturation: the binding en-

ergy and the density. All other empirical parameters,

e.g., symmetry energy and its slope, incompressibility

modulus, effective mass, as well as spin-isospin Landau-

Midgal parameter are predictions of the models and can

be used to evaluate the gain of the different approxima-

tion schemes in describing nuclear properties. Bayesian

statistics is employed in order to propagate parame-

ter uncertainties into predictions for the nuclear matter

properties. We show that the splitting of the effective

Landau mass is largely influenced by the value of the

ρT coupling, and we show that the fit to the symmetry

energy, which induces an increase of the coupling con-

stant gρ by about 20-25% compared to the case where

it is fixed by the quark model, provides a very good EoS

compatible with the present nuclear physics knowledge.

PACS 12.39.FeChiral Lagrangians · 21.65.+fNuclear

matter · 26.60.-cNuclear matter aspects of neutron

stars

1 Introduction

The theory of the strong interaction, the so-called quan-

tum chromo-dynamics (QCD), has been formulated in

the seventies [1] and provides good description of high

energy processes which can be found at high tempera-

tures or high densities. In these regimes, QCD is pertur-

bative, which explains why its direct application is pos-

sible. However, at low energies, such as low-temperature

or low-density encountered in the atomic nucleus, this

theory is non-perturbative. It is reflected in different

phenomena such as the spontaneous breaking of sym-

metries that gives a non-trivial structure to the QCD

vacuum as well as the color confinement, which is un-

der investigation, for instance, by the CBM experiment

at FAIR [2]. In the low energy regime where pertur-

bative approaches do not apply directly, several effec-

tive models capturing the symmetries of the theory

has been suggested, such as, the Nambu-Jona-Lasinio

(NJL) model [3] or the effective chiral approach [4], also

known as Chiral Effective Field Theory (χ-EFT). The

latter approach, is well suited to explore low-density

nuclear matter and breaks down as the density exceeds

nsat to 2nsat [5], where nsat is the nuclear saturation

density (nsat ≈ 0.155±0.005 fm−3 [6]). The exploration

of the densest phase of nuclear matter therefore requires

extrapolations such as the agnostic ones proposed in

Refs. [7,8] for instance.

The important features of QCD at low-energy are

the following: the degrees of freedom are nucleons and

mesons, instead of quarks and gluons, the vacuum is

non-trivial due to the spontaneous breaking of the chi-

ral symmetry, and the fields are in, or close to, a rel-

ativistic regime. In the present paper, we investigate a

chiral Lagrangian for nucleons and mesons, where the

spontaneous breaking of the chiral symmetry gives rise
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to a scalar chiral potential, and where the quark sub-

structure is reflected in the polarisability of the nucleons

at finite density. We additionally consider the relativis-

tic dynamics of the fields in the present approach.

In this work, we consider the mean-field approach,

and beyond, in treating the nuclear interaction. Since

we are dealing with an N-body problem, this technique

consists of taking nucleons that are bathing in a back-

ground classical ”mean field”, scalar or vector, and this

is known as the Hartree level. Going beyond that, the

quantum fluctuations of these fields should be taken

into account in what is known as the Fock terms, which

in a quantum field theory would correspond to an inter-

action mediated by mesons, hence why it is common to

see it described as meson exchange. The Hartree level

was previously studied in Somasundaram et al. [9] for

a relativistic mean-field model where spontaneous chi-

ral symmetry breaking and confinement effects are in-

corporated (RMF-CC model). This model is based on

two important concepts: the identification of the nu-

clear physics σ meson, introduced in relativistic mean

fields approaches, with the radial fluctuation of the chi-

ral quark condensate as proposed in Ref. [10], and the

inclusion of a nucleon ”polarisation” by the nuclear en-

vironment as in Ref. [11]. As mentioned earlier, this

study was done at the Hartree level, and we now incor-

porate the Fock term. The Fock term is indeed instru-

mental in order to incorporate the missing contribution

of the pion meson for instance. In the present study, we

consider symmetric matter (SM) and neutron matter

(NM), and we analyze the impact of the form factor

(FF) at the interaction vertices and the inclusion of

short range correlation (SRC) due to the strong repul-

sion of the potential at short distance.

The study is organized in the following way: In Sec. 2

we briefly describe the content of our relativistic mean

field Lagrangian. Sec. 3 is devoted to the formalism

of the pure relativistic Hartree-Fock approach (called

model A in the following) then sec. 4 presents various

improvements of the Fock term, such as the widely used

one in nuclear physics where the contact contribution

of the spin-isospin π and ρ exchange are fully removed

by the so-called Orsay prescription [12] (model B), or

other approaches where the finite size effects (model C)

and SRC (model D) are considered. The SRC is im-

plemented through the well-known Jastrow ansatz as

used in Oset-Toki-Weise paper [13]. We then present

our results in Sec. 5, where we perform sensitivity anal-

yses as well as detailed study based on the Bayesian

approach. We also show the important contribution of

the ρT coupling to the question of the splitting of the

effective Landau mass in neutron matter. Our conclu-

sions are given in Sec. 6.

2 The relativistic mean field Lagrangian

2.1 Formalism

Considering only the lightest u and d quarks and the

flavor number Nf = 2, the chiral fields associated to the

fluctuations of the quark condensate 〈q̄q〉 resulting from

chiral symmetry breaking are usually parameterized in

term of a SU(2) matrix M as:

M = σ + i~τ · ~φ ≡ S U (1)

with S = s + fπ and U = ei ~τ ·~π/fπ . The scalar field σ

(S) and pseudo-scalar fields ~φ (~π) written in Cartesian

(polar) coordinates appear as the dynamical degrees of

freedom. As stated in the introduction, it is necessary

to clarify the connection between the nuclear physics

sigma meson of the Walecka model (let us call it σW
from now on) at the origin of the nuclear binding with

a chiral field (1). For instance, one may be tempted to

identify σW with the scalar field σ in Cartesian coor-

dinates. It is however forbidden by chiral constraints

and this point has been first addressed by Birse [14]: it

would lead to the presence of terms of order mπ in the

NN interaction which is not allowed.

In this study, we follow Ref. [10] and identify σW
with the chiral invariant s (= S − fπ) field associated

with the radial fluctuation of the chiral condensate S

around the chiral radius fπ, in polar coordinates. It for-

mally consists of promoting the chiral invariant scalar

field s and the pion field ~π appearing in the matrix M

in Eq. (1) to effective degrees of freedom. This was orig-

inally formulated in the framework of the linear sigma

model (LσM) [10] but an explicit construction using a

bosonization technique of the chiral effective potential

can be done within the NJL model [15] where the linear

sigma model potential is recovered through a second or-

der expansion in S2−f2
π of the constituent quark Dirac

sea energy. This proposal, which gives a plausible an-

swer to the long standing problem of the chiral status

of Walecka theories, has also the merit of respecting all

the desired chiral constraints [14]. In particular the cor-

respondence s ≡ σW generates a coupling of the scalar

field to the derivatives of the pion field, as expected in

the physical world. Hence the radial mode decouples

from low-energy pions whose dynamics is governed by

chiral perturbation theory. A detailed discussion of this

sometimes subtle topic is given in [10,16,7] and in the

following we employ the notation s for the scalar field

to avoid confusion with the meson σ.

After the bosonisation of the quark fields and the

introduction of a confining potential [15], the new de-

grees of freedom are the nucleons and the mesons. The

relativistic Lagrangian can generically be written as the
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sum of a kinetic fermionic term,

Lψ = ψ̄ (iγµ −MN ) ∂µψ , (2)

where the field ψ represents the nucleon spinor, and of

meson-nucleon terms,

Lm = Ls + Lω + Lρ + Lδ + Lπ , (3)

collecting all mesonic contributions considered in a given

model. Using notation of Ref. [17] these can be enumer-

ated as,

Ls =
(
MN −MN (s)

)
ψ̄ψ − v(s) +

1

2
∂µs∂µs ,

Lω =− gωωµψ̄γµψ +
1

2
m2
ωω

µωµ −
1

4
FµνFµν ,

Lρ =− gρρaµψ̄γµτaψ + gρ
κρ

2MN
∂νρaµψ̄σ

µντaψ

+
1

2
m2
ρρaµρ

µ
a −

1

4
Gµνa Gaµν , (4)

Lδ =− gδδaψ̄τaψ −
1

2
mδδaδa +

1

2
∂µδa∂µδa ,

Lπ =
gA
2fπ

∂µϕπaψ̄γ
µγ5τaψ −

1

2
m2
πϕπaϕπa

+
1

2
∂µϕπa∂µϕπa ,

where the symbols have their usual meaning. Histori-

cally, the pion coupling was defined as f̃π/mπ, which

is replaced by gA/(2fπ) considering f̃π = mπgA/(2fπ),

where gA is the axial coupling constant and fπ is the

pion decay constant. In Eq. (4), two quantities are of

particular interest to us, the scalar potential v(s) and

the s-field dependent nucleon mass MN (s). We study

the relativistic Hartree-Fock approach including chiral
symmetry breaking through the chiral potential v(s)

and confinement (RHF-CC), in light of the RMF-CC

in [9], hereafter called (RHCC). The leading order effect

of quark confinement is incorporated from its contribu-

tion to the nucleon polarisability associated with the

readjustment of the quark wave function in the nuclear

scalar field. We extend this model to include the finite-

size effect through form factors (FF) as well as short-

range correlations (SRC) from the Jastrow ansatz.

The effective chiral potential v(s) in the scalar field

s has a typical Mexican hat shape which breaks chi-

ral symmetry. We consider in this study the expression

provided by the LσM,

v(s) =
λ

4

(
(fπ + s)2 − v2

)2 − fπm2
πs

≡ m2
s

2
s2 +

m2
s −m2

π

2fπ
s3 +

m2
s −m2

π

8f2
π

s4. (5)

More details on this effective chiral potential can be

found, for instance, in Ref [9].

In the presence of the nuclear scalar field, the nu-

cleon mass is modified according to:

MN (s) = MN + gss+
1

2
κNS

(
s2 +

s3

3fπ

)
. (6)

Here we do not take for the first order response, namely

the scalar coupling constant, the value gS = MN/fπ of

the LσM , but take it as a parameter possibly fixed

by an underlying nucleon model. The nucleon polaris-

ability κNS, incorporates the effect of the nucleon re-

sponse, i.e., the central ingredient of the quark-meson

coupling model (QMC) introduced in the original pio-

neering work of P. Guichon [20]. As in [11] we include

in practice a scalar field dependent susceptibility:

κ̃NS(s) =
∂2MN

∂s2
= κNS

(
1 +

s

fπ

)
, (7)

which vanishes at full chiral restoration, i.e., s̄ = −fπ,

where s̄ is the value taken by the s field in the ground

state.

In addition to the scalar s and vector ω fields con-

tributing to the Hartree and Fock terms in symmetric

matter, the Fock term brings a contribution from the

isovector fields corresponding to the δ and ρ mesons

channels.

2.2 Parameterization

The model parameters are fixed by two parameters de-

rived from Lattice-QCD (L-QCD) data and from hadronic

phenomenology, along the lines originally proposed in
Ref. [11]. We however need two additional constraints to

determine all coupling constants, which are taken to be

the empirical values of nsat and Esat in nuclear matter.

Also notice that these parameters might be ultimately

fixed or guided by an underlying microscopic model of

the QCD vacuum and of the confinement mechanism

along the lines of Ref. [15]. The delta meson is sup-

posed to weakly couple to nucleons and we take gδ = 1.

Note that this coupling is often neglected in relativis-

tic approaches (see [12,21,22]). As for gρ, we use the

quark model hypothesis for which gρ = gω/3, and we

later on investigate the effect of replacing the quark

model condition by a direct fit to the empirical value

of the symmetry energy Esym, see Sec. 5.6. The pa-

rameters considered in the present study are shown in

Tabs. 1 and 2. In Tab. 2, we explore three values for

the nucleon ρ tensor coupling fρ = gρκρ, according to

either the Vector Dominance Model (VDM) [18] or to

the scattering data [19]. For reference we also consider

the case without ρ tensor coupling.
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Table 1 Model parameters (masses and coupling constants) which are fixed to be constant in the present analysis. Note
however that the nucleon-ρ vector coupling is fixed from two prescriptions: i) to the quark model imposing that gρ = gω/3, or
ii) to reproduce the symmetry energy Esym. In the latter case, gρ becomes a variable parameter in the fit protocol.

MN mρ mδ mω mπ gρ gδ gA fπ

MeV MeV MeV MeV MeV MeV

938.9 779.0 984.7 783.0 139.6 i) quark model: gω/3 1 1.25 94.0

938.9 779.0 984.7 783.0 139.6 ii) Fit parameter 1 1.25 94.0

Table 2 We consider three cases for κρ, the coupling con-
stant of the ρT : no ρT with κρ=0.0 (for reference), weak
ρT with κρ=3.7 suggested by the Vector Dominance Model
(VDM) [18], and strong ρT with κρ=6.6 suggested by scat-
tering data [19].

ρT model Ref. κρ

no ρT NRT 0.0

weak ρT WRT [18] 3.7

strong ρT SRT [19] 6.6

By fitting the model to the parameters in Tab. 3,

i.e. using the connection to L-QCD parameters a2 and

a4 from the following relations (see Ref. [17,23,24]):

gs =
a2m

2
s

fπ
and C =

fπgs
MN

[
3

2
+
a4m

4
s

fπgs

]
, (8)

where C is the dimensionless parameter related to the

nucleon polarisability, i.e C = (f2
π/2MN )κNS , and by

reproducing the Nuclear Empirical Parameters (NEP)

Esat and nsat, the following model parameters ms, gω,

gs and C can be fixed. This is shown in more details in

Sec. 5. Note that we use Bayesian statistics to propagate

the experimental uncertainties into the model parame-

ters.

It should be remarked that, as argued in Ref. [15]

and restated in [9], the scalar field s has no direct rela-

tion with the broad resonance f0(600), but instead to

the inverse of the propagator at zero momentum charac-

terized by the scalar screening mass. As a consequence,

the value of the scalar field mass does not necessarily

need to match with the energy of the broad scalar me-

son f0 of about 500 MeV (the pole mass) and can be

slightly larger. This scalar screening mass is therefore

running from about 600 up to about 800 MeV, namely

of the order of twice the constituent quark mass in an

underlying NJL model. As for gs, a value of around 10

is predicted from the original LσM. This value was used

in Ref. [11,23,17] for instance, giving a reference value

for the comparison of our new models. Note that in our

case, the value of gs is obtained from the solution of

Eqs. (8).

Table 3 The values of the inputs to be reproduced by ad-
justing the remaining parameters gs, ms, gω and C: the pa-
rameters a2 and a4 from L-QCD and the NEP Esat and nsat.
For the Lattice parameters the average and standard devia-
tion refers to the profile of a uniform distribution, while for
the NEP they correspond to a Gaussian distribution.

Parameters Ref. centroid std. dev.

a2 (GeV−1) L1 [25] 1.553 0.136

L2 [26] 1.1 0.2

a4 (GeV−3) L1 [25] -0.509 0.054

L2 [26] -0.225 0.05

Esat (MeV) [6] -15.8 0.3

nsat (fm−3) [6] 0.155 0.005

Nuclear matter properties can be encoded into the

nuclear empirical parameters (NEP). They are defined

as the successive derivatives of the energy per particle

in SM esat(n),

P
(k)
IS = (3nsat)

k ∂esat(n)

∂nk
, (9)

for the iso-scalar (IS) NEPs, fixing the isospin asym-

metry parameter δ = (nn − np)/n = 0 and the den-

sity to be the saturation density, n = nsat. We note

that P
(0)
IS = Esat is the saturation energy, P

(2)
IS = Ksat

is the incompressibility modulus, and P
(3)
IS = Qsat is

the isoscalar skewness parameter. We can also define

the isovector (IV) NEPs from the symmetry energy

esym(n) = eNM(n) − esat(n), where eNM(n) is the en-

ergy per particle in NM, as follows,

P
(k)
IV = (3nsat)

k ∂esym(n)

∂nk
. (10)

We note P
(0)
IV = Esym the symmetry energy at satu-

ration, P
(1)
IV = Lsym the symmetry energy slope, and

P
(2)
IV = Ksym the symmetry energy curvature. See for

instance Refs. [6,27] for more details.
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3 The Hartree-Fock model (model A)

In the following, the model extensions B, C and D will

be based on the pure HF approach, that we present in

this section.

3.1 Hartree-Fock equations

From the Lagrangian expressed in Eqs. (2) and (4), and

following the method proposed in [17], we can derive the

equations of motion for each meson field φα (α = s, ω,

ρ, δ, π), giving

−∇2s+ v′(s) = −∂MN

∂s
Ψ̄Ψ

−∇2ωµ +m2
ωω

µ + δµi∂i(~∇ · ~ω) = gωΨ̄γ
µΨ

−∇2ρµa +m2
ρρ
µ
a + δµi∂i(~∇ · ~ρa) = gρ Ψ̄γ

µτaΨ

−gρ
κρ

2MN
∂j
(
Ψ̄σµjτaΨ

)
−∇2δa +m2

δa δ = gδ Ψ̄τaΨ

−∇2ϕaπ + m2
πϕaπ =

gA
2 fπ

~∇ · Ψ̄γ5~γτaΨ. (11)

We then decompose the meson fields, see Ref. [28,17],

as follows,

φα = φ̄α +∆φα (12)

where φ̄α = 〈φα〉 represents the classical expectation

value of the meson field φα while ∆φα corresponds to

its quantum fluctuation, considered here as a smaller

quantity. Injecting this decomposition into the equa-

tions of motion (11) generates two sets of equations,

one describing the motion in a self consistent scalar

and vector background fields (direct or Hartree terms),

−∇2s̄+ v′(s̄) = −g∗s
〈
Ψ̄Ψ
〉

−∇2ω̄0 +m2
ωω̄

0 = gω
〈
Ψ †Ψ

〉
−∇2ρ̄0

a +m2
ρ ρ̄

0
a = gρ

〈
Ψ †τaΨ

〉
− gρ

κρ
2MN

∂j
〈
Ψ̄σ0jτaΨ

〉
−∇2δ̄a +m2

δa δ̄ = gδ
〈
Ψ̄τaΨ

〉
. (13)

where g∗s = ∂MN (s̄)/∂s̄, and the other which describes

the propagation of the fluctuations of the meson fields

(exchange or Fock terms),

−∇2(∆s) +m∗2s ∆s = −g∗s
(
Ψ̄Ψ −

〈
Ψ̄Ψ
〉)

−∇2(∆ωµ) +m2
ω∆ω

µ = Pµνgω
(
Ψ̄γνΨ −

〈
Ψ̄γνΨ

〉)
−∇2(∆ρµa) +m2

ρ∆ρ
µ = Pµνgρ

(
Ψ̄γντaΨ −

〈
Ψ̄γντaΨ

〉
− κρ

2MN
∂j
(
Ψ̄σνjτaΨ

)
+

κρ
2MN

∂j
〈
Ψ̄σνjτaΨ

〉)
−∇2(∆δa) +m2

δ ∆δa = gδ
(
Ψ̄τaΨ −

〈
Ψ̄τaΨ

〉)
−∇2(∆ϕaπ) +m2

π∆ϕaπ =
gA

2 fπ
~∇ · Ψ̄γ5~γτaΨ (14)

with m∗2s = v′′(s̄) + κ̃NS

〈
Ψ̄Ψ
〉

and the operator P

defined as,

P 0
0 = 1, P 0

i = 0, P i0 = 0, P ij ≡ P ij = δij −
∂i∂j
m2
ρ

. (15)

The Hartree-Fock Hamiltonian is determined from

the Lagrangians (2) and (3), and the equations of mo-

tion decomposed into the direct and the exchange com-

ponent of the fields. It can be written in two terms,

H ≡ HK+D + HE , (16)

where the first term contains the kinetic (K) and direct

or Hartree (D) contributions,

HK+D =

∫
dr

[
Ψ̄

(
− i~γ · ~∇+MN (s̄) + gωω̄

0γ0

+gρρ̄
0
3γ0τ3 + gρ

κρ
2MN

∂j ρ̄
0
3σ

0jτ3 + gδ δ̄3τ3

)
Ψ

+v(s̄) +
1

2

(
~∇s̄
)2

+
1

2
m2
δ δ̄

2
3 +

1

2

(
~∇δ̄3

)2

−1

2
m2
ω(ω̄0)2 − 1

2

(
~∇ω̄0

)2

−1

2
m2
ρ(ρ̄

0
3)2 − 1

2

(
~∇ρ̄0

3

)2
]
, (17)

and the second term HE corresponds to the exchange

mediated by the propagation of the meson fields’ fluc-

tuations. It has the form

HE =

∫
dr

1

2

[
g∗s∆s∆

(
Ψ̄Ψ
)

+ gω∆ωµ
(
Ψ̄γµΨ

)
+gρ∆ρ

a
µ

(
∆(Ψ̄γµτaΨ)− κρ

2MN
∂j
[
∆
(
Ψ̄σµjτaΨ

)])
+gδ∆δa∆

(
Ψ̄τaΨ

)
+

gA
2fπ

∆ϕaπ ~∇ · Ψ̄γ5~γτaΨ

]
(18)

where we use the following notation,

∆(Ψ̄ΓΨ) = Ψ̄ΓΨ −
〈
Ψ̄ΓΨ

〉
.

We introduce the (static) propagators Dα(r− r′) in

coordinate space for the fluctuating fields, defined as,

(
−∇2

r +m∗2s (r)
)
Ds(r− r′) = δ(3)(r− r′),(

−∇2
r +m2

α

)
Dα(r− r′) = δ(3)(r− r′) , (19)
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Table 4 Functions Aα, Bα, Cα and Dα used in the expressions for the exchange self-energies.

α Aα Bα Cα Dα

s g∗2s θs g∗2s θs −2g∗2s φs -

δ g2δθδ g2δθδ −2g2δφδ -

ω 2g2ωθω −4g2ωθω −4g2ωφω -

ρV 2g2ρθρ −4g2ρθρ −4g2ρθρ -

ρT −
(
fρ
2M

)2
m2
ρθρ −3

(
fρ
2M

)2
m2
ρθρ 4

(
fρ
2M

)2
m2
ρ[(p2 + p′2 −m2

ρ/2)φρ − pp′θρ] -

ρV T - - - 12
(
gρfρ
2M

)
(pθρ − 2p′φρ)

π -
(
gA
2fπ

)2
m2
πθπ −

(
gA
2fπ

)2
m2
πθπ 2

(
gA
2fπ

)2
[(p2 + p′2)φπ − pp′θπ] -

with α = ω, ρ, δ, and π. The exchange term HE can

then be written as,

HE =
1

2

∫
drdr′

[
− g∗s (r)g∗s (r′)∆

(
Ψ̄Ψ
)

(r)

×Ds(r− r′)∆
(
Ψ̄Ψ
)

(r′)

+g2
ω∆
(
Ψ̄γµΨ

)
(r)Dω,µν(r− r′)∆

(
Ψ̄γνΨ

)
(r′)

+g2
ρ∆
(
Ψ̄γµτaΨ

)
(r)Dρ,µν(r− r′)∆

(
Ψ̄γντaΨ

)
(r′)

+2g2
ρ

κρ
2MN

∆
(
Ψ̄σµjτaΨ

)
(r)

×∂jDρ,µν(r− r′)∆
(
Ψ̄γντaΨ

)
(r′)

+g2
ρ

(
κρ

2MN

)2

∆
(
Ψ̄σµiτaΨ

)
(r)

×∂i∂′jDρ,µν(r− r′)∆
(
Ψ̄σνjτaΨ

)
(r′)

−g2
δ∆
(
Ψ̄τaΨ

)
(r)Dδ(r− r′)∆

(
Ψ̄τaΨ

)
(r′)

+

(
gA

2 fπ

)2 (
Ψ̄γ5γiτaΨ

)
(r)∂i∂

′
jDπ(r− r′)

×
(
Ψ̄γ5γjτaΨ

)
(r′)

]
(20)

where we have introduced the tensor propagatorDω,µν(r−
r′) whose non vanishing components are : Dω,00(r −
r′) = Dω(r−r′) andDω,ij(r−r′) = (δij−∂i∂j/m2

ω)Dω(r−
r′) and a similar one for the ρ meson.

In the Hartree-Fock (HF) approximation, the ground

state is represented by a Slater determinant composed

of single-particle Dirac wave functions ϕNa (~r) χN , where

χN is the spin wave function and N = n (neutrons) or

p (protons). We can define the densities appearing in

the sources of the classical equations of motions as〈
Ψ̄Ψ
〉

=
∑
a<F

ϕ̄paϕ
p
a + ϕ̄naϕ

n
a ≡ nsp + nsn = ns〈

Ψ †Ψ
〉

=
∑
a<F

ϕp†a ϕ
p
a + ϕn†a ϕ

n
a ≡ np + nn = n

〈
Ψ̄τ3Ψ

〉
=
∑
a<F

ϕ̄paϕ
p
a − ϕ̄naϕ

n
a ≡ nsp − nsn = n(3)

s〈
Ψ †τ3Ψ

〉
=
∑
a<F

ϕp†a ϕ
p
a − ϕn†a ϕ

n
a ≡ np − nn = n(3)

〈
Ψ̄σ0jτ3Ψ

〉
=
∑
a<F

ϕ̄paσ
0jϕpa − ϕ̄naσ

0jϕna . (21)

The single-particle orbitals are obtained by mini-

mizing the HF energy with respect to the ϕ̄p,na (~r), with

the constraint that the single-particle wave functions

are normalized, which could be expressed in the follow-
ing way by introducing Lagrange multipliers εNa ,

δ

δϕ̄Na (r)

E −∑
N,a

εNa

∫
dr′ϕN†a (r′)ϕNa (r′)

 = 0 .

(22)

The Lagrange parameters εNa associated to the normali-

sation of the wave-functions stand for the single-particle

energies. When studying infinite nuclear matter, the

single-particle orbitals are plane waves, labeled by mo-

mentum and spin indices p = (p, s) for each isospin

state N :

ϕNp (r) =
1√
V
u(p, s)eip·rχN , (23)

where V is the the volume of a unit cell.

The Dirac spinors u(p, s) minimizing the energy are

defined as the solution of the following Dirac equation:

[γ.p∗ +M∗D]u(p, s) = γ0E
∗u(p, s) (24)
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where the starred quantities are the effective momen-

tum p∗, the Dirac scalar mass M∗D, and the effective

energy E∗, given by,

p∗ = p + p̂ΣV (p) ,

M∗D(p) = MN +ΣS(p) , (25)

E∗(p) = εNa −Σ0(p) =
√
M∗D(p)2 + p∗2 ,

where ΣS(p), Σ0(p), and ΣV (p) are the self-energies of

scalar, time and vector nature, and they receive contri-

butions from all the mesons we consider in our study,

namely s, δ, ω, ρ and π, as well as from the direct

and exchange contributions. These quantities can be

different for protons and neutrons in isospin asymmet-

ric matter. Note that p = |p|.
The natural definition of the in-medium kinetic energy-

density is,

εKnat =
∑
N=p,n

1

π2

∫ kFN

0

dpp2
(

pP̂N +MN (s̄)M̂N

)
(26)

where the quantities M̂N and P̂N are defined as,

M̂N (p) ≡ M∗DN (p)

E∗N (p)
P̂N (p) ≡ p∗N

E∗N (p)
, (27)

and the scalar meson Hartree energy is simply

εH,snat = v(s̄) . (28)

In practice, the in-medium kinetic energy (26) gets un-

expected negative values since MN (s̄) is density depen-

dent and decreases as the density increases. We there-

fore adopt the following definition of the kinetic energy

εK =
∑
N=p,n

1

π2

∫ kFN

0

p2dp
(

pP̂N +MNM̂N

)
, (29)

while the scalar meson Hartree contribution to the en-

ergy becomes

εH,s = (MN (s̄)−MN )ns + v(s̄) , (30)

such that sum of the kinetic and scalar Hartree terms

is unmodified: εKnat + εH,snat = εK + εH,s.

The general expression for the Hartree and Fock en-

ergies per particle, respectively εH and εF , are given by:

εH = (MN (s̄)−MN )ns + v(s̄)− 1

2

(
gδ
mδ

)2

(nsn − nsp)2

+
1

2

(
gω
mω

)2

n2 +
1

2

(
gρ
mρ

)2

(nn − np)2 , (31a)

εF =

∫
dp

(2π)3

∑
N=p,n

(
ΣE

0,N + M̂N (p)ΣE
S,N

+P̂N (p)ΣE
V,N

)
, (31b)

where the various ΣE are the exchange part of the self-

energies, and the densities in uniform matter become

nn =

∫
2 dp

(2π)3
fn(p), nsn =

∫
2 dp

(2π)3
M̂n(p) fn(p) , (32)

np =

∫
2 dp

(2π)3
fp(p), nsp =

∫
2 dp

(2π)3
M̂p(p) fp(p) , (33)

where fN (p) = θ(pFN −p) is the occupation number for

the nucleon N characterized by the Fermi momentum

pFN .

The direct (Hartree) contribution to the self-energies

can be found in Appendix A. Note that these direct

contributions are identical for all the models we study

in this paper. In the following we concentrate on the

exchange contributions to the self-energies.

For the scalar s field, the expressions for these ex-

change self-energies are given by

ΣE,s
S,N =

1

4
g∗

2

s

∫
dp′

(2π)3
Ds(q)2M̂N (p′) +Σrg

S , (34a)

ΣE,s
0,N =

1

4
g∗

2

s

∫
dp′

(2π)3
Ds(q)2fN (p′) , (34b)

ΣE,s
V,N = −1

4
g∗

2

s

∫
dp′

(2π)3
Ds(q)2p̃ · P̂N (p′) , (34c)

where we introduce the unit momentum vector p̃ = p
p ,

and the exchange momentum q = p− p′ with q = |q|.
The interaction element Ds(q) = [q2 + m∗2s ]−1 is also

the in-medium s propagator. The term Σrg
S appearing

in the scalar self energy is the rearrangement term. It

is due to the dependence of both the coupling constant

and mass on the scalar field, as discussed in details in

[17], and we show the expression in (B.4d) and (B.4e).
The exchange self-energies for all mesons are given in

Appendix B.

The angular integration in Eqs. (34a), (34b) and

(34c) can be performed using∫
dΩ

q2 +m2
α

=
2π

2pp′
θα(p,p′) , (35a)∫

cos θdΩ

q2 +m2
α

=
2π

pp′
φα(p,p′) , (35b)∫

cos2 θdΩ

q2 +m2
α

= 2π
p2 + p′2 +m2

α

2p2p′2
φα(p,p′) , (35c)

where p ·p′ = pp′ cos θ and the functions θα and φα are

defined as,

θα(p,p′) = ln

(
(p + p′)2 +m2

α

(p− p′)2 +m2
α

)
, (36a)

φα(p,p′) =
1

4pp′
(p2 + p′2 +m2

α)θα(p,p′)− 1 . (36b)
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Table 5 The parameters for the model A fitted to the mean value L1 of the L-QCD parameters a2 and a4 and considering
the different values of the ρT coupling κρ: NRT, WRT, SRT. We show the nuclear empirical parameters Ksat and Esym, as
well as the scalar Dirac mass M∗D/MN . We also show the kinetic energy EK and the Hartree and Fock energy contributions
of the scalar field s and of the ω and ρ meson as well as the Fock contribution from the π meson at in symmetric matter.
Results at the Hartree approximation, named RHCC, are shown in the first row as a reference. The small contribution of the
delta meson is not shown.

Parameters NEP Meson contribution to the binding energy

model ms gs gω C Ksat Esym M∗D/MN EK EsH EsF EωH EωF EπF Eρ
V

F Eρ
T

F Eρ
V T

F

MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV

RHCC(L1) [9] 825 11.092 6.341 1.41 264 18.05 0.86 24.8 -79.7 0.0 39.1 0.0 0.0 0.0 0.0 0.0

RHFCC(A,L1,NRT) 982 15.743 7.936 1.86 326 23.7 0.73 19.1 -109.2 14.8 61.2 -11.6 13.4 -3.9 0.0 0.0

RHFCC(A,L1,WRT) 941 14.448 6.810 1.74 315 21.3 0.78 19.5 -99.6 13.1 45.0 -8.6 13.5 -2.9 1.8 2.0

RHFCC(A,L1, SRT) 911 13.527 5.839 1.66 306 19.7 0.81 20.0 -93.0 11.9 33.1 -6.4 13.5 -2.1 4.3 2.5

We obtain for the exchange self-energies:

ΣE,α
S (p, τ) = 〈M̂(p′)Bα(p,p′) +

1

2
P̂ (p′)Dα(p′,p)〉

+ΣE,c,α
S , (37)

ΣE,α
0 (p, τ) = 〈Aα(p,p′)〉+ΣE,c,α

0 , (38)

ΣE,α
V (p, τ) = 〈P̂ (p′)Cα(p,p′) +

1

2
M̂(p′)Dα(p,p′)〉

+ΣE,c,α
V , (39)

using the following notation for any function Xα(p,p′),

〈Xα(p,p′)〉 =
1

(4π)2p

∑
α,τ ′

τ2
α

∫ pFN

0

p′dp′Xα(p,p′) , (40)

with τα the N isospin factor at the meson α vertex and

the expressions for Aα, Bα, Cα and Dα are given in

Tab. 4.

The contact exchange self-energies ΣE,c correspond

to the contact part of the interaction for the π and ρT

interactions, which is isolated by rewriting the interac-

tion element in these terms as follows:

VA,α(q) =
q2

q2 +m2
α

= 1− m2
α

q2 +m2
α

(α = π, ρT ) (41)

and thus

ΣE,c
S =

(
gA
2fπ

)2

〈4pp′M̂(p′)〉+

(
fρ

2M

)2

〈12pp′M̂(p′)〉 ,

(42a)

ΣE,c
0 =

(
gA
2fπ

)2

〈4pp′〉+

(
fρ

2M

)2

〈4pp′〉 , (42b)

ΣE,c
V = 0 . (42c)

3.2 Discussion of the results

We compare in Tab. 5 the Hartree-Fock calculations for

the different choices of the ρT coupling (NRT, WRT,

SRT) (see Tab. 2) to the pure Hartree one, which is

named RHCC(L1). Note that the latter is identical to

the RMF-CC models analysed in the paper [9]. Since

it has no Fock term, this model is not impacted by the

choice of the ρT coupling neither by the way the SRC

are treated. It is therefore independent of the case A to

D that we explore in the next sections. In the fitting pro-

tocol of all these models, we employ the centroid value

for the distribution of the parameters a2 and a4 as de-

fined by L1, see Tab. 3. The main difference between

the RHCC and the RHFCC models lies in the s chan-

nel: ms, gs as well as gs/ms are systematically lower

in the RHCC model compared to the RHFCC models

for the three choices of the ρT coupling constants. The

lower value for C (and therefore for the incompressibil-

ity Ksat) for the RHCC model compared to the RHFCC

models is a consequence of the values taken by ms and

gs, see Eqs. (8). Note that gω is not fixed by Eqs. (8) but

only by the constraint to reproduce saturation energy

and density.

Concerning the NEP, the incompressibility modu-

lus Ksat are larger in the RHFCC models in comparison

to the the value obtained in the RHCC case, making it

larger than the expected value of 230±20 MeV [6]. The

symmetry energy Esym is also larger for RHFCC com-

pared to RHCC case, but since the value of the RHCC

case is lower than the expected one, i.e. 32±2 MeV [6],

this effect leads to an improvement of the symmetry en-

ergy. Note also the role of the ρT coupling: increasing

the ρT coupling leads to a decrease of the symmetry en-
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Table 6 Dimensionless spin-isospin Landau-Midgal parame-
ter g′ for the models A to D and for the set L1 obtained from
L-QCD.

Model NRT WRT SRT

A 0.00 0.00 0.00

B 0.33 0.78 2.10

C 0.00 0.00 0.00

D 0.08 0.23 0.48

ergy. The scalar Dirac mass M∗D is also larger for RHCC

compared to RHFCC. As a consequence, the kinetic en-

ergy is also larger for RHCC compared to RHFCC: The

kinetic energy increases as M∗D increases for the three

models explored with RHFCC.

We also detail in Tab. 5 the contribution of the

different mesons to the binding energy in symmetric

matter (except the δ meson which gives a small con-

tribution). It is reminded that all the models are cali-

brated to reproduce the same value of the binding en-

ergy Esat at saturation density nsat, see Tab. 3. The

Hartree energy of both the s field and ω mesons are

larger in absolute value for RHFCC models compared to

the RHCC one. The Fock contributions of these mesons

are opposite in sign to the Hartree terms, and represent

about 12 to 18% of the Hartree contribution. These

Fock terms contribute to about half of the difference

between RHFCC and RHCC models. The other half is

given dominantly by the (repulsive) pion. The contri-

bution of the ρ meson remains small, about 1 to 5%

in absolute value of the s Hartree term: it is attractive

(repulsive) and contributes to about -4 (+4) MeV in

the absence (presence) of ρV .

This analysis of the pure HF model shows that the

effect of the Fock term is to moderately increase the

incompressibility modulus (by 15 to 20%), but at the

same time it also contributes to increase to symmetry

energy (by 10 to 30%) and therefore it makes it closer

to its empirical value. There is an effect of the consid-

ered ρT coupling: an increase of this coupling leads to

a decrease in Ksat and Esym. In general, we obtain an

improvement in the reproduction of the experimental

NEPs by including the Fock term to the total energy.

It is also interesting to analyze the prediction of the

pure HF model for the spin-isospin Landau-Midgal in-

teraction g′ which governs the response in the Gamow-

Teller (GT) channel. See Appendix D for more details.

In the pure HF case, we simply have g′ = 0, see Tab. 6.

There is however a practical issue induced by the

pure π and ρT meson exchange, since these vertices

contain derivative couplings which are known to gen-

erate a spurious repulsive contact term, as in Eq. (41),
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Fig. 1 The π and ρT meson exchange interaction elements
Vα(q) for different cases: VA,α(q) is the pure HF in-medium
interaction (solid line), VB,α(q) the interaction element ob-
tained from the Orsay prescription (dotted line), VC,α(q)
with the form factor correction (dashed line) and VD,α(q)
the form factor and Jastrow SRC (dashed-dotted line). The
ρT (π) interaction is shown on the top (bottom) panel. The
FF is a monopole type factor where ΛρT = 2000 MeV and
Λπ = 1000 MeV and we took qc = 1000 MeV for the JSRC.

see for instance Ref. [12] for more details. The effect of

this spurious term is shown in Fig. 1 where we represent

the interaction element VA,α(q) (α = ρT and π), for the

pure HF model by the blue solid line. The other cases

will be discussed hereafter. The pure HF interaction

shown in Fig. 1 for ρT (top) and π (bottom) mesons

has an UV divergence: the pure HF interaction is not

going to zero at large values of q. In principle, this diver-

gence does not lead to a collapse of the HF calculation

since integrations over the momenta are limited to the

Fermi momentum, but they have an impact over the

short range properties of the interaction. In the follow-
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Table 7 The parameters for the model B, fitted to the L1 mean value of a2 and a4, with the 3 values of κρ. We also show
the energy contribution of the various mesons at the Hartree and Fock levels. The delta meson contribution is negligible so it’s
not shown.

Parameters NEP Meson contribution to the binding energy

model ms gs gω C Ksat Esym M∗D/MN EK EsH EsF EωH EωF EπF Eρ
V

F Eρ
T

F Eρ
V T

F

MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV

RHFCC(B,L1,NRT) 932 14.175 8.688 1.72 324 27.93 0.72 18.9 -97.1 12.7 73.3 -13.8 -5.6 -4.6 0.0 0.0

RHFCC(B,L1,WRT) 793 10.253 8.278 1.32 306 30.75 0.75 18.8 -68.3 8.2 66.6 -12.5 -5.6 -4.2 -22.2 3.0

RHFCC(B,L1, SRT) 332 1.80 9.244 0.26 280 46.78 0.75 17.5 -11.1 0.9 83.0 -15.3 -5.6 -5.1 -87.5 7.1

ing sections, we therefore address the question of short

range properties of π and ρT vertex and we analyse dif-

ferent ways to treat them. We also study their impact

on the values of the NEP.

4 Improvement of the pure RHF calculation

In this section we seek to improve on our previous calcu-

lation by treating the spurious repulsive contact term

mentioned before and by considering nucleons’ finite

size, and the SRC. These improvements affect the Fock

terms treated in the previous section, and will be stud-

ied in three steps.

4.1 Full removal of the spurious contribution from π

and ρT mesons (model B)

A way to remove the spurious contact terms from π

and ρT mesons is to subtract the zero-rank part of the

NN potential coming from the π and Lorentz-tensor

piece of the ρ exchanges, hereafter called ρT [12]. This

is equivalent to doing the following replacement in the

Fock exchange terms:

VA,α(q) 7−→ VB,α(q) =
q2

q2 +m2
α

− 1 = − m2
α

q2 +m2
α

(43)

We can see that the π and ρT exchange terms now

take the form of an ordinary Yukawa potential and

they give an attractive contribution to the energy per

particle. This is the prescription suggested by the Or-

say group, hereafter called the Orsay prescription. The

other mesons are not significantly impacted by this pre-

scription since this will only modify the values of their

coupling constant [12]. Note that this prescription is

most probably the simplest way to get rid of the spuri-

ous π and ρT terms when these meson fields are emit-

ted by point-like nucleons. They are also employed in

Refs. [29,28,30]. In practice, the Orsay prescription pre-

cisely removes the contact terms ΣE,c
S , ΣE,c

0 , and ΣE,c
V

explicitly given in Eq. (37), (38) and (39).

The impact of the Orsay prescription on the pure

HF interaction is illustrated by the case VB shown in

Fig. 1: by removing the repulsive contact terms, the

π and ρT Fock terms become purely attractive. The

interaction elements are translated down as explicitly

written in Eq. (43). As a consequence, by curing the

UV divergence, the Orsay prescription turns the π and

ρT to be strongly attractive at long distance (small q).

Similarly to the pure HF model where results in

symmetric matter were given in Tab. 5, we investigate

the matter properties for the model B in Tab. 7. The RH

calculation being independent of the considered case,

we refer to the results given in Tab. 5 for RHCC(L1).

Let us first compare the models A and B for the

NRT, where only the pion is considered. We observe

that the isoscalar properties of nuclear matter are quite

similar between these two cases: ms, gs, gω, C, Ksat,

M∗D. The symmetry energy Esym is a bit increased in

the model B compared to the model A and becomes

closer to the empirical value.

We now analyse the impact of adding the ρT interac-

tion with different couplings: WRT and SRT. The scalar

Dirac mass is not impacted by the different choices of

ρT coupling constant, but Ksat and Esym are: Ksat goes

down and get closer to the empirical expectation, while

Esym goes up and becomes even too large compared

to the empirical value for the SRT coupling constant.

The case with a strong ρT (SRT) is however too ex-

treme and shows the limitation of the model B, that we

now discuss. As we have observed in Fig. 1, the Orsay

prescription changes the long-range properties of the

π and ρT meson exchange potential, by turning them

from repulsive and going to zero at long distance to be

attractive and going to a finite value at long distance.

As a consequence the contribution of these two mesons
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to the energy-density becomes increasingly large and

negative as their coupling constant increases. The pion

has an attractive contribution to the binding energy

(it was repulsive in the model A), and the ρT is also

changed from repulsive in case A to attractive in case

B. In fact, ρT is very attractive for the two values of the

ρT coupling constant that we consider, contributing to

about −22 MeV for WRT and to −87 MeV for SRT.

For the model B, the SRT becomes extreme since the

role of the scalar s meson to the saturation of symmet-

ric matter is almost quenched, being replaced by the

ρT term: saturation appears mostly as a balance be-

tween the attractive ρT and the repulsive ω terms. The

coupling constant gs in this case becomes abnormally

small, and the symmetry energy is now predicted to be

too large.

The spin-isospin Landau-Midgal interaction obtained

for the model B can be deduced from Eq. (D.20). Since

VB,α(q → 0) → −1, we obtain the values reported in

Tab. 6.

In conclusion, the Orsay prescription for the deriva-

tive coupling terms induces a large contribution of the

ρT term, which produces an abnormal parameter set

in the case of strong ρT (SRT). It therefore leads to a

preference for the low values of the ρT coupling, which

may be in contradiction with the expected SRT. The

Orsay prescription is simple but have caveats, e.g. a

large attraction of the derivative couplings at large dis-

tances. It is therefore preferable to investigate softer

treatments of the short range properties of the nuclear

interaction. Moreover, the models A and B ignore the

nucleon finite-size, which induces naturally a cut-off for

the high-q momenta. Nucleons are indeed composite

particles, which are probed for the typical exchange en-

ergies in nuclear matter. This is the subject of the next

section.

4.2 Nucleon finite size effect (model C)

We now explore the modifications for the nuclear in-

teraction induced by the inclusion of nucleon finite-

size. This is done by introducing form factors to each

meson-nucleon vertex, and we consider, for simplicity,

the monopole form factors (FFs) prescription, which

reads for the meson α,

Fα(q) =

(
Λ2
α

q2 + Λ2
α

)
, (44)

where Λα may vary with meson α. In the following, we

associate a FF to all the mesons fields, e.g., s, δ, ω, ρ,

π. The propagator is modified as follows:

Dα(q) 7−→ Dα(q) =
1

q2 +m2
α

(
Λ2
α

q2 + Λ2
α

)2

, (45)

for mesons α = s, δ, ω, ρ, and π. Note however that for

the interaction ρT and for the meson π there are ad-

ditional contact terms, once we rewrite the interaction

element as in Eq. (41), which will be detailed hereafter.

Note also that for the interaction ρV T , the propagator

becomes

DρV T (q) =
1

q2 +m2
ρ

(
Λ2
ρV

q2 + Λ2
ρV

)(
Λ2
ρT

q2 + Λ2
ρT

)
, (46)

since it has both vertices from ρV and ρT which are

different. Note that our approach is similar to the one

suggested in Ref. [21], where the following FF is con-

sidered,

F ′α(q) =

(
Λ2
α −m2

α

q2 + Λ2
α

)
. (47)

This FF is the same as the one considered in the Bonn

potential [31]. The two FF only differ by a global con-

stant, Fα = (1−m2
α/Λ

2
α)F ′α. We employ Fα since Fα →

1 as q → 0: at low momentum transfer (q � Λα,mα),

the interaction is not impacted by nucleon finite size.

By doing a simple element decomposition in Eq. (45),

we obtain

Dα(q) =

(
Λ2
α

Λ2
α −m2

α

)2 [ 1

q2 +m2
α

− 1

q2 + Λ2
α

+(Λ2
α −m2

α)
d

dΛ2
α

1

q2 + Λ2
α

]
, (48a)

DρV T (q) =
Λ2
ρV Λ

2
ρT

(Λ2
ρV
−m2

ρ)(Λ
2
ρT
−m2

ρ)

[ 1

q2 +m2
ρ

−
Λ2
ρT −m

2
ρ

Λ2
ρT
− Λ2

ρV

1

q2 + Λ2
ρV

+
Λ2
ρV −m

2
ρ

Λ2
ρT
− Λ2

ρV

1

q2 + Λ2
ρT

]
. (48b)

We replace the functions θα and φα, see Eqs. (36a) and

(36b), by θFFα and φFFα defined as,

θFFα =

(
Λ2
α

Λ2
α −m2

α

)2 [
θα − θα(mα = Λα)

+(Λ2
α −m2

α)
d

dΛ2
α

θα(mα = Λα)
]
, (49a)

φFFα =

(
Λ2
α

Λ2
α −m2

α

)2 [
φα − φM (mα = Λα)

+(Λ2
α −m2

α)
d

dΛ2
α

φM (mα = Λα)
]
, (49b)
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Table 8 The parameters for the model C, fitted to the L1 mean value of a2 and a4, with the 3 values of κρ. We also show
the energy contribution of the various mesons at the Hartree and Fock levels. The delta meson contribution is negligible so it’s
not shown.

Parameters NEP Meson contribution to the binding energy

model ms gs gω C Ksat Esym M∗D/MN EK EsH EsF EωH EωF EπF Eρ
V

F Eρ
T

F Eρ
V T

F

MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV

RHFCC(C,L1,NRT) 981 15.711 8.098 1.86 331 22.15 0.74 19.3 -109.1 12.7 63.7 -10.5 11.3 -3.5 0.0 0.0

RHFCC(C,L1,WRT) 948 14.646 7.163 1.76 319 19.93 0.77 19.5 -101.1 11.5 49.8 -8.3 11.3 -2.8 1.9 1.9

RHFCC(C,L1, SRT) 920 13.792 6.275 1.68 308 18.20 0.80 19.9 -95.0 10.6 38.2 -6.4 11.4 -2.2 4.7 2.6

θFFρV T =
Λ2
ρV Λ

2
ρT

(Λ2
ρV
−m2

ρ)(Λ
2
ρT
−m2

ρ)

[
θρ

−
Λ2
ρT −m

2
ρ

Λ2
ρT
− Λ2

ρV
θρ(mρ = ΛρV )

+
Λ2
ρV −m

2
ρ

Λ2
ρT
− Λ2

ρV
θρ(mρ = ΛρT )], (50a)

φFFρV T =
Λ2
ρV Λ

2
ρT

(Λ2
ρV
−m2

ρ)(Λ
2
ρT
−m2

ρ)

[
φρ

−
Λ2
ρT −m

2
ρ

Λ2
ρT
− Λ2

ρV
φρ(mρ = ΛρV )

+
Λ2
ρV −m

2
ρ

Λ2
ρT
− Λ2

ρV
φρ(mρ = ΛρT )]. (50b)

The contact self-energies (42a)-(42c) for ρT and π chan-

nels are obtained from the following transformation

4pp′ 7−→ −Λ4
α

d

dΛ2
α

θα(Λα) (51)

for ΣE,c
S and ΣE,c

0 , while for ΣE,c
V we have

ΣE,π,c,FF
V =

(
gA
2fπ

)2

〈Λ4
α

d

dΛ2
α

φα(mα = Λα)2P̂ (p′)〉 ,

ΣE,ρT ,c,FF
V =

(
fρ

2M

)2

〈Λ4
α

d

dΛ2
α

φα(mα = Λα)2P̂ (p′)〉 .

In the following, the self-energies including nucleon

finite size through the FF are named as ΣFF .

Note that at low momentum (p,p′ � Λα,mα), we

recover the results of the pure HF case (model A), see

sec. 3, since

θFFα → θα, Λ4
α

d

dΛ2
α

θα(mα = Λα)→ −4pp′, (52)

φFFα → φα, Λ4
α

d

dΛ2
α

φα(mα = Λα)→ 0 . (53)

It is interesting to remark that the FF depends on

the cut-off Λα, which can be different for different chan-

nels since nucleon finite size is seen differently for var-

ious probes. For the practical results shown in this pa-

per and for simplicity, we consider Λα = 1 GeV for

all mesons α, except for ρT for which ΛρT = 2 GeV,

which is needed to obtain a sufficiently large value of

the spin-isospin Landau-Migdal g′ parameter. Our FF

are comprised between 1 and 2 GeV, see Tab. 10, as in

the Bonn potential [31].

The interaction element VC(q), defined as

VC,α(q) = VA,α(q) (Fα(q))
2
, (α = π, ρT ) (54)

is shown in Fig. 1. At low momentum transfer (q �
Λα,mα) we have VC(q) = VA(q) as expected, while at

high momentum transfer, we now obtain the limit VC →
0. The inclusion of the nucleon finite size therefore reg-

ularizes the UV divergence discussed in Sec. 3. The FF

treatment is therefore equivalent, from a mathemati-

cal view point, to the Orsay prescription, but without

changing the low momentum limit of the interaction el-

ement V (q). The physical origin of the FF is however

very different from the Orsay prescription: The first is

due to the nucleon finite size, while the latter is sup-

posed to be generated by the SRC. We will consider

both physical effects, nucleon finite size and SRC, in

the following section.

We show in Tab. 8 our results for case C in symmet-

ric matter and at saturation density. Since the Fermi

momentum pF at saturation density is about pF ∼
270 MeV, the low momentum approximation applies for

all mesons, except for the π channel. As a consequence,

results shown in Tab. 8 are very similar to the pure HF

model, see Tab. 5, except for the π channel. The change

is however small in the π channel: We obtain a contri-

bution of the π of about 13.5 MeV in Tab. 5, which is

about 13.4 MeV in Tab. 8. It induces a slight rearrange-

ment of the coupling constants, but the overall effect
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remains moderate. The impact of the FF is expected to

appear more clearly as the density increases. However,

let us note that Fermi momenta of about 500 MeV are

expected for densities of about 8nsat. The low density

limit therefore applies well, even for the largest density

we may consider, except again, for the pion.

The finite-size effect does not change the pure HF

spin-isospin Landau-Midgal parameter since Fα(q →
0)→ 1. We then obtain g′C = g′A = 0, see Tab. 6.

In conclusion, the FF treatment resolves the UV di-

vergence of the interaction element originating from the

derivative couplings, while our results including FF re-

main very close to the pure HF model shown in Sec. 3.

In particular, we obtain an incompressibility modulus

Ksat a bit higher than the phenomenological one, and a

symmetry energy Esym a bit lower. The interaction el-

ement originating from derivative couplings are known

to generate a strong interaction at short distance, even

after the FF regularisation [21]. As a consequence, SRC

are expected to be non negligible. In the next section,

we therefore include SRC by the use of Jastrow ansatz.

4.3 Nucleon finite size and short range correlations

(model D)

In this section, we consider both the nucleon finite size,

with FF, and the short-range correlations (SRC) in a

way which is more general than the Orsay prescription,

as it is detailed in the model B discussed in Sec. 4.1.

Note that we introduce SRC only for the ρT and π inter-

actions for practical reasons, but in principle, all mesons

exchange potentials could potentially carry corrections

at short distance from SRC, but not as impactful. In ad-

dition, it is natural to introduce the SRC in coordinate

space since they impact the interaction element at short

distance. In the following, we introduce SRC as a modi-

fication of the interaction element by replacing D(r−r′)

in coordinate space by D(r− r′) [1−G(r− r′)], where

G(r− r′) is a two body correlation function which for-

bids the presence of two nucleons at the same point,

by imposing the following property G(r = r′) = 1. The

two body correlation function G(r) is identified with

the Jastrow function, G(r) ≡ j0(qcr), with j0 the Bessel

function of the first kind and qc a parameter controlling

the coordinate shape of the correlation function. This

is a similar approach to ones in Refs. [32,33] in which

a more general two body correlation function is con-

sidered, which could potentially depend on more than

one parameter, rather than the one parameter Bessel

function we used.

The Fourier transformation of the derivative cou-

pling terms reads

∂i∂
′
jD(r− r′) =

∫
dq

(2π)3
qiqjD(q)eiq·(r−r

′) (55)

and the Fourier transform of this correlation function

(defined from the Jastrow ansatz) is

G(q) =

∫
dr

(2π)3
e−iq·rG(r) =

1

4πqc
2
δ(q− qc) (56)

From Eq. (20), we have for the ρT and π mesons

couplings, after convolution with the Jastrow function,

∂i∂
′
jDα(r− r′) =

∫
dk

(2π)3
eik·(r−r

′)kikjDα(k)

×
∫
dteit·(r−r

′)
[
δ(3)(t)−G(t)

]
=

∫
dq

(2π)3
eiq·(r−r

′)

×
[
qiqjDα(q)−

∫
dkDα(k)G(q− k)kikj

]
. (57)

We can write the last term on the right, the correlation

term, from symmetry principles, as a function of qiqj
and of δij :∫
dkDα(k)G(q−k)kikj = g′α(q)δij + (3q̂iq̂j − δij)h′α(q)

(58)

with

g′α(q) =
1

3

∫
dkk2Dα(k)G(q− k) (59)

(g′α + 2h′α)(q) =

∫
dk(k · q̃)2Dα(k)G(q− k) (60)

Using the Oset-Toki-Weise (OTW) approximation (and

fixing ω = 0 since we consider the static approximation)

from Ref. [13], we obtain

g′α(q) =
1

3

q2 + qc
2

q2 +m2
α + qc

2
, (61a)

h′(q) =
1

3

q2

q2 +m2
α + qc

2
(61b)

Finally, the interaction element is expressed as

∂i∂
′
jDα(r− r′) =

∫
dq

(2π)3
eiq·(r−r

′)

×
[
q̂iq̂j (Dα(q)− 3h′α(q))− δij (g′α(q)− h′α(q))

]
. (62)

We can now proceed to recalculate the π and ρT in-

teraction, with the corresponding expressions appear-

ing in Appendix C. The interaction element includ-

ing the FF is modified as described in Eq. (54), as for
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Table 9 The parameters for the model D, fitted to the L1 mean value of a2 and a4, with the 3 values of κρ. We also show
the energy contribution of the various mesons at the Hartree and Fock levels. The delta meson contribution is negligible so it’s
not shown.

Parameters NEP Meson contribution to the binding energy

model ms gs gω C Ksat Esym M∗D/MN EK EsH EsF EωH EωF EπF Eρ
V

F Eρ
T

F Eρ
V T

F

MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV

RHFCC(D,L1,NRT) 965 15.200 8.176 1.81 328 23.2 0.74 19.3 -105.2 12.1 64.9 -10.8 7.0 -3.6 0.0 0.0

RHFCC(D,L1,WRT) 903 13.296 7.457 1.64 314 22.9 0.77 19.4 -90.8 10.1 54.0 -9.0 7.0 -3.0 -5.9 2.1

RHFCC(D,L1, SRT) 819 10.943 6.932 1.40 296 24.7 0.80 19.6 -73.7 7.8 46.7 -7.8 7.1 -2.6 -16.4 3.2

the terms with g′ and h′, the form factor will become

F 2(q) 7−→ F 2(q2 7−→ q2 + qc
2).

We will now detail the case of the π meson, from

which one could also deduce the case of ρT . One has :

Σπ,SRC−FF
0 =

2

(4π)2

(
gA
2fπ

)2∑
τ ′

τ2
π

∫ kF

0

p′
2
dp′ d(cos θ)

×
(

q2Dπ(q)F 2
π (q)− q2 + qc

2

q2 + qc
2 +m2

π

F 2
π (
√

q2 + qc
2)

)
(63)

which reduces to

ΣSRC−FF
0 (p, τ) = ΣFF

0 (q)−ΣFF
0 (q2 7−→ q2 + qc

2).

(64)

We can then define our new interaction element for

the case D as

VD(q) = VC(q)− VC(q→
√

q2 + q2
c) (65)

The second piece of Eq. (64) can be easily deduced

by replacing the functions θα and φα in Eq. (49a) and

(49b) by:

θα(mα) 7−→ θα(mα 7−→
√
m2
α + qc

2), (66a)

θα(Λα) 7−→ θα(Λα 7−→
√
Λ2
α + qc

2), (66b)

φα(mα) 7−→ φα(mα 7−→
√
m2
α + qc

2), (66c)

φα(Λα) 7−→ φα(Λα 7−→
√
Λ2
α + qc

2). (66d)

The same applies to ΣS which has the same integrals

appearing. We now use θFF,SRCα and φFF,SRCα for the

functions modified as mentioned above. We can turn

now to ΣV which has an extra step to consider:

Σπ,SRC−FF
V = − 2

(4π)2

(
gA
2fπ

)2∑
τ ′

τ2
π

×
∫ kF

0

p′
2
dp′ d(cos θ)×[(

q2Dπ(q)F 2
π (q)− q2Dπ(

√
q2 + q2

c)F
2
π (
√

q2 + q2
c)
)
×(

P̂ (p′) cos θ − 2

q2
(p̃ · q)(P̂ (p′) · q)

)
− 1

3
qc

2Dπ(
√

q2 + q2
c)F

2
π (
√

q2 + q2
c)P̂ (p′) cos θ

]
(67)

We have three parts in the previous expression: The

first term with q2Vπ(q)F 2
π (q) gives ΣFF

V .

The second term with q2Vπ(
√

q2 + q2
c)F

2
π (
√

q2 + q2
c) is

also identified to ΣFF
V , but for the case of the ρT one,

we should also replace the function CρT of Tab. 4 as

follows:

CρT = 4

(
fρ

2M

)2

m2
ρ

×
[
(p2 + p′2 − (m2

ρ + q2
c)/2)φFF,SRCρ − pp′θFF,SRCρ

]
(68)

We are left with the last term which is re-expressed as,(
gA
2fπ

)2

〈2
3

q2
cP̂ (p′)φFF,SRC〉. (69)

In this way, the short range properties of the in-

teraction in the π and ρ-tensor channels can be opti-

mized by fixing the parameter qc. For large values of

qc � mα, the Jastrow treatment of the SRC repro-

duces the Orsay prescription (in the abscence of FF),

discussed in section 4.1. The Jastrow approach allows

however to incorporate SRC in a smoother way by vary-

ing the parameter qc. In the present study, we fix the

value of the parameter qc to reproduce the microscopic
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Fig. 2 The tensor ρ and π meson interaction in the case of
the UCOM method (see Ref. [21]) compared to ṼD in the
case of the Jastrow function. We vary the value of qc until
we reproduce the same interaction, corresponding to a value
of qc = 1 GeV. The FF were all taken to have the same form
and the same cut-off as in Ref. [21]

.

prediction for the interaction element V (q) based on

the UCOM approach [21]. This is illustrated in Fig. 2

where we compare the UCOM prediction for the ρT

and π meson exchange to a Jastrow approximation of

the same interaction element for values of qc = 800,

900 and 1000 MeV. Note that in this case, we have

employed the same FF as in Ref. [21], and so we use

ṼD(q) = VD(q)/(1−m2
α/Λ

2
α)2, see Eq. (47). In the fol-

lowing, we fix qc = 1000 MeV, see Tab. 10, since it

reproduces very well the microscopic prediction from

the UCOM approach for the two channels ρT and π.

Looking at Tab. 9, we can see that ms and gs have

decreased, and for κρ = 6.6 we are within the LσM

value of these parameters. We can see a more ”mod-

Table 10 Parameters fixing the SRC and nuclear finite size
in models C and D.

qc Λα ΛρT

1 GeV 1 GeV 2 GeV

erate” value for the ρT interaction with a value of -16

MeV, and the pion contribution has also been cut-down

to 7 MeV.

The dimensionless spin-isospin Landau-Midgal pa-

rameter for the model D is given in Eq. (D.23) and

Tab. 6. As mentioned in the Appendix D, considering

the SRC for all interaction channels in addition to the

derivative couplings considered so far, we would have

obtained g′D = 0.08/0.31/0.61 for the following choice

of the ρT coupling: NRT/WRT/SRT. These values are

close to g′ ∼ 0.6− 0.7, which was obtained in the anal-

ysis of the transfer reaction (n, p) and (p, n) at 300-

500 MeV [34]. The Landau parameter g′ can also be

deduced from low-energy nuclear resonances, such as

the spin and spin–isospin collective modes, e.g. mag-

netic dipole (M1) and Gamow–Teller (GT) states. The

”nuclear” Landau parameter G̃′, note the different nor-

malisation of this parameter in hadron and in nuclear

physics inducing g′ ≈ G̃′/1.6, see Appendix D, has been

deduced from the analysis of the GT mode: a model

based on Woods–Saxon single-particle states plus one-

pion and rho meson exchange interactions gives G̃′ =

1.3 ± 0.2, see Refs. [35,36,37] and references therein.

A slightly different value, G̃′ = 1.0 ± 0.1, was derived

from observed GT and M1 strength distributions using

the phenomenological energy density functionals DF3

[38,39]. These values are consistent with the values ob-

tained for g′D.

We finally discuss the NEP. The RHCC model pre-

dict the incompressibility modulus to be around 265 MeV,

with an uncertainty estimated to be about 15 MeV [9].

It is compatible with the experimental value 230±20 MeV [6].

In the RHFCC models however, by adding the contri-

bution of the Fock terms, the incompressibility modu-

lus is increased to about 306-326 MeV in the pure HF

model (model A), see Sec. 3, and 296-328 MeV once

the SRC and the FF are taken into account. The un-

certainties in the incompressibility modulus reported

here is the one coming only from the uncertainty in the

ρT coupling constant. The incompressibility is there-

fore still above the experimental one by about 20%.

Concerning the symmetry energy, RHCC model predict

18.05 MeV, with an uncertainty of about 1 MeV [9], the

pure HF model predict an increase of the symmetry en-

ergy, spanning from 19.7 to 23.7 MeV and our ultimate

model with SRC and FF predict it to be about 23.2-
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24.7 MeV. The inclusion of the Fock term therefore lead

to an increase of the symmetry energy by about 30%.

We then conclude that there is an improvement, al-

though moderate, of the prediction for two NEP which

are not used in the fitting protocol (Esym and Ksat) in

our ultimate model compared to the one at the Hartree

approximation.

5 Results

We now present our results, for which we consider our

ultimate model D containing the effects of nucleon fi-

nite size and SRC, which impact mostly the short dis-

tance properties of the interaction elements. Our results

are presented in the following way: We first perform a

sensitivity analysis of our coupling constants and their

impact on the observables against the variation of some

arbitrary parameters, such as the value of qc (employed

for the description of the SRC) and the cut-off Λα and

ΛρT (employed to include nucleon finite size). We then

perform a Bayesian exploration where the uncertain-

ties in the quantities used in our fit, see Tab. 3, are

explored and propagated to our predictions for nuclear

matter. We also study the impact of the strength of

the ρT coupling constant on the effective masses (Dirac

and Landau) and show its impact on the isoscalar and

isovector components of the Landau effective mass, be-

fore finally discussing the predictions of our model for

low densities as compared to other employed models.

5.1 Sensitivity analysis

We first test the dependence of our results on a few

parameters which are commonly fixed. In Fig. 3, we

analyse the impact of qc (controlling the strength of

the SRC) and the cut-off parameters Λα and ΛρT (con-

trolling the nucleon finite size) on the parameters of the

model ms, gs, gω and C. Note that, in this sensitivity

analysis, we systematically refit the parameters and we

provide the ratio of the new parameters over reference

ones, given in Tab. 9. In Fig. 3 the values of the param-

eters qc, Λα and ΛρT are varied by about 20% around

the values that we have adopted in Tab. 10. We observe

that qc and Λα have a very small impact on the model

parameters, less than 3% correction. This shows that

a small change in the description of the SRC does not

have a big impact on the model parameters. This is also

the case for the nucleon finite size probed by the meson

fields, except for the ρT case. The cut-off parameter ΛρT

is indeed the one which has the largest impact on the

parameters since it can change them by 3-5% at most.

We can notice that the largest correlation are observed

between ΛρT and the scalar-field coupling constant gs.

Both s and ρT are attractive, and then the condition

to reproduce the saturation properties implies a com-

pensation between these two terms, which translates

into an anti-correlation pattern, as observed in Fig. 3.

In conclusion, we however conclude that the variation

of the parameters qc, Λα and ΛρT weakly impact, at

most 5%, but less than 3% in most cases, the model

parameters.

The impact of the same three parameters on the in-

compressibility modulus Ksat and on the symmetry en-

ergy Esym are shown in Fig. 4. The sensibility of Ksat

on these three parameters as well as on the ρT coupling

constant is small, less than 1%, while Esym is more im-

pacted. The SRC can modify Esym by 3% at most, sim-

ilarly to the finite size of the nucleon, except in the ρT

channel. As expected, the ρT channel impacts Esym by

up to 5%. We however conclude that globally the NEP

Ksat and Esym are weakly impacted by the parameters

qc, Λα and ΛρT . In conclusion, the parameters qc, Λα
and ΛρT can safely by fixed to arbitrary values since

they will not impact substantially our results. This is

the strategy we adopt in the following and we safely fix

the parameters qc, Λα and ΛρT to their reference value

given in Tab. 10.

5.2 Error propagation from a Bayesian analysis

A Bayesian approach is employed to compare our model

predictions, represented by a set of parameters {ai}
with the present data [40]. The so-called posterior prob-

ability, is the probability associated to a given model

considering a set of data. It is defined as

P ({ai} | data) ∼ P (data | {ai})× P ({ai}), (70)

where P (data | {ai}) is the likelihood function rep-

resenting the ability of the model to reproduce a set

of measurements and P ({ai}) is the prior probability,

which represents the a-priori knowledge on the model

parameters. These model parameters are a2, a4, gω and

ms, which are fixed by L-QCD data and the two NEP

nsat and Esat, including their uncertainties as given in

Table. 3. The prior distribution for the Lattice param-

eter a2 and a4 has been taken as flat for the L1 L-QCD

analysis.

The Bayesian framework allows us to investigate

the propagation of experimental uncertainties on i) our

model’s parameters as well as on ii) our predictions. By

marginalizing over all other parameters, one could gen-

erate a Probability Distribution Function (PDF) asso-

ciated to the model parameters and to our predictions.

We additionally couple the Bayesian framework to the
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Markov-Chain Monte-Carlo (MCMC) in order to guide

the exploration of the uncertainties in the experimental

data. More details are given in our previous study [9].

The PDFs obtained for the model parameters ms,

gs, gω and C are shown in Fig 5. The peak of the

PDF coincide well with the best parameter sets given

in Tab. 9, showing a large impact of the choice of the

ρT coupling constant on the model parameters. In ad-

dition, the Bayesian analysis provides the width of the

distribution in the model parameters: The widths are

direct reflection of the experimental uncertainties.

Similarly, the Bayesian approach provides the PDF

for our model predictions, see Fig. 6. Considering L1 L-

QCD constraints, Fig. 6 shows the PDF for the Dirac

mass M∗D, the incompressibility modulus Ksat, the sym-

metry energy Esym and its slope Lsym. Again, there is a

large influence of the ρT coupling constant. Note how-

ever that in the iso-vector channel, Esym and Lsym the

case NRT and WRT are quite degenerate, and differ-

ences becomes marked only if large values for the ρT are

considered. The Dirac mass ranges from 0.72 up to 0.85,

the incompressibility modulus from 285 to 340 MeV,

with low values obtained for the SRT case. The sym-

metry energy spans from 21 to 27 MeV and its slope

from 32 up to 50 MeV. The largest values for Esym and

Lsym are obtained in the SRT case.
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Fig. 5 Probability Distribution Function (PDF) for the case
D with the L-QCD set L1 and the three κρ scenarios, ad-
justed to reproduce the saturation properties nsat and Esat

of Tab. 3.

Table 11 Mean and standard deviation values obtained for
the model parameters and some NEP as extracted from
Figs. 5 and 6.

NRT WRT SRT

gs 15.01 ± 0.93 13.32 ± 0.81 10.99 ± 0.50

ms 957 ± 38 903 ± 37 821 ± 27

C 1.79 ± 0.07 1.64 ± 0.06 1.40 ± 0.04

gω 8.08 ± 0.42 7.47 ± 0.40 6.97 ± 0.34

Ksat 327 ± 7 313 ± 6 295 ± 6

Esym 23.0 ± 1.3 23.0 ± 1.2 24.7 ± 1.0

Lsym 39.2 ± 4.2 38.4 ± 3.7 44.6 ± 3.1

The centroids and standard deviations associated

to each of the distributions shown in Figs. 5 and 6 are

reported in Tab. 11.

In conclusion, the knowledge of the width distribu-

tion in the NEP shows that it is impossible to reproduce

the experimental values for Ksat and Esym [6] by explor-

ing the experimental uncertainties used in the fit of our

model parameters. The inclusion of the Fock correla-
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= 3.7
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Ksat [MeV]

20 22 24 26 28
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Fig. 6 Probability Distribution Function (PDF) for the NEP
parameters M∗D, the incompressibility modulus Ksat, the
symmetry energy Esym and the slope of the symmetry energy
Lsym for the case D with the L-QCD set L1 and the three
κρ scenarios, adjusted to reproduce the saturation properties
nsat and Esat of Tab. 3.

tions together with the nuclear finite size and the SRC,

improve our prediction for the values of the NEP (which

are not used in the fit) compared to the case where the

Fock terms are absent, see RHCC and Ref. [9]. The best

reproduction of these NEP are however obtained for the

SRT case.

5.3 Impact of lattice QCD

In the present study, we have reported two parame-

ter sets extracted from L-QCD, which are named L1

and L2, see Tab. 3. We have mostly employed L1 for

reasons which will be made more clear in this section.

The results based on the L2 set are given in Tab. 3,

which should be compared to Tab. 9 based on L1 set.

We employ in these two tables model D and all other

parameters are fixed to be identical. Let us note that

we fit the same saturation properties (nsat and Esat).

Considering the L2 set, we observe that the scalar field
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coupling and mass are very different from the ones we

obtained from the L1 set: ms and gs are much larger

than the values we obtain from the L1 set. Note how-

ever that the symmetry energy spans between 31.40

and 34.01 MeV, which is in better agreement with the

experimental data [6]. There is a decrease of Ksat and

Esym as the ρT coupling increases, and the model con-

sidering SRT is the one which is again the closer to the

experimental values for Ksat and Esym.

We perform a Bayesian study for L2 identical to the

one we have performed for L1. Fig. 7 shows the results

and shall be analysed in comparison to Fig. 5. It shows

that considering the uncertainties in a2 and a4 as given

in L2 set, the distribution in the scalar field parame-

ters gs and ms point toward values which are substan-

tially larger than the values expected for instance from

the LσM. For this reason, we consider that our results

based on L1 set are closer to the expected results. In

the following, we define L1 as our reference set.

5.4 Effective masses and nuclear empirical parameters

The effective mass [41] is a quantity which is interest-

ing to analyse since it determines the density of states

around the Fermi level, as well as pairing properties,

and low and finite-temperature properties of nuclei and

nuclear matter. There are however different definitions

of the effective mass in the literature, e.g. the scalar

Dirac mass M∗D, which emerges naturally in a covari-

ant approach, or the Landau mass M∗L which is natu-

ral in non-relativistic approaches since it subsumes the

quadratic momentum dependence of the single particle

energy. These two effective masses have indeed differ-

ent physical origins [42,43]. In terms of observables, the

scalar Dirac mass M∗D contributes to the spin-orbit po-

tential while the Landau mass M∗L influences the den-

sity of states. They are are also mainly governed by

different meson couplings.

In the following, we briefly summarize how the Lan-

dau mass is obtained in covariant approaches. Starting

from the relativistic Dirac equation,

(γ · k∗ +M∗D)ψ = γ0E
∗ψ , (71)

we first derive a Schrödinger equivalent equation of the

following form:

(γ · k +MN + US + γ0U0)ψ = γ0Eψ (72)

with the new scalar and vector potentials

US =
ΣS −MΣ̃V

1 + Σ̃V
U0 =

Σ0 + EΣ̃V

1 + Σ̃V
(73)

where E = E∗+Σ0 and Σ̃V = k−1ΣV . The relativistic

energy-momentum relation

k∗2 +M∗2D = E∗2 , (74)

is then rewritten as

k2

2MN
+ Veq =

E2 −M2
N

2MN
, (75)

where Veq is the equivalent Schrödinger potential, de-

fined as

Veq(k, ε) =US +
MN + ε

MN
U0 +

k

2MN
ΣV

+
1

2MN
(U2

S − U2
0 +Σ2

V ). (76)

with E = ε + MN . The group velocity vg is defined as

the physical velocity of the wave packet,

vg =
dε

dk
. (77)

In free space, the group velocity is just vg = k/M . In

the medium, the mass M is replaced by the Landau ef-

fective mass M∗L, which takes into account the presence

of other nucleons in the medium. It is defined as

v∗g =
k

M∗L
≡ dε

dk
(78)
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Table 12 The parameters for the model D, fitted to the L2 mean value of a2 and a4, with the 3 values of κρ. We also show
the energy contribution of the various mesons at the Hartree and Fock levels. The delta meson contribution is negligible so it’s
not shown.

Parameters NEP Meson contribution to the binding energy

model ms gs gω C Ksat Esym M∗D/MN EK EsH EsF EωH EωF EπF Eρ
V

F Eρ
T

F Eρ
V T

F

MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV

RHFCC(D,L2,NRT) 1471 25.316 9.975 2.68 361 34.01 0.64 16.1 -136.7 21.4 96.6 -15.2 6.8 -5.1 0.0 0.0

RHFCC(D,L2,WRT) 1341 21.044 8.902 2.38 330 31.26 0.70 17.1 -112.8 16.6 77.0 -12.3 6.9 -4.1 -8.4 3.3

RHFCC(D,L2, SRT) 1176 16.192 8.050 1.97 302 31.40 0.75 18.2 -85.1 11.8 62.9 -10.2 6.9 -3.4 -21.9 4.6

Since ε has an explicit k dependence, as well as an im-

plicit one, we obtain,

M∗L
MN

=
M∗k
MN

.
M∗ε
MN

(79)

where the so-called effective non-local mass reads,

M∗k
MN

=

[
1 +

MN

k

∂

∂k
Veq(k, ε)

]−1

(80)

and the so-called effective dynamical mass reads,

M∗ε
MN

=

[
1− ∂

∂ε
Veq(k, ε)

]
. (81)

Note that the Landau mass is defined at the Fermi sur-

face for the neutrons and the protons.

In Fig. 8, we show the splitting between the Lan-

dau (bottom panels) and Dirac (top panels) masses as

a function of the isospin asymmetry parameter (N −
Z)/(N +Z). On the left panels, we show results at the

Hartree approximation (RHCC) while on the right ones

we show results at the HF approximation (model D).

Let’s start the discussion at the Hartree approxi-

mation, since it is a case where the connection with the

meson field properties is the more direct. The effective

masses are defined as

M∗D,N = MN +ΣD
S,N , (82)

M∗L,N = MN −ΣD
0,N . (83)

whereΣD
S,N andΣD

0,N are given by Eqs. (A.2) and (A.3).

The splittings of the effective masses are induced by dif-

ferent mesons: The δ meson creates the splitting of the

Dirac mass, and having a very small coupling constant,

this explains the small splitting observed in Fig. 8 for

the Dirac mass considering RHCC , whereas it is the

ρ meson which create a splitting of the Landau mass,

explaining the larger splitting observed in Fig. 8.

The contribution of the Fock terms can be observed

by comparing left and right panels in Fig. 8: They con-

tribute to decrease further the effective masses. In addi-

tion, the ρT coupling scenario plays an important role

for the two effective masses: In symmetric matter, it

contributes to increase the Dirac mass M∗D, while it

decreases the Landau mass M∗L. For asymmetric mat-

ter, the ρT coupling scenario also plays a role in the

strength of the splittings. It reduces the splitting of the

Dirac mass in asymmetric matter, and for the Landau

mass its effect is even more spectacular since it changes

the sign of the splitting: without ρT coupling (NRT) we

obtain M∗L(n)−M∗L(p) ≈ −0.15, while in the SRT case,

we obtain M∗L(n)−M∗L(p) ≈ 0.05-0.1 in neutron matter.

We then conclude that the sign of the splitting of the

Landau mass in neutron matter is strongly correlated

with the value of the ρT coupling.

This sign was predicted to be positive in Ref. [43],

based on the Bonn potential for which this coupling is

large (SRT). According to our results, a small value,

or a value compatible with the WRT case may largely

reduce the splitting, or even lead to an opposite sign. It

is however difficult to extract from experimental data

the splitting of the effective mass. We therefore believe

that the sign of the splitting of the Landau mass in

neutron matter is not yet a settled question.

We now summarize the numerical values for the

NEP and effective masses for various models explor-

ing the prescriptions for ρT and the L-QCD sets. Our

results are given in Tab. 13 for the best parameter sets.

Some of the results given in this table have already been

given in Tabs 9 and 12, but we decided to assemble

them in a unique table in order to compare them. We

find a large impact of the L-QCD set on the symmetry

energy properties: the set L2 leads to values of Esym

in close agreement with the empirical expectation of

32±2 MeV [6], and values for its slope Lsym in the high

domain of the expectation 60± 15 MeV [6]. The set L1
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Table 13 Predictions for the Dirac and Landau masses and other NEP from the model D and different prescription for the
ρT coupling. The results of the two sets of L-QCD are shown.

model ms gs gω C Ksat Esym M∗D/MN M∗L/MN ∆M∗L/MN Lsym Ksym Qsat

MeV MeV MeV MeV MeV MeV

RHFCC(D,L1,NRT) 965 15.200 8.176 1.81 328 23.2 0.74 0.79 -0.12 40.4 -34.4 -262

RHFCC(D,L1,WRT) 903 13.296 7.457 1.64 314 22.9 0.77 0.71 0.01 38.8 -48.7 -332

RHFCC(D,L1, SRT) 819 10.943 6.932 1.40 296 24.7 0.80 0.64 0.07 45.0 -56.8 -401

RHFCC(D,L2,NRT) 1471 25.316 9.975 2.68 361 34.0 0.64 0.71 -0.14 80.8 -11.4 116

RHFCC(D,L2,WRT) 1341 21.044 8.902 2.38 330 31.3 0.70 0.63 0.01 66.0 -59.1 -113

RHFCC(D,L2, SRT) 1176 16.192 8.050 1.97 302 31.4 0.75 0.57 0.08 65.1 -78.3 -262
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Fig. 8 The Landau and Dirac masses at the Fermi surface
as a function of the asymmetry parameter for both proton
(solid lines) and neutrons (dashed lines) in both RHCC and
RHFCC. For the RHFCC, the three ρT couplings are shown.

however lead to a smaller value of Esym and Lsym. The

isoscalar NEP Qsat is larger for the set L2 compared

to L1 and the Dirac and Landau masses are larger for

L1 compared to L2, but none of these values could be

definitively excluded. The main drawback of the set L2

can be find in the large values for the scalar mass ms

and coupling constant gs, as we already observed in a

previous discussion. For this reason, we still prefer the

set L1 and we note that it predicts values for the in-

compressibility Ksat a bit larger than the expected one

and values for the NEP Esym about 8 MeV below the

expected one. We show in the following that the low

value of Esym obtained in our best approach impacts

the neutron matter EoS around saturation density.

5.5 Prediction for low density neutron matter

So far, we have generated RHFCC models reproducing

some saturation properties of symmetric nuclear matter

(Esat and nsat). We now study in more details the pre-

diction of our models for neutron matter at low density,

where they are compared to predictions based on χ-

EFT interaction and different many-body treatments.

In Fig. 9 are shown the binding energy in symmetric and

neutron matter, as well as the pressure in neutron mat-

ter. The uncertainties in our models correspond to 95%

confidence interval from our Bayesian samples. We com-

pare our results to other calculations: Drischler’ 2016

many-body perturbation theory based on χ-EFT two

and three-body interactions in symmetric and neutron

matter [44]. In neutron matter, we additionally com-

pare our results to the predictions by Tews [45] from

QMC approach.

We remind that the symmetry energy we find for

the case D is too low compared to the experimental one,

and since the saturation energy Esat is fixed, we expect

our prediction for the binding energy in neutron mat-

ter to be lower. This is indeed what we observe in the

middle panel. By looking at the pressure, we see that

EoS is soft at the beginning and then it starts getting

stiffer, overcoming the other EoS at ∼ 0.16 fm−3. We

also note that for the NRT and WRT cases, the pres-

sure is slightly negative at the beginning, indicating an

instability in the model.

Finally, we show the prediction of our RHFCC model

in the case for which the value symmetry energy is used

in the fit of the model parameters to get the ρ vector

coupling constant gρ, instead of the value fixed by the

quark model (only the SRT scenario is shown, see the

next subsection for more information). We observe a
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Fig. 9 Low density equations of state for symmetric matter’s binding energy (left panel), neutron matter’s binding energy
(middle panel) and neutron matter’s pressure(right panel). We show results from other models (see Refs. [44,45]), and for the
RHFCC , for which we show the three ρT cases. In our last model, we replace the constraint imposed by the quark model by
the constraint to reproduce the experimental symmetry energy Esym = 32 MeV and we only show the SRT.

much better agreement with the chiral prediction for

the neutron matter EoS, as we discuss hereafter.

5.6 Departing from the quark model constraint for gρ

We remind that the coupling constant gρ is obtained

from the quark model, giving gρ = gω/3. This constrain

however may be removed and replaced by another one,

e.g. fixing gρ to get the experimental value for Esym, in

order to estimate which value the ρ coupling should get

in order that our results reproduce correctly the energy

of neutron matter. For that we take the mean values of

the L-QCD parameters from Tab. 3, and we now add

Esym = 32 ± 2 MeV to be satisfied by the fitting

procedure, instead of the value imposed by the quark

model. The results obtained are shown in Tab. 14.

The symmetry energy is governed by the isovector

channel, so the ρ interaction, and since our symmetry

energy was lower than the empirical value, we expect

gρ to increase to make up for this. However, in order

to maintain the energy saturation which was mainly

governed by the scalar and vector fields s and ω, the

attractive ρ channel should be compensated by decreas-

ing their roles, and this is indeed what we observe in

the table. The decrease in gs is also accompanied by a

decrease in ms to maintain a constant a2 (see Eq. (8)).

A more detailed comparison of the prediction based

on the quark model (fixing gρ = gω/3) or on the direct

Table 14 Comparison of the predictions for the model pa-
rameters and some NEP imposing the quark model constraint
gρ = gω/3 (same as in Tab. 13) or imposing the symmetry en-
ergy Esym = 32 MeV. The quantities ms, Ksat and Esym are
given in MeV, the other quantities are dimensionless. Model
D and L1 set for L-QCD are considered.

Imposing gρ = gω/3 Imposing Esym = 32 MeV

NRT WRT SRT NRT WRT SRT

gs 15.200 13.296 10.943 14.131 10.381 7.732

ms 965 903 819 931 798 688

gω 8.176 7.457 6.932 7.951 6.497 6.091

gρ 2.725 2.486 2.311 3.957 3.613 3.014

gω/gρ 3 3 3 2.00 1.80 2.02

C 1.81 1.64 1.40 1.71 1.34 1.04

Ksat 328 314 296 322 292 272

Esym 23.2 22.9 24.7 32 32 32

g′ 0.08 0.23 0.48 0.08 0.39 0.76

fit to the symmetry energy (imposing Esym = 32 MeV)

is shown in Tab. 14. It is interesting to note that the

value of the incompressibility modulus Ksat is also de-

creasing when we impose the fit to Esym. In the SRT,

the value we obtain, Ksat = 272 ± 8 MeV is even close

to compatible with the expectation from nuclear exper-

iments. The values of the coupling constant gρ required

to better reproduce the symmetry energy are about 20-

25% larger than the one imposed by the quark model.
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It is therefore not a strong violation of the quark model,

and such a deviation could be understood, for instance,

from a modeling of the decrease of the ρ mass by about

20% at saturation density, with respect to its bare mass

in vacuum.

In Tab. 14, the value of the spin-isospin Landau-

Migdal parameter g′ is shown in the two scenarios for

the gρ coupling constant: it increases in the case when

Esym is fitted, but remain compatible with the expec-

tation value of about 0.6 that we have discussed previ-

ously.

Finally, the prediction of this new model for the

neutron matter EoS is shown in Fig. 9. Since we get a

better agreement with nuclear physics in the iso-vector

channel, it is not surprising that the neutron matter

EoS is better reproduced with the new model. Indeed

we observe that the new EoS is closer to the χ-EFT

ones within the uncertainties bars.

6 Conclusions

In this paper, we have investigated the effect of the chi-

ral potential and of the nucleon polarisability in the

relativistic Hartree-Fock framework in continuation of

our previous study based on the relativistic Hartree ap-

proximation [9]. The model parameters are fitted from

Lattice QCD, the quark model and two empirical pa-

rameters (nsat and Esat) are used. We have additionally

included the nucleon finite size effects with form factors

and the SRC with the Jastrow ansatz, inducing addi-

tional parameters in the model and we have checked

that our results are only weakly influenced by these

additional parameters. They are then fixed to some ar-

bitrary values.

The tensor component of the ρ meson is varied from

the NRT (κρ = 0) to the SRT (κρ = 6.6) case. We have

shown that the tensor contribution to the ρ meson is

contributing quite substantially to several observables,

such as for instance the symmetry energy Esym, the in-

compressibility modulus Ksat, the Dirac and Landau

masses M∗D and M∗L, etc. We have employed two em-

pirical parameters, Ksat and Esym, not used in the fit,

to evaluate the goodness of our models. It comes that

the value κρ = 6.6 (SRT) is the one which allows these

two quantities to be the closest to their empirical val-

ues. From our analysis, we find that in general the SRT

scenario is the most plausible one.

We have investigated the question of the splitting of

the Landau mass M∗L in neutron matter between neu-

trons and protons. We found that the strength and the

sign of this splitting is largely given by the size of the ρT

coupling. The value suggested in Ref. [43] (a splitting

of about 0.1) is compatible with the SRT scenario, but

a weaker ρT coupling would lead to a smaller splitting,

which could also change its sign for very small value of

the ρT coupling. Since the value of the ρT coupling is

not clearly fixed, we conclude that the splitting of the

effective Landau mass may not be a settled question.

We have also replaced the quark model constraint

on gρ by the requirement to reproduce the symmetry

energy Esym. The new EoS is in better agreement not

only for the symmetry energy properties and the neu-

tron matter predictions, but also for the incompress-

ibility modulus (in the SRT scenario). The spin isospin

Landau-Migdal parameter g′ is also in good agreement

with experimental expectations. In conclusion, we have

obtained a RHFCC model which is in a good agreement

with the expectation from nuclear physics around sat-

uration density. This is therefore a model which is sat-

isfactory enough to analyse its predictions for neutron

star matter. Our next step will therefore be to perform

studies in this direction.
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Appendix A: Explicit expressions for the direct

contributions to the energy and to the

self-energies

At the Hartree level, we have the direct terms contri-

butions:

ΣD
S,N = − g2

s

m2
s

ns −
g2
δ

m2
δ

(nsN − nsN̄ ), (A.1)

ΣD
0,N =

g2
ω

m2
ω

n+
g2
ρ

m2
ρ

(nsN − nsN̄ ), (A.2)

ΣD
V,N = 0 (A.3)

In what follows, we will write the exchange part of

the self-energies.

Appendix B: Explicit expressions for the

exchange self-energies in the case A (Pure HF

calculation)

Appendix B.1: s coupling

ΣE,s
S,N =

1

4
g∗

2

s

∫
dp′

(2π)3
Ds(q)2M̂N (p′) +Σrg

S , (B.4a)

ΣE,s
0,N =

1

4
g∗

2

s

∫
dp′

(2π)3
Ds(q)2fN (p′), (B.4b)

ΣE,s
V,N = −1

4
g∗

2

s

∫
dp′

(2π)3
Ds(q)2p̃ · P̂N (p′), (B.4c)

The rearrangement term Σrg
S gives momentum inde-

pendent contributions to the scalar self energy, one due

to the dependence of the effective coupling constant on

the scalar field, i.e g∗s (s̄) :

ΣS (rg 1) = − 2
κ̃NS
m∗2s

ε
(s)
Fock (B.4d)

with κ̃NS defined in Eq. (7), and the other contribution

due to the dependence of the effective scalar mass m∗s(s̄)

on the scalar field :

ΣS (rg 2) =
∂m∗2s
∂ns

g∗2s
2

∫
dp

(2π)3

dp′

(2π)3

∂Ds(q)

∂m∗s(s̄)∑
N

(
1 + M̂(p)M̂(p′)− P̂ (p) · P̂ (p′)

)
N
.

(B.4e)

where the derivative of the in-medium sigma mass with

respect to the scalar density is :

∂m∗2s
∂ns

=

(
v′′′(s̄) +

∂κ̃NS
∂s̄ ,

ns

)
∂s̄

∂ns
+ κ̃NS

= κ̃NS −
g∗s
m∗2s

(
v′′′(s̄) +

∂κ̃NS
∂s̄

ns

)
. (B.4f)

Appendix B.2: δ coupling

ΣE,δ
S,N =

1

4
g2
δ

∫
dp′

(2π)3
Dδ(q)2M̂N (p′)

+ 2×
(
N 7−→ N̄

)
, (B.5a)

ΣE,δ
0,N =

1

4
g2
δ

∫
dp′

(2π)3
Dδ(q)2fN (p′)

+ 2×
(
N 7−→ N̄

)
, (B.5b)

ΣE,δ
V,N = −1

4
g2
δ

∫
dp′

(2π)3
Dδ(q)2p̃ · P̂N (p′)

+ 2×
(
N 7−→ N̄

)
. (B.5c)

Appendix B.3: ω coupling

ΣE,ω
S,N = −1

4
g2
ω

∫
dp′

(2π)3
Dω(q)8M̂N (p′), (B.6a)

ΣE,ω
0,N =

1

4
g2
ω

∫
dp′

(2π)3
Dω(q)4fN (p′), (B.6b)

ΣE,ω
V,N = −1

4
g2
ω

∫
dp′

(2π)3
Dω(q)4p̃ · P̂N (p′), (B.6c)

Appendix B.4: ρV coupling

ΣE,ρ
S,N = −1

4
g2
ρ

∫
dp′

(2π)3
Dρ(q) 8M̂N (p′)

+ 2×
(
N 7−→ N̄

)
, (B.7a)

ΣE,ρ
0,N =

1

4
g2
ρ

∫
dp′

(2π)3
Dρ(q) 4fN (p′)

+ 2×
(
N 7−→ N̄

)
, (B.7b)

ΣE,ρ
V,N = −1

4
g2
ρ

∫
dp′

(2π)3
Dρ(q) 4p̃ · P̂N (p′)

+ 2×
(
N 7−→ N̄

)
. (B.7c)

Appendix B.5: ρV T coupling

ΣE,ρV T

S,N = −1

4

(
gρfρ
2MN

)∫
dp′

(2π)3
Dρ(q) 12q · P̂N (p′))

+ 2×
(
N 7−→ N̄

)
, (B.8a)

ΣE,ρV T

0,N = 0 (B.8b)

ΣE,ρV T

V,N = −1

4

(
gρfρ
2MN

)∫
dp′

(2π)3
Dρ(q) 12M̂N (p′)

+ 2×
(
N 7−→ N̄

)
. (B.8c)
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Appendix B.6: ρT coupling

ΣE,ρT

S,N =
1

4

(
fρ

2M

)2 ∫
dp′

(2π)3
q2Dρ(q) 6M̂N (p′)

+ 2×
(
N 7−→ N̄

)
, (B.9a)

ΣE,ρT

0,N =
1

4

(
fρ

2M

)2 ∫
dp′

(2π)3
q2Dρ(q) 2fN (p′)

+ 2×
(
N 7−→ N̄

)
, (B.9b)

ΣE,ρT

V,N = −1

4

(
fρ

2M

)2 ∫
dp′

(2π)3
Dρ(q)

×
[
2q2(p̃ · P̂N (p′))− 8(p̃ · q)

(
P̂N (p′) · q

)]
+ 2×

(
N 7−→ N̄

)
. (B.9c)

Appendix B.7: π coupling

ΣE,π
S,N =

1

4

(
gA
2fπ

)2 ∫
dp′

(2π)3
q2Dπ(q) 2M̂N (p′)

+ 2×
(
N 7−→ N̄

)
, (B.10a)

ΣE,π
0,N =

1

4

(
gA
2fπ

)2 ∫
dp′

(2π)3
q2Dπ(q) 2fN (p′)

+ 2×
(
N 7−→ N̄

)
, (B.10b)

ΣE,π
V,N = −1

4

(
gA
2fπ

)2 ∫
dp′

(2π)3
Dπ(q)

×
[
2q2(p̃ · P̂N (p′))− 4(p̃ · q)

(
P̂N (p′) · q

)]
+ 2×

(
N 7−→ N̄

)
. (B.10c)

After performing the angular integrations, we obtain

the Eq. 37 to 39.

Appendix C: Expressions for the exchange

self-energies in the case D (HF with FF+SRC

calculation)

Appendix C.1: π coupling

Σπ
S,N =

1

4

(
gA
2fπ

)2 ∫
dp′

(2π)3

(
q2Dπ(q)− 3g′π(q)

)
2M̂N (p′)

+ 2×
(
N 7−→ N̄

)
, (C.11a)

Σπ
0,N =

1

4

(
gA
2fπ

)2 ∫
dp′

(2π)3

(
q2Dπ(q)− 3g′π(q)

)
2fN (p′)

+ 2×
(
N 7−→ N̄

)
, (C.11b)

Σπ
V,N = −1

4

(
gA
2fπ

)2 ∫
dp′

(2π)3

[(
q2Dπ(q)− 3h′π(q)

)
×
(

2(p̃ · P̂N (p′))− 4(p̃ · q̃)(P̂N (p′) · q̃)
)

−2(g′π(q)− h′π(q))(p̃ · P̂N (p′))
]

+ 2×
(
N 7−→ N̄

)
(C.11c)

Appendix C.2: ρT coupling

ΣρT

S,N =
1

4

(
fρ

2M

)2 ∫
dp′

(2π)3

(
q2Dρ(q)− 3g′ρ(q)

)
6M̂ ′N

+ 2×
(
N 7−→ N̄

)
, (C.12a)

Σρ
0,N =

1

4

(
fρ

2M

)2 ∫
dp′

(2π)3

(
q2Dρ(q)− 3g′ρ(q)

)
2fN (p′)

+ 2×
(
N 7−→ N̄

)
, (C.12b)

Σρ
V,N = −1

4

(
fρ

2M

)2 ∫
dp′

(2π)3

[(
q2Dρ(q)− 3h′ρ(q)

)
×
(

2(p̃ · P̂N (p′))− 8(p̃ · q̃)(P̂N (p′) · q̃)
)

−2(g′ρ(q)− h′ρ(q))(p̃ · P̂N (p′))
]

+ 2×
(
N 7−→ N̄

)
(C.12c)

Appendix D: Derivation of the spin-isospin

Landau-Migdal parameter g′

We start from the non-relativistic reduction of the ρ po-

tential, expressed in the center of mass reference frame

(p+p′ = 0) as in Ref. [31], which provide the following

contribution to the spin-isospin central interaction,

Vρ(q) = −2

3
q2Dρ(q)g2

ρ

{
1 + 2

κρ
2MN

+

(
κρ

2MN

)2 }
σ1.σ2

= −2

3
VA,ρ(q)g2

ρ

{
1 + 2

κρ
2MN

+

(
κρ

2MN

)2 }
σ1.σ2

(D.13)
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where we have employed coupling constants consistently

with our Lagrangian (4). The spin-isospin central inter-

action has three components arising from the vector,

vector-tensor and tensor part of the interaction. For

the π interaction, we simply have

Vπ(q) = −1

3

(
gA
2fπ

)2

VA,π(q)σ1.σ2 (D.14)

We can now define the Landau-Migdal parameter G′

which governs the response in the Gamow-Teller (GT)

channel and is defined as the spin-isospin channel of the

central interaction,

VGT = G′(σ1 · σ2) . (D.15)

The Landau-Migdal parameter G′ takes the contribu-

tion from the ρ and the π given in Eqs. (D.13) and

(D.14), and evaluated at q = 0.

Appendix D.1: Model A

We have for the pure HF model (model A), from

Eq. (D.13),(D.14),

G′A(q) = −1

3

(
gA
2fπ

)2

VA,π(q)− 2

3

(
fρ

2MN

)2

VA,ρT (q) .

(D.16)

The dimensionless Landau-Migdal interaction g′A(q) is

defined as,

G′A(q) =

(
gA
2fπ

)2

g′A(q) , (D.17)

with

g′A(q) = −1

3
VA,π(q)− 2

3
CρVA,ρT (q) , (D.18)

with Cρ = (fπgρκρ/(gAMN ))
2
.

This expression reduces to the Landau-Migdal pa-

rameter at the long-wave length limit q → 0. Since

VA,α(q→ 0)→ 0, we obtain for the GT Landau-Migdal

parameter g′A = 0 in the pure HF model (model A).

Note that in nuclear physics a different dimension-

less parameter G̃′ is defined as G̃′ = N0G
′, where N0 is

the density of state in symmetric matter and at satura-

tion density N0 = 2M∗NkF /π
2 (N0 ≈ 38×103 MeV2 for

M∗N ≈ 0.7MN ), such that G̃′ = N0(gA/2fπ)2g′ ≈ 1.6g′.

See Ref. [46] for more details.

For model A, we can see directly from Eqs. (D.13)

and (D.14) that

g′A(q = 0) = 0. (D.19)

Appendix D.2: Model B

For model B, we replace VA(q) by VB(q) as in Eq. (43)

for the ρT and π interaction, so

G′B = −1

3

(
gA
2fπ

)2

VB,π(q = 0)

−2

3
g2
ρ

{
VA,ρ(0) + 2

κρ
2MN

VA,ρ(0) +

(
κρ

2MN

)2

VB,ρ(0)
}

=
1

3

(
gA
2fπ

)2

+
2

3

(
gρκρ
2MN

)2

, (D.20)

and for the dimensionless Landau-Migdal parameter,

g′B =
1

3
+

2

3
Cρ , (D.21)

Appendix D.3: Model C

For model C with FF, Fα(q = 0) = 1, so we simply get

the same as in the case A, namely

g′C(q = 0) = 0. (D.22)

Appendix D.4: Model D

Finally, for model D, we replace VA(q) by VD(q) as in

Eq. (65) for the ρT and π interaction, and VC(q) for the

rest, thus we get

G′D = −1

3

(
gA
2fπ

)2

VD,π(0)

−2

3
g2
ρ

{
VC,ρV (0) + 2

κρ
2MN

VC,ρV T (0) +

(
κρ

2MN

)2

VD,ρ(0)
}

=
1

3

(
gA
2fπ

)2
qc

2

qc
2 +m2

π

(
Λ2
π

Λ2
π + qc

2

)2

+
2

3

(
gρκρ
2MN

)2
qc

2

qc
2 +m2

ρ

(
Λ2
ρT

Λ2
ρT

+ qc
2

)2

(D.23)

The dimensionless Landau-Migdal parameter reads,

g′D(q→ 0) =
1

3

qc
2

qc
2 +m2

π

(
Λ2
π

Λ2
π + qc

2

)2

+
2

3
Cρ

qc
2

qc
2 +m2

ρ

(
Λ2
ρT

Λ2
ρT

+ qc
2

)2

. (D.24)

Note that if we include the SRC in all interaction chan-

nels, we would have VD(q) appearing for all terms in

Eq. (D.23) instead of VC(q), and the contribution from

the ρ and ρT would simply add together and we would

have κρ 7−→ 1 + κρ appearing in Cρ instead.
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