N
N

N

HAL

open science

A Generic Tool-Supported Framework for Coupling
Task Models and Interactive Applications

Célia Martinie, David Navarre, Philippe Palanque, Camille Fayollas

» To cite this version:

Célia Martinie, David Navarre, Philippe Palanque, Camille Fayollas.
Framework for Coupling Task Models and Interactive Applications.
posium on Engineering Interactive Computing Systems (EICS 2015), ACM SIGCHI: Special In-
terest Group on Computer-Human Interaction, Jun 2015, Duisburg, Germany.

10.1145/2774225.2774845 . hal-04079370

HAL Id: hal-04079370
https://hal.science/hal-04079370

Submitted on 24 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

A Generic Tool-Supported
7th ACM SIGCHI Sym-

pp.244-253,

https://hal.science/hal-04079370
https://hal.archives-ouvertes.fr

OATAQO

Open Archive Toulouse Archive Ouverte

Open Archive TOULOUSE Archive Ouverte (OATAQO)

OATAO is an open access repository that collects the work of Toulouse researchers and
makesit freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toul ouse.fr/
EprintsID : 15321

The contribution was presented at EICS 2015:
http://eics2015.0rg/

Tocitethisversion : Martinie De Almeida, Celiaand Navarre, David and Palanque,
Philippe and Fayollas, Camille A Generic Tool-Supported Framework for Coupling
Task Models and Interactive Applications. (2015) In: 7th ACM SIGCHI Symposium
on Engineering Interactive Computing Systems (EICS 2015), 23 June 2015 - 26 June
2015 (Duisburg, Germany).

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@listes-diff.inp-toulouse.fr

A Generic Tool-Supported Framework for Coupling Task
Models and Interactive Applications

Célia Martinie, David Navarre, Philippe Palanque, Camille Fayollas
ICS-IRIT, University of Toulouse 3
118, route de Narbonne
F-31062, Toulouse, France
{lastname} @irit.fr

ABSTRACT

Task models are a very powerful artefact describing users’
goals and users’ activity and contain numerous information
extremely useful for designing usable interactive application.
Indeed, task models is one of the very few means for ensuring
effectiveness of the application i.e. that the application allows
users to reach their goals and perform their tasks. Despite those
advantages, task models are usually perceived as a very
expensive artefact to build that has to be thrown away as soon
as the interactive application has been designed, i.e. right after
the early stages of the design process are performed. However,
tasks models can also be of great help for instance when used
to support training material production, for training of
operators and for providing tasks and goals oriented contextual
help while the interactive application is being used ... This
paper proposes a tool-supported framework for exploiting task
models throughout the development process and even when
the interactive application is deployed and used. To this end,
we introduce a framework for connecting task models to an
existing, executable, interactive application. The main
contribution of the paper lies in the definition of a systematic
correspondence between the user interface elements of the
interactive application and the low level tasks in the task
model. Depending on the fact that the code of the application
is available or not, the fact that the application has been
prepared at programming time for such integration or not, we
propose different alternatives to perform such correspondence
(in a tool-supported way). This task-application integration
allows the exploitation of task models at run time bringing in
the benefits listed above to any interactive application. The
approach, the tools and the integration are presented on a case
study of a Flight Control Unit (FCU) used in aircraft cockpits.

Author Keywords
Interactive systems, task models, co-execution.

INTRODUCTION

Task models are considered by many as a corner stone in the
development process of usable interactive applications.
Indeed, they provide a unique mean for gathering
information about users’ roles, goals and activities either
being about an extant or envisioned system. However, at the
same time, task models are also considered as cumbersome,
expensive to build and mainly useful in the early phases of
the development process. When used throughout the
development process as well as at operation time (when the
system has been deployed and is currently used) task models
bring many benefits such as:

e Support the assessment of the effectiveness factor of
usability by identifying which tasks are supported by the
interactive application and which ones are not;

Support the assessment of the task complexity in terms of
perception, analysis, decision and motor action of users in
order to reach a goal [6], assessment of operators’
performance to reach a goal [25] which can lead to
predictive workload assessment [18];

Support the construction of training material and training
sessions of operators of complex systems [10];

Support the structuring and the construction of user
documentation [8];

Support the heuristic evaluation of usability of interactive
applications (better than when task models are not used)
not only for single user applications [5] but also for multi
user applications [24],

Support the identification of user errors and their impact on
the overall performance for reaching the goals [21] as well
as preventing those user errors [22];

Support the identification of tasks that are good candidate
for migration towards an automation of the system [13] but
also towards other users in the context of collaboration
[28];

Makes it possible to provide users with contextual help i.e.
explicit information about how (which tasks to perform) to
reach the goal both at design time [17] and from the current
state of interaction while interacting with the system [19];

Support the redesign of the extant system by analysis of
extant task models and producing task models for the future
system as promoted in ADEPT framework [26].

It is important to note that most of the potential benefits listed
above require that the interactive application and the
information represented in the task model are compatible.
Such compatibility can be seen at lexical (for each interface

object corresponds a low level task in the task model and
reciprocally), syntactic (the task structure and temporal
operators are conformant with the availability of interface
objects i.e. compatible with the dialogue of the UI) and
semantic levels (the interactive application allows users to
reach the goals identified in the task model) [20].

This paper argues that it is possible to ensure compatibility
between a task model and an interactive application.
Beyond previous work in which compatibility was ensured
by generation of the application from the task model (as
promoted in [26]) or by “connecting” a model of the
application with the task model (as promoted in [20] and [1]).
The proposed contribution is wider in the sense that it allows
coupling task models with any existing interactive
application (without having a model of it). By this coupling
the paper provides support for taking advantage of the
benefits of task models based approaches (listed above), even
without following a model-based development of the
interactive application.

The remainder of the paper is structured as follows. Next
section provides a quick overview of related work on
compatibility aspects between task models and interactive
applications. Section III presents a stepwise process for
extracting information about an interactive application and
for connecting it to a task model to ensure consistency or to
identify gaps. Section IV presents a co-execution
environment making it possible to embed task models at
execution time. Section V presents the application of the
process and the use of the co-execution environment on a
case study in the interactive cockpits of large civil aircraft
domain. Last section summarizes the contributions of the
paper, make explicit their benefits and limitations and
highlights future work.

RELATED WORK ON
COMPATIBILITY

There have been mainly two mains ways of addressing the
issue of compatibility between task models and interactive
applications: by generation of the application from the task
model and by defining a correspondence between a model
(formal or not) of the application and the task model.

TASK-APPLICATION

Generation of application from a task model

From the seminal work of ADEPT [27] and its design
process based on tasks and domain models, many authors
have followed and refined that approach as, for instance, in
the CAMELEON framework [4]. The basic assumptions for
these approaches is that task models are the preliminary
source of information and that it is possible to generate an
interactive application from such information (while adding
other ingredients such as UI guidelines for instance). The
main claim is that with such an approach it is possible to
generate user interfaces for different platforms thus reducing
the development costs. The main drawbacks are that it is
difficult to integrate design and craft knowledge in such
processes ending up with stereotyped user interfaces far
away (in terms of design and interaction techniques) from
leading edge applications.

Correspondence at models level

Another approach promoted was to perform integration at
with a (possibly formal) model of the interactive system.
Such an approach has been firstly introduced in [20].
However, such an approach requires a description technique
able to encompass all the elements of the interactive
application including input device information, interaction
techniques as well as the non-interactive part (functional
core) of the application. Another drawback is the high
development costs for the construction of the application and
interaction models limiting usually its use to safety critical
applications. Besides, such approaches are very different
from current processes in interactive application
development where Rapid Application Developments
toolkits (RAD) are common practice. Lastly, task models and
system models must be consistent. It is another cumbersome
task to perform as presented in [15] where such compatibility
was assessed through scenarios extracted from the task
models and executed on the system model.

Issue of having the task model at run time

An orthogonal issue with respect to the two approaches
presented above, lies in the fact that some of the advantages
(such as contextual help) can only be available if the task
models are embedded during the use of the application.
Embedding task models at run time while executing the
models of an interactive application was proposed in [1]
where the benefits were made available but again at the costs
of building an interactive application via the construction of
system models. This capability has also been used to modify
the system behavior at run time. In [3], the current state of
execution of task models are used to modify user interfaces
distribution over several devices. At last, automated testing
of GUIs has been proposed in [16] but is based on test cases
(sequences of low level GUI events) and not on task models.

A SYSTEMATIC AND EXPLICIT APPROACH TO ENSURE
CONSISTENCY BETWEEN USER TASKS AND
INTERACTIVE APPLICATIONS

The proposed approach overcomes (as much as possible) the
limitations identified above while keeping the potential
benefits. In order to reach this goal, our approach is made of:

e A process based on the synergistic use of task models and
interactive application.

e A technique for instrumenting an existing application in
order to be able to co-execute it with task models at run
time.

Proposed process

The process takes as input an existing interactive system and
its software interactive applications. This process, illustrated
in Figure 1, starts with 2 phases that can be lead concurrently:
task modelling and instrumentation of the interactive
application. The task analysis and modelling phase consists
in understanding user’s tasks with the interactive system and
in describing them in task models. The particularity of this

Mending of task

Misfits in

Missing
information

models

models

Scenarios of Not OK
Il ™| operations [.

and modelling __~— X

Task models
of users

™ during

Tasks operations

models L

construction

focusing on
low level

interactions

Existing
y ve
Instrumentation

of application

Integration
of task
Task models models
of the low-
level
interactions

X

\ 2

/’ Instrumented

f application /4

Automatic
extraction of
interactive
tasks and
widgets

in models

Editing of
correspondences
between tasks and
widgets

Testing via
co- Exploitation
execution

L

Figure 1. Process for validating the effectiveness of an interactive application

phase is that task models of the low-level interactions with
the applications have to be produced, as these descriptions of
the interactive tasks will be put in correspondence with the
interactive application. The amount of tasks to be performed
can be very important and thus there can be several models
which describe tasks at various abstraction level. All these
models have to be linked between each other and these phase
is depicted as the “integration of task models” phase in
Figure 1. In this phase the models are simulated in order to
check their completeness and consistency with regards to
operational scenarios.

On the interactive application side, the software is
instrumented to enable the connection with task models.
Then, a synergistic module automatically extracts widgets
from the interactive application and interactive tasks from
the task models. Interactive tasks are then put in
correspondence with the widgets and their associated events
(phase “Editing correspondences between tasks and widgets”
in Figure 1). When trying to link interactive tasks to widgets
and events, if tasks are not matching widgets or events,
incompleteness is detected and the task models have to be
mend (return loop in Figure 1). Once the task models are
complete, the instrumented interactive application can be co-
executed with the task models. During this co-execution,
inconsistencies can be detected between task models and
interactive application, for example if a widget is described
to be used instead of another which should really be used. In
this case, the task models have to be corrected (return loop
from “testing with co-execution” box in Figure 1).

The required framework to support such correspondence
edition and to support co-execution of the interactive
application with task models is discussed in the next section.

Once the task models are complete and consistent with the
instrumented interactive application, the co-execution
framework can be exploited in order to provide support for
training programs [10], contextual help [19] and user
centered redesign. In the illustrative example, we describe

how this co-execution framework provides support for
assessing effectiveness of interactive applications, which can
be exploited for the re-design of an interactive application.

Approaches for co-execution of interactive application
and task models

Co-execution of system models and task models can be used
to provide support for the development of single user
applications [1] and collaborative applications [12]. In this
paper we propose a framework that enables the co-execution
of an interactive application with its associated task models.
For this purpose, a synergistic module, which consists of a
correspondence editor and a co-execution controller (or
simulation controller), has been built in order to be able to
interface task models with an interactive application
programmed with a textual programming language.
Following the work proposed in [1] and [12], connecting task
models and system models in a software development
environment requires the following steps to be performed:

e On task modelling side:

o A set of interactive tasks (both input and output) must
be extracted from the tasks specification (as they
represent actions performed by the user and feedback
the system provides the user with).

o The task models simulation environment notifies to the
synergistic module the evolution of the scenario under
construction using a dedicated API (sending data from
the simulator).

e On system modelling side:

o The activation and rendering functions have to be
extracted as they represent the system inputs and
outputs. They contain information about the widgets,
the list of related events (relevant for correspondence),
the activation rendering methods for each couple of
widget and event (i.e. how enabled/disabled widget
statuses are rendered) and lastly the rendering methods
(graphical representation of data within widgets).

o The system modelling execution environment executes
the models and notifies to a synergistic module about
any change that happens using a dedicated API.

In the proposed approach, these mechanisms remain the
same on the task models side, but on the system side,
working without models requires to build a co-execution
framework with equivalent mechanisms, i.e.:

e For editing correspondences, the synergistic module of the
framework needs to acquire what is provided by both
activation and rendering functions: a list of widgets, the
list of related events, the activation rendering methods and
the rendering methods.

e For co-execution of the interactive application and
associated task models, the synergistic module of the
framework requires to be notified about any change:
activation status of the widget (enabled/disabled),
rendering changes. The synergistic module also has to be
capable of raising events (for example, to force widgets to
trigger a particular event).

Providing such features depends on how the application has
been built, i.e. whether or not it has been setup for co-
execution.

Instrumentation of an existing interactive application
When preparing the setup for co-execution, the effort
required by the developer depends on the choice of
technology or architecture made:

o A first possibility would be to ask developers to provide the
activation and rendering functions as explained in the
previous section, implementing a dedicated API. This
solution requires knowledge about the synergistic module
and modifies the structure of the interactive application.

e Another possibility is to ask developers to instrument the
code of the existing application with means to allow the
access of pertinent widgets of the application for both user
inputs and system graphical outputs. Such a solution
requires less effort from developers but implies to precisely
define how required features would be exposed (widgets,
events, rendering methods...). With Java! for instance
(since jdk 1.5), “annotations” are special software code
elements that can be used both at compilation and at run
time in order to point out objects, attributes or methods, and
providing access to them.

The option which consists in providing the developers with
a library of widgets already prepared for the correspondence
editing is particular. Such a solution introduces a bias as it
requires the developer to work with this predefined set of
widgets, and prevent them from using new widgets. If this
last case occurs, the developer will have to provide extra
code to use these new widgets within the framework (which
corresponds to the first two possibilities presented).

! http://www.oracle.com/technetwork/java/javase/overview/

Table 1 provides an overview of the possibilities that the
application developer will have to face to be able to connect
an interactive application to task models.

Table 1. Work to be done on the interactive application

developer's side

Dedicated API

Correspondence System driven Task driven
editing simulation simulation
Provide: . .
. Notify user . Allow trigger

. a list of widgets
. a list of events

. a list rendering
events

events occurrence
. Notify rendering
events

user events
. Notify rendering
events

Code
instrumentation

Provide access to
widgets:

. dedicated to user
inputs

. dedicated to
system graphical
outputs

Nothing (if
notification
mechanism is
embedded within
the widgets)

Nothing (if
triggering event
mechanism is
embedded within
the widgets)

Resource
introspection

No work to be
done

No work to be
done

No work to be
done

Runtime
environment
introspection

No work to be
done

No work to be
done

No work to be
done

Modification of
runtime

No work to be
done

No work to be
done

No work to be
done

environment

Design and development of the synergistic module

If the application is not instrumented for co-execution with
task models, the effort will have to be assumed by developers
of the correspondence module. The complexity of such
approach thus depends on the technology used to develop the
application:

e The used technology may provide mechanisms (at design
time or at runtime) to discover interactive widgets and their
features. This could be resource files providing the widgets
and their layout (such as in Microsoft Visual Studio, or
with Java FX fxml files, Qt qml files...) or mechanism
provided by the runtime environment such as with Java
Swing application (at runtime it is possible to explore the
widget tree of any Java Swing application).

Another possibility could be to modify the runtime

environment and to enhance widgets with dedicated

mechanisms (as described in previous section). A good
example of such possibility is the architecture of Java Swing,
where it is possible to change the Look&Feel manager at
runtime of any application even if it has not been set up for

(for each Swing component, the Look&Feel manager defines

both the rendering and how user events are handled).But for

these two aforementioned possibilities, there are two
important limitations:

e Widgets that are not predefined within the framework but
are used for the application cannot be easily used for the
correspondence editing as they would be difficult to detect
and difficult to analyze (to provide list of produced events

Table 2. Work to be done on the synergistic module developer's side

Correspondence editing

System driven simulation

Task driven simulation

Nothing (except editing correspondence

Dedicated API .
itself)

Nothing

Nothing

Code instrumentation [compatible features (done once per

feature)

Prepared for
correspondence
and co-execution

Translate application enhancements into JAdapt notification mechanisms if
they exist or create a pull
mechanism (done once per feature)

Adapt notification and firing
mechanisms if they exist or create a
pull mechanism (done once per
feature)

. Parse ressource files.
Resource introspection |. Foreach known widgets prepare list of
features for correspondence editing

Adapt notification mechanisms if
they exist or create a pull
mechanism (done once per feature)

Adapt notification and firing
mechanisms if they exist or create a
pull mechanism (done once per

feature)
. Does not work

. Get and explore widgets tree.
. Foreach known widgets prepare list of

Runtime environment .
features for correspodence editing.

introspection

Adapt notification mechanisms if
they exist or create a pull
mechanism (done once per feature) |pull mechanism (done once per

Adapt notification and firing
mechanisms if they exist or create a

for unknown
widgets.

and co-execution

possible to retrieve a widget list.
Modification of runtime |. Foreach known widgets prepare list of
environment features for correspodence editing.

. Requires means to graphically identify
widgets to build the correspodence.

Not prepared for correspondence

. Requires means to graphically identify feature) . Difficult to do if
widgets to build the correspodence. widgets are
. Modify the runtime environment making |Adapt notification mechanisms if ~ |Adapt notification and firing dynamically

they exist or create a pull
mechanism (done once per feature) |pull mechanism (done once per

mechanisms if they exist or create a |instanciated

feature)

for instance). Fixing this point thus depends on the used
technology.

e Widgets that appear at run time cannot be detected at boot
strap.

In any case (except when a dedicated API for connection has
been implemented in the application), a set of functionalities
have to be developed in the synergistic module in order to be
able to adapt what is provided by the interactive application
and to connect it to task models. Table 2 provides an
overview of the work that has to be done by the synergistic
module developer depending on the way the interactive
application has been prepared for correspondence and co-
execution. In this article, we present a solution based on the
code instrumentation as it: a) provides full support for
connecting an interactive application with its associated task
models; b) provides support for modularity of the
framework; c) does not modify the architecture of the
interactive application; d) is the more accurate with regards
to recent advances in software engineering.

AN INTEGRATED ENVIRONMENT SUPPORTING THE
CO-EXECUTION OF TASKS MODELS AND JAVA
APPLICATIONS

The proposed process for validating the effectiveness of an
interactive application presented in the previous section is
supported by a modelling and simulation CASE tool for
engineering user tasks and interactive applications.

Task modeling with HAMSTERS

Task models support gathering and structuring data from the
analysis of users’ activities, and recording, refining and
analyzing information about users’ activities. Several
notations are available to describe tasks with varying
expressiveness levels depending on targeted analysis.
HAMSTERS (Human — centered Assessment and Modeling
to Support Task Engineering for Resilient Systems) is a tool-
supported graphical task modeling notation for representing

human activities in a hierarchical and ordered way. At the
higher abstraction level, goals can be decomposed into sub-
goals, which can in turn be decomposed into activities.
Output of this decomposition is a graphical tree of nodes.
Nodes can be tasks or temporal operators.

B
b 10

Apstract task

Abstract task

System task

System task

User task o i o
Usat 1ask Parcaptne task (:c.gu‘\u‘n.-e fask Motor task
Interactive task & =, &
Interactive |n.pul|.ash Interactive D-I;IDI.Il task Interactve l"Dl:ll oulput task

Figure 2. High-level Task Types in HAMSTERS

Tasks can be of several types (Figure 2) and contain
information such as a name, information details, and critical
level. Only the single user high-level task types are presented
here but they are further refined. For instance the cognitive
tasks can be refined in Analysis and Decision tasks [13] and
collaborative activities can be refined in several task types
[12]. Temporal operators are used to represent temporal
relationships between sub-goals and between activities [12].
Tasks can also be tagged by temporal properties to indicate
whether or not they are iterative, optional or both.
HAMSTERS’ notation and tool provide support for task-
system integration at the tool level [10] by:

e Structuring a large number and complex set of tasks
introducing the mechanism of subroutines [11] and generic
components [7]. These structuring mechanisms enables
the breakdown of a task model in several ones. Subroutines
are similar to functions or procedures. Generic
components offer a set of properties and a set of functions
and can be instantiated several times in several task
models.

e Describing data that is required and manipulated [14] in
order to accomplish tasks. Information (“I:” followed by a
text box in Figure 8) may be required for execution of a
system task, but it also may be required by the user to
accomplish a task. The notation element “Object” (“O:”
followed by a text box) is dedicated to the description of a
software data object that is required by the system in order
to accomplish a task. The notation element “Software
Application” (“Sw A:” followed by a text box in Figure 8)
provides support for describing a software application that
is required in order to accomplish a task, and the notation
element “Input/Output device” for an input and/or output
device that is required (depicted in Figure 8).

Interactive application instrumentation and annotations
processing

As stated above, we present an approach where developers
of the interactive application instrument their code with
annotations so that the interactive application can be
integrated within the synergistic framework. Our framework
and the interactive application presented in the case study are
fully implemented using the Java technology. In particular,
we propose a solution based on the Java type annotation
mechanism (since JSE 1.8). Annotation in Java is a form of
metadata (prefixed with a ‘@’), providing data about a
program that is not part of the program itself. Annotations
have no direct effect on the code instructions that they
annotate but they are used by the compiler to detect errors.
At compilation time, they provide information to generate
the code. At run time they provide support for examining the
annotated code. We wuse this last possibility in our
framework. There are a lot of possible usage of such
annotations:

e For instance, the following annotation may be used at run
time to periodically schedule a method call.
@Schedule (dayOfWeek="Fri", hour="23")

public void doPeriodicCleanup() { ... }

e The following one is used at compilation time to detect a
possible assignment to a null value (and raise an
compilation error if so)

@NonNull String str;

The approach proposed is based on such annotations to point
out within the code widgets that may be used to build the
correspondence. There are two kind of annotations: one for
widgets related to user inputs and the other one for graphical
outputs from the system, any widget being possibly of the
two kinds:

e Example of a simple button
@EventSource (name="Validate", event="actionPerformed")

private JButton btnl;

e Example of a label

@Renderer (name="Display", property="text")

private JLabel 1bll;

e Example of a text field

@EventSource (name="Name", event="actionPerformed")
@Renderer (name="Name", property="text")

private JTextField txtl;

Both types of annotation may be enhanced with extra data to
provide information for the correspondence editing. In the
two cases it provides a readable name for the correspondence
(independent from the attribute name) and another
information (the name of the related event or the name of the
widget property that may change while using the
application).

When editing the correspondence between the interactive
application and task models, the synergistic framework uses
the introspection mechanism of Java to find any annotated
widget, building a list of widgets available for editing.

When co-executing the application and the task model, using
the same introspection mechanism, the framework create at
run time all necessary listeners or adapters required to trigger
widget events.

Architecture of the framework for coupling task models
and instrumented interactive application

The architecture of the synergistic software environment that
supports both correspondence editing and co-execution is
presented in Figure 3.

Adapters

Correspondence
Editor

Correspondences

Co-execution

Interactive
Application

Task Models

Annotated code

Annotation processor module

e —

Simulato:l L P—
- Controller v
urt:smp I I Firing I
Tasks

Figure 3. Architecture of the synergistic environment
This architecture is composed of: two modules for task
edition and simulation (on the left side), the interactive
application (on the right side) and of modules for connecting
and co-executing task models with interactive application
(grey shaded in the center in Figure 3). The colors of the
architecture elements make explicit in light grey elements
that have been either added or deeply redesigned to extend
co-execution to applications not designed following a model-
based approach [1]. The module in charge of interfacing the
interactive application with the correspondence editor and
simulation controller is called the “Annotation processor
module”. This module is responsible of processing the
annotations and of providing information about widgets,
events, rendering to the correspondence editor and
notifications to the simulation controller (as described in
section ‘“Approaches for co-execution of interactive
application and task models”). The main differences with the
architecture presented in [1] are that: the architecture
presented here is not exclusively model-based; the
information about widgets and events is provided by the
annotation processor module instead of the PetShop CASE
tool.

ILLUSTRATIVE EXAMPLE FROM THE FCU BACK UP
CASE STUDY

The presented example has been extracted from a case study
in the avionics application domain. In interactive cockpits,
the Flight Control Unit (FCU) is a hardware panel composed
of several electronic devices (such as buttons, knobs,
displays...). It allows crew members to interact with the
Auto-Pilot and to configure flying and navigation displays.

Presentation of the FCU Backup

The FCU Backup is an interactive application designed for
the recovering of all FCU functions in case of FCU failure
and is used in exclusion with the FCU. It is composed of two
interactive pages:

e EFIS CP: Electronic Flight Information System Control
Panel for configuring piloting and navigation displays.

e AFS CP: Auto Flight System Control Panel for the setting
of the autopilot state and parameters.

Figure 4. EFIS control panel (w/o WPT button activated)

For example, this application is displayed on two of the eight
cockpit LCD screens (in the Airbus A380), one for the
Captain and the other for the First Officer. The crew
members can interact with the application via the Keyboard
and Cursor Control Units which gathers in a single hardware
component a keyboard and a trackball.

b)
Figure 5. Navigation display (w/o waypoints displayed)

In this paper, we will focus on the EFIS CP page depicted in
Figure 4. The left panel is dedicated to the configuration of
the Primary Flight Display while the two right panels are
dedicated to the configuration of the Navigation Display
(illustrated in Figure 5). The top right panel of the EFIS page
enables the display of several navigation information while
the bottom panel of the EFIS page enables to choose the
display mode and scale. In this illustrative example, the focus

is set on the activities that have to be led in order to insert
waypoints in the current route.

Inserting a waypoint in the current route with FCU
Backup application

During the flight, crew members may ask permission or be
asked to modify the current route of the aircraft. If the air
traffic controller agrees, a clearance is ordered to the pilot to
insert a waypoint. Figure 8a) details the tasks that have to be
performed to reach this goal. First, thanks to the VHF radio
device, the crew member receives a clearance from the air
traffic controller indicating which waypoint has to be added
in the current route (interactive output task “Receive a
clearance from ATM for inserting a waypoint in flight plan”
and perceptive task “Perceive waypoint insertion request” in
Figure 8a)). Then, s/he decides to check the waypoints
(cognitive decision task “Decide to check waypoints”) and
has to perform a set of activities to display waypoints on the
navigation display (abstract task “Display waypoints on ND”
in Figure 8a)). In order to display waypoints on the
navigation display, the crew member has to display the EFIS
page and to configure the display options. The subroutine
“Configure ND display options” describes the tasks that have
to be performed to configure the navigation display options.
The part of this subroutine task model which is relevant to
our illustrative example is depicted in Figure 7. It shows that
the crew member can iteratively configure the display of
navigation information (iterative abstract task “Configure
display of navigation information™) until (temporal ordering
operator “disable”) s/he decides that the ND is setup
correctly (cognitive task “Decide that ND setup if ok”). To
configure the display of navigation information, the crew
member has the choice between several actions to perform.

In order to configure the display of waypoints, s/he will press
the WPT button widget (instantiated component “Press
button widget to configure the display of [waypoints, WPT
button] in Figure 7). Figure 8b) details the tasks that have to
be performed to configure the display of waypoints. The
crew member first has to locate the WPT button widget (user
task “Locate <WPT button>" in Figure 8b)), then to perceive
the current state of this button (perceptive task ‘“Perceive
current status of <WPT button>" in Figure 8b)). The button
widgets of the EFIS page (illustrated in Figure 4) become
green when they are pressed. Then, s/he decides that the
current status of the button is the right one or not according
to the targeted status (temporal ordering operator
“choice”).If the crew member analyses that the current status
of the button does not match the target status, s/he clicks on
it (interactive input task “Click on <WPT> button” in Figure
8b)). The new status of the button is displayed (interactive
output task “Display <WPT> button status” in Figure 8b)).

Correspondences and co-execution between task
models and FCU Backup

Figure 6 presents one step of co-execution of the tool suite
presented in this paper. The left part (resp. the right part)
corresponds to the execution of the models and application
before clicking the WPT button to display waypoints (resp.
after clicking) using a task driven co-execution.

Input
orrespondence

Current
scenario

Execution of
selected task|

Available

tasks

Feedback on
task
performance|

Available Current
tasks scenario

Figure 6. Illustration of a co-execution step between task models and FCU Backup application

A particular focus on the left part of the figure allows the

understanding of the tool suite (which is a set of modules of

the NetBeans IDE2. This tool may be divided into four parts:

e The top part is a set of classical IDE menu bars and tool
bars buttons.

e The left part provides means to navigate amongst the
project files (java sources, HAMSTERS and
correspondence models).

e The right part shows properties of the sources or models
(bottom part) and tools to modify the currently selected
model (on the top part a specific toolbox appears
depending on the kind models).

e The centre part allows the editing and execution control of
both the sources and models. The layout of this part is fully
reconfigurable as illustrated by the layout difference of the
left and right part of the figure.

e To illustrate the synergistic exploitation of both task
models and the FCU backup application, we use the
models presented in the previous sections. As the
correspondence editing between system and task models is
a simple table editing already presented in [1], we only
focus here on the task driven simulation.

ilo D : iE8Bd = E
o = ™ Configure ND display options
ilo D : FiEEREE -
¢
ifo D ; iEESER T T
-3 Y
iloD : &8 ks

Configure display of navigation information Decide that ND setup is ok

1

ARPT button]

Press button widget to configure the display of [waypoints. WPT bution] Press button widget to confit

Figure 7. Subpart of “Config. ND display options” task model

2 https://netbeans.org/

Following the five numbered steps presented on the figure,
the behaviour of the task driven simulation is as follows:

1. A set of available tasks is provided by the HAMSTERS
environment that is selectable within the associated list
box.

2. The selected task is connected to a widget event (the
click on WPT button) by the correspondence editing.

3. Perform the task thus acts as if the user clicks on the
corresponding button.

4. Asifthe button were clicked, a rendering may occur and
this rendering may be related to an output HAMSTERS
task, using the output correspondence edition (in our
example, the button status changes to engaged and this
property change is related to the task display <WPT
button> status).

5. When an output task is selected, a dedicated panel
appears at the bottom of the tool, showing whether a
rendering occurs and if it corresponds to an output
correspondence (panel “feedback on task performance).
In this panel it is possible to indicate if the rendering was
effectively correct and perceive (for log purpose).

Analysis of the effectiveness of the FCU Backup
application with regards to crew members’ tasks

Thanks to the correspondence and co-execution, we have
verified that the task models of the “Handle waypoint
insertion request” activities are complete and fully consistent
with regards to the FCU Backup interactive application.
From the task models, we can analyse that the crew member
has to move from one application to another in order to be
able to modify the flight plan. S/he has to display the EFIS
page to be able to configure the ND display options (“FCU
Backup EFIS page” software application object in Figure 8a)
and “FCU Backup FMS page” software application object in
Figure 8a)).

-— V—

giié.&lc_ ... wﬁiéhc_

<suotiEMe 10 UOHEINBIILIOS Aeldsip PSIATIZY 10} SO S1 <UOING Lhi> 10 SIEIS 101 9p30. “2UCHNG L 40 SNIEIS UMD 330130 SMIEIS <o LaiiA> Reidsia <UORNG 1> L0 YD <SiuodAems jo uBneinBiyuod Aeldsip aBURYI G} <UONG | i U0 ¥ O 3pI3

o % & -
\1

b)

Sniis eing Ju|

<spuiediens jo uogeinbyuco Aedsip pajabiel yoeal o) <LONNG 1 M= J0 smels abueud o1 apoag <sjuiediess o uonenByuce feidsip palabiel 104 MO I <UOKNG | dAh= 4O SMLIS Byl Spnad

¥ &

/ \ <UGHNG LM JO SMIZIS JUSLIND BM3313d <LONNG | A= 318907
1 b4 k-4

T S

£

t

[uoung L ‘siodAem] jo Ae(dsip ay) 2inByuca o) jaBpim LORNG SSa1d

¥ q# ¥

hed s dnpea nad 1 Y MS

ueid B Aypoi abed spd Aejdsiq suodo Aejdsip aN anbiuon abed 4975143 Aeldsig
wqf> sql,” ol walle
: o S 0 0
&E : q on 4/ \ ko)
N e = W << b

\ -
juiodAem pasuy

"
mw\am.

Al I U

\
GG : q or!

ysanbau uoipesul jujodiem sjpueH
o

@8 -agon-~ m%

a)
Figure 8. Task models for Handle waypoint insertion and Press button widget to configure display of waypoints

JuiodAem By Pasul 0] Jaym pulq sjulodiem ¥aayo QaN uo sjulodAem Aeidsiq sjuiodAem ¥22u2 0} aprag 1senbai uoasu julodAem anediad ueyd by uruiodAem e Buiasul Joj |\ 1 WO SOUBIES|D B @MR3aY

Thus, we have numbered 10 articulatory tasks that are only
dealing with moving from one page to another (5 subtasks in
the “Display EFIS CP page” subroutine and 5 tasks in the
“Display FMS page subroutine” in Figure 8a)).

Furthermore, this articulatory task load will also have to be
added to the crew member’s activities as far as s/he will have
to switch to another application in order to come back to
her/his current activity. This analysis shows that the
interactive application, as currently designed, reduces the
crew members’ efficiency. One potential solution for re-
design could be to integrate the Navigation Display panel
with the FMS panel in one single interactive application.

CONCLUSION

The paper has proposed a tool-supported process for
embedding task models in extant interactive application. The
use of this process allows users to benefits from information
available in the task model while interacting with the actual
system. We have demonstrated that this process can be more
or less time consuming depending on the application
considered and whether or not it has been prepared for such
an integration at development time. We believe such
framework can be of great help for increasing the use of task
models in interactive system development by providing
benefits even for existing and already deployed applications.
Of course, the usual benefits of using task models such as
assessing work complexity, operators’ workload, identifying
areas for improvement... are still present and even improved
by possible storage of information about the actual use of the
application under consideration in its real context. One
limitation of the approach is that it is currently focusing on
WIMP interactions (within the specific scope of JAVA
SWING) but going to other platforms does not raised issues
more difficult to solve than the ones already addressed.
Another limitation is that going to more sophisticated
interaction technique raises not trivial issues requiring
extensions to task models providing more detailed
representations of interaction as, for instance, in [9].

REFERENCES

1. Barboni E., Ladry J-F., Navarre D., Palanque P. and Winckler M.
Beyond modeling: an integrated environment supporting co-execution
of tasks and systems models. EICS'10, 165-174.

2. Bernhaupt, R., Navarre, D., Palanque, P., Winckler, M. Model-Based
Evaluation: A New Way to Support Usability Evaluation of
Multimodal Interactive Applications. In Maturing Usability: Quality in
Software, Interaction and Quality. Springer Verlag 2007, pp. 96-122.

3. Blumendorf, M., Lehmann, G., Albayrak, S. Bridging models and
systems at runtime to build adaptive user interfaces. In Proc. of the
EICS 2010, pp. 9-18.

4. Calvary G., Coutaz J., Thevenin D., Limbourg Q., Bouillon L.,
Vanderdonckt J. A Unifying Reference Framework for multi-target
user interfaces. Interacting with Computers 15(3): 289-308 (2003)

5. Cockton, G., & Woolrych, A. (2001). Understanding inspection
methods: Lessons from an assessment of heuristic evaluation. People
and Computers, Springer Verlag, pp. 171-192

6. Fayollas C., Martinie C., Palanque P., Deleris Y., Fabre J-C., Navarre
D: An Approach for Assessing the Impact of Dependability on
Usability: Application to Interactive Cockpits. EDCC 2014: 198-209

20.

21.

22.

23.

24.

25.

26.

27.

28.

Forbrig, P., Martinie, C., Palanque, P., Winckler, M., Fahssi,R. Rapid
Task-Models Development Using Sub-models, Sub-routines and
Generic Components. Proc.of HCSE 2014, pp. 144-163.

Gong, R. & Elkerton, J. (1990). Designing minimal documentation
using the GOMS model: A usability evaluation of an engineering
approach. CHI 90 Proceedings. New York, ACM DL.

Jourde F., Laurillau Y., Nigay L. COMM notation for specifying
collaborative and multimodal interactive systems. EICS 2010: 125-134

. Martinie C., Palanque P., Navarre D., Winckler M. and Poupart E.

Model-Based Training: An Approach Supporting Operability of
Critical Interactive Systems: Application to Satellite Ground
Segments, Proc. of EICS 2011, pp. 141-151, ACM DL.

. Martinie, C., Palanque, P., Winckler, M. Structuring and Composition

Mechanism to Address Scalability Issues in Task Models. Proceedings
of the IFIP TC 13 INTERACT, LNCS Springer Verlag, 2011.

. Martinie, C., Barboni, E., Navarre, D., Palanque, P., Fahssi, R.,

Poupart, E., Cubero-Castan, E. Multi-models-based engineering of
collaborative systems: application to collision avoidance operations for
spacecraft. Proc. of EICS 2014, pp. 85-94.

. Martinie C., Palanque P., Barboni E., Ragosta M. Task-Model Based

Assessment of Automation Levels: Application to Space Ground
Segments. Proc. of the IEEE SMC, Anchorage, 2011.

. Martinie C., Palanque, P., Ragosta, M., Fahssi, R. Extending

Procedural Task Models by Explicit and Systematic Integration of
Objects, Knowledge and Information. Proc. of Europ. Conf. on
Cognitive Ergonomics, pp. 23-33.

. Navarre D., Palanque P., Paterno F., Santoro C., Bastide R: A Tool

Suite for Integrating Task and System Models through Scenarios.
DSV-IS 2001: 88-113.

. Nguyen, B., Robbins, B., Banerjee, I., Memon, A. GUITAR: an

innovative tool for automated testing of GUI-driven software.
Automated Software Engineering, March 2014, vol. 21 (1), pp 65-105.

. Pangoli S., Paterno F. Automatic Generation of Task-Oriented Help.

ACM Symposium on UIST 1995: 181-187

. O’Donnell, R. D.; Eggemeier, F. T. Workload Assessment

Methodology; In Handbook of Perception and Human Performance
(Vol. II Cognitive Processes and Performance, pp. 42-41 - 42-49).
Wiley & Sons, 1986.

. Palanque P., Martinie, C. Contextual Help for Supporting Critical

Systems' Operators: Application to Space Ground Segments Activity
in Context Workshop, AAAI conference on Artificial Intelligence.
Palanque P., Bastide R., Sengés V. Validating interactive system
design through the verification of formal task and system models.
EHCI 1995: 189-212

Palanque P., Basnyat S: Task Patterns for Taking Into Account in an
Efficient and Systematic Way Both Standard and Erroneous User
Behaviours. HESSD 2004: 109-130

Paterno F., Santoro C. Preventing user errors by systematic analysis of
deviations from the system task model. Int. J. Hum.-Comput. Stud.
56(2): 225-245 (2002).

Paterno, F., Santoro, C., Spano, L.D. MARIA: A universal,
declarative, multiple abstraction-level language for service-oriented
applications in ubiquitous environments. ACM Trans. Comput.-Hum.
Interact. 16, 4, Article 19 (November 2009), 30 pages.

Pinelle, D., Gutwin, C., and Greenberg, S. Task Analysis for
Groupware Usability Evaluation: Modeling Shared-Workspace Tasks
with the Mechanics of Collaboration. ToCHI, 2003, 10(4), 281-311.
Swearngin A., Cohen M., John B.E., Bellamy R. Human performance
regression testing. IEEE international conference on Software
Engineering, ICSE 2013: 152-161

Wilson S., Johnson P. Bridging the Generation Gap: From Work
Tasks to User Interface Designs. CADUI 1996: 77-94

Wilson S., Johnson P., Kelly C., Cunningham J. and Markopoulos P.
Beyond hacking: A model based approach to user interface design, In
Proceedings of HCI'93, 217—23, University Press, BCS HCIL.

van Welie, M., van der Veer, G.C. Groupware task analysis.
Handbook of Cognitive Task Design, LEA, NJ (2003), pp. 447-476.

