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Abstract

In this paper, we revisit the famous Kermack - McKendrick model with nonlocal spatial interactions
by shedding new light on associated spreading properties and we also prove the existence and uniqueness
of traveling fronts. Unlike previous studies that have focused on integrated versions of the variable
representing the susceptible population, we analyze the long time dynamics of the underlying age-
structured model for the cumulative density of infected individuals and derive precise asymptotic
estimates for the infected population. Our approach consists in studying the long time dynamics
of an associated transport equation with nonlocal spatial interactions whose spreading properties are
close to those of classical Fisher-KPP reaction-diffusion equations. Our study is self-contained and
relies on comparison arguments.
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1 Introduction
We consider a classical Kermack - McKendrick model [3, 12, 27] of the form
ohS(t,z) = — (/OOO (1)K * I(t,i,x)di) S(t,z), t>0, zeR%
OI(t,i )+ 0;I(t,i,x) = —~(i)I(t,i,x), t>0, i>0, zeR% (1.1)
I(t,0,z) = (/000 T(1)IC * I(t,z’,a:)di) S(t,z), t>0, zeR%

where S(t,x) represents the susceptible population at time ¢ > 0 structured by a spatial variable x € R¢
for some d > 1, and I(t,i,x) represents the population of infected individuals at time ¢t > 0 with age of
infection ¢ > 0 also structured in space. For future reference, we let Z(¢,x) be the total population of
infected individuals such that we have

I(t,2) = /0 It 2)di.
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Here we have set K x I(t,i,x) 1= [paK(z — y)I(t,4,y)dy. The second equation of the model can be
understood as follows. The number of infected individuals at time ¢+ h, spatial position z, with an age of
infection ¢, is given by the difference of the incoming flux of infected individuals at time ¢, spatial position
x, with an age of infection ¢ — h, and the outgoing flux of infected individuals at time ¢, spatial position
x, with an age of infection ¢, which are removed at rate h7y(i). Namely, we have assumed the balance
equation

I(t+ h,i,2) = I(t,i — h,x) — hy(i)I(t,i,z) + o(h),

from which we deduce the second equation of (1.1) by substracting I(¢,7,2) on both side and letting
h — 0. The boundary condition at ¢ = 0 is also very natural and corresponds to the hypothesis that
newly infected individuals are proportional to the fraction of the susceptible individuals that have been in
contact with infectious individuals. It is important to note that in the above model represented by (1.1),
we have made several simplifying assumptions that we now list and comment. First, we have ignored all
demographic effects (natural birth/death of the population) which can be neglected at first approximation.
We have set the model on the full infinite space R? since we are interested in long range spatial spreading
properties of the epidemic, and we have mainly the cases d = 1 and d = 2 in mind although our results
will hold for all d > 1. We have also supposed that the rate of infection between the susceptible and
infected populations can be composed as 7(¢)IC(x — y) where 7(i) represents the infection rate within a
homogeneous population with an age of infection i > 0 while (z — y) describes the probability density
of individuals exerting a force of infection from position y to position z. And throughout, we will always
assume that [p, K(z)dz =1 and K > 0 in R%. We assume that the habitat is isotropic (invariant under
rotation), therefore the connectivity kernel K is radially symmetric and thus K(z — y) only depends on
the distance ||z — y||, where || - || stands for the Euclidean norm on R%. Let us finally note that a more
general rate of infection could be written. For example, instead of 7(i)K(x — y), one could introduce
rates of infection of the form K(i,x — y) where the decoupling between the spatial variable and the age
of infection is no longer possible. Our analysis would carry naturally over to such general cases, but here
we rather prefer to stick with the decoupled case to gain in readability.
We supplement the model represented by (1.1) by a set of initial conditions which takes the form

St=0,z)=38), =eR?
I(t=0,i,2) = Ig(i,x), zeRY i>0,

with Iy bounded, nonnegative and compactly supported. Let us remark that assuming a homogeneous
distribution Sy across the susceptible population is debatable from a biological point of view as in practical
situations this distribution is most likely to be heterogeneous. Here, following previous works [8, 9], we
adopt this formalism since it will allow us to carry out a fairly complete mathematical analysis with
somehow closed-form formulas which are relatively simple to interpret.

Next, we introduce the cumulative number of infected individuals with elapsed time since infection
i > 0 and at position z € R? by setting

t
p(t,i,x) :—/ I(s,i,x)ds.
0

We note that the first equation in (1.1) can be integrated and expressed more simply as

S(;; ) _ exp (— /0 h T(i)K p(t,i,x)di) )




such that one can reduce system (1.1) to a single equation on the evolution of p given by
th(t,z,:n)—l—ﬁzp(t,z,x) :I(](Z,I') _’7(7’):0(7;2)1')7 t>0, >0, =z eRd7

p(t,0,2) = So (1 ~exp (— /OOO (i) * p(t,i,x)di)) Ciso wemd 1

eventually complemented with the initial condition p(0,i,2) = 0 for all i > 0 and = € R%.

At this stage of the presentation, we claim that (1.2) shares lots of features with traditional Fisher-
KPP equations encountered in the reaction-diffusion community [2, 22, 28]. To make our point clearer,
let us introduce the homogenous counterpart of (1.2), that is, we set Iy(¢,2) = 0 and consider

8tp(tvi7$) + &ﬁ(t,z,:v) = —’7(1),0(75,2,:1:), t> 07 i > 07 T e Rda

p(1,0,2) = So (1 —exp (— /OOO () + p(t,i,x)di)) ¢so zept @D

where we allow for general initial condition p(0,4, ) = po(i, ) compactly supported in [0, +o00) x R?.

The link to the usual Fisher-KPP equations becomes evident when one assumes that both 7(i) = 7 > 0
and (i) = v are independent of the infection age i. In that case, the total cumulative density of infected
individuals defined as C(t,z) = [J° p(t,i,2)di = fo s, x)ds satisfies the following nonlocal reaction-
diffusion equation

0C(t,x) = So (1 — exp (7K * C(t,2))) =1C(t,z), >0, xeR™
Note that the above equation can be slightly reformulated as
0C(t,x) = Som(—C(t,z) + KxC(t,x)) + (Som — v)C(t, x)
nonlocal diffusion linear reaction

— S (exp (=K« C(t,z)) — 1+ 7K+ C(t,x)).

Vv
nonlinear nonlocal reaction

Such models are very close to the spatially extended SIR models studied recently in the literature, see for
example [4, 8, 9, 11, 16, 18, 26, 31] and references therein.

Let us finally remark that our transport model with nonlocal interactions is rather different from the
setting considered for example in [19-21]. Indeed, in the models presented and studied in [19-21] and
subsequent works, the interactions between individuals are purely local and only driven by diffusion in
space which could be interpreted as spatial migration from a population dynamics perspective. Here we
focus on the case where the interactions are nonlocal in space induced by some spatial connectivity kernel
K which encodes the spatial range of interactions of infected individuals.

1.1 Assumptions and main results

We first present the main assumptions on the parameters that shall stand throughout the paper, for which
we shall be guided by the biological interpretation and by the desire to let the analysis proceed along
standard lines, covering as much generality (possibilities) as possible. Our first set of assumptions are on
the recovery rate function «y of infected individuals and the transmission rate function 7.

Hypothesis (H1) - Recovery and transmission rates. We assume the following:



1
loc

(1) v:[0,i4) = Ry, with some it € (0,+00], is nonnegative such that (i) € L
when it € (0,400), we assume that

([0,44)). In particular,

(i) 1= e Sr@ds 0 a5 iy (1.4)

(ii) 7 :[0,i1) — Ry is nonnegative, bounded and absolutely continuous on [0,i1), with 0 < 7(i) < 7o for
i €[0,i1) and some T > 0. For future reference, we denote ig := min(supp(7)) € [0,i+).

(iit) w(i) == 7(i)m(i) € L'([0,41)).
(iv) When it < 400, the functions T and w are both extended by 0 outside the interval [0, ;).

The quantity 7 (i) is the probability for an individual to stay in the class of infected individuals after time
i > 0, as a consequence, our assumption (1.4) simply reflects the fact after the maximal age of infection
i+ there should be no more infected individuals. Moreover, (1.4) implies that necessarily v(i) — 400 as
i — 4+ when 73 < +oo. We remark that our assumptions on v and 7 above are rather generic which
encompass many biologically relevant situations. We refer to [23, 25, 29, 33, 38] for concrete examples.
Now, regarding the interaction kernel K, we make the following assumptions.

Hypothesis (H2) - Interaction kernel. We assume that K € WHL(RY) is positive everywhere,
bounded, radially symmetric and normalized such that [, K(x)dz = 1.

The above assumptions on K are very natural. The fact that we impose K to be radially symmetric
indicates the fact that we consider an environment which is spatially isotropic. We refer to [40, 41] for
results in the anisotropic case. The regularity assumption that K € Wl’l(Rd), which implies that each
0, K € L'R%) (p=1,---,d), is a technical assumption that allows us to gain some regularity in space
for the solution in the case where Iy = 0. Finally, the assumption that K(x) > 0 for all z € R? may
be seen as a strong assumption since it implies an all to all coupling among the infected population of
individuals. Nevertheless, since K € L'(RY) we necessarily have K(x) — 0 as ||z| — +oo, and thus the
probability of interactions between separated individuals decreases to 0 as a function of their relative
distance. Actually, we will require stronger localization assumptions on the kernel when dealing with
the asymptotic properties of the solutions to (1.6) (see Hypothesis (H2u) below) which will precisely
quantify the decay rate of the interactions as ||z|| — 4+o00. Relaxing the positivity condition of K in order
for example to take into account the case of compactly supported kernels would necessarily be at the
expense of having stronger assumptions on the initial density of infected individuals Iy but also on the
recovery and transmission rates. However, one expects to observe similar spreading properties as the ones
presented here when compactly supported kernels are considered. Finally, using the radial symmetry of
K, we note that there exists Ko € WH(R) with Ko(2) = Ko(—2z) > 0 for z € R, such that the following
equality holds
Ko(z) == . K(z,z2, - ,xq)dzy---dzg, z€R. (1.5)
R
The main goal of this paper is to investigate the long time behavior of (1.2) starting from certain
nonnegative initial condition pg, namely,

Qup(t,i,x) + Bip(t i) L Io(i,2) — v()plt,irx), >0, i€ (0,if), xe€RY

.. oo
o(t,0,7) 2 s, (1 —exp (/ 7(i)K * p(t,i,x)di)) , t>0, zeRY (L6)
0
p(0,i,2) 2 po(iya), i€ 0,ir), =R
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It is worth mentioning that we allow ourselves to consider more general 1n1t1al conditions than the zero
initial condition which naturally arises from our change of unknown p(t,i,x) fo s,i,x)ds leading to

p(0,i,2) = 0 at initial time. Furthermore, in the case when the maximal age of infection is finite (i.e.
when i+ < 00), the integral appearing in (1.6)(ii) has to be understood as

T ) = iTTi * 1, 2)de
/0 T(Z)K*p(t,z,x)dz—/o (0)IC * p(t, i, z)di.

Throughout this paper, we shall work with the following notion of solutions for the initial boundary value
problem (1.6).

Definition 1.1. We say that a function p : Ry x [0,44) x R? — R is a global classical solution of (1.6)
in Ry x [0,4) x R? with initial condition py and source term Iy defined on [0,i4) x RY, if p is continuous
on {(t,i,z) € Ry x [0,i3) x R | t # 4}, if p(0,4,2) = po(i,x) for all (i,z) € [0,i;) x R%, if &p and O;p
exist a.e. in (0,400) x (0,i1) x R? and p satisfies (1.6)(i) a.e. in (0,+00) x (0,43) x R, and if p satisfies
(1.6) (i) for each t > 0 and = € R.

With assumptions (H1)-(H2), we can prove the following well-posedness result for (1.6).

Proposition 1.1 (Well-posedness). Assume Hypotheses (H1)-(H2), and that Iy is nonnegative, bounded,
continuous and compactly supported on [0,it) X R?, and that po is nonnegative such that po/ T is bounded
and absolutely continuous on [0, i;) xR?, then problem (1.6) admits a unique nonnegative classical solution
p in Ry x [0,i4) x RY with initial condition po, in the sense of Definition 1.1, which satisfies p/m €
L®(Ry x[0,4:) x RY). Furthermore, if Iy = 0, then dy,p (p=1,--- ,d) ezist a.e. on (0,+00) x (0, ;) x R%.

As it will be shown in Section 2, the proof of Proposition 1.1 shows that if one further assumes that the
initial condition py > 0 on [0,4:) x R%, then the solution p to problem (1.6) is positive in Ry x [0,i4) x R%.
However, the situation of pg > 0 on [0,4;) x R?, typically when pg is compactly supported or when py = 0,
is less clear. In the sequel, we show that it is possible to obtain the eventual positivity of the solution p
to problem (1.6) when either Iy or pg is nontrivial, by imposing further conditions on their supports. For
convenience, when Iy # 0 in [0,44) x R?, let us denote the support of Iy in i variable by

Dy, :={i >0 Iy(i,z) # 0 for some z € R} C [0,143). (1.7)

Proposition 1.2 (Positivity). Under the assumptions of Proposition 1.1, let p be the solution of problem
(1.6) given by Proposition 1.1. We have:

(i) If Iy £ 0, we assume that Int(supp(7)) N Int(Dy,) # 0, and define

i\ := min (Int(supp(T)) N Int(DIO)) € [0, i), (1.8)
then p(t,i,z) > 0 for (t,i,x) € (0,+00) x [0,4) x R? with t > i + i,.
(it) If po # 0, we assume that there exist 0 < w € Int(supp(r)) and zo € R? such that

[0, ] x {z0} C supp(po), (1.9)

then p(t,i,z) > 0 for (t,i,x) € (0,+00) x [0,4) x R? with t > i.



The above proposition indicates that we always obtain the positivity of the solutions of (1.6) for
t > i+ i, when Iy # 0, upon assuming that the supports of Iy and of 7 have a common intersection. As
it will be seen in the proof, the condition that Int(supp(7)) N Int(Dy,) # O is optimal in the case when
po = 0. Indeed, if pp = 0 and Int(supp(7)) N Int(Dy,) = O, then the dynamics is trivial and the solution

is simply given by ‘
’ 10(57 ‘T) . .
</z‘t (&) d§> ), 2%

(/OZ IOTEZ)DJ) dg) (i), i<t

In the case where Iy = 0 and pg # 0 is compactly supported in [0,4) X R?, it is possible to extend
the region of positivity to those values of ¢ > ¢ at the expense of imposing the above extra condition
(1.9) on the support of the initial condition pg. This is somehow an optimal result, since the solution of
problem (1.6) for ¢t < i is essentially the initial condition transported along the characteristics of (1.6),
and thus no uniform positivity result can be obtained.

Next, we introduce the definition of super- and subsolutions and prove a comparison principle for
problem (1.6).

p(t,i,z) = (1.10)

Definition 1.2. We say that a nonnegative, bounded and continuous function p : Ry x [0,44) x R? - R
is a supersolution of problem (1.6) in Ry x [0,4:) x R, with an initial condition py and source term
Iy defined on [0,i3) x RY, if p(0,x,i) = py(i,z) for all (i,z) € [0,it) x R, if O;p and d;p exist a.e. in
(0,+00) x (0,it) x R? and p satisfies (1.6)(i) a.e. in (0,400) x (0,i3) x R? with the “=” replaced by
“>7_and if moreover p satisfies (1.6)(ii) for each t > 0 and x € R? with the “=" replaced by “>”. A
subsolution p can be defined in a similar way with both the inequality signs above being reversed.

Proposition 1.3 (Comparison principle). Assume Hypotheses (H1)-(H2). Let p and p be respectively
a super- and a subsolution of (1.6) in Ry x [0,i3) x R in the sense of Definition 1.2 associated with
nonnegative initial data py and p, defined on [0, 1) x R? satisfying Po/ T, py/m™ € L([0,i4) % R%) and with
nonnegative, bounded, continuous and compactly supported source terms Io and I, defined on [0, it) X R,
Assume that py = p, and Iy > 1 in [0,it) x RY, then p > p in Ry x [0,i4) x RY. Furthermore,

(i) if Io # Iy in [0,4:) xRY, by further assuming that Int(supp(T))ﬂInt(Djo_lo) # 0, we have p(t,1,x) >
p(t,i,x) for (t,i,x) € (0,+00) x [0,i1) X R with t > i + iy, where D70710 and i, are respectively
given by (1.7) and (1.8) with Iy repalced by Iy — L;

(it) if po # py» by further assuming that (1.9) is satisfied with po replaced by py — p,,, we have p(t,i,z) >
p(t,i,x) for (t,i,x) € (0,400) x [0,i+) x RT with t > i.

The above comparison principle immediately extends to generalized super- and subsolutions, given by
the minimum of supersolutions and maximum of subsolutions respectively.

Since we are concerned with the “nontrivial” long time behavior of the solution p to (1.6) associated
with nonnegative initial data po (including the case that py = 0), we impose the following technical
condition on Iy, for which Proposition 1.2(i) shows that p is eventually positive for large times.

Hypothesis (H3) - On the initial distribution Iy. We assume that Iy Z 0 is nonnegative, bounded,
continuous and compactly supported in [0,4:) x R such that Int(supp(7)) N Int(Dy,) # O and

Dy, C Int(supp(7)). (1.11)



To investigate the spreading property of (1.6), let us first look at its stationary problem:
Bip(i,x) = Io(i,x) = y(i)p(i,x), i€ (0,ij), =R,

p(0,7) = So <1 — exp (— /OOOT(Z')/C X p(i,x)di)) . zeRY (1.12)

Due to the presence of Iy, problem (1.12) has no constant solutions anymore. However, we can still
manage to prove that problem (1.12) has a unique positive bounded solution. In order to characterize
more precisely the asymptotic behavior (as ||z|| — +o00) of the solution to (1.12), we introduce the
following quantity

Xy = Sy /Ooow(i)di S (0, +OO). (1.13)

Here, %y stands for the basic reproduction number associated with problem (1.6) [12-14, 36]. Our second
main result reads as follows.

Theorem 1.1. Assume (H1)-(H2) and that Iy # 0 satisfies (H3). The stationary problem (1.12) admits
a unique positive bounded solution U in [0,i+) x R?. Moreover, U satisfies

lim U(i,z) =
llz]| =00

0 if %o <1
{ ’ i < 1, locally uniformly in i € [0,14), (1.14)

p5(i), if By > 1,

where p*(i) 1= Sop*n(i) for i € [0,i4) and p* € (0,1) is the unique positive constant solution of equation
v=1—e"%" when %y > 1.

As previously emphasized, model (1.6) can be interpreted as a kind of nonlocal reaction-diffusion
equation of Fisher- KPP type with a heterogeneous forcing term Iy(i,x). In this spirit, it is very closely
related to the so-called field-road reaction-diffusion models studied in the past few years [7, 8]. In our
model structured with the age since infection, and similarly as in the continuous and discrete cases [8, 9],
the unique stationary solution U given in the previous theorem is actually a global attractor for the
dynamics of (1.6) starting from a nonnegative bounded compactly supported initial condition. To state
our next main result, let us define the class of initial conditions py that we shall be working with.

Hypothesis (H4) - On the initial condition p. We assume that pg is nonnegative, absolutely
continuous and compactly supported in [0,i;) X RY, such that po/m € L>=([0, it) X R%). In particular, po
can be identically 0 in [0,i) x RY.

Theorem 1.2. Assume (H1)-(H2) and suppose that Iy # 0 satisfies (H3). Let p be the solution of
(1.6) associated with an initial condition py satisfying (H4). Then,

p(tyi,z) = U(i,x)  ast— +oo,

locally uniformly in (i,x) € [0,44) x R?, where U is the unique positive stationary solution to (1.6) given
in Theorem 1.1.

Let us point out that even in the case of the zero initial condition pg = 0 on [0, i+) x R%, the long time
dynamics of (1.6) is nontrivial due to the presence of the source term Iyp(i,z). When %, > 1, we can
precisely characterize at which speed the epidemic spreads into the spatial domain, by imposing a further
assumption on the interaction kernel K. That is,



Hypothesis (H2u) - Exponential localization.  Assume that K satisfies Hypothesis (H2). Fur-
thermore, there exists jig > 0, such that for any direction e € S¥~', one has Jra K(z)ereda < 400 for
|| < po- If po = +o00, we further assume that, there is 6 € (0,1) small such that

K(z)et*edz > (’)(e‘“‘lH) as || = +oo. (1.15)
Rd
The condition that [pq K(z)et*®dx < +oo for |u| < po simply says that the kernel K decays at least
at exponential rate along any direction e € S¥! as |lz|| — +oo. The second condition (1.15) is rather
technical and will be used in the study of spreading speeds for (1.6). For future reference, we denote

K(p) := K(z)et*Cdx = / Ko(z)et*dz (1.16)
Rd R
thanks to Hypothesis (H2) and (1.5), which does not depend on e € S,
The spreading property of problem (1.6) is the following.

Theorem 1.3. Assume (H1)-(H2u) and %y > 1, and suppose that Iy # 0 satisfies (H3). Then, there
exists some ¢, > 0, which is called the asymptotic spreading speed, such that the solution p of (1.6)
starting from an initial condition po satisfying (H4) satisfies:

(1) for any 0 < c < c, and all j € (0,i4),

lim sup p(t,i,x) —U(i,x)| = 0;
200 Jaf| <et, 0<i<j | |

(i) for any c > cx and all j € (0,14),

lim sup p(t,i,z) = 0.
b= 00 2| >et, 0<i<j

We will prove that the asymptotic spreading speed c, of the epidemic wave actually coincides with
the asymptotic spreading speed for the homogeneous problem (1.6) with Iy = 0, which is a result of
independent interest. This feature is very similar to previously obtained results on spreading speeds for
spatially extended epidemic models [8, 9, 18]. Although we are not making use of the following formula,
it is possible to express the asymptotic speed of spreading c, through

¢y = min lE[(,u]_l ~1 ,
a>0 « S()IC(CY)

where we have defined K(a) in (1.16) and L[w] ™! is the reciprocal function of the Laplace transform of w
defined as L[w](z) := [;* w(i)e **di for > 0. In our proof below, we will show that, when %y > 1, the
minimum is achieved at a unique positive real value a, > 0.

Moreover, the asymptotic spreading speed ¢, of the solutions to the initial boundary value problem
(1.6) also turns out to be the threshold for the existence of traveling wave solutions associated with the
homogeneous problem (1.3). Let us first give the definition of traveling wave solutions. A traveling wave
solution of (1.3) along any direction e € S¢~! with speed ¢ € R is a solution of the form p(t,i,2) =
w(i, z - e — ct) satisfying

—co,w(i, z) + Ojw(i, z) = —y()w(i,z), 1€ (0,i1), z€R,

w(0,2) = So (1 —exp <_ /OOO (1)Ko * w(i’z)di» Cem (1.17)
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where we have set z =z -e — ct, and

{w(z’7 —00) = p°(i) and w(i,+00) =0 for each i € [0,4}), (1.18)

0 <w(i,z) <p°(i) for (i,2) € [0,43) x R,

where p®(i) = Spp*m (i) is the unique positive stationary solution of (1.3), obtained in Theorem 3.1 below,
when %y > 1. Then, substituting w(i,x - € — ct) into (1.3), we derive that

Theorem 1.4. Assume (H1)-(H2p) and %o > 1. For any direction e € S, problem (1.3) admits a
decreasing (in z) traveling front w.(i, z) satisfying (1.17)—(1.18) with speed ¢ if and only if ¢ > cs, with ¢,
given in Theorem 1.3. Moreover, for ¢ > ¢, the profile w.(i,z) is unique (modulo translation in z) and
can be written as

we(i, 2) = Soxe(z + ci)m(i), (i,2) € [0,i1) x R,

with 0 < x. < p* and x., < 0 in R together with x.(—00) = p* and x.(+00) = 0. Furthermore, there exist
a unique o associated with ¢ > ¢, and a unique o, associated with c, satisfying 0 < a. < o such that
(up to normalization)

Xe(§)

e_acg

Xe. (&)

— 1 (forc>cy), 56_7&*5—)1 as £ — +o0o.

The strategy of proof is to derive a nonlinear integral equation for the profiles x.. As explained in
the corresponding section below, there exists an astute change of variable which allows one to recover the
traveling wave integral equation originally derived and studied by Diekmann in [12]. Our result is actually
more precise in the sense that we get a full characterization of all possible nonincreasing (in z) traveling
fronts satisfying (1.17)—(1.18). In [12], only the existence of super-critical fronts with wave speed ¢ > ¢,
was performed, and the critical case was later obtained through a limiting argument procedure in [3]. Here,
we directly prove the existence of critical fronts with wave speed ¢ = ¢, by a constructive procedure, which
automatically gives the precise asymptotic behavior as £ — 4+00. Regarding the uniqueness part, the case
of super-critical fronts with wave speed ¢ > ¢, can be handled by using the results of [15]. Here, we also
show the uniqueness of the critical fronts with speed ¢ = ¢, which, to the best of our knowledge, was
not present in the existing literature. Our approach is to use the strategy developped in [10] where the
uniqueness of critical fronts for nonlocal Fisher-KPP equations with compactly supported kernels was
proved.

1.2 What is new? and what is not?

Our results provide a different, but complementary, perspective to the pioneering works of Aronson
[1], Diekmann [12, 13] and Thieme [36, 37, 39] where asymptotic speed of propagation for spatially
extended epidemic models with nonlocal interactions were already proved. In that sense, our main results
Theorems 1.1-1.4 are not surprising, but they offer a different perspective on the problem. More precisely,
all previous studies [1, 12, 13, 36, 37, 39] have worked on a fully integrated version of the model which
has led to the development of new techniques to handle abstract functional nonlocal equations [12, 13,
15, 34-37, 39], to name a few. Using the notation of the present paper, the initial starting point of the
aforementioned works is to directly focus on the susceptible population S(¢,x) by integrating (1.1) along
the characteristics. Doing so, one first derives that

K*oSt—iz) . [7 Z,IC*IO(t—z',a;)
Tt — 1) dz/t D—¢ =7

0.S(t z) = S(t, 7) (/Otw(i) dz’) 130, zeRY
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which can then be integrated giving

Ut,z) =S /Ot W(L:(i)l) (1=K xexp(—U(t —i,2)))di — /Ot (/:ow(i)Wdi> ds, (1.19)

for each ¢ > 0 and = € R?, where U(t, x) is defined as

U(t,z) = —In <S(t"”)> .

So

The nonlinear nonlocal equation (1.19) is precisely the equation derived by Diekmann in [12] which has
then led to the subsequent studies [13, 36, 37]. Our point of view here is to directly work on the integrated
version of the nonlocal transport equation (1.1), and instead of working on the susceptible population,
we rather focus on the cumulative density of infected individuals. This has the advantage to better use
the intrinsic transport structure of the model, which is somehow hidden in the fully integrated nonlinear
equation (1.19). This alternate point of view will typically allow us to prove the strict positivity of
the solutions of our nonlocal transport problem (1.6) for the cumulative density of infected individuals,
then yielding strong comparison principles. We also argue that we obtain a better description of the
epidemic dynamic by having a precise asymptotic behavior of the cumulative density p(t, i, z) of infected
individuals. It also seems that our approach has the advantage to better understand the role of each
parameters entering into the system.

From a purely mathematical perspective, we find it illuminating to compare the homogeneous model
(1.3), obtained by letting Ip = 0 into the original formulation (1.6), to reaction-diffusion equations with
nonlocal spatial interactions and Fisher-KPP type nonlinearity, and more specifically, to the so-called
field-road reaction-diffusion models studied in the past few years [5-8]. The analogy is only at the
mathematical level, not in terms of modeling, since in our case the “field” would be (0,4;) x R? and the
“road” would be {0} x R% In contrast with the cases studied in [5-7] where the dynamics in the field is
modeled by a parabolic equation (typically a diffusion equation with possible reaction terms [5, 6]), our
equation in the field is a transport equation at constant speed one with an inhomogeneous recovery rate
~(i), which can be somehow comparable to the hostile parabolic field model proposed in [7]. Other key
differences are in the equation on the road itself and the way that the model takes into account exchanges
between the field and the road. More precisely, in the aforementioned works [5-8], the equation on the
road is a pure diffusion equation and exchanges between the field and the road come from a Robin-like
boundary condition. In our case, the dynamics on the road and the exchange terms are combined into
a single equation where interactions in space are fully nonlocal and the contribution at the boundary
of the domain, that is at ¢ = 0, is obtained by integrating the solution along the full field (0,i;) x R4
(see (1.6)(ii)). This is actually closer in spirit to the model presented by Pauthier [30] with nonlocal
exchange terms in the standard field-road reaction-diffusion models. Remarkably, despite these apparent
differences, both models present the same rich asymptotic behavior with spreading. As the model with a
hostile field investigated in [7], we also show the existence of a sharp threshold, here characterized by the
basic reproduction number %, being below or above one, for the spreading dynamic to happen.

Coming back to the epidemic modeling point of view, the transport nonlocal model has direct practical
applications at inferring epidemic dynamics as it has been evident in the past few years [23, 33]. It is
also the building block for more advanced and relevant models which could include for example the
age of infected and susceptible populations [32] (and thus augment the model with additional transport
equations) or consider several different strains (or variants) of a disease in a population [17], or even study
the impact of vaccination strategies on epidemics [24]. In all the possible extensions just mentioned above,
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it does not seem so obvious that one can formulate (and study), if possible, a fully integrated version
of the model comparable to (1.19), this is why we believe that directly tackling the nonlocal transport
equation has valuable merits for future investigations.

Outline. In Section 2, we study the well-posedness of problem (1.6) under some fairly general assump-
tions on the initial condition pg and source term Iy, and then use the transport structure of the model to
derive somehow sharp positivity properties of the solutions under stronger assumptions when either pg or
Iy is nontrivial, which then lead to strong comparison principles. In the following Section 3, we study the
homogeneous problem, that is we study the long time behavior of the solutions to (1.6) by letting Iy = 0.
Finally, in Section 4 and Section 5, we present the proofs of our main results. Along the way, we also
provide in Section 4 a further asymptotic property of the positive stationary solution U to (1.6).

2 Preliminary results: well-posedness, positivity and comparison prin-
ciples

In this section, we aim to show the existence and uniqueness of the solution to (1.6), i.e. Proposition 1.1,
as well as the positivity of the solution stated in Proposition 1.2 that arises as a consequence of the KPP
structure of the boundary condition and the properties of the transport equation. Moreover, we will prove
the comparison principle Proposition 1.3 for (1.6), which will be the main tool for the investigation of the
long time dynamics of (1.6). Throughout this section, we assume that (H1)-(H2) are satisfied.

As a preliminary step, we first perform in (1.6) the following change of unknowns o(t,4,z) := 2 (;,(ZZ,)I )
with og(i,z) := %, then the initial boundary value problem satisfied by g is simply
I
Brolt, i, z) + Bo(t,i,z) = O(E;;@, t>0, ie(0,i), zeR

T

B _ _ o . . d (2.1)

0(t,0,2) =Sp [ 1 — exp w(@)K * o(t,i,z)di ) |, t>0, zeR?
0

0(0,4,x2) = 0o(,x), 4€[0,i1), x=¢€ R,

We recall from (H1)(iv) that in the case of i; < oo, we have extended the function w by 0 such that the
above integral is well-defined. Integrating along the characteristics, we derive the following semi-explicit
formula for the solution ¢ of (2.1)

Qo(z’—t,x)—i—/lt I(ﬁg)dg, i >t

®(t —i,z) + /O I“;fg)df, i<t

for each x € R%. The function ® in (2.2) satisfies the following Volterra integral equation

o(t,i,z) =

O(t,z) = S, <1 — exp <— /Ooow(i)lC «olt, z, i)di)) (2.3)
=S <1 — exp <— /Otw(i)lC « ®(t — i, 2)di — T1(00)(t, z) — To(Io)(t, x))) (2.4)
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for each t > 0 and = € R?, where we have set

T'1(00)(t,x) == /000 w(i + t)K * 0o(i, z)ds,

To(Io)(t, z) == /Otw(i)IC « </0 I“;fg) dg) di + /toow(i)lC « </_t 10752)@ dg) di.

Based on (H1)(iv), the above two terms have to be understood as follows in the case of i1 < oo

’i]\—t
w(t + ) * og(i, x)di, t <1y,
TR ) G *

0 t> i,
Pa(lo) (1, ) = /Ot.wm * </ ,Ioifg fae) ai+ s (/ o) e<i
/OH w(1) K * (/OZ Io;fg)(ﬁ) di, E> i

We shall prove the well-posedness of problem (2.1) as well as the comparison principle by studying the
Volterra integral equation (2.4). For later use and for the sake of convenience, let us define the right-hand
side of (2.4) by the mapping F as

F(®; 00, 1o)(t7) = So (1= H(®; 00, Jo) (L)) >0, 2 € RY, (2.5)
with .
'H(Q), 00, IO)(ta .1‘) ‘= exp <_ / w(Z)K: * ‘I)(t — 1, ZE‘)dZ - FI(QO)(t7 :U) - FQ(IO)(ta l’)) : (26)
0
Then, problem (2.4) can be written abstractly as

® = F(P; 00, Ip)- (2.7)

2.1 Some results on the Volterra equation (2.7)

We first introduce the notion of super- and subsolutions for the Volterra equation (2.7).

Definition 2.1. We say that a function ® € € (R, 6,(R?)) is a supersolution (resp. subsolution) of
(2.7) on Ry x R associated with some nonnegative bounded functions gy and Iy defined on [0,i3) x R?
such that T'1(09) and Ta(Iy) are well-defined on Ry x R?, if

d > F(®;00,1y), (resp. ® < F(®;00,1p)) on Ry xRY
We have the following comparison principle.

Lemma 2.2. Assume that ® € €(R,, %,(RY)) is a supersolution to (2.7) associated with some nonnega-
tive bounded functions 0, and Iy defined on [0,i:) x R such that T'1(2y) and I'y(Iy) are well-defined on
R, xR?, and that & € € (R, 6, (R?)) is a subsolution to (2.7) associated with some nonnegative bounded
functions ¢ and I, defined on [0,i}) X R? such that I'i(g,) and T'a(1y) are well-defined on Ry x R, in
the sense of Definition 2.1. If 0y > g, and Iy > 1 in [0,i+) x RY, then ® > ® on Ry x R%
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Proof of Lemma 2.2. Let ®,® € € (R, %,(RY)) be respectively a super- and a subsolution to (2.7) associ-
ated with nonnegative bounded functions (g, Ip) and (04 1) defined on [0, ) x R? satisfying g, > 0,20
and Iy > Iy >0in [0,i4) x R?. For t > 0 and for k > 0, set

wi(t) == e sup (@~ B) " (t,2),
zER4

where we use the convention that a™ = max(0, a). Fix now any T > 0, we then set

Wi = sup wg(t).
t€[0,T]

By a straightforward computation, we have for ¢ € [0,7] and z € R?,
(@ - 6) (t7 x) < ’F(@7 Q()?l())(tv $) - f(67 @0770)@7 l’)

= SoM(®52, To) (t,2) (1 = exp (= (Ta(gy) () — Ta (@) (¢ )»
+ SoH(D; ono)(t, x) (1 — exp (— (Fg(lo)(t, x) — To(Io)( ))

- SyH(E: 30, To) (0 1) (1_exp <_/Ot () (Dt — i) — @(t—i,x))dz’)),

where # is given in (2.6). Since gy > g, > 0 in [0,4;) x R9, we get that I';(gy) > I'1(g,) = 0. Similarly,
since Ip > I, > 0 in [0,4;) x R?, we also have that T'o(Iy) > T'2(Iy) > 0. This implies that the first two

terms of the right-hand side in the above formula are nonpositive on [0, 7] x R?. This, combined with the
fact that H(®; 2y, Io)(t,z) < 1 for (t,z) € [0,T] x R%, leads to

(@—@)(t,x)<80/0 WK * (Bt — i2) — B(t — i,2)) " di,

which further implies that
t
wg(t) < So/ w(i)wy(t —i)e ®di  for t € [0,T).
0
Therefore, by taking the supremum over [0,77] in the above inequality, it is further deduced that
T .
Wi, < SoWi, / w(i)e Mdi,
0

where the right-hand side converges to zero as k — +o00 by applying the Lebesgue’s dorminated conver-
gence theorem, thanks to the Hypothesis (H1)(iii)-(iv) that w € L'([0,i4)) and that it is extended by 0
when i; < co. Consequently, Wy, < 0 for sufficiently large k, whence ® < @ in [0,7] x R?. Since T > 0
was chosen arbitrarily, it follows that ® < ® in R, x R%. This completes the proof. O

Now we present a proof of the existence and uniqueness of solutions for (2.7) for the sake of complete-
ness, which follows rather standard lines. It will also pave the way towards the proof of the positivity of
the solutions. We refer to [25] for an exhaustive treatment in the spatially homogeneous case.

Lemma 2.3. For any nonnegative bounded initial condition oo on [0,4;) X R? and for any nonnegative

bounded Iy on [0,i+) x R?® such that To(i, x ¢ Io(ez) d¢ is well-defined and bounded for (i,x) € |0,i1) X
t 0 (e) f

RY, problem (2.7) admits a unique nonnegative bounded solution ® € €' (R, 6,(RY)).
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Proof of Lemma 2.3. Let gy and Iy be as in the statement. Fix any T' € (0, +00), and define
X = {@ e 4(0,7],G%®RY) | © >0},

the space of nonnegative continuous vector-valued functions from [0, 7] to %3(R?), where %;(R?) denotes
the space of bounded continuous functions on R%. We endow X with the norm of the uniform convergence
[P
[@lly == sup [ B(t, ) gy
t€[0,T]

Since gy and I are bounded in [0,4;) x RY, together with Hypotheses (H1), (H2) on w and K, we readily
get that ' (o) and T'y(Io) belong to €([0, T], 63(R%)), by a direct application of the Lebesgue’s dominated
convergence theorem. Furthermore, since gy and Iy are both nonnegative, we also have I'1(gg) > 0 and
I'5(Ip) > 0 on [0,7] x R%. As a consequence, we deduce that for a given ® € X, we have F(®; 0o, Iy) €
€([0,T],6,(R?)) and by the monotone increasing property of ® € Xy — F(®; 0y, Iy) we also have 0 <
F (05 00, Ip) < F(P; 00, Ip), whence F(P; 0o, Ip) € Xp. Finally, one also has the upper bound F(®; oo, Iy) <
So on [0, T] x R%.

We now construct iteratively a monotone sequence of functions ®¥ € Xr as follows. For each k € N,
let

on [0,7T] x RY.

Rt = F(®F; 0o, I),
o0 =0,

Based on the preceding discussion, we note that ®° = 0 < F(0; o, Iy) = ®', such that inductively, we
get that ®F > 0 for each & € N due to the monotone increasing property of ® € X7 — F(®; 00, Io). At
the same time, we also deduce that

0<ol<...<dF <ol <...<S8;, onl0,7T] xR,

for each k € N. Furthermore, by induction, we also get that ®* € €([0, T, 6,(R?)) since both I'1(gg) and
I'y(Io) belong to %([0,T], 63(RY)). Next, we compute for each k € N, ¢ € [0,T] and x € R?,

R (t, ) — OF(t,x) = F(®F; 00, 10)(t, ) — F(®*; 00, Io) (L, )
= SoH(D*71; 00, 1) (L, 2) (1 — exp <— /Otw(z')lC * ((Dk(i,:n) - <I>k_1(i,:r)> d2>>
< S /Otw(i)lC * ((I)k(i,:z:) - @k—l(i,x)) di,
< SoToo /Ot K * (@k(z’, z) — &G, a:)) &,

since H(®*1; 00, Ip) < 1, w < 7 < Too and ®F — ®F~1 > 0. We can iterate the above procedure to obtain
that

t prs1 Sk—1
<I>k+1(t,x)—<bk(t,:1:) < (SoToo)k/ / / Koxox ICx (Ql(sk,w)—éo(sk,x)) dsg - - -dsq,
0 Jo 0
which leads to

S()’TOOT)k

k+1 k ( 1 0 d
R, 2) — ®F(t,2) < X |® —<I>||XT, keN, te€l0,T], xeR™
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The above estimate implies that (®*);>¢ is a Cauchy sequence in the Banach space (X7, || - [|x,). As a
consequence, (<I>k) k>0 converges in A7 towards some limiting function ® € X7, and passing to the limit
in @1 = F(®F; 9o, Iy), we have & = F(®; 9o, Iy) with 0 < & < Sy on [0, T] x R?%. Since T € (0, +00) is
arbitrary, we derive that ® € €' (R, %,(R?)) is a solution of (2.7).

Assume that &1 € Xp and ®9 € Xp are two solutions of (2.7). Then, repeating the previous compu-
tations, we find that for each t > 0,

t t
|(I)1(t7 ZZ?) - q)Q(tv ZE)| < SO/ W(Z)K * |(I)1(Z,l‘) - (I)Q(Zal‘” di < SOTOO/ ||(I)1(Zv ) - (I)Q(ia ')HLOO(Rd) dZa
0 0
and thus .
9106 = @20t ey < Sor [ 191060 = @a(i )y

The Gronwall’s lemma then implies that [|®1(Z, ) — ®2(t, )| o0 (gay = 0 for each t > 0, and thus @4 (¢, z) =
®o(t,z) for each t > 0 and = € R%. This completes the proof. O

From the above proof, we see clearly that when oo = 0 = I on [0, i;) X R?, then the iteration procedure
yields that the solution ® of problem (2.7) is nothing but the trivial solution ® = 0 on Ry xR?. In contrast,
we obtain a nontrivial solution as soon as I'1(gp) or I'2(ly) is nontrivial. In the case when Iy # 0, by
requiring some further assumptions on the support of Iy, we can prove a strict positivity property for the
solution @ for t large enough (which can be quantified).

Lemma 2.4. Under the assumption of Lemma 2.3 with Iy # 0, we assume that Int(supp(7)) NInt(Dy,) #
(), then upon setting

i, := min (Int(supp(T)) N Int(DIO)) € [0,i:),
we have that the unique nonnegative solution ® of (2.7) satisfies ®(t,z) > 0 for all t > i, and x € RY,
Proof of Lemma 2.4. The proof simply relies on the fact that for each ¢ > i, and z € RY,

/Otw(z')lC * </0 IO;Z;C)dg) di > 0,

by definition of 4,. This implies that I's(Ip)(,z) > 0 for ¢ > i, and 2 € R%. Based on the proof of Lemma
2.3, we then deduce that the solution ® to problem (2.7) satisfies ®(¢,2) > 0 for all t > i, and z € R?. [

We close this subsection by the following observation. When gy = 0 and Int(supp(7)) N Int(Dy,) = 0,
then we get that T'y(go) = 0 = I's(Ip) on Ry x RY, and thus the solution ® of problem (2.7) is identically
0 on R, x R% We then obtain from (2.2) that the solution ¢ of (2.1) has the form, for each = € R?,

/i Io(&ﬂt‘)d§ P>

p(t,i,x) . —t m(§)
POLT) _ otyiya) =4 7P
@) ¢ I, x)

[ g e it

as claimed initially in (1.10) in the introduction. Similarly, when Iy = 0 and Int(supp(7)) N Int(D,,) = 0
with D,, C [0,i1) where D,, is defined as in (1.7) with Iy replaced by g this time, then we get that
I'1(00) =0 = Ty(Iy) on Ry x R? and thus the solution ® of problem (2.7) is the trivial solution ® = 0
on Ry x R% which then implies that, for each = € R,

. Qo(i—t,l‘), i2t7
o(t,i,x) = .
0, <t.
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2.2 Well-posedness — Proof of Proposition 1.1

Proof of Proposition 1.1. Assume Hypotheses (H1)-(H2), and that Ij is nonnegative, bounded, contin-
uous and compactly supported on [0,44) X R?, and that pg is nonnegative such that pg /7 is bounded and
absolutely continuous on [0,i4) x RY. First of all, we derive from Lemma 2.3 that problem (2.7) admits
a unique nonnegative bounded and continuous solution ® on R, x R¢ associated with gy = pg/7 and
Iy. Then, it is immediate to conclude from the semi-explicit formula (2.2) that problem (2.1) admits a
unique nonnegative bounded solution g given by (2.2) on Ry x [0,i4) x R? which is continuous in (¢, 1)
with ¢ # ¢ uniformly with respect to € R%. Now, since 7 is absolutely continuous (and thus w) and
both g9 and Zy are bounded in [0, ) x R, we get that T'1(gp) and T'y(Ip) are continuously differentiable
in ¢ uniformly with respect to € R? This then implies that d;o(t,i,z) and 0;0(t,i, ) exist a.e. for
(t,i,2) € Ry x (0,44) x R? with ¢ # i. Therefore, by Definition 1.1, the function p = om in Ry x [0, 4+) x R?
is a unique classical solution to problem (1.6) in Ry x [0, i, R%).

Now assume that Iy = 0, since the solution p is identically 0 when pg = 0, we only consider the
nontrivial case, i.e. pg # 0. Since K € W'!(R?) and thus 9, K € L'(RY) (p=1,--- ,d), we also get that
I'1(00) is also continuously differentiable with respect to z € R? for each ¢t > 0 with

0z,T'1(00)(t,z) = / w(i+1)(0.,K) * o(i,x)di, p=1,---,d, t>0, x¢€ R,
0
and thus for each p=1,--- ,d
t
02, ®(t, ) = Sp </ w(i)(0, ) * ®(t — i, 2)di + szfl(go)(t,$)> H(P; 00,0)(t,z), t>0, z¢€ R,
0

showing that ® constructed in Lemma 2.3 is continuously differentiable with respect to x € R for each
t > 0. Hence, we deduce that each 9, p(t,i,z) (p =1, ,d) exists a.e. for (t,4,2) € Ry x (0,i;) x R? with
t > 4. Since we assumed that pg is absolutely continuous on [0, ;) x R?, then Oz, p(t,i,z) (p=1,---,d)
exist a.e. for (t,4,z) € Ry x (0,4) x R? with ¢ # i. This completes the proof. O

2.3 Positivity — Proof of Proposition 1.2

Proof of Proposition 1.2. Assume Hypotheses (H1)-(H2), and that Ij is nonnegative, bounded, contin-
uous and compactly supported on [0,41) x R?, and that pg is nonnegative such that py/m is bounded and
absolutely continuous on [0,i+) x R Let p be the solution to problem (1.6).

Proof of Statement (i). Assume that Iy # 0, and that Int(supp(7)) N Int(Dy,) # O with i, € [0,4). To
prove the strict positivity of the solution to (1.6) in the case where Iy # 0, we simply observe from (2.2)
that

p(t,i,x) . ! 10(57‘77) . d
) —<I>(t—z,$)+/0 () d¢, t>1i, xeR%
Thus, using Lemma 2.4 with i, being defined there, we get that ®(¢ —i,2) > 0 for each t —i > i, and all
z € R?, and the conclusion follows.
Proof of Statement (ii). Suppose now that pg # 0 in [0, %) x R? and that there are 0 < w € Int (supp(T))
and zo € R? satisfying

[0, @] x {zo} C supp(po). (2.8)

It is sufficient to prove, with our change of function o(t,i,x) = 2 (;(ZZ)‘T ), the positivity of the solutions o

to problem (2.1) for (¢,i,x) € (0,400) x [0,44) x R? with ¢ > i with Iy = 0 and gp # 0. Let us denote o
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the unique nonnegative bounded solution to problem (2.1) provided by Proposition 1.1 with initial datum
£ 20 in [0,i;) x RY.

To do so, we first claim that o(t,0,z) > 0 for (t,z) € (0, +00) x R, Assume towards the contradiction
that it were not true, then there would exist a point (tg,z) € (0,00) x R? such that o(to,0,29) = 0. We
then infer from the boundary condition in (2.1) that

|7ty [ K- petto.iy)agai = . (2.9)
0 R4

This immediately implies, since £ > 0 in R?, that
o(to,i,x) =0 for i € supp(t) C [0,i4), = € R% (2.10)

Furthermore, we derive from (2.2) that

(to.i.2) % =0, for i € supp(7) N (tg, +00), x € RY,
o\to,t,r) =
’ O(tg —i,2) =0, for i € supp(r) N[0,%9], =€ R%L

Assume first that supp(7) N (tg, +00) # 0, we then derive that

po(i —to,z) =0 for i € supp(7) N (tg, +00), x € R,
contradicting (2.8). Assume now that supp(7) C [0, ¢o], then it is seen that

O(tg —1,2) =0 for i € supp(7) C [0,%9], z € R<.
Namely, ®(t,z) = 0 for t € (tg —supp(7)) C [0,%0] and 2 € RY. Then we apply the formula (2.3) of ® and
obtain that
o
/ w(i) K(xz —y)o(t,i,y)dydi =0 for t € (tg — supp(7)), i € supp(r), = € R%
0 R4

Hence,

o(t,yi,z) =0 for t € (to — supp(7)), ¢ € supp(7) = € R (2.11)

Define now
t1 := min{tog —t | t € supp(r)}.

We notice that ¢; € [0,%9). The formula (2.11) implies in particular that
o(ti,i,z) =0 for i € supp(r), = € RY. (2.12)

If ¢ = 0, then we immediately get a contradiction since w € Int (supp(v')). In what follows, let us assume
that t; € (0,t9). By repeating the argument as for (2.10), we will reach the contradiction as long as
supp(7) N (t1, +00) # O due to the assumption on the support of py. Otherwise, we have supp(r) C [0, 1]
and we then obtain that

O(t1 —i,2) =0 for z € RY, i € supp(r) C [0,11].

Namely, ®(t,x) = 0 for z € R% and ¢ € (t; —supp(7)) C [0,#1]. Then we apply again the formula (2.3) of
® and arrive at

/ w(i) K(z —y)o(t,i,y)dydi =0 for ¢t € (t; — supp(7)), ¢ € supp(7), x € RY. (2.13)
0 Rd
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Namely,
o(t,i,) =0 for t € (t; —supp(7)), i € supp(7), = € R%.

Then we proceed with to := min{t; —¢ | ¢t € supp(7)} € [0,¢1) and derive that
o(ty,z,i) =0 for i € supp(r), = € R%

Again, there is a contradiction with (1.9) provided that to = 0. When ¢2 # 0, then we make the discussion
as before. If supp(7) N (tg,+00) # ), then we are done. Otherwise, we repeat previous procedure and
retrieve (2.10) with a smaller time t3 € [0,t2). After finite steps, we will find a time t,,;,, € [0,t2) such
that either ¢,,;, = 0, which is a contradiction; or supp(7) N (tmin, +00) # 0, which will give a contradiction
as well. As a consequence, we conclude that o(t,0,2) > 0 for (¢,z) € (0,400) x R?, as claimed.

Assume now that there is a point (to, 49, zo) € (0, +00)x (0,4t) xR with ig < to such that o(to, io, z9) =
0. We deduce from the formula (2.2) of p that

0 = o(to, %0, 70) = ®(to — io, To),
whence

/ w(i) | Ko — y)alto — o, i, y)dydi = 0.
0 R4

Therefore, we are led to (2.10) with ¢y replaced by to — ig this time. Following the lines as before, we
eventually derive a contradiction. Consequently, we conclude that o(t,i,z) > 0 for t > 0, € R? and
i € (0,4) with ¢ > i. The proof of Proposition 1.2 is therefore achieved. O

2.4 Comparison principle — Proof of Proposition 1.3

In this section, we prove the comparison principle for problem (1.6) with the aid of Lemma 2.2.

Proof of Proposition 1.3. Let p and p be respectively a super- and a subsolution of (1.6) in Ry x [0, 4}) x R4
with nonnegative initial data p, and p, defined on [0, i) x R satisfying Po/ ™, py/m™ € L*([0, 1) X R4 and
To and I, defined on |0, i) X R? which are nonnegative, bounded, continuous and compactly supported
in [0,4;) x RY. Assume that py > py = 0 and Iy >1,>01in [0,it) x RY. By definition, p satisfies

0ep(t,i,z) + Oip(t,i,x) = To(i,x) —y(i)p(t,i,x), >0, i€ (0,i), zeRY,

p(t,0,2) > Sy <1 — exp <—/ (1)K *p(t,i,a;)di)) ., t>0, zeRY
0
p(0,i,2) = po(i,x), i€[0,d), xc€R%

Applying the method of characteristics, we find that p satisfies

ﬁO(i_tvx) Z70(67:[;) i
pltia) ) 7D + e 2
T wis [DED,

Dt , )—F/() (©) d¢, <1,

with



Analogously, the subsolution p satisfies

Al [ e s

B(t,z’.,a:) - (i —t) — (&) -
™) (I)(t—i,x)—i—/o I()Tf(i’;")dg, i<t

with
P<F (@; p0,10> on R, x RY.
T

Applying the comparison principle from Lemma 2.2 to the Volterra equation (2.7), we obtain that ® > @
in R, x R% This, along with the above integral inequalities satisfied by p and p, immediately implies
that p > p in Ry x [0,4;) x R% Let v and v be the solutions to (1.6) in [0, i) x R? associated with initial
data 7(0, -, -) = p, and source term I and associated with v(0, -, ) = p, and source term I, respectively.

Assume first that I # I in [0, i) x RY, and that Int(supp(7))NInt(Dy, lo) # (). Using the comparison

v—U

principle, we also get that (2.14) is satisfied. Set w := =% on Ry x [0,4;) x R, then the function w is
nonnegative and satisfies

( . _ ]
atw(t7 i) x) + azw(t7'l,x) = 10(175611-(7/)-[0(1756)7

w(t,0,2) = Sy exp (— /Ooow(z');c s v(t,d, x)dz’) (1 — exp (— /Ooow(z')/c . w(t,i,x)dz’)) . >0,

p()@? .’L‘) - B()(i’ .’L‘)

() 20,

for all z € R?. We can then reproduce the argument in Lemma 2.4 to obtain the eventual strict positivity
of w, that is w(t,4,2) > 0 for (t,7,2) € (0,400) x [0,4) x R? with t > i + iy, and the result follows.

Assume now that py # p,, and that (1.9) is satisfied with po replaced by py — p,. By the analysis
above, we have that

t>0, i€ (0,iy),

w(0,4,z) = i € [0,44),

p>T>v>p, onRy x[0,i)xRL (2.14)

It is sufficient to show that the nonnegative function w = E;y solving

Ow(t,i,x) + Qw(t,i,x) =0, t>0, i€(0,i4),

w(t,0,7) = Sy exp <_ /Ooow(i)lC Folti, x)di) <1 ~exp (— /Ooow(i)lC ; w(t,i,x)di)) >0,

ﬁ()(i7x> B Bo(i7$)
() =20,

w(0,4,2) = i €[0,i4),

for all x € RY, satisfies w(t,i,2) > 0 for (¢,4,2) € (0,+00) x [0,i4) x R? with ¢ > i. This problem has
the same structure as (2.1) in the case that [y = 0. Hence, by repeating the argument in the proof
of Proposition 1.2 regarding the positivity of the solutions, we eventually derive that w(t,i,2) > 0 for
(t,i,2) € (0,+00) x [0,4;) x R? with ¢ > i since w(0,-,-) = (py — p,)/m satisfies (1.9). Thus, v(t,4,2) >
v(t,i,z) for (t,i,7) € (0,400) x [0,i1) x R? with ¢ > i. Together with (2.14), we then conclude that
p(t i, x) > p(t,i,x) for (t,i,x) € (0,+00) x [0,43) x R? with ¢ > i. The proof of the comparison principle
is therefore finished. O
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3 Analysis of the homogeneous model with [ =0

In this section, we focus on the initial boundary value problem (1.6) in the homogenous case where Iy = 0:
atp(tai7$) + 8ip(t7i7‘r) = _V(i)p(ta i, .’L'), t>0, 1€ <O7ZT>7 T e Rda

p(t,0,z) = So (1 — exp (—/ T(1) K * p(t,i,m)di)) , t>0, zeRY (3.1)
0
p((),z,a?) - pO(iax)7 (&S [077’1')7 S Rd'

We expect that the analysis of this problem will shed light on the evolution of the heterogenous problem
(1.6) with Iy # 0. Indeed, as will be shown later, the solutions of the heterogenous and homogeneous
problems will possess very similar dynamics at large times. Also, as already emphasized in the intro-
duction, the study of problem (3.1) has its own mathematical interest since it shares lots of common
features with the recently studied field-road reaction-diffusion models with so called Fisher-KPP type
nonlinearities [7, 8].

Throughout this section, we assume that (H1)-(H2) are satisfied, and that the initial condition pg # 0
satisfies (H4) as well as (1.9). Under such assumptions, we get the existence and uniqueness of a global
classical solution p for problem (3.1) with its spatial partial derivatives d,,p (p = 1,--- ,d) exist a.e. on
(0,+00) x (0,4+) x R, which satisfies p(t,,x) > 0 for each (¢,4,z) € (0, +00) x [0,;) x R? with ¢ > 4.

3.1 Liouville-type result and long time behavior of (1.3)

To study the long time behavior of (3.1), let us first look at the corresponding stationary problem:
Oip(i,x) = —y()p(i,x), i€ (0,i) xeRY

p(0,2) = So <1 — exp (- /OOOT(Z’)/C * p(i,x)di))  zeRr? (3.2)

Recall that Zy > 0 denotes the basic reproduction number associated with the problem, given by

Ry = So / w(i)di = Sy / (i)e= Jo 193y,
0 0

We have the following Liouville-type result for stationary problem (3.2).

Theorem 3.1. Under the Hypotheses (H1)-(H2), problem (3.2) admits a trivial stationary solution 0.
Moreover, it admits a positive stationary solution if and only if %y > 1. Such a positive stationary
solution p°, if any, is unique and given explicitly by p*(i) = Sop*n (i) fori € [0,4;) where p* € (0,1) is the
unique positive constant solution of v =1 — e~%V when %y > 1.

Proof of Theorem 3.1. First of all, we readily see that the disease free state p = 0 is always a solution of
(3.2), as expected. Let us now consider the nontrivial case.
From the first equation of (3.2), one infers that

p(i,x) = p(0,2)7(i),  (i,z) € [0,if) x R% (3.3)

Plugging it into the boundary condition of (3.2), one then derives that

o0

p(0,z) = Sy (1 — exp (— w(i)di K * p(o,x))> , zeRY

0
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Set 0
o(x) == p(S’Ox), z e RY, (3.4)

then by noticing that %y = Sy [, w(i)di, it follows that the function ¢ satisfies

o(z) =1 — e Ple@) 5 c RY, (3.5)

Due to the monotone increasing property and also the concavity of the mapping ¢ € X — U(p) :=
1 — e #0K*¢ where X = {p € ¥(RY) | ¢ > 0}, it is not difficult to verify that (3.5) has at most one
nontrivial nonnegative solution ¢. Moreover, such ¢, if any, satisfies 0 < ¢ < 1. This in turn implies that
stationary problem (3.2) admits at most one positive solution 0 < p < Sp in [0,44) x R,

To reach our conclusion, we proceed with proving the sufficiency and necessity respectively. Suppose
first that (3.2) admits a unique positive solution p* in [0,i1) x R%. By (3.4), it is equivalent to assuming
that (3.5) has a unique positive solution ¢ in R?. We have to prove that Zy > 1. Assume by contradiction
that 0 < %y < 1. It follows from the Taylor expansion that

p(z) =1 — e P2 < K« p(z) < Kxp(z), xR (3.6)

whence,
Kxop@) —pl)= | Klz—y)(p) —p)dy>0, we R.
One then infers from K > 0 in R? that there is yo € R%\{x} such that

©(yo0) — ¢(x) > 0.

Then we multiply the above inequality by K(yo — x) and integrate over x € R?, it follows that

0< ], K(yo — z) (¢(yo) — ¢(x)) dz = ¢(yo) — K * (o)
contradicting (3.6). As a consequence, we conclude that %y > 1.
Conversely, let us now assume that %y > 1 and we need to show that (3.2) admits a unique positive
solution. To do so, we first claim that the equation

v=1—e %" (3.7)

with Zy > 1 admits a unique positive constant solution p* € (0,1). In fact, since v — Q(v) :=1 — e %ov
is monotone increasing and concave in Ry and Q(0) = 0, this implies that (3.7) has at most one positive
constant solution which, if exists, takes values in (0,1). We then arrive at the conclusion as claimed,
by noticing that Q'(0) = %y > 1. Moreover, we observe that the positive constant function p* satisfies
equation (3.7), which, along with our conclusion that (3.7) admits at most one positive solution, leads
to that p* is exactly the unique positive solution to (3.7) under the assumption that %y > 1. Therefore,
the stationary problem (3.2) admits a unique positive solution which is spatially homogeneous, given
explicitly by p*(i) = Sop*n (i) for i € [0,41). The proof of Theorem 3.1 is therefore complete. O

We are now in position to state the long time behavior of the solutions to (3.2).

Theorem 3.2. Under the Hypotheses (H1)-(H2), let p be the solution of problem (3.1) in Ry x [0, i+) x RY
associated with initial condition py # 0 such that (H4) and (1.9) are satisfied. Then we have:
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(i) if %o < 1, then

p(t,i,x) =0 ast— +oo, wniformly in (i,x) € [0,i1) X RY:

(i) if %o > 1, then
p(t,i,x) = p°(i) ast— +oo, locally uniformly in (i,x) € [0,4;) X RY,
where p° is the unique positive stationary solution to (3.1) given in Theorem 3.1.

Proof of Theorem 3.2. The main ingredient of the proof is based on a comparison argument as well as
the conclusion in Theorem 3.1. Assume that (H1)-(H2) hold. Let p be the solution of problem (3.1) in
R, x [0,44) x R? associated with initial condition py # 0 such that (H4) and (1.9) are satisfied.

Proof of statement (i). Assume that %o < 1. Let M := max (Sp, ||p0/7THLoo([0’Z'T)XRd)), it is easy to check

that M (i) is a supersolution to (3.1) in Ry x [0,44) x R%. Define by p the solution to problem (3.1) with
initial condition py = M on [0, 4) x R?. Applying the comparison principle Proposition 1.3, we infer that
the function 7 is nonincreasing with respect to ¢, and 0 < p(t, 1, x) < p(t, i, z) for (¢,4,x) € Ry x[0,4) xR,
Passing to the limit as ¢ — o0, it follows from the monotone convergence theorem that p(¢, i, x) converges
to a stationary solution U of (3.1) pointwise in [0,i1) x R?, then the convergence holds locally uniformly
for (i,z) € [0,43) x R? due to the Dini’s theorem by noticing that U and p are continuous in [0,4;) x R
and in {(¢,i,2) € Ry x [0,4;) x R? | t > i} respectively. That is,

0 < liminf p(t,,2) < limsup p(t,i,x) < U(i,x) locally uniformly in (i,z) € [0,4;) x R%

t—+00 t—+o00
By virtue of Theorem 3.1, it is deduced that U = 0 in [0,4;) x R?, whence

. . N . . . . d
t_l)lgloo p(t,i,2) =0 uniformly in (7,z) € [0,4;) x R®.
Proof of statement (ii). We now assume that Zy = Sp f0+oo w(i)di > 1. Our aim is to devise a compactly

supported stationary subsolution, for which the spirit is the same as in Aronson and Weinberger [2] and
Diekmann [13]. For L € (0,43), let us define 8% : [0, L) — Ry as

v(2), for i € [0, L — 2¢],
Bl ) = < ¢(9), for i € [L — 2, L — €], (3.8)
max <ﬁ, 27(1’)) , forie[L—e, L),

where € € (0,min(1, L, — L)/3) is sufficiently small, and the function i € [L — 2¢,L — €] — ((7) is
continuous such that ¢ > v on [L — 2¢,L — ¢], and such that ((L — 2¢) = (L — 2¢) and ((L —¢) =
max((L — €)/e,2v(L — €)). We observe from the construction of % that

BE >~ in[0,L), B* =~ as L — iy, / BL(s)ds — 400 asi— L.
0
Since [pq K(z)dz =1 and K € L'(R?), there exist Ry > 0 and Lo € (0, ;) large enough such that

—~L,R L iglL
%0 = SO/ T(’L')e_ fO B (S)dsdi/ IC(ZE)dZL’ > 1,
0 Br(0)
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—~L.R
for each R > Ry and Lo < L < i4. We thus fix R and L such that %, > 1 is satisfied. Then, for any

—~L,R .
n > 0 sufficiently small, one can find ' > 0 such that (1 —n)%, > 1+17'. Furthermore, we notice that
there is dg > 0 small such that

So <1 — exp (—(%LR/SO)u)) > (1-— n)%L’Ru > (1+n)u foru€l0,d). (3.9)

Next, we denote by ICR( ) = K(z )]lBR( y(z) for z € R? with Br(0) being the ball of radius R and of
center 0 in R?, and ICR fRd 1 IC (z,x9, -+ ,xq)dxe - --dzg for z € R and observe that ICé% is even in
R, supp(K¥) C [-R, R] and fBR(O) x)dxr = fRd KE(z)dz = [ K{{(z)dz. We now define

wA@:{mW@, 2] < &

0, elsewhere.
We claim that there exist vy > 0 and ¢y > 0 such that for all v € (0,1p) and ¢ € [0,¢9) one has

Jz K& (2")d2

T Y(z—1), z€R. (3.10)

§*¢V( ) >

Indeed, for |z| < g, we first have

KR+ th,(2) = bﬁ%(z—yﬁmﬂvydy>?/Kh (= — ) cos(vy)dy,

2v

provided that we select v < 7, by not1cmg that when |z —y| < R, it follows from |z| < 2 that necessarily

ly <R+ 4 < ?2’7; as long as v < &, which implies that the contribution of y € R\[~g-, -] in the above

integral is nonpositive. Then, using the fact that IC(J;2 is even, we simply notice that

/ K& (2 —y) cos(vy)dy = cos(l/z)/ KE(y) cos(vy)dy — sin(vz) / KE(y) sin(vy)dy
R R R

=0
> cosws) [ Kfan =5 [ i),

Since [ y?K(y)dy > 0, there exists v > 0 such that for all v € (0,1) one has

2 f/CR )dy
KLk d—”/2K d>ﬁ;447
/Ro(y)y 2 J.Y 0 (y)dy > T+

for no € (0,71'), whence

fR ’Co )dy
1+mn0

which holds true for all z. By continuity, we can then find ¢g > 0 such that

fRICR )dy
1+

’Cé% x Py (2) > Yo (2),

Kot (2) 2 bz =),
for all ¢« € [0,¢0) and z € R. This proves the claim.
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Let us fix v € (0,19) and ¢ € (0,19) such that inequality (3.10) is satisfied, and define

L =] < D,
Y(x) = q cos(v(||lz]| = D)), D <] <D+ g,
0, elsewhere,

with D > R > Ry which will be fixed below, and finally set

0, elsewhere.

i.2) ::{ e~ I B EMsy(z), (i,z) € [0, 1) x RY, (311)

We now verify that di) with 6 € (0, o) is a stationary subsolution to (3.1) in Ry x [0,i4) x R%. Note
that only the boundary condition needs to be checked. We first have

So (1 — exp (—5 /OOO (1)K * 1/1(i,x)di>> So <1 — exp ( 5/ P54 1 % p(a )>>
> S, (1 —exp (-0 / e~ Iy BE@)s g /B o Kt - y)dy)) |

Let ||z[| < D — R. Then for any |ly|| < R, we have that ||z —y|| < D and thus ¢¥(z —y) = 1. As a
consequence, we get that

So (1 — exp (-5/000 ()K * (i, z)d >> > S, (1—exp< 5/ e~ Jo BH(9)dsq; /BR(O)lC(y)dy>>

= o (1—exp (~("/50)5))
=@ 5 > (1) > 6 = 6u(0, ).

Let D — R < ||z|| £ D+ 5. Then for any |y|| < R, we use the estimate

o =yl < ol - 22 4 LA ¢ g 2 L
H H ] [ H 2(D - R)
and we select D > R large enough such that DR D R) < t. As a consequence, we have
/ K(y)(z — y)dy > / K(y) max v, <Hx|| Y+ M> dy
Br(0) Bgr(0) p=—D || I
= oy [ K (Ll = o o) dy
uz=D /BRw) H |

- max/fco o (2] + 0+ — 2) dz

(3;0 JB0) K(@)dz

> L Jmax vy ([l +p),
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since fBR(O) K(z)dz = [po K¥(z)dz = [ KF(2)dz. And thus, in that range, one has

So <1 —exp ( 5/ DK * (i, 2)d >> > S (1 ~exp <@%L’R/so)1 ﬁn’ ma 4, (|l +u))>

Ty 2 max Yy (2] + )
> 6 s g (o] + 1) = 0(0,2).
u=—D

Here, we have used the fact that (z) = max,>_p ¥, (||z|| + p) for all z € R%

This implies that 6¢, with § € (0,4), is a subsolution to (3.1) in Ry x [0,44) x R% Moreover, we
infer from Proposition 1.2 that p(t,i,z) > 0 for (t,4,z) € (0,+00) x [0,7+) x R? with ¢ > i, due to the
assumption (1.9) on py #Z 0. Up to decreasing ¢ if needed, there further holds 0y (i,z) < p(T,i,z) for
(i,2) € [0,4+) x R? with some T > L > 0.

Let now p be defined as in the proof of Statement (i) and let p denote the solution of (3.1) with
initial datum Py = 9 in [0,44) x R?. We infer from the comparison principle Proposition 1.3 that p is
nonincreasing with respect to ¢, whereas p is nondecreasing with respect to . The monotone convergence
theorem implies that p (resp. p) converges in [0, i4) x R? as ¢ — 400 to a solution U (resp. U) of stationary
problem (3.2) pointwise, and then locally uniformly in (i,z) € [0,43) x R? thanks to the Dini’s theorem.
Specifically, we have

(i, z) < U(i,z) < hmlnfp(t,z,x) < limsup p(t,4,x) < U(i, x),
t—+o0 t—+o0
locally uniformly in (i,z) € [0,4+) x R%. Together with Theorem 3.1, we derive that U and U are nothing
but the positive stationary solution p* of (3.1). Consequently,

lthgl p(t,i,x) = p*(i), locally uniformly in (i,z) € [0,4;) x R%
H

This completes the proof of Theorem 3.2. O

3.2 Spreading property of (1.3)

In this section, we shall prove under the assumption of %y > 1 as well as (H1)-(H2y) that problem (3.1),
starting from initial condition py #Z 0 such that (H4) and (1.9) are satisfied, exhibits exactly the same
spreading property as the Cauchy problem of reaction-diffusion equations with KPP nonlinearities [2].

Theorem 3.3. Assume that (H1)-(H2u) and %y > 1 hold. Then, there exists some ¢, > 0, which is
called the asymptotic spreading speed, such that the solution p of problem (3.1), associated with py % 0
such that (H4) and (1.9) are satisfied, has the following properties:

(i) For any c > ¢, and all j € (0,it)

lim sup p(t,i,z) = 0.
t=400| 13| >ct, 0<i<s

(ii) For any 0 < c < ¢, and all j € (0,144)

lim — sup  [p(t,i,x) — p°(1)] = 0.
t=+00) 3| <et, 0<i<;
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3.2.1 Exponential supersolution

In this subsection, we aim to establish the upper bound of the asymptotic spreading speed for (3.1). Fix
any direction e € S¥~1. We look for a supersolution of problem (3.1) of the form

(t, i, x) = min (M, e—a@'e—ct)—“") 7(i), t>0, i€[0,iy), xzeR:

with M := max (Sp, |]po/7r||Loo([0,iT)XRd)) > 0 such that, up to shifts, po(i,2) < p(0,4,z) for i € [0,4;),
z € R%. Here, the exponential term

Ot i, x) = e~o@eme)=aciz(y >0, i€0,i), =€RY (3.12)

defined along any direction e € S*! with speed ¢ > 0 and with parameter o > 0 (to be fixed in the
following investigation), is expected to solve the corresponding linearized problem of (3.1) around the
steady state p = 0:

Op(t,i,x) + Dip(t,i,x) = —y(i)p(t,i,x), t>0, i€(0,it), x€R%

>~ o d (3.13)
p(t,0,2) = So/ T * p(t,i,z)di, t>0, xe&R"
0
Substituting (3.12) into (3.13), we obtain the following dispersion relation:
S .
So K(x)eax'edx/ w(i)e”*"di = 1. (3.14)
R4 0

we(a)

We denote the left-hand side of (3.14) by ¢.(«). For each ¢ > 0, the function ¢.(«) is well-defined (at
least) on the set

S {a>0] /R K(2)e*°dz < +oc}. (3.15)

We readily see from (H2u) that indeed ¥ = [0,A) with A € [up,+00]. Let us also remark that the
dispersion relation (3.14) was also derived in [12] where some basic properties were already given. Here,
we will need a refined analysis of the dispersion relation in order to construct compactly supported
subsolutions in the forthcoming section.

Lemma 3.1. For each o € (0,A), there is a unique c(a) € (0,+00) such that @.)(a) = 1.

Proof of Lemma 3.1. We first notice that when ¢ = 0,

wola) =%y | K(x)e*™®dz >0, a€l0,A).
Rd
By the Lebesgue’s dorminated convergence theorem, we derive from (H2u) that

d

—po(a) = ,@0/ (x-e)K(x)e*Cdz >0, ac[0,A).
da R4

That is, ¢o(«) is monotone nondecreasing in « € [0, A), whence

min po(a) = ¢o(0) = %y > 1. (3.16)
a€l0,A)
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Furthermore, due to the continuity of ¢ — ¢.(«) for each o € [0, A), it follows that there exists § > 0
small such that
inf @c(a) >1 forall ce|0,d]. (3.17)
a€l0,A)
On the other hand, we observe from the expression of ¢.(«) that for each o € (0,A), p.(«) is monotone
decreasing and convex in ¢ > 0, and

vela) =0  as ¢ — +oc. (3.18)

Together with (3.16) and (3.18), we then derive that for each o € (0, A), there is a unique ¢(«) € (0, +00)
such that ¢, (a) = 1. The proof of Lemma 3.1 is thereby complete. O

Based upon Lemma 3.1, we can define

= inf . 3.19

o= Juf A)C(a) (3.19)
We immediately see from (3.17) that ¢, € (0,+00). In the following, we show that there actually exists a
unique a, € (0, A) such that above infimum can be attained.

Lemma 3.2. Let ¢* be given in (3.19). For each a € (0,A), let (o, c()) be the unique pair given in
Lemma 3.1 such that p.)(a) = 1. Then there is a unique o € (0,A) such that

e = () = agg(i)r}\) c(a). (3.20)

Moreover, 1 = ., (ax) = minge(o,a) Pe. (@) and dape, (ax) = 0.

Proof of Lemma 3.2. First of all, we proceed with a contradiction argument to prove that the infimum in
the definition (3.19) of ¢* is indeed the minimum, which gives the existence of o, € (0,A). Suppose first
that a, = 0. Since ¢, € (0,400), it follows from (3.14) that %y = 1. This is impossible. Thus, the case
that a., = 0 is excluded. Now let us consider the case that a, = A. We observe that [p, K(x)er®edr = oo.
We distinguish two cases: either A € (0,4+00) or A = 400. For the former case, it is easy to see that
1 = e, (os) = @c, (A) = +00. This case is ruled out. Finally, let us exclude the case of A = +o00. Since
K(z) > 0 for z € RY, together with the assumption (1.15) in (H2u), we deduce that

1= lim ¢ () = lim & [ K(z)e* dx / w(i)e di
0

a— 0o a——+00 Rd

a—r—+00

> lim C’Sg/ w(i)eo‘(o‘é_c*i)di:—l-oo,
0

for some constant C' > 0. This is a contradiction. Consequently, we obtain that the infimum in (3.19)
cannot be reached neither when oo = 0 nor when o« — A. Then, the infimum is necessarily the minimum,
which implies the existence of a, € (0,A) such that ¢, = c¢(ax) € (0,400).

Finally, let us turn to the proof of the uniqueness of a,. As a matter of fact, since ¢, () — 400
as a — A and ¢, (0) = Zy > 1, together with the convexity of the function a € [0,A) — ¢, («), the
uniqueness of o, immediately follows. We also have 1 = ¢, (o) = minge (g a) ¢e. (@) and daepe, (ax) = 0,
by noticing that a € [0, A) — ¢, (a) is also analytic. The proof of Lemma 3.2 is complete. O

With the precise information of (au,c.), we can further determine the range of a corresponding to
¢ > ¢, such that ¢.(a) = 1. Here is our result.
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Lemma 3.3. For each ¢ > c*, there is a unique o € (0, v such that o (o) = 1. Moreover, let (a, c¢(c))
be the pair in [cx, +00) X (0, as] given by Lemma 3.1 such that .oy (a) =1, then o € (0, u] = c(a) is
decreasing.

Proof of Lemma 3.3. When ¢ = ¢, it is done by Lemma 3.2. Let us now fix any c¢g > c,. We first claim
that ¢e, () < 1. Indeed, since ¢ — @.(ax) is decreasing in ¢ > 0 and since ¢, (ax) = 1, along with
the fact that c¢o > ¢4, it immediately follows that ¢, (a.) < 1, as claimed. Therefore, by combining the
convexity of the function a — ¢¢,(a) in [0, ], ¥e(0) = Zo > 1 and . (ax) < 1, it is deduced that
a — @¢, (@) is necessarily decreasing in [0, ax]. As a consequence, there is a unique g € (0, cv) such that
©e,(g) = 1. This finishes the first part of the proof.

Assume now that 0 < a1 < ag < a, it follows from Lemma 3.1 that there exist ¢; and ¢y (both larger
than ¢,) such that (c1, 1) and (c2, a2) are respectively the unique pairs such that ¢, (1) =1 = @, (a2).
We first show that ¢; > c¢o, which gives the monotonicity. Moreover, we derive from the above analysis
that o — @, () is decreasing in [0, ], whence o < g will imply that 1 = ¢, (a1) > ¢, (a2). Hence,
Vep(2) = 1 > e, (). Since ¢ — pc(az) is decreasing in ¢ > 0, we immediately have ¢; > ca. This
completes the proof of this lemma. O

So far, we have shown that the exponential supersolution that we are looking for at the beginning of
this section indeed exists as long as ¢ > ¢,, and it is associated with a unique parameter o € (0, av|. Let
us close this section by showing that ¢, defined in (3.19) is an upper bound of the asymptotic spreading
speed for problem (1.3) associated with py # 0 satisfying certain assumptions.

Proof of statement (i) of Theorem 3.3. Assume that (H1)-(H2u) and %y > 1, and that p is the solution
of problem (3.1) associated with py Z 0 such that (H4) and (1.9) are satisfied. Let ¢, be defined in
(3.19), we now show that the solution p to the initial boundary value problem (3.1) spreads at most with
speed c, along any direction e € S¥~!. Let a, € (0,A) be the unique value given in Lemma 3.2 such that
©e, () = 1. Then, up to shifts,

p(t,i, ) = min (M, e—a*(x'e—c@—a*cﬂ) m(i), t>0, i€[0,it), x€R%

is a supersolution to problem (3.1) satisfying po(i,z) < p(0,i,x) for i € [0,i1) and z € R%. The comparison
principle Proposition 1.3 implies that

p(ti,x) < p(t,i,x) for (t,i,2) € Ry x [0,it) x R
Therefore, for any ¢ > ¢, and for any j € (0,4;), we have

lim sup p(t,i,x) = 0.
=400 >ct, 0<i<j

Since e € S is arbitrary, we then have

lim sup p(t,i,x) = 0.
E=400) 2| >ct, 0<i<y

This proves statement (i) of Theorem 3.3. O
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3.2.2 Compactly supported subsolution

For the lower bound of the asymptotic spreading speed, we consider problem (3.1) in the moving frame
along any direction e € S4~! with speed ¢ < ¢, and ¢ ~ ¢,:

atp(t7i7x) —ce: VIIO(t?Zax) + azp(t,z,x) = —W(Z)p(t,z,x), > 07 IS (OalT)7 T € Rd7

p(t,0,z) = So <1 — exp <— /OOO T(i)K * p(t, i,x)di)) , t>0, zeR (3.21)

Lemma 3.4. For ¢ < ¢, such that ¢ ~ ¢, problem (3.21) admits a compactly supported stationary
subsolution.

Proof of Lemma 3.4. We first treat the case when iy < 400 is finite. First of all, since by assumption
o =S [, w(i)di > 1, there exists Ry > max(1, ¢,i3) large enough, such that for any R > Ry one has

SR iT R
Ry = So/ w(@)di [ K¥(x)dx > 1.
0 Rd
For any direction e € S¥~! fixed, define

i A
o) = S ICR(x)e‘m'edx/ w(i)e *“di, for ¢ >0, a> 0,
R4 0

Following the analysis of (3.14) conducted in the previous section, we derive that for each R > Ry there
is a unique cf € (0, c,) and correspondingly a unique a® € (0, +-00) such that @fﬁ(af) = 1 together with
aa@fg(a*R) = 0.

Consider now ¢ € (c* — %,C*). We can fix R > Ry, depending on ¢, such that cf = c+ %z.
This is always possible since R — f(R) = ¢ + % is a strictly decreasing function in [Rp,00) with
f(Ro) =c+ %23 > ¢, and f(+00) = ¢ < ¢, and that R — g(R) := ck is a strictly increasing function in

[Ro, 00) with g(Ro) = clo < ¢, and g(+00) = c,. As a consequence, with such a choice for R, we have
¢ < cf < c,. Since Zf > 1, we get the existence of Ly € (0,i3) and Lo ~ it such that

L
S 50/ wh@)di | KR(z)dz > 1,
0 R4

where we have set w”(i) := 7(i)e” Jo B ()ds for each i € [0,L) and 8% : [0,L) — R, is given in (3.8).
Repeating the previous step, we now obtain the existence of a unique R e (0, ¢4) and correspondingly

a unique o™ € (0, +00) such that wLiﬁ(af’R) =1 and BQLpLL’%(a*L’R) = 0 where p2" () is defined as
C Cy

L
elR(a) = S ICR(m)eo‘x'edx/ wh(i)e™*di.
Rd 0

Moreover, cf’R — ¢ and oa*L’R — off when L — i+. From now on, we choose L € (Lg,i;) such that

L,R R
c<c < et <y
For future reference, we remark that for any n > 0 sufficiently small, one can find ' > 0 such that
—~L,R .
(1—n)%y > 1+n". Moreover, that there is dy > 0 small such that

So <1 — exp (—(%LR/SO)U)) > (1-— n)%L’Ru > (1+n)u foru€|0,d). (3.22)
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With ¢ < ¢ < ck < ¢, and any direction e € S?~! fixed, we look at the following truncated problem:

—ce: vxp(lax) + azp(l7x) = _BL(i)p(ia .’E), (S [O7L)a T e Rd)

L 3.23
p(0,2) = 50/ T()KE % p(i,z)di, x e R% (3.23)
0

We look for an exponential solution of (3.23) of the following form

e—ax~e—o¢ci—f(f B (s)ds

This amounts to finding v € C\R such that 2 () = 1. To do so, set
SHR(c ) = 1 — b H(a).

We notice that at the point (X%, aX®), there holds ®LE (2 o) = 0. Since the function o2 () is
analytic in ¢ and in «, so is ®“%. Therefore, we have
Du®@B B (LB oL’y =0, — 20 1= 0y @B (IR, ol R) <0, r = 9.00 8 (LR oB) > 0,

b= 00 @R (DT ol Ry,

Set
f::cf’R—c>0, T::a—af’R.
We restrict ourselves to a vicinity of (ci’™, ol™) and rewrite ®“R(c,a) = 0 by expanding ®L-F at
L,R L,R . . C e
(e, ) for (¢, ) in this vicinity:

0= 2"(c,a) = D F(LF, ol ) + [(c — 2 P)D, + (o — alF)0,) 1R (LR, ol P

1
Ty [(c = ™)+ (a - Oéf’R)aa]2<I>L’R(cf’R, Yad)
1
Y] [(c = el + (a - a*L’R)aa]g(PL’R(Cf’R, abfy 4.

that is,
or? + 0ET + &r = (T, €),

where ¢(7,§) is analytic in 7 and in £ for (7,€) in a small neighborhood of (0,0), ¢(7,&) is of the order
€2 + |7]® and vanishes at (0,0).

We observe that, for € > 0 small enough, the trinomial 072 + b7 + &r has a pair of complex roots
T+ = +i\/(r/0) + O(€). By the Rouché Theorem, we obtain that for £ > 0 small enough, ®f(c,a) =0
admits a pair of complex roots close (of the order £) to 74 and 7_ respectively, therefore still denoted by
74+ having the form

T = Hi(V(r/0)§ + 0(E)) + O(§).

Consequently, the dispersion relation @52 (c, ) = 1 — & () has complex roots

a=abll 1 =o' 40 +i(\/(r/0)E + O(€)) =: a; + ias,

with oy > 0 such that a; — ol being of the order &, and ag # 0 of the order v/€. And we further note

that
LR 7
Qg ~ \/Cy’ —C<\/C§_C_—7E3/27
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and thus up to increasing initially Ry, we can always ensure that as < 5.

A direct consequence is that Re (e*a‘”'e*a“’*foi BL(s)ds) is also a solution of (3.23), thus

L
So / WL (@)K « [e—m(m'em)) cos(an(z - e + ci))] di = e~™1% cos(an(z - ), = € RY. (3.24)
0
We now define

e Y% cos(anz z| < 55
1/}0417042 (Z) = { ( )’ | ‘ 202”7

0, elsewhere.

We claim that .
80/ WEVCE * Yoy an (2 4 €i)di > Yoy an(2), 2z ER.
0

Indeed, using the definition of 94, ,a,, for any |z| < 52—~ we have
L L ST
L/\+R N q- Ly- 202 _.p . —a .
80/ W (1)Ky * oy an(z + ci)di = So/ w (z)/ Ko (z + ci — y)e Y cos(agy)dydi
0 0

2a2
> So/ / KE (2 + ci — y)e™ Y cos(agy)dydi

(3.24) _
=Y e a1z

cos(2z) = Yo, 0y (2)-

The first inequality above holds thanks to our choice of as < 7= Indeed, since supp(K{’) C [— R R}, for
each i € [0, L], when |z + ¢i — y| < R, it follows from |z| < 2 that necessarlly ly| < R+ ci+ 55~ for all
i €[0,L]. Dueto R+ci < R+ c,iy < 2R on then has — 57 < y < 50 aslong as ap < o, Wthh implies
that the above integral for y € R\[— 5] is nonposmve hence the inequality follows. Thus for any

2(12 ? 2a0

n' > 0, we can find ¢ > 0 small enough such that

L
So/ W (VI % oy an (2 + ci)di > T ,¢a1 a(z—1), z€R. (3.25)
0

We denote by 2 € (—2%2, 0) the value at which 14, o, achieves its maximum on R and set

m = e 9% cos(an?).

Next, we define a modified version of 94, «, as

m, z < 2,
a1 (2) = ¢ e **cos(anz), 2<z<
! b
0, elsewhere,

which equivalently reads ¢ (2) = maxy>0 Va,,a0 (2 + y). Finally, we set

B (s)d | — / d
by = { IO el D), () € 0.1) xR (320
0, elsewhere,
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for some D > R+ cL + |2| > Ry that will be fixed below. We now verify that 6W¥ for any § € (0, dy/m) is
a subsolution to (3.21). Once again, only the boundary condition needs to be checked. We first compute

So<1—exp< (5/ K*Wz:c)d))
> S <l—exp <_5/0L°"L(i)/BR<o>K( W g 12 —yIH—ci—D)dydz’)).

For ||z|| < D — R — cL + %, we have that ||z —y|| +ci — D < 2 for all ||y|| < R. As a consequence, we get

So (1 —exp (—5 /OOO () % W (i, 2)di >) > So (1—exp (- (%L’R/so) om))

(3.22) —~L,R ,
> (1=n% dm>(1+n)om>¥(0,z).

Next, for D — R —cL + 2 < |[[z| < D+ -, we have that, for any |y|| < R,

R2
H H 2(D—-R—cL+2)

le =yl = D < |zl -

and so we select D large enough such that 2(D+_20L+2) < ¢ with ¢ defined in (3.25). We then obtain
L
/ wh (i) / KW, o, (Hx =yl +ci— D)dydz’
0 Br(0) ’
/ z)/ K(y) max ¢a1,a2<||$H +ci— —i—L—i—,u)dydz
Br(0) 2T H |
L

~ max / WHEKE * Yy (ol + it )l
u==D o

(3.25) 1 1
> o Max Yg, +u)=——7=Y(0,z).

So(l +77 ) ,LL> qu 1,02 (HIH ,LL) SO(]. +77/) ( )

Thus, in that range we get

So (1 ~exp < 5/ DK+ (i, 2)di )) > S (1 ~ exp <_80(15+n,)\1;(o,x)>> > 50(0, ).

This completes the proof of Lemma 3 4 in the case where iy < +00. When iy = 400, since #Zy > 1, there

exists Ry > 1 such that @R =80 Jo i)di fRd KB (x )dz > 1 for R > Ry. Moreover, for each R > Ry,
there exist ¢ € (0,c,) and af >0 such that 90~R( ) =1 and 8ag0~R( By =0, with % (a) defined as

R .
o (a) == So ICR(x)eam'edJ;/ wl(i)e™@“di  for ¢ > 0, a > 0.
R4 0

Now we consider any ¢ € (c* — . We can fix R > Ry, depending on ¢, such that ¢ = ¢4+ = R3 From

R4 7
there, we can repeat the analy51s Wlth L = R and still construct a compactly supported subsolution of

the form (3.26). O
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Consider now the initial boundary value problem corresponding to (3.1) in the moving frame, namely,
Oip(t,i,x) —ce-Vyp(t,i,x) + 0ip(t,i,x) = —y(i)p(t,i,x), t>0, i€(0,44), x€ RY,
p(t,0,z) =Sp <1 — exp <— /000 7(1)K * p(t, i,:c)di)) , t>0, zeRY (3.27)
p(0,i,2) = po(i,z), i€[0,i), x€R?

with initial condition pyp # 0 such that (H4) and (1.9) are satisfied. That is, the initial condition py,
defined on [0,44) X R?, is nonnegative, compactly supported, absolutely continuous on [0,44) uniformly
with respect to its second variable and such that po/m € L>([0,4) x R?). Moreover, condition (1.9) is
satisfied for pg.

Lemma 3.5. Assume that (H1)-(H2u) and %y > 1, for ¢ < c. satisfying ¢ ~ ¢, let p be the solution of
problem (3.27) associated with py #Z 0 such that (H4) and (1.9) are satisfied. Then,

p(t, i, o) — p*(i) as t — +oo, locally uniformly in (i,z) € [0,4;) x R%, (3.28)
where p® is given in Theorem 3.1.

Proof of Lemma 3.5. We simply note that p(t,i,x) = p(t, i,z + cte) where p is the solution to the prob-
lem (3.1) and that 9,,p is well-defined thanks to our running assumptions on pp and the result of Propo-
sition 1.1. Now, adapting the proof of Theorem 3.2(ii) with ¢ replaced by ¥ given in (3.26) to (3.27), we
obtain the conclusion. O

We are now in a position to justify that c,, defined in Lemma 3.2, is also a lower bound of the
asymptotic spreading speed for the initial boundary value problem (3.1).

Proof of statement (ii) in Theorem 3.3. Assume that (H1)-(H2u) and %y > 1, and that p is the solution
of problem (3.1) associated with py # 0 such that (H4) and (1.9) are satisfied, and let p be the solution
to problem (3.27) with the same initial function py.

First of all, we obtain from Lemma 3.5 that, for any € > 0 sufficiently small, there is ¢ € (¢x — €, ¢x)
such that the solution p of (3.27) satisfies

p(t,i,x) — p*(i) ast— +oo, locally uniformly in (i,x) € [0,i1) x R%.
This is equivalent to the following
p(t,i,x 4 cte) = p°(i) ast— 4oo, locally uniformly in (i,z) € [0,4;) x R% (3.29)

To complete the proof of Theorem 3.3, we need to the following auxiliary lemma.

Lemma 3.6. Assume that (H1)-(H2u) and Zy > 1. Let ¢~ < ¢t be such that any nonnegative nontrivial
bounded solution p to problem (3.1), associated with py Z 0 such that (H4) and (1.9) are satisfied, has
the property that, along any direction e € S1,

p(t i, + cFte) — p*(i)  ast — +oo, locally uniformly in (i,z) € [0,i;) x R%, (3.30)
Then, there holds

Vje(0,i1), lim sup lp(t,i,x) — p°(i)| = 0. (3.31)
t=100 (—i<pe<ctt, 0<i<j
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Let us postpone the proof of Lemma 3.6 for the moment and continue the proof of Theorem 3.3. By
taking ¢~ = 0 and ¢ = ¢ in Lemma 3.6, along any direction e € S¢~1, the function p satisfies

Vie (), lim  swp|e(ti@) = p*)| = 0.

t—=+00 0<g-e<ct, 0<i<j
Since e € S is arbitrarily chosen, it follows that

Vie (i), lim s |p(ti,a) - p(0)] = 0.

20 || <et, 0<i<y
This completes the proof of Theorem 3.3. O
Let us now complete this section with the proof of Lemma 3.6.

Proof of Lemma 3.6. Assume that (H1)-(H2u) and %y > 1. Let p be the solution of problem (3.1)
with po # 0 such that (H4) and (1.9) are satisfied. Let p denote the solution to (3.1) with initial

condition py, = max ( Sy, HPO/WHLoo([O7Z'T)XRd)) 7 and let p be the solution to (3.1) with initial datum

Py = 0% in [0,44) x R? with 1 given by (3.11) for some small § > 0 such that 1) is a subsolution
to problem (3.1), as analyzed in the proof of Statement (ii) of Theorem 3.2. Since p(t,i,z) > 0 for
(t,i,z) € (0,+00) x [0,i4) x R? with ¢ > i due to Proposition 1.2, we can decrease & (if necessary) such
that 0 < 6¢ < p(T,-,) in [0,i;) x R? for some T' > L, where L € (0,4;) is associated with 1. By the
comparison principle Proposition 1.3, we then deduce that

p(tyi, o) < p(t+T,i,x) <p(t+T,i,2) for (t,i,r) € Ry x[0,i1) x R4,

Thanks to the assumption (3.30), we have, for any e > 0 small and for each j € (0,4;), thereis 73 > T > 0
large enough such that

Vt>Ty, 0<i<j, |B(t,i, ¢ te) — p°(i)| < e, and ’ﬁ(t,i, cte) — p°(i)| < e (3.32)
Moreover, letting w > |¢~|T1, we also deduce from (3.30) that there is 77 > T7 > 0 such that
VE>T, |z el <w, 0<i<j, |p(t,i,z+cTte) —p°(i)] <e. (3.33)
Set ¢:= (1 —X)c™ + Act for any A € [1/2,1], and fix 7 > 27", we now claim that
lp(T,i,cTe) — p°(1)] < e for 0 <i<j. (3.34)

We divide into two subcases.

Case I. (1—\)7 < T7. In this case, we observe that cre = ((1—A)¢™ +Act)se = (1-A)c Te+ Actre =
x+ctte with [z-e| = |(1 = Ne 7| < |c7|Th <w and ¢ = A7 > T". Then (3.34) immediately follows from
(3.33).

Case II. (1 — \)7 > T3. Up to increasing 71, we have the following comparison

Py = 0% < p(ATi,x + cTAre) <p, for (i,x) € [0,4) x RY.
By applying the comparison principle Proposition 1.3, we have

(=M1 i,z +c (1 - N)1e) < p(r,4,z +cre) < p((1 = N)7, 4,2+ ¢ (1 — N)7).
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Since (1 — \)7 > T3, we observe that (3.34) can be reached by (3.32).
Consequently, we conclude from (3.34) that

vVt >, sup lp(t,i,x) — p°(i)] < e
(c+ct)t/2<z-e<ctt, 0<i<j

On the other hand, set ¢ := (1 — )¢t + A¢™ for any A € [1/2,1]. By repeating the analysis as above,
we will get
Vit > T, sup lp(t,i,z) — p°(i)] < e.
cmt<z-e<(c™+ct)t/2, 0<i<j

Consequently, the proof of Lemma 3.6 is complete. 0

4 Proofs of the main results

Throughout this section, we turn to problem (1.6) with nontrivial compact perturbation Iy # 0 and
general nonnegative compactly supported initial condition pg in [0, +) x R?, and investigate the long time
behavior and further spreading property of the solution to (1.6).

4.1 Liouville-type result — Proof of Theorem 1.1
Let us prove the Liouville-type result for the stationary problem (1.12).

Proof of Theorem 1.1. Assume (H1)-(H2) and that Iy # 0 satisfies (H3). We divide the proof into
three steps. We first prove the existence of a nonnegative nontrivial stationary solution, then establish
its uniqueness and finally study its asymptotic behavior as ||z| — +o0.
Existence. First of all, due to the assumption (H3) on Iy # 0, we get the existence of a constant A > 0
such that

In(i,z) < Av(i) for (i,x) € supp(Ip).

Now, set M := max (Sp, A), and define py(i, z) = Mn (i) for each (i,x) € [0,4+) x RZ. Then, it is easy to
check that p, is a supersolution to (1.12) in [0,4;) x R%. On the other hand, let 1 be given by (3.11) for
some small § > 0 such that §¢ is a subsolution to problem (1.12) satisfying §¢ < M in [0,43) x RY. Let
p (resp. p) be the solution of problem (1.6) associated with initial condition p; = 01 (resp. py = Mm)
in [0,4) x R?. By the comparison principle Proposition 1.3, it follows that p < pin Ry x[0,i1) x R,
Moreover, p is nondecreasing in time for (¢,i,z) € Ry x [0,44) x R?, whereas p is nonincreasing in time
for (t,4,2) € Ry x [0,i1) x R?. By the monotone convergence theorem and then by the Dini’s theorem,
we eventually obtain that p (resp. p) converges, locally uniformly for (i,z) € [0,4;) x RY, as t — +oo to
a solution U (resp. U) of the stationary problem (1.12) such that for (i,z) € [0,44) x R,

0<éyY(i,x) <Ul(i,x) <U(i,x) < Mm(i). (4.1)

This gives the existence of nontrivial nonnegative solutions to the stationary problem (1.12) in [0, 4;) x R4,
Uniqueness. Let now U be a nontrivial nonnegative solution of (1.12) in [0,i4) x R% From the first
equation of (1.12), it follows that

U(i’.x) U0,z) + /0Z Ioifé)x)df for (i,x) € [0,4;) x R (4.2)
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Plugging it into the boundary condition of (1.12), one then derives that

U(0,z) = So (1 — exp ( (/Ooow(i)di) K+U(0,z) — /Ooow(i)lC x </0 10752;’3)%) di)) , zeR%

Following the idea in the proof of Theorem 3.1, we set

o) = 200 g
So

By recalling that %y = Sy [, w(i)di, it follows that the function @ satisfies

Bla) = 1 — A(w)e W8 = N(B(a),z), = e R, (4.3)

(©)
mapping $ € X — N (P, z) for each z € R? with X = {p € €(R?) | ¢ > 0}, together with the fact that
0 < N(0,2) < 1 and NV(+o0;2) = 1 for z € R, it follows that (4.3) admits a unique positive solution
0 < @ < 1. This then implies that U(0,z) > 0, whence U (i,x) > 0 thanks to (4.2).
It is worth to notice from the above equation (4.3) that @(z) > ¢(z) for € R?, where we recall that
 solves

where A(z) := exp <— JoS w(i)K = (fg Io(é’x)d§> di) takes values in (0,1). Using the concavity of the

plr)=1- e_’%lc*(p(m), z € R%.

This implies in particular that, when %y > 1, there holds U > p® in [0,4}) X R?, where p* is the unique
positive stationary solution of (3.1) given in Theorem 3.1.

Asymptotic behavior. Let U be the unique positive solution to (1.12) which is uniformly bounded on
0,4+) x RY. For any sequence (zn)nen in R? such that ||z,,| — 400 as n — 400, let us consider the
function

Un(i,2) := Ui, + xp,) for (i,z) € [0,4;) x R%
We observe that U, satisfies
OUn(i,x) = Io(i,x + xp) — y(i)Un(i,x), i€ (0,iy), =€RY,

Un(0,2) = So <1 —exp <— /OOO T()K * Uy (i, x)di)) , zeR%

Passing to the limit as n — “+oo, we have U,, — Uy as n — +oo locally uniformly, where Uy, is the

solution of
OiUso(i,2) = —y())Uso (i, ), i€ (0,iy), =€RY,

Uso(0,2) = So <1 — exp (- /OOO 7(1)K * Uso (4, x)di)) , zeR%

which is exactly the stationary problem of the homogeneous model (3.1). By virtue of Theorem 3.1, one
infers that

0 if Zy <1
lim U(i,z)=<% . 1 =" Jocally uniformly in i € [0,44).
l|l||—+o00 p*(i), if %y > 1,
This finishes the proof of Theorem 1.1. O
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Next, we provide a asymptotic property of the positive stationary solution U to (1.6) by further
assuming that the kernel is exponentially localized, i.e., satisfies (H2u), which illustrates that the func-
tion U will exponentially approach the stationary solution of the homogeneous model (1.3) when ||z is
sufficiently large. Our result is the following.

Proposition 4.1. Assume (H1)-(H2u) and that Iy # 0 satisfies (H3). Let U be the unique positive
stationary solution of (1.6), given in Theorem 1.1. Then there is some X = A(||z|) > 0 such that U
satisfies, for i € [0,i3) and for x € R? with ||z|| sufficiently large,

Ui, ) p° (1) + SpeMlx (i), Ry > 1,
1, T) =
’ Soe Melz (i) Ry < 1.

Proof of Proposition 4.1. Let U be the unique positive stationary solution of (1.6), given in Theorem 1.1.
Let p® be the unique positive stationary solution of (3.1) when %y > 1. With a slight abuse of notation,
here we set p°* =0 when %y < 1. We now prove the conclusion for Zy > 1 and %y < 1 simultaneously.

For any direction e € SY~!, we consider x € R? with x-e sufficiently large (the case that z-e sufficiently
negative can be dealt with similarly through taking direction —e) and i € [0,4;). To reach our conclusion,
it suffices to prove that there is A > 0 (depending on ||z||) such that for i € [0,4) and for z € R? with
|lz|| sufficiently large, the following ansatz makes sense:

Ui, x) = p*(i) + Soe ™ °r(i), (i,z) € [0,4;) x R%

First of all, we notice that for i € [0,i1) and for z € R? with ||z|| sufficiently large, the term Iy is identically
zero since it is compactly supported, therefore it is easy to check that the ansatz satisfies the transport
equation in (1.6). Moreover, at the boundary ¢ = 0, it is seen that the ansatz needs to satisfy

U(0,2) — p*(0) = So (1 — exp <_ /OOO (1)K * U(i,x)di)) - S (1 — exp <— /OOO (1) IC * pS(i)dz’>>

= Soe_%’op* (1 — exp (—QOE(A)E_AIE))

— Soe—kawe

where K()) is given by (1.16) which is well-defined (at least) for A € £ = [0, A) with the set & defined by
(3.15) (remember that A € [up, +00]), thanks to hypothesis (H2y). This amounts to finding out A > 0
such that B

e#0P" g7 AT — 1 _exp (—%()IC()\)e*AI'ﬂ . (4.4)

We claim that there is A € (0,A), independent of e but dependent of ||z||, such that (4.4) is satisfied.
Indeed, we notice that the function A € [0,A) = hi()) := e%0P e~ is analytic, decreasing and convex
satisfying h1(0) = e”0f" > 1, and hy(A) < 1 for each x € R? such that z - e sufficiently large; whereas
the function A € [0,A) — ha(X) :=1 —exp (—%016()\)6_>‘”e> is analytic and convex such that hy(0) =
l1—e % < 1and ha(A) — 1 as A — A for each x € R? with z-e sufficiently large. This gives the existence
and uniqueness of parameter A € (0,A) such that (4.4) is satisfied for each 2 € R? with x - e sufficiently
large. Due to the direction e € S%! is arbitrary, we conclude that the parameter \ indeed depends on
||z||. We then reach the conclusion, and this completes the proof of Proposition 4.1. O
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4.2 Long time behavior — Proof of Theorem 1.2

In this section, we prove that, under the Hypotheses (H1)-(H2) and that Iy # 0 satisfies (H3), the solu-
tion of problem (1.6), associated with an initial condition pg satisfying (H4), converges locally uniformly
towards the unique positive stationary solution U to (1.6) given in from Theorem 1.1 for large times.

Proof of Theorem 1.2. The main ingredient of the proof is basically a slight modification of the existence
part in the proof of Theorem 1.1. We sketch the outline below for the sake of completeness.

Assume (H1)-(H2) and suppose that Iy # 0 satisfies (H3). Let p be the solution of (1.6) associated
with an initial condition pg satisfying (H4). Let p and p be the solutions of the initial boundary value
problem (1.6) with initial condition p, = ¢ and p, = max (M, Hpo/ﬂ”Loo([O’iT)de))ﬂ in [0,4;) x RY,
with 6 > 0 and M given as in the beginning of the proof of Theorem 1.1. Since p(¢,i,z) > 0 for
(t,i,z) € (0,400) x [0,4;) x R? with ¢ > i + i, due to (H3) and Proposition 1.2, we can decrease § (if
necessary) such that 0 < 6v < p(T, -, ) in [0,44) x R for some 7' > L + i, where L > Lo > 0 is given in
the formula (3.11) of 4.

By the comparison principle Proposition 1.3, it follows that and p(t,7,z) < p(t+T,4,z) < p(t+T,14,x)
for (t,i,2) € Ry x[0,i3) x R, and that p is nondecreasing in time for (¢,4,2) € Ry x [0, 1) x R?, whereas p
is nonincreasing in time for (¢,1,r) € Ry x [0,4+) x R%. By the monotone convergence theorem and then by
the Dini’s theorem, eventually we obtain that p (resp. p) converges locally uniformly for (i,z) € [0,4;) x R
as t — +00 to a stationary solution U (resp. U) to (1.6) such that

(i, z) < U(i,x) < ltim inf p(t, i, z) < limsup p(t,i,2) < U(i,z) < max (M, Hpo/Tr”Loo([O’iT)XRd))W(i)

—+00 t—+00
locally uniformly for (i,z) € [0,4;) x R%. Thanks to the Liouville type result Theorem 1.1, the conclusion
of the large time behavior of the solution p to problem (1.6) then immediately follows. O

4.3 Spreading properties — Proof of Theorem 1.3

Next, under the Hypotheses (H1)-(H2u) and that Iy # 0 satisfies (H3), we will prove in the regime
Ao > 1 the spreading property with speed ¢, > 0, given in (3.20), for the solutions of the initial boundary
value problem (1.6), associated with an initial condition pg satisfying (H4).

Proof of Theorem 1.3. Assume that (H1)-(H2u) and %y > 1, and that Iy # 0 satisfies (H3). Let p be
the solution of the problem (1.6) starting from an initial condition pg satisfying (H4). Let ¢, be given in
(3.20). We divide the proof in two parts.

Proof of statement (i). For any ¢ € (0,¢,) and j € (0,44) fixed, we consider an arbitrary sequence
(tn, Tn)nen in Ry x R? such that ¢, — 400 as n — 400 and ||z, < ct, for each n € N. If (x,),en is
bounded, then we easily derive from Theorem 1.2 that p(t,,?,z,) — U(i,z,) — 0 as n — 400 uniformly
in i € [0, j]. Suppose now that (x,),en diverges to infinity. Since p is a supersolution to the KPP model
(3.1) for which spreading occurs with the asymptotic speed ¢, we have

lim inf tnei,xn) — p°(i)) > 0.
lm fnf sup. (p(tn, i, 20) — p°(0)) >

Together with the asymptotics of U as ||z|| — +oo given in Theorem 1.1, it follows that

liminf sup (p(tn,i,xn) - U(i,xn)> > 0. (4.5)
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To complete the proof of statement (i), it now remains to show that

limsup sup (p(tn,i,xn) — U(i,xn)) <0. (4.6)

n—s+o0 0<i<j
To do so, we first claim that there is A > 0 large enough such that for (¢,i,2) € Ry x [0, 7] x R?
p*(i) + 2(i, ) == p°(1) + AU(0,z) — p*(0))7(i) = p(t,i, x). (4.7)

Indeed, for (i,z) € Q := supp(ly) U supp(pg), we can choose A > 0 sufficiently large (independent of e)
such that

(i) + z(i,x) > p(t,i,z), teRy, (i,z) € Q, (4.8)

by noticing that z > 0 in this region and that p is uniformly bounded from above. Let us look at the
region of (i,z) € Q° (outside supp(lp) Usupp(po)). We notice that

9i(p°(i) + 2(1, ) = =y (1) (p°(9) + 2(i, x)),  (i,2) € Q. (4.9)
Set *(0 0 0
Wiy = P08 e 0

We recall that p* solves p* = 1 — e~ #0K*" where the mapping v € X + 1 — e %05 with X = {v €
€ (R%) | v >0} is concave, it then follows from W (z) > p* that W(z) > 1 — e~ #W(@) namely,

2°(0) + 2(0,2) > S (1 exp <— /OOO FK % (0°() + z(i,x))di)) . zeRY

Combining (4.8)-(4.9) with the above inequality, we derive from a comparison argument that p®(i) +
z(i,z) > p(t,i,x) for t € Ry and (i,2) € Q°. This together with (4.8) proves our claim (4.7). This further
implies that

limsup p(tn, 4, 2n) < limsup (p°(i) + 2(i,2n)) = p°(i) < liminf U (i, z,) Vi€ [0, 4],

n—-+o0 n—+o00 n—-+o0o

where we have used the fact that z(i,x) — 0 as ||| — +oo due to Theorem 1.1. Therefore, (4.6) is
achieved. Since the sequence (¢, n)neny Was chosen arbitrarily such that ||z,|| < ct,, for all n € N, we
combine (4.5)-(4.6) and conclude that

lim sup p(t,i,x) —U(i,z)| = 0.
t=+00 2| <ct, 0§i§j| Y ’ ’

This implies that ¢, is a lower bound of the asymptotic spreading speed.

Proof of statement (ii). Let us now prove that ¢, is also an upper bound of the asymptotic spreading
speed. Since Iy is compactly supported in [0,41) X R?, and satisfies (H3), we get the existence of a
constant A > 0 such that

Io(i,x) < Ay(i), (i, %) € supp(lo).

For any direction e € S%~!, we construct a function 7 of the form

(t,i,z) = C'min (max (So, A) ,e—a*@'e—@ﬂ—aw) 7(i), (ti,z) € Ry x [0,i) x RY, (4.10)
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with some constant C' > 0 which is fixed large enough such that po(i,z) < p(0,i,x) for each (i,z) €
[0,44) x R?. This is always possible since pg is compactly supported in [0,44) R?. With our careful choice
of A and the explicit form of the exponential part in (4.10), we readily conclude that p is a supersolution
to (1.6) in Ry x [0,44) x R?. The comparison principle Proposition 1.3 then leads to

p(t,i,x) < p(t,i,z) for (t,4,2) € Ry x [0,44) x R
As a consequence, for any ¢ > ¢, and for any j € (0,44), we have

lim sup  p(t,i,x) =0.
t=+005.e>ct, 0<i<j

Since e € S~ is arbitrarily chosen, we then derive that

lim sup p(t,i,x) =0,
E=400 || >ct, 0<i<y

which implies that c, is also an upper bound of the asymptotic spreading speed. This completes the proof
of Theorem 1.3. O

5 Traveling waves

In this last section, we assume throughout that (H1)-(H2u) are satisfied, and we will focus on the case
that Zy > 1. Our aim to show the existence and uniqueness of traveling waves for the KPP model

Op(t,i,x) + ip(t,i,x) = —y(i)p(t,i,x), t>0, i€ (0,it), x€R%

p(t,0,2) = So (1 — exp ( /OOO 7(1)K * p(t,i,x)dz’)) , t>0, zeRL (5.1)

That is, we look for solutions of the form p(t,4,z) = w(i,z - e — ct) for any direction e € S¥!, where the
profile w satisfies

—co,w(i, z) + Ojw(i, z) = —y()w(i,z), 1€ (0,i1), z€eR,

b 5.2
w(0,2) =Sy (1 — exp <—/ 7(3) Ko * w(i, z)di)) , z€R, (5:2)
0
together with the conditions
w(i, —o0) = p°(i) and w(i,+00) =0 for each i € [0,144), (5.3)
0 <w(i,z) < p’(i) for (i,2z) € [0,i4) x R. '

Before proceeding with the proof, let us give some comments. Since %, > 1, we notice that the only
bounded nonnegative solutions of (5.2) with ¢ = 0 are 0 and p®(i). What we are interested is whether or
not there are some values of ¢ € R\{0} for which (5.2) has a solution satisfying 0 < w(i,z) < p*(i) for
(i,2) € [0,i1) x R. We point out that if there exists a traveling wave solution w(%, z) with speed ¢, then
w(i, —z) will also satisfy (5.2) along the direction —e with wave speed —c. Therefore, we shall restrict
ourselves to the case that ¢ > 0 in the sequel.

Let us also remind that ¢, € (0,+00) is the asymptotic spreading speed for KPP model (1.3) proven
in Theorem 3.3. The necessary condition for the existence of traveling fronts of (5.1) can be easily proved
as follows using the spreading property of Theorem 3.3.
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Lemma 5.1. Traveling fronts of (5.1) with wave speed ¢ € Ry, if any, satisfy ¢ > cx.

Proof of Lemma 5.1. Assume that w(i,z - € — ct) is a traveling front to the KPP model (5.1) with speed
c € Ry along any direction e € S¥~!. We then infer from the spreading property (ii) of Theorem 3.3 that

Ve € (0,¢.), Vj € (0,i4), lim sup ’w(i,x -e—ct) — ps(i)’ =0.
t=+0 g<g.e<c’t, 0<i<j

In particular,

lim |w(i,(c —¢)t) — p°(i)| =0, locally uniformly in i € [0,4;).

t—-+o0

By virtue of the limit condition (5.3), we infer that ¢ < ¢. Since ¢ € (0,cs) was arbitrarily chosen, we
then derive that ¢ > c,. ]

Next, we see from the method of characteristics that (5.2) is equivalent to the following integral
equation:

w(i, 2) = S (1 ~exp <_ /OOO #(i)Ko *+ w(i, = + cz’)di)) (@), i€[0,i), zeR.

It is then natural to introduce the change of unknown

) w(i, z)
X(Z,Z) T S(]’]T(’L.>,

ie€[0,it), z€R, (5.4)
such that the above equation is reduced to
o
x(i,2) =1 —exp (—So/ w()Co * x(i, 2 + ci)di) , 1€[0,45), z€R.
0

We readily note that the right-hand side of the above equation is independent of the variable i € [0,14),
and so from now on, we suppress this dependence and simply look for solutions x(z) to

x(z) =1—exp <—So/ w(i) o * x(z + cz’)di) =TX)(2), z€eR, (5.5)
0
together with the conditions
X(=00) =p%, x(+00) =0, 0<x<p" inR. (5.6)

The operator 7 is monotone in the sense that if x; < x2, then 7T (x1) < 7T (x2), which can be directly
observed through

T(x1)(2) — T(x2)(2) = =50 [y w(i)Koxxa(z+ci)di <1 — exp <So /O‘X’w(i)l(:o * (x1— x2)(z + c@')di)) <0.

This integral equation (5.5) is essentially similar to (2.4). All the ingredients analyzed for (2.4) can be
smoothly adapted here.

It is very interesting and important to remark that the above traveling wave integral equation (5.5)
can be recast to the one originally derived by Diekmann in [12]. Indeed, set

((2) = So /0 " (i) # x(= + ei)di,
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then y(z) = 1—exp(—((z)) for each z, and multiplying both sides by Sow(i)Ko(z’ + ¢i — 2) and integrating
in ¢ and z, one gets

(") =38 /Ooow(i)lCo * (1 —exp(—((2' +¢i)) di, 2 €R.

As a consequence, one can directly use [12, Corollary 6.2] to get the existence of traveling front solutions
of (5.5) for each ¢ > ¢, and then invoke [3] to obtain the existence for ¢ = ¢,. Let us remark that the
argument of [3] is not constructive in the sense that the existence of traveling fronts at ¢ = ¢, are obtained
by a limiting procedure from the case ¢ > ¢, by taking ¢ — c,. Below, we provide a direct constructive
proof in the case of ¢ = ¢, which allows us to retrieve the precise asymptotic behavior of the critical fronts
at ¢ = ¢, at +00. Furthermore, one can then combine the results of [15] and [10] to get the uniqueness
of such monotone traveling waves modulo translation. We summarize all these results in the following
lemma.

Lemma 5.2. For each ¢ > c,, problem (5.5)-(5.6) admits a unique (modulo translation) solution x. which
satisfies x. < 0 and 0 < x. < p* in R. Furthermore, we have (up to normalization)

XC* (Z)
ze dxZ

Xe(2)

—1 asz— +oo.
e Qc?

— 1 (forc>cy),

Here, o, € (0,A), given in Lemma 3.2, is the unique value such that o, () =1 and o, € (0, o) is the
unique value such that o (a.) = 1.

Proof of Lemma 5.2. The proof of existence relies on the super- and subsolution argument. To do so, we
focus on the integral equation (5.5). Recall that a, € (0,A), given in Lemma 3.2, is associated with ¢,
such that ¢, (o) = 1.

Existence in the case of ¢ > ¢,. Let us briefly proceed with the proof of existence of traveling fronts
with speed ¢ > ¢, which can originally be found in [12]. Here, we sketch it for completeness. Fix any
¢ > c.. Let a. € (0,4) be the unique value given in Lemma 3.3 such that the dispersion relation
¢e(ae) = 1 holds true. Then, we fix 0 < § < min(ae, ax — ;) (therefore o, + 6 < ). It should
be noted that ¢.(a. + 0) < 1. Indeed, Lemma 3.1 implies that there is a unique é € [¢4, ¢) such that
we(ae+0) = 1. Together with the fact that ¢ — (. + 9) is decreasing in [0, 4+00), we then deduce that
1 =pe(ae +0) > pc(ae+ 6). On the other hand, there exists a constant C' > 0 such that

l—e*>s5—Cs? fors>0. (5.7)
We then pick
CHop*oe(ac+9)
M > 1 . .
_max(, 1= oe(on +0) >0 (5.8)

For z € R, we define
X(2) = p*min (1,e72?),  x(z) = p* max (0,e"%* — Me~(@t9)?),

Following [12], it is straightforward to check that X and x are respectively a super- and a subsolution of
(5.5) in R.
By using the monotonicity of T, we get that for each k € N

XSTOST < <TST'"R < <T’R)<TKX) <X, onR.
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By the Arzela-Ascoli theorem, we derive that, up to extraction of a subsequence, 7#(%)(z) — x(2) as
k — +o0 locally uniformly in 2 € R, and x < x <X for z € R, which implies that x is bounded in R
and y(+o0) = 0. Moreover, since X is nonincreasing in z, as is 7%(x). Hence, the limit function y is
nonincreasing in z. In particular, we have 0 < x(—o00) < 1. We claim that x(—oo0) = p* € (0,1), where
p* is the unique positive solution to v = 1 — e~#0¥, Indeed, consider any sequence (z,)nen diverging to
—o00 as n — 400 and define x,,(z) = x(z + z,,) for z € R and each n € N. We observe that, up to some
subsequence, xn(z) = Xoo @ n — +o00. Then, by the Lebesgue’s dorminated convergence theorem, we
observe that y~ solves
Xoo =1 — exp(_QOXoo)a

which has a unique positive solution p* € (0,1) since Z, > 1. Since the limit does not depend on the
particular sequence (z,)nen, we arrive at y(—oo) = p*. Consequently, we have proved the existence of a
nontrivial solution y for problem (5.5), which is translation invariant, and satisfies 0 < y < p* and ¥’ <0
in R as well as x(—o00) = p* and x(+0c) = 0. Since x < x <X in R, we have (up to translation)

X(z) ~ e 9* as z — 400,

where a, € (0, ) is the unique value such that ¢.(a.) = 1.

Existence in the critical case of ¢ = ¢,. Let C > 0 satisfy (5.7). We fix a large constant A > 0 such
that there exists zp > 0 such that Azpe”*** > 1. One can then define Z = max{z > 0 | Aze”** = 1}.
Choose 0 < § < min(ax, A — ax)/4. Since a € [0,A) — ., (a) is convex and since ¢, () = 1 =
minye (o) Pe. (@), we infer that o € o, A) = @, () is increasing, whence @, (s +20) > @, (ax+9) > 1.
Then, we can pick B > 1 sufficiently large such that

2lem2uE < om(F20)2 Ot A, (a4 20)e 0% < po (e +0) — 1 forall z > (B—1)/A. (5.9)

For z € R, let us now define

x(z) = p* max (0, Aze~*** — Be™*** + e_(o‘*+5)z).

Let us now verify that  is a supersolution to (5.5) in R. Again, it is suffices to consider the region where
X(2) = p*Aze=*+#. Indeed, by a straightforward computation, we derive that

T(X)(z) =1—exp (—80 /OOO w(i)o xx(z + c*i)di>
<& /OOO w(i) Ko * X(2 + cxi)di
= p*AS, /O b w(i)Co * (2 + exi)e e
= 0" AS, /0 h w(i)e Iy % (27 + epie” ) di

—QxZ

= prAze” ™" =X(2),

by recalling that ¢, (o) = 1, and dppe, () = 0, namely,

</R ]CO(Z)ZeO‘*Zdz> </Doow(i)e—a*c*idi> - </R Ko(z)ea*zdz> (/OOO w(i)C*ie_a*c*idi> —0,
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as well as

Ko * (ze” %) = e 4% (z/ Ko(z)e™*dx — / ICo(.%‘)l'ea*wdl') :
R R

Therefore, we conclude that y is a supersolution of (5.5) in R.
Let us now prove that x is a subsolution to (5.5) in R. It is sufficient to take into account the case
that x # 0, which implies that z > (B — 1)/A. Thanks to (5.9), we derive that

XQ(Z) < YZ(Z) _ (p*)2A222672a*z < (p*)2A2ef(a*+26)z for 2> (B _ 1)/A

By applying (5.7), we derive that

T)(2) =1—exp <—30 /Ooow(i)lCo * x(z + c*i)dz')
(5.10)

o0

e 2
> So/ w(i)Co * x(z + cxi)di — C <So/ w(@)Co * x(z + c*i)di) .
0 0

On the other hand, we also have

/OO (1)Ko * x (2 + cxi)di = / / (1)o(2z + cvi — y)x(y)dydi

(/ / ()o(z + cxi — )dde> (/OOO w(i)Ko * x*(z + c*z’)di> : (5.11)
- (2)) ([ ot

Combining (5.10) and (5.11) as well as (5.9), we then arrive at

T(x)(z) > So/ w(i) Ko * x(z + cxi)di — CSO%O/ w(i) Ko * X2 (2 + cui)di

0 - 0 -
> g (A2e™% = B + g ( + 8)e™ (@2 - CR0p" A2, (o 4 20)e (02002
> p (Azemo® — Bem% 4 ¢m (D) =y (),

which implies that x is a subsolution of (5.5) in R.

By repeating the argument from the case ¢ > ¢, we eventually get the existence of a nonincreasing
solution x., of (5.5) satisfying 0 < x., < p* in R, x,(—00) = p* and x., (+00) = 0. Again, we observe
from the construction of x., that (up to translation)

—QxZ

X, (2) ~ ze as z — +o0.

This completes the existence part of this lemma.

Strict monotonicity. Now, let us prove that 0 < x. < p* and x. < 0 in R for each ¢ > ¢,. From
the existence proof, we have that 0 < y. < p* < 1 in R. Assume now that there is zyp € R such that
Xc(z0) = 0. It then follows from (5.5) that

/ w(4)Co * x(z0 + ¢i)di = 0.
0
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Since Ky > 0 in R and x. > 0 in R, one infers that y. = 0 in R, which contradicts x.(—o0) = p*.
Therefore, we arrive at 0 < x. < p* < 1 in R. Next, assume that there is zp € R such that x.(z0) = p*.
Using the fact that p* = 1 — exp(—Zop*), it follows from (5.5) that

Roxc(z0) = Hop*™ = 80/ w(2) Ko * xc(2z0 + ci)di,
0
and using the definition of %y we equivalently get
So / w(i)Ko * (xe(20) — Xel20 + ci)) di = 0.
0

But since x.(z) < xc(20) = p* for all z € R, we deduce that x.(z0) = xc(20 + ¢i — 2) for all i € supp(7)
and z € R, which is a contradiction as y.(+oc) = 0. As a consequence, we have 0 < y. < p* in R. Next,
to prove x. < 0 in R, we observe from (5.5) that

Xa(2) = So(1 — xe(2)) /Ooow(i)lCo * Xo(z + ci)di, z€R.

Assume by contradiction that there is z; € R such that x.(z1) = 0. Since 0 < x. < p* in R, the above
equation implies that [° w(i)Ko * x.(21 + ci)di = 0. Hence, one further deduces from Ko > 0 in R and
X. < 0in R that x. =0 in R, which contradicts the limit condition. Consequently, ¥’ < 0 in R.

Uniqueness. Let us finally discuss the uniqueness. We first note that the uniqueness in the super-
critical case, that is for ¢ > ¢, can be obtained by applying [15]. We thus only focus on the critical case
¢ = ¢, and explain how one can derive such a result by using the method in [10]. The idea is to first prove
that any solution y of (5.5)-(5.6) with ¢ = ¢, satisfies, up to translation,

x(2)
ze~xZ

— 1, as z = +o0. (5.12)

We first obtain from [15, Lemma 4.5] that any nontrivial solution x of (5.5) satisfying x(+o0c) = 0 is such
that x(z) = O(e™%%) as z — 400 for some § > 0. As a consequence, the two sided Laplace transform of
X:

R(a) = /R \(2)e 5 dz,

is well-defined for each —§ < Re(a) < 0. Now, from (5.5), we get that

(1= e (—a)) ¥(@) :/Re—az [1 _exp (—30 /Ooow(i)lCo x(z + ci)dz’) s /Ooow(i)lCo k(2 + ci)di|dz

where the right-hand side is well-defined for each a € C such that —2§ < Re(a) < 0 since 1 —e™* —
s = O(s?) as s — 0. Using [10] and the positivity of yx, we get that Y(«) is actually defined for
—a, < Re(a) < 0. Now, since 1 — ¢, (—a) = 0 has a simple double root at o = a,, we get that
1 — @e, (—a) = (a + ax)?*H(a) where H(a) is a holomorphic function in the strip —a, < Re(a) < 0 with
H(aw) # 0. As a consequence, a direct application of Ikehara’s Theorem, as recalled in [10, Proposition
2.3], gives the desired asymptotic result (5.12). We now conclude the argument by following the strategy
presented in [10]. For € > 0, let us define

x1(2) = xa(2) (2) = x1(2) — x2(2)

—_ eR
(€|z] + 1)e—=2’ 0 ez r g ’

Se(z) =

45



where x1 and x2 are two given solutions of (5.5) bounded between 0 and p* satisfying

Xk(2)
ze~xz

— 1, as z = +oo, for k=1,2.
We note that ¢.(+o00) = 0 and assume that ¢. # 0 on R. Without loss of generality, we let z. € R be
such that ¢.(z¢) = max,cr [s(z)] > 0. We divide into three cases. Assume first that (z¢)eso remains

bounded as € — 0, then, up to a subsequence, we have that z. — 2y as ¢ — 0 for some finite zy € R, and
ISe(z¢)| = |s0(20)| as € — 0 and thus |sp(2)| < |so(z0)| for all z € R. Now, one derives from (5.5) that

oo

1) = xale)] o [ i ¥+ end) = xals + i) (5.13)
0
which implies that
0 ) ,
lso(2)] < SO/ w(z’)e_o‘*c*z/ Ko(2") |§0(z + cyut — z')} e®* dz'di < |so(20)] -

0 R
Thus, the above inequality at z = zy must be an equality, but this is only possible if ¢y(29) = sp(z0+cxi—2)
for all z € R and ¢ € supp(7). Recalling that ¢o(—o0) = 0, we obtain that ¢o = 0 and thus x; = x2.
Assume next that ze - —oo as € — 0, then [¢.(2z¢)| — 0 as € — 0. Since ¢c — ¢ as € — 0, we get |so(z)] < 0

for z € R which gives a contradiction since |¢.(2)| < [so(2)| < 0 for each z € R however ¢.(z¢) > 0. It is
left to consider the case that z. — 400 as ¢ — 0. We derive from (5.13) that

6. (2)|(el2] + 1) gSo/ w(i)e_o‘*c*i/lCo(z') ooz 4 exi — 2] (el + evi — /] + 1) d/di.
0 R

Evaluating the above inequality at z = z. > 0 for € small enough, and using the fact that ¢, (ax) = 1
together with 0y¢c, (as) = 0, we eventually obtain that

So/ w( C“*C*z/ Ko(z ge Ze) ‘gﬁ(z6 + cyi — z')H e dz/di
0
+ 806/ a*c*l/ Ko(z ge 2e)(2e — 2 + cui) — ’g6(2E + cyi — Z/)| |ze — 2 + c*z\] e™? d2/di < 0.
0
Rearranging the above integrals, we equivalently derive that

- Soeqe(ze)/ O‘*C*’/ Ko(z') (|ze = 2" + cui] — (2e — 2 + €4d)) e dz'di
0

_]1

+ SO/ w(i)e_o‘*c*i/ Ko(2')(1 4 €|ze — 2’ + i) [se(ze) — |se(ze + cxi — 2)|] e d2/di < 0,
0 R

vV
— g2
=

since ¢.(z¢) > 0. We note that .#! > 0 and .#2 > 0 by definition of 2. and since Ky > 0 in R. The above
inequality simply reads —.#! +.#2 < 0. Our aim is to prove that .#2 = 0 for ¢ small enough. Assume by
contradiction that .2 > 0. We claim that for € small enough, we can always ensure that .1 < #2/2.
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First, using the fact that z. > 0 for € small enough, we have

oo

o) ) ,
gt = 26§6(z€)80/ w(i)e_a*c*z/ Ko(2') (2 = ze — cyi) €7 d2'di
0 z

e+C*7:

o0 i oo ,
< 2€§€(Z€>So/ w(i)e_a*c*z/ (2" — 20)Ko(2))e** d2'di
0 z

e+C*7:

g%%@4%<émw@kﬂwmm>(LTQH-QKNzEM4u).

Then, for any p € (au,A) and € small enough, we get that

/ (2 — ZE)ICo(Z/)ea*ZIdZ = elon—n)ze / ulo(u + zg)e“(“Jrzf)e(a**“)“du < elow—m)ze / uel @MUy
Ze 0 0

jel < 26%(2,6)6(01*7;;)2680 </ w(i)ea*c*idi> (/ ue(a*u)udu) )
0 0

We remark that when A = +oo, since .#2 > 0 for each e fixed small enough and since #! — 0 as u — +o0
independently of €, we can always take > 0 large enough such that .#! < .#2/2, as claimed. We focus
on A < +0oo in the sequel.

By letting u — A, we get the following estimate

jel < 2€§6(Z€)6(a*7A)Z€SO (/ w(i)ea*c*idi> </ ue(a*/\)udu> )
0 0

Now, let us estimate the second integral. Since ¢.(—o0) = 0, one gets the existence of M > 0 such that
se(2)| < 6e(z¢)/2 for all z < —M. Next, we introduce o, > 0, to be fixed later, satisfying d.z. — +o0 as
e — 0. As a consequence, for € > 0 small enough, one can ensure that §.z. > M. We now compute

T2 > 50/ w(i)e‘o‘*c*i/ Ko(2') [se(ze) = |se(ze + cui — 2)]] e d2'di
0 (148¢)ze+cxt

which then implies

S © NS ,
> 70§6(Z6) / w(i)e—a*c*z / lCo(z’)ea*Z dz'di
2 0 (148¢)ze+cxt

S o0 [ :
OQ(ZG)/ w(i)e_o‘*c*’/ el =N 42 d;
2 0 (14+6) ze+cai

So

= 300 — o)

—In(e)
2(A—ax)ze

v

§E(ze)€(°‘*_/\)(1+65)zf/ w(i)e Aeid,
0

—In(e)
2(A—ay)

We can now set d, := > 0, such that we have indeed 6.z, = — 400 as € — 0. With such

a choice, we get that

So - o Aewiqs
fﬂg > e (ze)el A)ZE/ w(i)eAeids,
~ 2(A — o) (ze) o (4)

As a consequence, for € small enough, we can ensure that #! < #2/2. This proves the initial claim.
Recalling that —#1+.#2 < 0 and .#! < .#2/2 for e small enough, we deduce that 0 < .#2/2 < 0 which
is a contradiction. Thus .#2 = 0 for € small enough, which then implies that c.(2z¢) = |cc(zc + cxi — 2)|
for each i € supp(7) and z € R, which leads to a contradiction since ¢.(—o00) = 0 and we assumed that
Ge(ze) > 0. This concludes the uniqueness of the critical waves with ¢ = c,. O

Due to (5.4), Theorem 1.4 is then an immediate consequence of Lemmas 5.1-5.2.
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