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Abstract
In this document, we give an adaptive parallel
mergesort in the Rust programming language with
some optimizations to improve time performance
as well as memory usage. We also present a 3-way
mergesort and benchmark its performance. We will
compare each version of the algorithm against the
standard parallel sorts.

1 Introduction
Sorting is one of the most fundamental operations in com-
puter science. There are many different sorting algorithms
such as Insertion sort, Selection sort, Quick sort or Merge-
sort. In recent years, the trend among processors manufactur-
ers has been to increase the number of core per chip instead
of increasing the processor’s speed. However, most of the
sorting algorithms are sequential and do not use the multi-
core processors of the modern machines. Not using these re-
sources for sorting would be a shame.

The mergesort is a classic example of ”divide and con-
quer” algorithms and is embarrassingly parallel. Thirty years
ago, Cole introduced a parallel mergesort running in O(log n)
time using n processors [Cole, 1986]. But parallel algorithms
should not depend on the architecture of the machines they
run on. That is why there have been techniques developed to
make abstraction of the architecture of the machines [Traore
et al., 2008]. Adaptive algorithms are algorithms that can
change their behaviour based on various parameters. In our
case, these parameters could be the size of the array to sort or
the number of threads in the system.

With the Rust programming language gaining in popular-
ity [Stack Overflow, 2018] in production, the need for an ef-
ficient sorting algorithm is crucial. The main Rust parallel li-
brary, Rayon, claimed to have the fastest parallel sort among
all parallel libraries such as OpenMP or TBB [Rayon, 2017].
One of the benefits of using Rust is the high level of abstrac-
tion available to the programmer. We could imagine writing
a unique sort function that will adapt its run depending on the
number of threads. If there are n idle threads trying to steal,

instead of keeping splitting the work in two, the algorithm
could directly split in n.

Useful Definitions
Speedup Given a sequential algorithm Aseq and its parallel
version Apar, let tseq and tpar be respectively the execution
times for Aseq and Apar on the same instance. We define the
speedup for Apar, S as:

S =
tseq
tpar

(1)

Hence,
• if S > 1: Apar performs better than Aseq

• if S ≤ 1: Apar performs at most as well as Aseq

Stable Sort A sort is said to be stable if the order of ele-
ments of the same value in the input array is the same as the
order of these elements in the sorted/output array.

Work stealing Work stealing is the mechanism by which
an idle thread of the system will get some work to do. In
practice, the thread pool will define a global queue of tasks.
Working threads push tasks into this queue and idle threads
pop them out. The thread that pushed the task into the queue
is able to know if the task has been taken or not. Originally,
it was the role of the programmer to tell how and when to
create tasks. However, in recent years more adaptive sched-
ulers have been developed. Their main idea is to only create
new tasks when idle threads ask for work. In the case of a
single-threaded computer, an adaptive scheduler will perform
as well as the sequential algorithm as no task-creation-caused
overhead will be added.

Outline
Section 2 will give an overview of the algorithm and its mech-
anisms. In Section 3, we will present our benchmarking setup
to measure the performance of the different versions of the
algorithm. We will discuss in Section 4 some possible op-
timizations for the 2-way mergesort, before focusing on the
case of the 3-way mergesort in Section 5.

2 Overview of the Algorithm
We will now give a quick overview of the algorithm.



(a) Join (b) Join-Context

Figure 1: Representation the Join and the Join-Context schedulers with 2 threads

2.1 The Data Structure
The algorithm uses a structure with a vector of 3 arrays, and
an index to represent where the meaningful data is in the vec-
tor. Having 3 buffers allows us to reduce the number of data
copies during the merging phase of the algorithm. Indeed, us-
ing a single buffer will force us to use a temporary buffer to
store the data and then call memcpy to put the data back in
the array. Two buffers could be enough in certain situations
as we will see later. Using three buffers seems to be the best
solution for now.

2.2 Possible Schedulers
There are several schedulers at our disposal to divide and dis-
tribute the work among threads. We will here present the two
main ones.

Join The Join scheduler is the most classic one. It splits
the array in two equal parts and start working on the first half,
leaving the second half for any thread to take (pushing this
half on the queue). This policy has a parameter which is the
limit block size. When the array to split has a size that is
inferior to this limit block size, it sorts sequentially the array,
otherwise it continues splitting recursively.

The Join scheduler is fairly simple but creates a lot of
tasks, as we can see in Figure 1a [Wagner, 2019], which can
affect the performance. The total number of tasks created by
this scheduler is 2dlog2 ne+1 − 1 with n being the size of the
input array.

Join Context The Join-Context scheduler is similar to
the Join policy. Using Join-Context, it splits recur-
sively the array and starts working on the first half, also leav-
ing the second half for any thread to take. It stops the recur-
sion when the size of the array is less than a limit block size.
In the later case it sorts the array sequentially. The particu-
larity of the Join-Context policy is that when the thread
is done executing the first half of the work, if the second half
has not been stolen, it sorts it sequentially instead of starting
the recursive process.

This is interesting because if the second half did not get
stolen, this means that there are no idle threads in the system.
Thus it is not necessary to create extra tasks that the same
thread will end up doing anyway. This mechanism reduces
the number of tasks created as we can see in Figure 1b [Wag-
ner, 2019]. Contrary to the Join policy, the tree generated

by the Join-Context scheduler is not deterministic due to
the steals. The total number of tasks created by this scheduler
is at least 2dlog2 ne and at most as much as for the Join
scheduler: 2dlog2 ne+1 − 1 where n is the size of the input
array.

2.3 Merging Mechanism
In order to merge two sub arrays into one, we look first at
their position in the buffers. Then we find a buffer that will
receive the merged data. We cannot use a buffer where there
is some data, as it will require a memcpy to move the data.
As there are 3 buffers and 2 sub arrays, we are certain to have
at least one free buffer to receive the data.

3 Bench-marking
The first step of this work was to benchmark the different
mergesorts with various policies.

3.1 Experimental Setup and Tools
To measure and understand the differences between each ver-
sion of the algorithms we used several tools. We will present
here the two main ones.

Grid5000 Grid5000 is a large-scale and versatile testbed
for experiment-driven research in all areas of computer sci-
ence, with a focus on parallel and distributed computing in-
cluding Cloud, HPC and Big Data. [Grid5000, 2019]

Using Grid5000 allowed us to benchmark the algorithm on
a large scale of cores, and thus, helped us understand the as-
sets and the disadvantages of each version of our algorithm
depending on various factors.

In our case, we benchmarked the algorithm on diverse in-
put sizes and input generators (random arrays, sorted arrays,
reversed array...).

We used the dahu (Grenoble) cluster with the following
configuration: 2× Intel Xeon Gold 6130 with 16 cores/CPU,
32 kb L1i and L1d caches, 1 Mb L2 cache and 23 Mb L3
cache.

Rayon-Logs Rayon-Logs is a Rust library developed by my
supervisor [Wagner, 2019].

It allows the user to visualize the execution of a parallel
algorithm in Rust using Rayon.

Figures 1a, 1b and 3 have been generated using this tool.
The information displayed are:
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Figure 2: Speedup per block size for the Join and the Join-Context policies on a random array

• the execution time of each task
• the work of each task (sub-array size)
• the thread executing each task
• the relative speed of the task compared to the other tasks

of the same type
During this internship, we also had to integrate perfor-

mance counters to Rayon-Logs in order to measure various
metrics, like cache misses, page faults or CPU cycles.

3.2 Experimental Methodology
Every experimentation done in this study has been carried
out on the Grid5000’s machines (see Section 3.1) on arrays
of size between 10 000 000 and 100 000 000. The elements
were unsigned integers on 32 bits. Each experiment was done
on 3 types on inputs: (i) Random arrays, (ii) Sorted arrays and
(iii) Reversed arrays.

The random array is the most common use case for a sort-
ing algorithm. The sorted and reversed instances were chosen
to compare our algorithm with the Rayon’s sort. Rayon uses
a variation of the Tim sort which sorts a sorted or reversed
array in O(n) time [Peters, 2002].

3.3 Experimental Optimal Block Size
In this experiment we are eager to know what should be the
optimal block size for each policy.

Setup We measured the speedup of the mergesort with the
Join and Join-Context policy while giving different
block sizes as parameter of the scheduler. We reproduced
this experiment on various thread pool sizes.

Results Figure 2a represents the speedup of the mergesort
using the Join policy with a variable block size. We can
observe that there are different stages of range of block sizes
for which there is not much impact on performance. Each
stage represents a different depth of recursion. The parity of
the depth of recursion seems to play an important role, as
one stage over two has a drop in performance. Moreover, it
seems that for the Join policy, a block size of about 2-3%

of the total size is nearly optimal. There is also a drop in
speedup around the 10% mark for the 32 threads large pool.
This could be explained by the fact that a block size of 10%
does not requires 32 working threads, thus having more than
2dlog2(10)e threads in the system has no impact.

Figure 2b shows the speedup of the mergesort using the
Join-Context policy with a variable block size. In this
case, the block size does not affect the performance signif-
icantly. Indeed, putting aside the thread pool of 32 threads,
the speedup of every other thread pool is almost constant no
matter the block size. In the case of the 32 threads, we see
a bit more fluctuations depending on the parity of the depth
of the tree. The highest speedup is reached for a block size
of about 2-3% of the input array size. We also observe the
drop in performance for a block size of 10%, which shares
the same origin as for the Join policy.

Conclusion Taking a block size of about 2-3% of the input
array size seems to give the best results with the Join and the
Join-Context policies. It is also useless to take a block
size greater than n

p , as it will leave some threads idle.

4 Optimizations
Global optimizations are difficult to find because they need
to improve the algorithm on every instance of the input, or
propose an interesting trade-off in performance between the
types of instances. Optimizations often focus on one type
of instance, e.g. already sorted arrays. We will here present
some optimizations that we implemented, and compare them
with other versions of our mergesort.

4.1 Extra memcpy
Problem As the input array points to the first buffer of our
structure, we should put the sorted data back into the first
buffer once sorted. However, it is not guaranteed that the data
will be in this first buffer at the end of the execution. Hence, a
memcpy of the size of the input array will be needed to move
the data into the right buffer.

We can actually adjust the minimum block size to ensure
that data will be in the correct buffer at the end.



The idea is to try to use only two buffers, and only rely
on the third one when necessary. We have to take the depth
of the task into account to know in which buffer we should
merge data. As we want the last task (depth = 0) to merge
into the first buffer, we will adopt the following rule:

• If the depth is even: then merge into buffer 1. If not
possible then merge into buffer 3.

• If the depth is odd: then merge into buffer 2. If not
possible then merge into buffer 3.

Finding the new block size Let A be a k-way mergesort
with k ≥ 2. Let n be the size of the input array and B be the
block size associated with the scheduler. Under these condi-
tions, the number of recursions levels (R) is:

R =

⌈
logk

( n
B

)⌉
(2)

We want to alternate between two buffers and only need
the third one if necessary. Thus, the number of recursions has
to be even. Let R′ be the closest even number to R.

R′ =

⌈
R

2

⌉
× 2 (3)

The new block size B′ for this number of recursions is thus

B′ =

⌈
n

kR′

⌉
(4)

Performance This optimization achieves a gain in perfor-
mance compared to the original version of about 10% for
random arrays, 20% for reversed arrays and no real gain for
sorted arrays.

4.2 From 3 Buffers to 2 Buffers
Problem Having 3 buffers can have a real memory cost.
Indeed, if we are sorting an array of size 100 millions integers
on 32 bits, one buffer takes 100×106×4 = 400 Mbytes. Thus
three of these will take 1.2 Gbytes. In this section, we will try
to reduce the number of buffers to only 2 by modifying the
value of the block size.

During the benchmarks, we spotted a strange behaviour
from the algorithm thanks to a Rayon-Logs (see Section 3.1)
log. If the policy is Join-Context, then the merging time
of the sub arrays of the thread takes more time than if it has
been stolen. The fact is that the buffers are so large, that load-
ing one causes page faults, and thus impacts the performance.
We can see this impact on the log in Figure 3. The red and
green threads are actually slower (larger rectangle) than the
blue and yellow ones (shorter rectangle) during the merging
part. Indeed, the first two merges of the red and green threads
require to load the 3 buffers, where the two first merges from
the blue and yellow threads only need to load two.

The third buffer is needed when we are merging data from
different depth parity. This could happen when at least one
sub array has a size greater than the limit block size and at

Figure 3: Example of the impact of using 3 buffers

least one does not. The second way this could happen is
when we are using the Join-Context scheduler and there
is no steal. The deepest merge will put the data in the second
buffer, but the data from the un-stolen sequential part is in the
first buffer, hence the merge operation will need to use the
third buffer. Figure 4 resumes this situation.

Solution Join: adapting the block size We want to en-
sure that we will not have to merge data from different depth
parity. Let A be a k-way mergesort with k ≥ 2 using the
Join policy. Let the input array be of size n. As we are
splitting in k, there are (k − 1) sub arrays of size n1 = bnk c
and one sub array of size n2 where (k − 1)× n1 + n2 = n.

At every level of recursion the maximum difference be-
tween the sizes of the sub arrays is k − 1. Indeed, suppose
it is greater than k, then we could distribute the difference
among the k sub arrays. Thus:

|n1 − n2| ≤ k − 1 (5)

As n1 ≤ n2, we have several cases:

• Case 1: n2 > B,n1 ≤ B: there is a different level of
recursion between the sub arrays, and thus we need the
third buffer.

• Case 2: n2 ≤ B,n1 ≤ B: we do not need a third buffer.

• Case 3: n2 > B,n1 > B: we continue the recursion.

Hence, the limiting case is when exactly one of the sizes is
greater than the limit block size B. Let us take the case 1

We have n2 > B ≥ n1

We want to increase B to B′ such that B′ ≥ n2 > n1.
As n2 > n1, we have 1 ≤ |n1 − n2| ≤ k − 1.
Thus, a valid candidate for B′ would be:

B′ = B + (k − 1) (6)

We can use the result from Section 4.1 to find a block
size avoiding the extra memcpy and necessitating only two
buffers.

Let R′ be as defined in Equation (3).
Thus, the new block size B is:

B =

⌈
n

kR′

⌉
+ (k − 1) (7)



Figure 4: Situation where 3 buffers are needed with the
Join-Context policy

Solution Join-Context: Alternate the Schedulers To
avoid the use of the third buffer, we will need to alternate the
Join-Context scheduler with the Join scheduler. We
also need to ensure that the last level of recursion is a call to
the Join-Context scheduler so that we do not end up in
the situation depicted in Figure 4. By alternating the calls to
the two schedulers, we are sure that the data will be in the
same buffers when merging sub arrays.

Let A be a k-way mergesort with k ≥ 2 using the
Join-Context policy. We know the block size B and
the size of the array n, hence we can compute the height R
of the recursion tree. The last deepest call to the scheduler
(depth = R) should be using the Join-Context policy
to avoid the situation presented in Figure 4. Then the rule is:

• If the depth is odd: call the Join scheduler.
• If the depth is even: call the Join-Context sched-

uler.

As the Join-Context scheduler could give the same
tree as the Join scheduler if there are enough steals, we also
have to adjust the block size B in the same way as seen in
Section 4.2.

Let R′ be as defined in Equation (3) (R′ is even by defini-

tion). The new block size B is also: B =

⌈
n

kR′

⌉
+ (k − 1)

4.3 Sorted and Almost Sorted Arrays
Problem When sorting an already sorted array, our algo-
rithm will perform the merge operation even if the two sub
arrays are in order. This greatly impacts the performance of
our algorithm in this case. Indeed, the sequential sort used
by Rust is the Tim Sort. The Tim Sort is extremely good at
sorting already sorted arrays in linear time. Therefore the bot-
tleneck of the algorithm in this case is the merging operation.

Checking if the sub arrays are in order before merging
When merging two sub arrays, we can check whether or not
they are already in order. If both sub arrays have their data in
the same buffer, we only have to look at the last element (l1)
of the first array and the first element (f2) of the second array.
If f2 < l1 then the arrays are already ordered, and we thus do
not have to merge them. This allows us to not have to move
all the elements in another buffer (i.e. avoid memcpys).

If the input array is already totally sorted, then we only use
one buffer as there will be no merge. However, if the input

Figure 5: Speedup comparison of the different versions of the
algorithm for a random array

array is ”almost” sorted (i.e. sorted with a given percentage
of the elements swapped together) then this solution ruins the
optimizations done in Sections 4.1 and 4.2.

Performance For testing this optimization, we can not use
a random nor a sorted array. Indeed, the random array has a
small probability to have two sub-arrays in order when sort-
ing. On the other hand, the sorted array will only have ordered
sub-arrays. Therefore, we will benchmark this version on al-
most sorted arrays. The results show that for a percentage of
elements swapped between 1% and 10%, the performance of
this version are within 5% of the performance for the version
seen in sections 4.1 and 4.2. We have then integrated this
optimization in the core of the algorithm.

4.4 Performance
Figure 5 compares the different versions of the algorithm on
a random array and compare them to the parallel sorts from
Rayon (Rust) and OpenMP (C/C++). We observe that the
version with no copy using the Join-Context policy out
performs every other version of our algorithm. It is also bet-
ter than the Rayon’s sort but worse than the OpenMP sort
until a thread pool size of about 20. Concerning sorted ar-
rays, the versions using the Join-Context policy perform
better than the others (Rayon and OpenMP included). This
could be explained by the fact that the Join-Context pol-
icy spends more time using the sequential Tim sort (which is
highly efficient in the case of sorted arrays). Regarding re-
versed arrays, every version that we tried performed badly,
with a speedup inferior to 1.

5 3-way Mergesort
The classical mergesort splits the array in two. However,
when the number of available threads is for example 3, it does
not really make sense to split in half. Indeed, 3 threads will
require two cuts, leaving one thread with half of the origi-
nal work and the other two threads with a quarter of it. This
approach will unbalance the work between the threads. Cre-
ating tasks has a non negligible cost, this is why giving the



Figure 6: Recursive Merge Mechanism

maximum possible workload to each thread is important for
performance.

We decided to focus on a 3-way mergesort to see if we
could gain any performance compared to the classic 2-way
mergesort.

5.1 Choice of the parallel merge
[Cormen et al., 2011] presents a parallelizable recursive sta-
ble 2-way merge algorithm. We remind its mechanism in Fig-
ure 6.

3-way Parallel Merge We can perform a 3-way parallel
merge by splitting the sub arrays in 3 parts. There are two
pivots in this case. The mechanism is the same as for a 2-way
recursive merge.

2-way Parallel Merge As the merge operation is less time
consuming than the sort operation for the same input sizes,
can we gain in performance by only using a 2-way merge with
a 3-way split ? We could leave only 2 threads merging in par-
allel, while one thread continues the sorting part. Then, when
all the sorting is done, there will be however, more steals and
the work distribution will be unbalanced between the threads.

5.2 Optimizations
If we do not use the optimizations discussed in Section 4.3
for sorted arrays, we could use the following ones:

• Avoid the extra memcpy: as seen in Section 4.1
• Only use 2 buffers: as seen in Section 4.2, we can adjust

the block size and the calls to the schedulers to only use
2 buffers

5.3 Performance
Figure 7 presents the comparison of the different versions of
the 3-way mergesort on a random array. The 3-way mergesort
(Join 3/3) performs better than the classic 2-way mergesort
(2/2 Join). It seems that the 2-way merge on a 3-way split
do not improve the performance of the algorithm (3/2 Join).
By avoiding the last memcpy (3/3 Join no copy), we get a
significant gain of speedup compared to the classic 3-way
mergesort (3/3 Join) of about +1 for 32 threads. However,
only using two buffers (3/3 Join no copy + 2 buffers) does not
increase the speedup. It is nice to see that the two later ver-
sions are competitive with Rayon’s sort up to a dozen threads.

Figure 7: Comparison of the different versions of the 3-way
mergesort

Unfortunately, all of these versions are extremely bad (worse
than the sequential algorithm) in the cases of sorted and re-
versed arrays, as we did not implement any optimization for
this case.

6 Conclusion
We presented an adaptive parallel 2-way mergesort. We high-
lighted several optimizations to improve speed and memory
usage. We also introduced a 3-way parallel mergesort to see
if any gain of performance was possible. We compared the
different versions of the algorithm to the parallel sorts from
libraries such as OpenMP or Rayon. Even if our algorithm
is not as efficient in the cases of reversed and sorted arrays,
we managed to compete, and in certain cases, to beat parallel
sorts from standard libraries.
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