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Abstract: In industrial settings, engineering products are often divided into separate components
for detailed conception. They often require iterative corrections between different designers/teams
to optimize the final product with all components assembled into a system. This article proposes
a surrogate modeling approach with functional descriptions of parts in the model and aims to
accelerate the design and optimization phase in real projects. The approach is applied to a vibration
problem of a two-component plate structure, where the model estimates the dynamic behavior of the
assembled system when only the properties of each individual part are available. A database is built
using high-fidelity numerical simulations, and neural-network-based regressions provide reliable
predictions on unseen data.

Keywords: machine learning; artificial intelligence; data-driven modeling; elasto-dynamics

1. Introduction

When designing a complex engineering product, such as a car, a drone, an airplane, etc.,
the conception of each component is performed in parallel and is synchronized regularly
among different teams. During the optimization phase, each team continues to optimize
its parts design, aiming for the improvement of the overall product performance. Such
a process is in general lengthy and requires many iterations. Moreover, the optimized
solution proposed after a complete study could be invalid when integrating modifications
from other teams. Therefore, there exists a consistent demand for novel approaches to
enable agile consideration of design changes in the ongoing project, thus accelerating the
optimization process.

Recently, the concept of surrogate models has been largely investigated. These models
are employed with some parameters, such as material properties and shapes, and are then
used to predict the system’s response under certain loading and environmental conditions.
The construction of these parametric models can be data-driven and is usually combined
with model order reduction methods and advanced machine learning techniques. Such an
approach can be especially useful for optimization procedures because reduced models
perform faster than high fidelity simulations, which are often computationally demanding.
Various applications can be found for manufacturing process optimization [1], industrial
product designs for turbines [2], antenna structures [3], etc. In most cases, the inputs for
surrogate models are design parameters that rely on detailed numerical models; however,
such inputs are not fully convenient in some industrial contexts.

Imagine a hypothetical situation in which two teams are involved in an industrial de-
sign project: team 1 is responsible for a subset of the total system containing multiple parts,
and team 2 deals with the rest. The two teams work independently and asynchronously
for their subsystem design and optimization. They only coordinate on specific pointy
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meetings as planned in the project schedule. Teams do not always dispose of the latest
updated design of the other ones. Thus, they can only use the last available version to
evaluate the performance of their own design. In the early stage of the project, each team
works with standard specifications from another team and they evaluate the performance
while assuming that the latter will achieve its objectives. At fixed project checkpoints,
the specifications will be replaced by realistic updated proposals. To ease the negotiation
between teams, each one must propose novel objectives for the others and represent the
other subsystem by a set of easily manipulable design parameters. The parameters have to
be of a functional nature, instead of relying on the detailed design, such as the thicknesses
of certain parts, as no numerical conception is fixed at that moment.

Classical approaches with conception parameters cannot adapt to the described situ-
ation, and this inspires the idea of constructing surrogate models with functional design
parameters. Conception parameters, such as thickness, local shape and material properties,
are elementary for the definition of numerical models. However, functional parameters can
be viewed as consequences of the defined designs. Reversely, the optimization based on
functional parameters could also guide the search for optimal design conception.

In vibroacoustics, the modal representation of parts and subsystems perfectly match
the role of functional parameters for surrogate modeling. It is known that vibration
modes are commonly used to characterize the behavior of designed parts, including
eigenfrequencies and eigenvectors. They encapsulate all geometrical information of the
models as well as the impact of usual design parameters, while helping to improve the
description of subsystems’ behavior.

Many existing studies focus on the decomposition of systems and evaluation of
the global performance based on separate parts. Either analytical means or numerical
simulations are used, while a few have mentioned the usage of functional parameters.
The difficulty of evaluating the dynamic behavior of the whole system with assembled
parts has been widely acknowledged. In fact, the assembled system performance is not
a simple juxtaposition of individual behaviors of parts [4]. Moreover, simulations for
the whole system are usually costly and time-consuming, affecting different departments
working asynchronously. Thus, it is undesirable in an industrial context where decisions
should be timely [5,6]. Simulations may not be even feasible in the early stage of the
project, as described in a previous paragraph. Analytical methods are preferred in such
situations, as they allow a large number of iterations and trials within a short period
of time [5]. Different studies have focused on the vibration analysis of coupled plates,
aiming to derive analytical solutions for cases of interest [7–11]. However, analytical
solutions are rarely available and hard to derive for large-scale industrial structural systems.
Numerical simulation appears thus as an appealing resort to analyze the vibration response
of assembled components [12]. In [13], the authors used a finite element modeling of
adhesive bonded plates to investigate the effect of different model parameters on the global
system mode shapes. However, numerical simulation is generally time-consuming in
industrial settings. Another recent interesting approach is to build a surrogate model of
an assembled system to predict the behavioral change of the final product as a function of
changes in any of its components’ properties. In [14], the authors built a surrogate model
using artificial neural networks to predict the natural frequency of an adhesive bonded
double-strap joint, as well as the loss factor. The surrogate model was later leveraged to
optimize the joint mass.

In this paper, we focus on the vibration problem and propose a novel approach using
functional parameters to predict the dynamic behavior of the whole structural system
based on physical information of the system’s components. This work is a first attempt
to predict a final assembled system behavior, based on the functional properties of its
individual components. Our approach allows real-time estimation of the final system
response, for any combination of its components’ functional properties, such as mode
shapes and eigenvalues. Such an approach was never addressed until now, to the best
knowledge of the authors. The article starts with a brief introduction of surrogate modeling
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with neural network regression in Section 2. It follows by the problem description and
a review of data generation in Section 3. Results of the surrogate model are shown in
Section 4, and the article ends with some conclusions addressed in Section 5.

2. Surrogate Modeling with Neural Network

Consider the vibration problem of a structural system composed of different parts.
Each part has its own design that is defined using a number of design parameters, such as
part thickness, local part curvature, material properties, etc. Here, the surrogate modeling
approach proposes to use a functional description of each part design instead of the usage
of design parameters as considered in usual approaches.

The modeling framework in this study is to predict global system behaviors, using
individual modal inputs of the different parts involved in the system. The inputs are the
first main eigenfrequencies {ω1, ω2, . . . , ωP} of all P parts. For each part i, the feature ωi

is a vector that contains the eigenfrequency values related to the N first modes. The sur-
rogate model computes physical quantities of interest y, including the eigenfrequencies
of the whole system and maximal displacement of the system at these eigenfrequencies,
as well as the dynamic response of displacement amplitudes within a frequency interval.
Neural-network-based regressions help to find the function h relating inputs and outputs.
The surrogate modeling can thus be written as

y = h(ω1, . . . , ωP) (1)

Once h is available, it can be used to optimize conception parameters of each part, such
as the geometries and materials. Moreover, a wide range of variation is possible, as long
as the individual eigenfrequencies of the whole assembled system are in the range of the
training set.

3. Problem Context and Data Generation

The proposed surrogate modeling framework will be tested on a two-component plate
problem, where a loading is applied on one part of the structure, and the performance
of the whole system will be evaluated on a second part. The defined problem on the
plate model can be seen as an simplified representation of vehicle vibroacoustic studies:
vibrations from engines excite the engine supporting structure, and we monitor vibration
behaviors on frame structures surrounding the cabin that could result in unwanted vehicle
interior noises.

In the present analysis, we consider a plate [0, 0.5] × [0, 0.5] composed of two com-
ponents, as depicted in Figure 1. The left edge is fixed, and a constant unit nodal force
F = 1 N is applied along the positive z direction at location x = 0.03125 N, y = 0.5 m.
The whole plate is composed by one material of density ρ = 2.768× 103 kg/m3, Poisson’s
ratio µ = 0.3 and Young’s modulus E = 68.95 GPa. A structural damping ratio of 3% is
applied to the whole structure.

Figure 1. Sketch of the two-component plate model. Red cross indicates the output node location.
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In the plate model, the two parts are respectively denoted by P1 for the left and P2
for the right. A full factorial design of experiments (DOE) is used to vary two factors,
P1 and P2 thicknesses µP1 and µP2 , at ten different levels between [1, 2.5] mm, resulting
in 102 = 100 configurations to form our database. The discrete thickness values of ten
levels can be seen later in the figures presenting the separation of training and testing
sets for model construction and evaluation. The 2D finite element model is meshed with
256 quadratic elements.

Numerical simulations are performed using NASTRAN software. For each configura-
tion, modal analyses (MSC/NASTRAN SOL103) are launched separately for both parts
P1 and P2 to retrieve their modal results. Calculations for part P1 are conducted with its
boundary condition on the left edge. Eigenfrequencies ωP1 are saved for the first NP1

non-rigid modes, with NP1 the number of modes. Part P2 is set as free of constraints and
similarly, modal data ωP2 is saved for its first NP2 non-rigid modes. These results will
be used later as an input for the surrogate model. Eigenvalue analysis is also performed
on the whole assembled system to calculate eigenfrequencies ωP1+P2 of its first NP1+P2

modes, which is one of the physical quantities to be predicted by the surrogate model.
In addition, modal frequency response analysis (MSC/NASTRAN SOL111) is conducted
for each configuration to obtain the z-component displacement amplitudes uz( f ) for fre-
quencies f ∈ [5, 100] Hz with a step of 1 Hz. Moreover, the displacement amplitudes at
natural frequencies of the assembled system uz(ωP1+P2) are computed. Here, the surrogate
model aims at predicting the displacement output at one specific prescribed point: the
middle node on the right edge of the plate, at location x = 0.5 m, y = 0.25 m, as marked
by the red cross in Figure 1. The procedure generalizes for computing quantities in any
arbitrary point.

The choice of the number of modes depends on the main frequency range of interest
for dynamic response analysis. In this study, this frequency range is fixed up to 100 Hz.
Thus, the modal basis should include all modes with eigenfrequencies under 150 Hz,
generally at least 1.5 times the upper limit of 100 Hz. The configuration with thicknesses
µP1 = µP2 = 1 mm presents the highest number of modes within the 150 Hz range, and it
has respectively NP1 =8 modes for P1, NP2 =9 modes for P2 and NP1+P2 = 11 modes for
the assembled system. Even though for certain configurations the 8th or 9th eigenfrequency
could be around 230 Hz, the same number of modes is considered for all inputs to ensure a
consistent dimension of inputs and outputs for the surrogate model. Figure 2 shows the
respective eigenfrequencies of P1 and P2 of one configuration as an example.

Figure 2. Eigenfrequencies of individual parts of configuration µP1 = µP2 = 10−3 in DOE,
with demonstration of mode shapes. (Left): first 8 modes for part P1. (Right): first 9 modes for
part P2. The amplitude of mode shapes are normalized independently for each mode to the range
of [−1, 1].

Figure 3 shows the distribution of the eigenfrequencies of the system for all 100 config-
urations in the database. It is clear that there exist large variations of eigenfrequency values
for modes of a higher order, while the distribution of lower eigenfrequencies is relatively
narrow. Thus, the prediction for lower eigenfrequencies will be easy, as the variations
among different configurations are small, but the prediction for higher eigenfrequencies
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will still be challenging. Figure 4 shows the z-component displacement amplitudes for all
configurations. These displacement profiles present noticeable variations in amplitudes
and shifted locations of the natural frequencies, showing that the construction of surrogate
models is not a simple task.

Figure 3. Histogram depicting the distribution of the first 11 eigenfrequencies of the system. For all
100 configurations, the first eigenfrequency ωP1+P2

1 presents a narrow distribution between 5 and
8 Hz. For modes of higher order, curves cover a wider range, meaning that variations between
configurations are huge.

Figure 4. Overview of z-component displacement amplitude profiles, with visible variations among
all 100 configurations in database. Each curve here represents for one configuration.

4. Results and Discussions

Surrogate models in this study are all constructed with neural network regressions,
and the network structure will be illustrated later. The three models have same inputs,
the eigenfrequencies of P1 and P2. These values are all respectively transformed to have
zero mean and normalized by the maximum absolute value on the training set. Same scalars
are then applied to data in the testing set. Similarly, in each prediction task, the physical
quantity of model output is also transformed to have zero mean and normalized by the
maximum absolute value for training and is scaled for testing set. Normalization for inputs
and outputs is essential for efficient neural network training.

4.1. Prediction of Eigenfrequencies of the Assembled System: ModelH1

In this section, the objective of surrogate modeling is to predict the eigenfrequencies of
the assembled system based on those of the constitutive parts. The model will be noted as
H1. Given the results of 100 configurations in the database, 16 samples are chosen for the
training set, and the rest are used as testing set for the surrogate model evaluation. Figure 5
shows the distribution of the 16 selected samples in the parametric space that includes
all extreme sampling points at the 4 corners and some intermediate ones. There are 4 of
the 16 selected samples that will be used as validation set for network tuning test, later
explained in this section.
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Figure 5. Distribution in parametric space of training and testing sets for modelH1.

Note that for the studies in the present paper, no extra investigations have been
conducted to find out a minimum size of the training set. It is possible that, with an
appropriate optimal DOE, the number of necessary samples for training can be further
reduced while guaranteeing an equivalent level of accuracy.

A usual multi-layer fully connected network is considered for this task, and its archi-
tecture is given in Table 1 and displayed in Figure 6. The network starts with two separate
input layers of dimension 8 for ωP1 and of dimension 9 for ωP2 . Then each input layer is
fully connected to layers L1,1 and L1,2, with a dimension increased by k to accommodate
data into a higher dimension space. Outputs from L1,1 and L1,2 layers are concatenated into
a vector with a dimension equal to 17× k, and it is fully connected to subsequent layers
L2,d with D neurons. The last hidden layers is connected to an output layer with dimension
11, equal to the dimension of ωP1+P2 . The mean squared error (MSE) is used in the loss
function, the same choice for all models in the rest of the paper.

Figure 6. Graphical diagram of neural network structure for modelH1.

Network tuning helps to fix network hyperparameters: factor k between input layers
L1,1 and L1,2, number of hidden layers d and hidden layer dimension D. The tuning is
performed with 12 of the 16 selected samples and the remaining 4 samples are used for
validation, as already shown in Figure 5. Error comparison of different network setups is
given in Table 2, with mean absolute percentage error (MAPE) as the error indicator. Its
definition is given by

MAPE =
1
N

N

∑
n=1
|An − Ân

An
| (2)

where N is the number of samples in either training or validation set. A represents the
reference output value and Â the predicted value by the model.
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Table 1. Structure of the neural network.

Layer Layer Dimension Activation 1 Initializer 2

Linput,1 8 - -
Linput,2 9 - -

L1,1 8 × k tanh GlorotNormal
L1,2 9 × k tanh GlorotNormal
L2,d D elu HeNormal

Loutput 11 linear -
1 In the Activation column, tanh stands for the hyperbolic tangent activation function, elu stands for the exponential
linear unit and linear means linear activation with scalar coefficient 1. 2 In the Initializer column, GlorotNormal and
HeNormal are two network weight initialization methods, chosen in coherence with the layer’s activation function.

For all tuning tests, networks are trained with a batch size of 12, involving all training
samples. All networks are supposed to be trained for a maximum of 5000 epochs, while an
early-stopping scheme is implemented. The early stopping keeps track of the validation
loss and saves the best model when the validation loss stops decreasing in order to avoid
overfitting on the training set.

Results of networks No. 1 to No. 3 in Table 2 show that the increase in hidden layer
dimension can effectively reduce the validation error. Networks No. 4 and No. 5 are
conducted with similar level of trainable parameter number as network No. 3. It can be
seen that, for this task, increasing factor k or involving more hidden layers is less helpful for
model improvement compared to an increase in hidden layer dimension. The final choice
is network No. 3, which presents the best compromise between the precision on validation
set and the model complexity.

Table 2. Error comparison of different networks in modelH1 tuning tests. The network 3 (in red) is
the final choice.

No.
Dimension

Multiplication
Factor k

Number
of

Hidden
Layers d

Hidden Layer
Dimension D

Trainable
Parameters

Training
MAPE

Validation
MAPE

1 5 1 50 5671 3.330% 2.427%
2 5 1 100 10,521 1.576% 1.919%
3 5 1 200 20,221 1.082% 1.407%
4 10 1 100 19,831 1.651% 1.818%
5 5 2 100 20,621 1.206% 1.726%

A neural network with the chosen hyperparameters is finally trained with a batch size
of 16 for all 16 samples in training set. Here, the early-stopping scheme is not applied, as
the 16 samples are all used for training with no indication of validation loss to monitor the
training process. The convergence curve of the training stage over 5000 epochs is shown
in Figure 7, and the loss on the testing set is also plotted for each epoch, showing that
the model does not overfit on training. Note that the MAPE displayed in this figure is
calculated for the gap between normalized reference values and the predicted ones during
the model training, and thus is not comparable with other MAPEs calculated with values
scaled back to original intervals.

Figure 8 displays the predicted output values versus the reference ones of the training
set. The same plot is presented for the testing set of 84 samples in Figure 9a. The surrogate
model produces satisfying predictions for the testing set, with MAPE = 1.025%. Figure 9b,c
display the results of two samples with the smallest and largest MAPE for the prediction of
11 eigenfrequencies. Even for the one with maximum error, the predictions of the surrogate
model approximate very accurately the reference values.
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Figure 7. Convergence curve of network training.

Figure 8. Comparison of predicted and original values of system eigenfrequencies for the training set.

(a)

(b) (c)

Figure 9. Results of surrogate model H1 for testing set. (a) Comparison of predicted and original
values of system eigenfrequencies. (b) Comparison for sample µP1 = 2.4 mm, µP2 = 2.5 mm in DOE
with minimum MAPE = 0.347%. (c) Comparison for sample µP1 = 2.4 mm, µP2 = 1.2 mm in DOE
with maximum MAPE = 2.378%.
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4.2. Prediction of Displacement Amplitude at Natural Frequencies of the Assembled System:
ModelH2

The objective here is to predict the amplitude of the z-component of displacement at
the natural frequencies of the assembled system. With the success of modelH1 in locating
the whole system eigenfrequencies, the next step is to see whether the neural network
approach can capture the nodal displacement amplitudes at these key frequencies. This
physical quantity deserves special attention, as it usually quantifies behaviors for structure
vibration problems.

For this task, the neural network structure is same as model H1, already shown in
Table 1, since the output dimension is also 11. Preliminary tests indicate that the training
for this new modelH2 is more difficult thanH1, and thus the training set is increased to 24
and the sampling point distribution is plotted in Figure 10.

Figure 10. Sample distribution in parametric space of training and testing sets for modelH2.

Tuning tests are conducted with 20 samples of the training set, already marked in
Figure 10 and validation error is evaluated at the remaining 4 sampling points. The early-
stop scheme is also adopted to save the best model under different hyperparameter setups.
Error comparisons are given in Table 3. Here, the error indicator is defined as root mean
squared error (RMSE) normalized by the maximum value. The reason for using it instead
of MAPE is that the division by close-to-zero values leads to large MAPE errors, which can
be misleading, as these relatively small quantity values, standing for small displacements,
are not in the main range of interest. Thus, we consider the following normalized RMSE:

ε =
RMSE
‖A‖∞

=

√
1
N ∑N

n=1 (An − Ân)
2

‖A‖∞
(3)

where N is the sample number in either the training or validation set. The same notations
are used here: A are reference output values, and Â are predicted values given by model.

Table 3. Error comparison of different networks in modelH2 tuning tests. The network 2 (in red) is
the final choice.

No.
Dimension

Multiplication
Factor k

Number
of

Hidden
Layers d

Hidden Layer
Dimension D

Trainable
Parameters

Training
ε

Validation
ε

1 10 3 200 118,431 0.251% 0.543%
2 10 3 250 172,631 0.171% 0.470%
3 10 3 300 236,831 0.166% 0.474%
4 20 3 250 216,751 0.155% 0.613%
5 10 2 400 234,831 0.344% 0.475%

Results show that, comparing networks No.1 to No.3, the increase in hidden layer
dimension could help reduce training error while presenting risks of overfitting. With a
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similar number of trainable parameters between networks No. 3 to No. 5, the model
performs better with a deeper hidden layer structure compared to larger factor k and larger
hidden layer dimension D. Network No. 2 is finally chosen for the surrogate modelH2.

A network with selected hyperparameters is trained for 5000 epochs with a batch
size of 24. The optimization algorithm is Adam with a constant learning rate 10−4, and L2
regularization of 10−4 is applied on all trainable parameters to prevent overfitting.

Results for training and testing sets are shown in Figure 11a,b. The model gives
in general satisfying predictions of displacement amplitudes for both sets. Figure 11c,d
present two samples with the smallest and largest error ε of displacement amplitude
predictions, indicating that the surrogate model produces accurate predictions even in the
worst case.

(a) (b)

(c) (d)

Figure 11. Results of surrogate model H2. (a) Comparison of predicted and original values for
training set. (b) Comparison of predicted and original values for testing set. (c) Comparison for
sample µP1 = µP2 = 2.2 mm in DOE with minimum ε = 0.031%. (d) Comparison for sample
µP1 = 1 mm, µP2 = 1.6 mm in DOE with maximum ε = 1.333%.

4.3. Prediction of the Displacement Profile of the Assembled System: ModelH3

This section presents the surrogate model referred to asH3 for the prediction of the
whole displacement profile in the frequency interval of [5,100] Hz. This task is much more
difficult than the previous ones, as the output quantity has a dimension of 96, containing
much more information to be learned by the model. Therefore, the training set size has been
increased to 80 as presented in Figure 12. The model is further evaluated at the remaining
20 samples.
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Figure 12. Sample distribution in parametric space of training and testing sets for modelH3.

4.3.1. Fully-Connected Network Structure

First, we still adopt a standard neural network with a fully connected structure for
the construction of modelH3. Compared to modelH2, the only difference is that now the
output dimension is increased to 96.

Tuning tests are conducted to fix three hyperparameters, and an early-stop scheme
helps to save the best model during the training process under each hyperparameter setup.
Results are summarized in Table 4 with the normalized RMSE in Equation (3) as an error
indicator. This error is calculated at 8 samples selected from the training set, which are
not used for training in tuning tests. As proved, increasing the hidden layer dimension
could raise the risk of overfitting. Comparing networks No. 3, No. 4 and No. 5, the model
appears to perform better with a deeper structure than wider layers of L1 and L2,d where
hyperparameters k and D are larger. Network No. 2 is finally chosen for the surrogate
model construction.

Table 4. Error comparison of different networks in modelH3 tuning tests. The network 2 (in red) is
the final choice.

No.
Dimension

Multiplication
Factor k

Number
of

Hidden
Layers d

Hidden Layer
Dimension D

Trainable
Parameters

Training
ε

Validation
ε

1 10 4 50 22,716 2.037% 2.792%
2 10 4 200 175,716 1.835% 2.745%
3 10 4 300 352,716 1.574% 2.855%
4 10 3 250 193,966 1.467% 2.889%
5 20 4 180 179,736 1.315% 3.167%

The network with selected hyperparameters is trained for 5000 epochs with a batch
size of 80. The optimization algorithm is Adam with a constant learning rate of 10−4 and
L2 regularization of 10−4 is also applied. Figure 13 shows the prediction performance of all
20 samples in the testing set. The surrogate model provides close predictions of the whole
displacement profiles on these unseen data. The worst case is noted in the third row and
the last column, with normalized RMSE equal to 3.702%. For most samples, the model ac-
curately captures the profile shape, and this suggests that the model has effectively learned
a generalized relation between the functional parameters and the displacement outputs.
Meanwhile, it presents a visible underestimation of the peak values, and predictions seem
to be less satisfying at the natural frequencies’ neighborhood presented in the displacement
profiles. The average normalized RMSE for all testing data is 2.153%.
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Figure 13. Results of surrogate model H3 for 20 samples in the testing set. Thickness values in
subfigure titles are expressed in mm.

4.3.2. Integrated Network Structure

It has been demonstrated that the approach with a conventional fully connected
network structure already provides close approximations of the displacement curves.
However, noticeable errors can be observed at the natural frequencies’ neighborhood
where the model seems to underestimate these amplitude values. Given the satisfying
performance of surrogate models,H1 andH2, here we propose a novel approach with an
integrated network structure to enrich the existing modelH3 with information from models
H1 andH2 in order to improve the prediction accuracy in those regions. To differentiate
from the surrogate model H3 with full-connected structure, the new model with the
integrated structure will be noted asHI

3.
The integrated structure is illustrated in Figure 14 and emphasizes the fact that the

model receives information from previous modelsH1 andH2: the predicted eigenfrequen-
cies given by modelH1 inform the peaks’ locations in the output vector of dimension 96,
whereas amplitudes at those eigenfrequencies predicted by H2 enforce the prediction for
peak values.

Regarding the network implementation, there are three details to mention:

• Predictions of eigenfrequencies from model H1 are float numbers, and they are
rounded to the nearest integer, as they serve further as vector indexes.

• Amplitudes given byH2 are actually the values at the exact natural frequencies ωP1+P2

while the displacement amplitudes to be predicted byHI
3 are values at discrete frequen-

cies f within the range of [5, 100] Hz with a step of 1 Hz. Therefore, the predictions
from H2 cannot directly replace the values in the output vector. Here, the network
must learn the interpolation coefficients in vector β for representing uz(ωP1+P2) in the
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prediction of uz( f ). The final model output û′z( f ) under the integrated structure is
defined in Equation (4) that is later passed to calculate the loss for back-propagation:

û′
z( f ) = ûz( f ) + β(u′

z( f )− ûz( f )) (4)

• The amplitude predictions given by model H2 are passed to the same scalar for
the normalization of output values, used in the pre-processing step before the H3
model training.

Figure 14. Graphical diagram of connected neural network structure for modelHI
3.

The final model HI
3 keeps the same structure of H3 with three hyperparameters

k = 10, d = 4, D = 200 together with the integration of predictions from H1 and H2.
The network is trained for a maximum of 5000 epochs with a batch size of 80. The optimiza-
tion algorithm is Adam with a constant learning rate of 10−4, and L2 regularization of 10−5

is applied.
The results of the predicted displacement values and the reference ones are shown in

Figure 15, in which each point represents one element value in the displacement profile
vector for each of the samples in the testing set. Compared to modelH3, it can be observed
that the new model with an integrated network structure produces an improvement for
large values, which usually corresponds to peak amplitudes in the displacement profile.
Respective predictions for the same 20 samples of the testing set are shown in Figure 16.
Improvements for peak amplitude predictions are quite visible for all samples, and the
total normalized RMSE is reduced from 2.153% to 1.685% with this new approach.
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Figure 15. Comparison of prediction accuracy between modelsH3 andHI
3 on the testing set.

Figure 16. Results of surrogate model HI
3 for 20 samples in the testing set. Thickness values in

subfigure titles are expressed in mm.

5. Conclusions and Perspectives

In this paper, surrogate modeling based on neural networks is developed for the pre-
diction of assembled system behavior with modal information of the structural components
as inputs. The approach is illustrated on an elasto-dynamic problem of a two-component
plate. The study starts with a database of 100 configurations, obtained by numerical simu-
lations. For each prediction, only a subset of configuration samples is used as training set,
and the model performance is evaluated on unseen data composing the testing set. Tuning
experiments are conducted for each model to choose the best network hyperparameters. It
is shown that the accuracy of neural networks is remarkable for the prediction of system
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eigenfrequencies and peak z-component displacement amplitudes at these natural frequen-
cies. The prediction for nodal displacement profile within [5, 100] Hz appears to be much
more difficult, considering the variations of configurations in the DOE. The first approach
with a fully connected network structure allows capturing the global curve shape while
exhibiting some underestimations of large amplitudes. A second network approach with
the integration of the previous two models effectively improves the predictions in peak
amplitudes and turns out to provide accurate results on unseen data.

From an application perspective, the work in this article can be extended to industrial
problems, for example vibro-acoustic studies of a vehicle composed of several structural
parts. It would be interesting to adopt surrogate modeling with functional parameters in
a project process and evaluate its potential, typically for early stage optimization. These
topics constitute a work in progress.
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