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A Deconvolution Method for the Mapping of Residual Stresses 
by X‑Ray Diffraction

P. Tajdary1 · L. Morin1   · C. Braham1 · G. Gonzalez2

Abstract

Background  Inherent averaging effects in X-ray diffraction measurement of residual stresses, related to the finite size of the 
irradiated area, lead to inaccurate measurements in the presence of high surface stress gradients.
Objective  This paper develops a reconstruction method which allows the mapping of heterogeneous residual stresses from 
X-ray diffraction averaged measurements.
Methods  The stress reconstruction is based on a deconvolution of the average XRD measurements. The combination of a
fine measurement grid and the use of two collimators lead to an overdetermined linear system on the average stress measured
experimentally whose inversion provides the values of the local stress field.
Results  First, the method is successfully assessed in a reference problem solved by FEM in which the local distribution and
average datasets are known. Then, it is applied to the reconstruction of residual stress mapping from experimental XRD
measurements of a specimen processed by repetitive corrugation and straightening. The reconstructed field is in agreement
with numerical (local) results of the process.
Conclusion  The method developed in this work permits the reconstruction of accurate distributions of heterogeneous near-
surface residual-stresses.

Keywords  X-ray diffraction · Residual stresses · Aluminum alloys · Severe plastic deformation · Deconvolution

Introduction

The durability of structural components is considerably 
influenced by residual stresses. The understanding of 
residual stresses and their determination are thus necessary 
during the design and manufacturing of products [1, 2], as 
undesirable tensile residual stresses can decrease fatigue life 
and corrosion resistance [3]. The origin of residual stresses 
is the presence of an incompatible strain field, which can be 
due to heterogeneous plastic deformation or phase transi-
tion. Compressive residual stresses can thus be introduced 
on purpose to improve durability, using for instance shot 

peening [4] or laser shock peening [5]. Uncontrolled residual 
stresses can be introduced unintentionally in most manufac-
turing processes based on plastic deformation or heat treat-
ment, such as in machining [6], welding [7], severe plastic 
deformation [8] and additive manufacturing [9], among oth-
ers. The assessment of residual stress distributions is thus 
of paramount importance for the durability and reliability of 
engineering components.

X-ray diffraction (XRD) is a high accuracy and non-
destructive method to measure residual stresses in crystal-
line materials [10]. It is based on the measurement of the 
shift of the Bragg angle which allows the calculation of the 
change in interatomic lattice spacing, leading to an esti-
mation of the strain in a small volume under the specimen 
surface; crystalline planes are thus used as strain gauges 
[11]. Residual stresses can then be deduced from the elastic 
theory provided that the X-ray elastic constants are known. 
In metallic alloys, this method allows measurements in outer 
layers due to the high absorption of X-rays. Hence, it is gen-
erally used to determine (destructively) stress gradients in 
depth with a very good precision using successive polishing. 
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Alternatively, multi-reflection grazing-incidence techniques 
allow the determination of depth-dependent stress profiles 
non-destructively [12, 13].

Nonetheless, an important drawback of X-ray diffraction 
is the inherent averaging effects of the method which can 
lead to inaccurate measurement results in the presence of 
high surface stress gradients [14–17]. Indeed, X-ray diffrac-
tion measurements provide the average lattice strain within 
the irradiated area, whose size depends on the collimator. 
Therefore, when the characteristic length of the surface 
strain gradient is smaller than the irradiated area, the cor-
responding stresses obtained from XRD is an average of 
the local heterogeneous stresses. The averaging effect can 
be decreased by using a small irradiated area, but since the 
diffracting volume has to contain a sufficient number of crys-
tallites to be statistically representative, it cannot be reduced 
below some critical value in typical engineering materials 
containing micron-sized crystallites. Consequently, impor-
tant averaging effects on the residual stresses measured 
by XRD are expected in the presence of high lateral stress 
gradients.

Recently, Morin et al. [17] proposed a method to recon-
struct spatially the local residual stress field using several 
X-ray diffraction measurements performed on a regular grid
(e.g. using an automatic robot) and with the use of two col-
limator sizes (inducing two different irradiated areas). Since
the average stress obtained from XRD corresponds to the
convolution of the local stress, a linear relationship between
the point-wise values of the (unknown) local stress field and
that of the average stress determined experimentally can be
constructed. The inversion of this linear system leads to the
so-called deconvolution of the residual stress field. The use
of a fine measurement grid together with two datasets for
the averages make the linear system overdetermined which
improves the reconstruction. Their method has been suc-
cessfully applied to the reconstruction of line stress pro-
files in a specimen processed by repetitive corrugation and
straightening.

The method developed by Morin et al. [17] was based 
on several hypotheses, the most restrictive one being that 
the lateral stress-gradients are supposed to occur in only 
one direction. Hence, this method is restricted by essence 
to the reconstruction of stress line profiles. The aim of this 
work is to extend Morin et al. [17]’s reconstruction method 
to a two-dimensionnal case, which would allow the recon-
struction of local heterogeneous residual stress mapping. 
The paper is organized as follows. In "A 2D Deconvolution 
Method of Spatial Residual Stresses Using X-ray Diffrac-
tion Measurements", the deconvolution method of Morin 
et al. [17] is extended to the two-dimensional case. The 
method is applied in "Application to the Reconstruction of 
Local Residual Stress Maps from Simulation Results" to the 
reconstruction of local residual stresses in a reference case 

of repetitive corrugation and straightening in which the local 
stress field is computed numerically by the finite element 
method. Finally, in "Application to the Reconstruction of 
Local Residual Stress Maps from X-ray Diffraction Meas-
urements", the method is applied to the mapping of residual 
stresses using experimental data collected on a specimen 
processed by severe plastic deformation.

A 2D Deconvolution Method of Spatial 
Residual Stresses Using X‑ray Diffraction 
Measurements

Averaging Effects of X‑ray Diffraction Measurements

The components of the stress tensor that are obtained from 
XRD measurements result from a convolution of the local 
stress tensor components over the irradiated area1 which 
is generally of circular or rectangular shape in practical 
laboratory facilities. In the following, we will make several 
assumptions which will allow the derivation of a deconvolu-
tion method that can be used for practical applications: (i) 
the irradiated area is square-shaped and (ii) the averaging 
over the irradiated area is uniform (penumbra effects are 
disregarded).

Therefore, X-ray diffraction is assumed to consist in the 
(homogeneous) convolution of the local stress over the irra-
diated square-shape area, which corresponds to a 2D moving 
average. Let us consider one component of the stress tensor, 
or a linear combination of several components (since the 
convolution applies to each component separately), which is 
denoted by �(x, y) for convenience, where x and y denotes the 
spatial coordinates. If the size of irradiated area is denoted 
by 2a × 2a , the moving average Σa(x, y) of the stress � is then 
given by the formula

The problem we are addressing is the reconstruction of the 
local stress field �(x, y) in a 2D domain from the knowledge 
of its average Σa(x, y).

Principles of 2D Residual Stress Mapping 
Reconstruction

The 2D domain considered is a square domain of size 
[0, L] × [0, L] . The determination of residual stress mapping 
requires the measurement of the moving average Σ(x, y) on a 

(1)Σa(x, y) =
1

4a2 ∫
x+a

x−a ∫
y+a

y−a

�(x1, x2)dx1dx2.



regular grid (see Fig. 1); the domain [0, L] × [0, L] is discretized 
onto a uniform grid with spatial scale Δx = Δy = L∕(N − 1) , 
where the total number of points is N × N . We use the follow-
ing notation: xi = (i − 1)Δx , yj = (j − 1)Δx , �ij = �(xi, yj) , 
with i = 1, ...,N and j = 1, ...,N . We denote by � the N × N 
matrix that contains the values �ij.

For simplicity, we assume that the half-width of the irradi-
ated zone is of the form

where ka is a positive integer. From the definition of the 
moving average Σa(x, y) , it is readily seen that it is only 
defined in the domain [a, L − a] × [a, L − a] . Therefore, on 
the discretized grid, it reads Σa

ij
= Σa(xi, yj) with i = k

a
+

1, ...,N − k
a
 . The matrix �a which contains these values is 

thus of size (N − 2ka) × (N − 2ka).
Then, the integral defined by equation (1) is approximately 

calculated using a trapezoidal rule:

In order to establish a linear relation between �a and � , we 
introduce a vector representation of these matrices, respec-
tively denoted by �̂

a
 and �̂ and defined as

(2)a = kaΔx,

(3)

Σa
ij
=

1

16k2
a

(
�i−ka,j−ka

+ �i−ka,j+ka
+ �i+ka,j−ka

+ �i+ka,j+ka

)

+
1

8k2
a

(
i+ka−1∑
l=i−ka+1

(�l,j−ka + �l,j+ka
) +

j+ka−1∑
m=j−ka+1

(�i−ka,m + �i+ka,m
)

)

+
1

4k2
a

i+ka−1∑
l=i−ka+1

j+ka−1∑
m=j−ka+1

�lm.

(4)�̂(i−1)N+j = �ij, ∀i = 1, ...,N and j = 1, ...,N,

(5)
Σ̂a
(i−1)(N−ka)+j

= Σa
ij
, ∀i = 1, ...,N − 2ka and j = 1, ...,N − 2ka.

Using this vector representation, the linear relation between 
�
a and � , defined by equation (3), reads

where �a is a matrix of size (N − 2ka)
2 × N2 which can be 

constructed from equation (3). For illustrative purposes, the 
non-zero components of the line number (i − 1)(N − ka) + j 
of �a , associated with the calculation of the average Σa

ij
 , are 

given by

where m and n take the values

The linear system defined by equation (6) is underdeter-
mined because there are fewer equations ( (N − 2ka)

2 ) than 
unknowns ( N2 ); the rank of �a is necessarily lower than N2 . 
Therefore, only an approximate solution of the system can 
be found, for instance by minimizing the residual sum-of-
square. In that case the solution of the minimization problem 
leads to

where (�a)+ is the classical Moore-Penrose right pseudoin-
verse matrix of �a defined as

(6)�̂
a
= �

a
⋅ �̂

(7)

R(i−1)(N−ka)+j,l
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

1

16ka
2 if l = (i ± ka − 1)(N − ka) + j ± ka

1

8ka
2 if l =

�
mN + j ± ka
(i ± ka − 1)(N − ka) + n

1

4ka
2 if l = mN + n

0 otherwise,

(8)
m = i − ka + 1, ..., i + ka − 1, n = j − ka + 1, ..., j + ka − 1.

(9)�̂ = (�a)+ ⋅ �̂
a
,

(10)(�a)+ = (�a)T ⋅
(
�

a
⋅ (�a)T

)−1
.

Fig. 1   Description of the 
geometry considered for 2D 
XRD mapping with a square 
irradiated area



construct a smooth estimate �̃

As explained in [17], the reconstructed stress field �̂ pro-
vided by equation (9) is expected to be inaccurate due to the 
underdetermined nature of the system as well as the pres-
ence of experimental noise on �a . In order to improve the 
prediction of the residual str 

a
ess field, it is proposed to (i) 

 and (ii) use several sets of 
measurements with different collimators (inducing different 
diffraction areas).

First, the smooth estimate Σ̃a is constructed using the 
robust spline-based smoother developed by [18], based on 
the minimization of a functional that balances the fidelity 
to the data, through the residual sum-of-squares (RSS), 
and the smoothness of the estimate through a penalty 
term (that depends on the second derivative of the func-
tion). The advantage of this approach is that the smooth 
estimate is unique using the classical method of gener-
alized cross-validation (GCV) which provides the best 
smoothing parameter avoiding over- or under-smoothing. 
The details of the smoothing procedure are provided in 
Appendix 1.

Then, several sets of measurements using different col-
limators are considered. This permits to increase the number 
of equations involved in the linear system and ultimately 
this will improve the accuracy of the reconstructed residual 
stress field. For illustrative purposes, we consider two sets of 
measurements associated with two collimators but the exten-
sion to an arbitrary number of sets ( n ≥ 2 ) is straightforward.
The irradiated areas have respectively a width denoted by 

2a1 = 2k1Δx and 2a2 = 2k2Δx , and the associated mov-
ing averages Σai(x, y) of the stress � are then given by the 
formula

After smoothing, this leads to the linear relations

where the matrices �a1 and �a2 are constructed using (7). 
We denote by ̂̃� the vector (of length ((N − 2k

a1
)2 + (N

−2k
a2
)2) which concatenates the vectors ̂̃

�

a1 and ̂̃
�

a2 , and by 
� the matrix (of size [(N − 2ka1)

2 + (N − 2ka2 )
2] × N2) which

concatenates the matrices �a1 and �a2:

Using equations (12) and (13), the linear system constructed 
from the two sets of measurements simply reads

Two cases need to be distinguished to find the solution �̂:

• If the system is underdetermined (i.e. the rank of � is
lower than N2 ), the approximate solution is given, as in

(11)

Σai(x, y) =
1

4a2
i
∫

x+ai

x−ai
∫

y+ai

y−ai

�(x1, x2)dx1dx2, i = [1, 2].

(12)̂̃
�

a1

= �
a1 ⋅ �̂,

̂̃
�

a2

= �
a2 ⋅ �̂,

(13)̂̃
� =

⎡⎢⎢⎣

̂̃
�

a1

̂̃
�

a2

⎤⎥⎥⎦
, � =

�
�

a1

�
a2

�
.

(14)̂̃
� = � ⋅ �̂.

Fig. 2   Geometrical model 
considered for the repetitive 
corrugation and straightening 
simulation
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"Principles of 2D residual stress mapping reconstruc-
tion", by 

(15)�̂ = �
+
⋅
̂̃
�,

 where �+ is the classical Moore-Penrose right pseudoin-
verse matrix of � defined as 

• If the system is overdetermined (i.e. the rank of � is
equal to N2 ), the approximate solution is given by

where �+ is the classical Moore-Penrose left pseudoin-
verse matrix of � defined as

(16)�
+ = �

T
(
��

T
)−1

.

(17)�̂ = �
+
⋅
̂̃
�,

Table 1   Material parameters for the 6061 aluminum alloy used for 
RCS simulation

Material E (GPa) � �0 (MPa) h (MPa) n

AA 6061 69 0.33 160 170 0.3

Fig. 3   Results from the numerical simulation of RCS on the bottom surface of the specimen (in MPa): (a) Distribution of �
h
= �11 + �22 (refer-

ence solution), (b) Distribution of average Σa1

h
 (obtained with a small collimator with irradiated area 3 × 3 mm) and (c) Distribution of average 

Σ
a2

h
 (obtained with a large collimator with irradiated area 5 × 5 mm). The spatial step is Δx = 0.1 mm



In practice the pseudo-inverse �+ is calculated numerically 
using efficient algorithms based on using its singular-value 
decomposition (SVD). In both cases (underdetermined or 
overdetermined system), the method will provide a unique 
reconstructed stress field from several sets of measurements.

Application to the Reconstruction of Local 
Residual Stress Maps from Simulation 
Results

The aim of this section is to assess the deconvolution method 
in a reference case in which local residual stress field is 
known. Hence, the method is applied to the reconstruction 
of the local residual stress field determined numerically by 
FEM; the 2D moving averages are simply calculated from 
the local distribution of residual stresses. We consider the 
repetitive corrugation and straightening (RCS) process 
which is an interesting problem for the reconstruction as it 
can induce very heterogeneous surface residual stresses [17].

Description of Processing By Repetitive Corrugation 
and Straightening

Repetitive corrugation and straightening is a repetitive pro-
cess for sheets, which consists of two steps (see Fig. 2): 

1. An initial flat sheet is corrugated using two corrugation
dies. This induces high shear deformation in the sheet.
At the end of this step, the specimen is no longer a sheet
as its shape is corrugated.

2. The corrugated specimen is then straightened using two
flat straightening dies. At the end of this step, the speci-
men is again a flat sheet.

(18)�
+ =

(
�

T
�
)−1

�
T .

These two steps correspond to a pass. Interestingly, the 
specimen is almost flat at the end of a pass, so it is possible 
to repeat these passes in order to increase the shear deforma-
tion, which can be used to improve the mechanical proper-
ties [19]. As shown in [20] (see also [8, 17]), heterogeneous 
residual stresses are observed at the specimen surface after 
one pass.

In this work we consider the two steps of the first pass 
of the process, consisting of one corrugation followed by 
a straightening, following the conditions given in [8]. The 
die profile is based on two perpendicular sinusoidal func-
tions of period 16 mm, which is suitable for a sheet thick-
ness of about 1 mm, so the size of an elementary pattern is 
16 × 16 × 1 mm (see Elizalde et al. [20]). We consider only 
one elementary pattern subjected to symmetric-periodic 
boundary conditions which is representative of a central pat-
tern of the multi-pattern process [21]. The corrugation dies 
and straightening plates are rigid and the sheet is deform-
able. The mesh is composed of 11,664 linear R3D8 ele-
ments for each straightening plate, 13,568 R3D8 elements 
for each corrugation die and 256,000 C3D8R elements for 
the sheet (see Fig. 2). The size of an element in the sheet is 
0.1 × 0.1 × 0.1 mm.

In terms of material modelling we consider the case of a 
precipitation-hardened aluminum alloy 6061 whose behavior 
follows a power-law isotropic hardening; the yield stress �Y 
is given by

where �0 is the initial yield stress, h the hardening modu-
lus, n the hardening exponent and p the accumulated plas-
tic strain. The material constants are given in Table 1. The 
contact between the dies and the test sample is supposed to 
follow a Coulomb model. The value � = 0.25 is chosen for 
the friction coefficient, which is typical for the aluminum-
steel pair [8].

(19)�Y =
(
�0 + hpn

)
,

Fig. 4   Results of the reconstruc-
tion in the case of a fine spatial 
step ( Δx = 0.1 mm) and no 
noise: (a) Reconstructed field 
and (b) Reference solution (for 
comparison)



the strain �33 (see Appendix 2), which allows a fast map-
ping. In order to generate the average datasets mimicking 
XRD measurements, we consider two different collimator 
sizes representative of laboratory X-ray beams, a small 
one corresponding to an irradiated area of width 2a1 = 3 
mm and a large one corresponding to an irradiated area of 
width 2a2 = 5 mm. Each dataset is defined in the interval 
[−L∕2 + a, L∕2 − a] (with L = 16 mm) because the collima-
tor cannot scan the entire domain due to the size of the irra-
diated area. These two sets of average are calculated on the 

Fig. 5   Results of the reconstruction in the case of a coarse spatial step ( Δx = 0.32 mm) and no noise: (a) Distribution of the average Σa1

h
 

(obtained with a small collimator with irradiated area 3 × 3 mm) on the coarse grid, (b) Distribution of the average Σa2

h
 (obtained with a large col-

limator with irradiated area 5 × 5 mm) on the coarse grid, (c) Reconstructed field on the coarse grid and (d) Reference solution on the fine grid 
(for comparison)

After convergence of the calculation, we extract the dis-
tribution of the bi-axial stress �h = �11 + �22 on the bottom 
surface of the specimen, which will constitute the refer-
ence stress distribution for the deconvolution method (see 
Fig. 3(a)). This quantity �h is considered in these simulations 
because it will be compared to the experimental results of 
"Application to the reconstruction of local residual stress 
maps from X-ray diffraction measurements", for which we 
measured �h ; indeed, the bi-axial stress can be measured 
by XRD with only one Ψ-angle as it is directly related to 



initial mesh and will be used and post-treated as an input for 
the reconstruction (see Figs. 3(b) and (c)). In order to assess 
the quality of the reconstructed residual stress field, we will 
notably study the influence of (i) the spatial step Δx and (ii) 
noise on the average datasets.

Influence of the Spatial Step

The spatial step Δx is an important parameter in the experi-
mental procedure as it is related to the precision of the 
experimental facility. Furthermore, a small spatial step 
would require a large number of experimental points and 
therefore increase the experimental time. Therefore, the 
study of the spatial step upon the reconstruction is impor-
tant. Two cases are considered, a ‘fine’ spatial step Δx = 0.1 
mm, which corresponds here to the smallest possible value 
as it coincides with the element size of the FEM calculation, 

and a ‘coarse’ spatial step Δx = 0.32 mm which is typical for 
the experimental facility at the PIMM laboratory.

Fine spatial step ( Δx = 0.1 mm)  We begin with the fine 
spatial step Δx = 0.1 mm which corresponds to 161 × 161 
‘measurement’ points (i.e. 25921 points). The grid consid-
ered corresponds to the mesh so the average datasets col-
lected directly corresponds to the distributions represented 
in Figs. 3(b) and (c). The average dataset corresponding to 
the small collimator is composed of 131 × 131 points and 
the average dataset corresponding to the large collimator 
is composed of 111 × 111 points; the matrix � defining the 
linear system (14) is thus of size 29482 × 25921 and its rank 
can be estimated as 21201 (which is lower than 25921). The 
linear system is thus underdetermined but its rank has been 
improved by considering two datasets instead of only one. 
In this case since there is no noise on the dataset, the smooth 
datasets coincide exactly with the datasets constructed from 

Fig. 6   Results of the recon-
struction in presence of noise 
( � = 10 MPa). (a) Recon-
structed field using a fine spatial
step and (b) Reconstructed field
using a coarse spatial step

Table 2   Composition of the 
Al-6061 alloy

Element Si Fe Cu Mn Mg Cr Zn Ti Al

wt% 0.77 0.24 0.16 0.03 1.03 0.07 0.03 0.02 balance

Fig. 7   Description of the speci-
men processed by a one pass 
RCS



the FEM results. The reconstructed field is represented in 
Fig. 4(a). It coincides almost exactly with the reference solu-
tion (represented for comparison in Fig. 4(b)), emphasiz-
ing that the deconvolution method provides a very accurate 
reconstruction on a fine grid and without noise on the aver-
age datasets. This result is in agreement with [17]’s results 
on a line profile.

Coarse spatial step ( Δx = 0.32 mm)  Then we continue 
with the coarse spatial step Δx = 0.32 mm, corresponding 
to 51 × 51 ‘measurement’ points (i.e. 2601 points). The aver-
age data sets are simply taken from an interpolated grid con-
structed from the reference averages of the 161 × 161 grid. 
The average dataset corresponding to the small collimator, 
represented in Figs. 5(a), is composed of 41 × 41 points, and 
the average dataset corresponding to the large collimator, 
represented in Figs. 5(b), is composed of 35 × 35 points. 
The matrix � defining the linear system (14) is thus of size 
2906 × 2601 and its rank can be estimated as 2177 (which 
is lower than 2601 so the system is underdetermined). The 
reconstructed field is represented in Fig. 5(c). The compari-
son with the reference solution is good, considering that 
the grid is coarser than that of the reference case. The main 
features of the reference solution are reproduced, that is the 
‘star’ shape of the stress distribution. The location and the 
level of the maximum and minimum values of the stress 
are also reproduced, emphasizing that the method can rea-
sonably provide the shape and range of the residual stress 
distribution even with a coarse measurement grid.

Influence of Additional Noise

In practice, XRD measurements are collected with some 
noise, whose amplitude depends on the experimental condi-
tions (such as the acquisition duration, the type of material, 
etc.). Therefore, it is interesting to study the influence of 
noise on the reconstructed field in this reference numeri-
cal case. Uniformly distributed numbers � (with zero mean) 
are randomly generated in the interval [−�, �] and added to 
the average stress distribution datasets Σa

h
 in order to mimic 

experimental noise:

In the following, the value � = 10 MPa will be considered, 
which is typical of the experimental uncertainties observed 
in XRD laboratory conditions when aluminum alloys are 
investigated. We investigate the two cases (fine and coarse 
spatial step), although the study of the effect of noise is more 
relevant for the coarse spatial step since this case is closer to 
the real experimental conditions.

In the case Δx = 0.1 mm (fine spatial step), the recon-
structed stress field is represented in Fig. 6(a). Overall, the 
reconstructed field is very close to the reference solution: the 
main features of the local stress field, in terms of location 
and magnitude, are reproduced up to some local fluctuations 
related to the presence of noise.

In the case Δx = 0.32 mm (coarse spatial step), the recon-
structed stress field is represented in Fig. 6(b). In that case, 

(20)Σa
h,noisy

(x, y) = Σa
h
(x, y) + �, � ∈ [−�, �].

Table 3   Experimental 
conditions of X-ray diffraction

Cr-K� radiation Voltage Current XRD planes Angle 2� Ψ angles

0.2290 nm 20 KV 1 mA (3 1 1) 139◦   1 angle ( 0◦ ) or 13 in [−37.27°, 39.23°]

Fig. 8   Distribution of the 
residual stress �

h
= �11 + �22 (in 

MPa) determined experimen-
tally by XRD. (a) Experimental 
results with a small collimator 
and (b) Experimental results 
with a large collimator
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there are more discrepancies between the reference solution 
and the reconstructed field but the location and magnitude 
of the local stress are qualitatively well reproduced. The 
reconstructed solution improves significantly the prediction 
of residual stresses in this problem, as it is closer to the ref-
erence solution than the average datasets. Interestingly, the 
reconstructed solution with noise is in good agreement with 
the reconstructed solution without noise on the same grid 
( Δx = 0.32 mm) represented in Fig. 5.

Discussion

Overall, the deconvolution method provides accurate 
results in comparison with the reference solution. These 
results show that the quality of the reconstructed field 
depends mainly on two parameters, (i) the spatial discre-
tization of the grid and (ii) the experimental noise on the 
average datasets. The consequence of noise on the average 
datasets is the occurrence of fluctuations on the recon-
structed field, whose magnitude depends on the level of 
noise. The spatial discretization, on the other hand, has 
an influence on the stress gradients resolution that can be 
achieved. Stress gradients that occur at a smaller scale than 
the spatial step considered cannot be captured.

It is important to note that on a realistic case close to exper-
imental conditions, i.e. with a spatial step Δx = 0.32 mm and 
a level of noise of � = 10 MPa, the reconstructed field is in 
good agreement with the reference solution and improves the 
prediction of the residual stress field in comparison with the 
average datasets which exhibit important averaging effects.

Application to the Reconstruction of Local 
Residual Stress Maps From X‑ray Diffraction 
Measurements

The deconvolution method is now applied to the recon-
struction of residual stress mapping from experimental 
data, on a specimen processed by repetitive corrugation 
and straightening.

Description of the Experiments

We consider a precipitation-hardened aluminum alloy 
6061 as in the numerical simulations of "Application to 
the Reconstruction of Local Residual Stress Maps from 
Simulation Results". A solid solution heat treatment at 803 
K for two hours was applied, then the sample was water-
quenched, followed by an aging treatment at 453 K for 18 
h [20]. The chemical composition of the Al-6061 alloy is 
given in Table 2.

The AA-6061 sheets (of thickness 1 mm) are processed 
by repetitive corrugation and straightening at room tem-
perature with a corrugation die based on two orthogonal 
sinusoidal profiles (see Elizalde et al. [20] for the design 
and machining of the sinusoidal RCS dies), as in "Applica-
tion to the Reconstruction of Local Residual Stress Maps 
from Simulation Results". The die is composed of 7 × 7 
elementary patterns of size 16 × 16 mm, so the size of the 
processed sheet is about 120 × 120 × 1 mm (see Fig. 7). 
The RCS process is performed using a Instron 8802 servo-
hydraulic testing system (250 kN). As in "Application to 
the Reconstruction of Local Residual Stress Maps from 
Simulation Results", only one pass is considered, that is a 
corrugation of an initial flat sheet followed by a straighten-
ing (see Fig. 7).

The residual stress distribution is evaluated on a central 
pattern located at the bottom surface of a one pass corru-
gated and straightened specimen, by X-ray diffraction meas-
urements using the psi tilt method and an in-situ diffrac-
tometer type X-RAYBOT (manufactured by MRX France). 
The XRD measurements were performed with a spatial step 
0.32 mm so the grid is composed of 51 × 51 points (i.e. 
2601 points for the reconstructed field). We used two col-
limators, a small one with an irradiated area of size 3 × 3 
mm, and a large with an irradiated area of size 5 × 5 mm, 
which permits to provide two average datasets requiring a 
total of 2906 measurement points. Due to the large number 
of measurement points required, the XRD measures have 
been performed using Φ = Ψ = 0◦ : this permits the deter-
mination of the strain �33 which is related to the bi-axial 

Fig. 9   Reconstructed residual stress distribution �
h
= �11 + �22 (in 

MPa) from experimental XRD measurements



are [−321.6, 173] MPa for the reference distribution, 
[−168.2, 9.8] MPa for the calculated small colimator aver-
age dataset and [−125.4,−58.8] MPa for the large colimator 
average dataset. Very similar trends are observed between 
the experimental and numerical results in terms of distribu-
tion and magnitude of the local stress distributions as well 
as the average datasets, so it can be expected that the recon-
structed experimental stress mapping is closer to the ‘real’ 
distribution than the average datasets. Hence, it can be rea-
sonably assumed that the ‘real’ residual stress distribution is 
(i) significantly more heterogeneous than what we measured
with the small and large collimators and (ii) has significantly
higher compressive stresses and higher tensile stress.

Discussion

The local stress field reconstructed using the datasets col-
lected from X-ray diffraction measurements with two col-
limators is very different than the two experimental data-
sets, which confirms that X-ray diffraction measurements 
induce strong averaging effects. In particular, high tensile 
stresses of about 195 MPa are observed on the reconstructed 
field, while the maximum values obtained experimentally 
are −13 MPa using the small collimator and −43.8 MPa 
using the large collimator. Moreover, since the distribution 
of experimental stress field reconstructed resembles that cal-
culated numerically in similar processing conditions, it can 
be assumed that the 2D deconvolution method proposed in 
this paper has captured the essential features of the stress 
distribution. For this problem, the raw XRD measurements 
only provide compressive stresses, which seems unrealistic 
as tensile stresses were also predicted numerically. Hence, 
XRD measurements should always be compared to FEM 
calculations and, if possible, post-treated using the proposed 
deconvolution method in order to estimate the actual magni-
tude of the residual stress distribution. In the case where the 
residual stress field obtained by XRD measurements is used 
to calibrate some model parameters of a FEM calculation, it 
is necessary to take into consideration the spatial resolution 
of the measure and the averaging effects.

It should be noted that some small differences are still 
observed between the distribution of the numerical stress 
distribution and the experimental reconstructed one. Indeed, 
the numerical simulation of RCS has been performed with 
values of parameters that are difficult to measure experimen-
tally, such as the friction coefficient and the applied forces 
of straightening plates. Hence, the processing conditions 
considered in the numerical simulation slightly differ from 
the experimental ones and no attempt was made to calibrate 
the process parameters, which can explain the discrepancies 
observed.

2  It could be possible to improve the matrix’s rank by including 
another dataset with a different collimator size.

stress �h = �11 + �22 at the surface (see Appendix 2 for the 
details of the method). In addition, the full stress tensor is 
determined in several grid points (using 13 angles Ψ and 2 
angles Φ ) in order to determine the average of the free-stress 
interatomic lattice spacing d0 . It should be noted that the 
full stress tensor could have been determined for all grid 
points but it would have increased by (at least) a factor 25 
the experimental time, which was already very important 
using Φ = Ψ =  0◦ . The X-ray diffraction conditions are 
given in Table 3.

Results

The two experimental average datasets determined by XRD 
are shown in Figs. 8(a) and (b). They consist of 41 × 41 
measurement points for the small collimator and 37 × 37 
measurement points for the large collimator. Since the die 
geometry is symmetric with respect to the x1-axis, x2-axis 
and the 45◦-axes, the experimental data have been post-
treated in order to enforce these symmetries, which allows 
the reduction of the experimental uncertainties. The effect 
of the collimator size is quite notable in terms of distribution 
and stress levels. For the small collimator, the stress is in the 
interval [−180.1, −13.2] MPa and for the large collimator, 
the stress is in the interval [−147.3, −43.8] MPa. Therefore, 
the stress gradients associated with the large collimator are 
smaller than that associated with the small collimator, which 
confirms that a notable averaging effect is induced by the 
measurement.

As in the case treated in "Influence of the Spatial Step", 
the matrix � defining the linear system (14), associated with 
the coarse grid, is of size 2906 × 2601 and its rank is esti-
mated as 2177: the linear system is thus underdetermined2 
but its rank has been improved by considering two datasets 
instead of only one. The residual stress distribution recon-
structed is represented in Fig. 9. The reconstructed distri-
bution is considerably different from the average datasets 
collected experimentally. Very high stress gradients are 
predicted and some ‘star’ shape in the area deformed by 
the corrugated die are notably observed. In terms of stress 
levels, the stress is in the interval [−415.4, 195.1] MPa. It is 
thus interesting to note that, in several areas, tensile stresses 
are observed on the reconstructed stress field while only 
compressive stresses were observed on the average datasets.

Interestingly, the distribution of the reconstructed stress 
field has similar features with that calculated numerically, 
although they do not coincide exactly. In the numeri-
cal simulation, the intervals of values for the stresses 



Conclusion

The objective of this work was to derive a deconvolution 
method for the reconstruction of heterogeneous residual 
stress mapping using X-ray diffraction measurements.

We extended Morin et al. [17]’s reconstruction method to 
a two dimensional case, by considering that averaging effects 
due to the irradiated area correspond to a convolution within 
a square-shaped domain. The combination of a fine measure-
ment grid and the use of two collimators lead to an overde-
termined linear system between the point-wise values of the 
average datasets and the local stress field. The inversion of 
this linear system provides an estimate of the local residual 
stress field. The method has been first assessed in a reference 
case of repetitive corrugation and straightening, in which the 
solution has been computed numerically by the finite element 
method. The average datasets have been determined from the 
reference solution by mimicking XRD measurement, and used 
as an input for the deconvolution method. In a case close to 
experimental conditions (i.e. with a coarse measurement grid 
and additional noise), the method was shown to provide accu-
rate results in terms of magnitude and location of the stress 
heterogeneities. The reconstruction technique has finally been 
applied to experimental X-ray diffraction data on a specimen 
processed by repetitive corrugation and straightening in condi-
tions similar to the numerical simulations. Important averaging 
effects are observed on the datasets collected experimentally 
using two collimators. The reconstructed stress field has simi-
lar features with that calculated numerically, with notably local 
tensile stress which were not observed on the average datasets.

The present results confirm that residual stress distribu-
tions determined by X-ray diffraction are subjected to inher-
ent averaging effects so that the measurements can be far from 
the exact local stress field in presence of high surface stress 
gradients due to the irradiated area. This can have important 
consequences upon the reliability of engineering components 
because the raw datasets obtained from XRD can ignore in 
some cases the presence of tensile stress due to the averaging 
effects. The deconvolution technique proposed allows a bet-
ter reconstruction of local stress distributions which should 
improve (i) the assessment of engineering components by 
removing the averaging effects and (ii) the comparison 
between experimental results and numerical calculations.

Appendix 1

Robust Spline Smoothing of Noisy Data

In order to reduce the effect of noise in the inverse problem 
(14), smoothing splines are considered as a very efficient 

technique to construct a smooth estimate �̃
a
 of �a by mini-

mization of a functional G that balances the fidelity to the 
data, through the residual sum-of-squares (RSS), and the 
smoothness of the estimate �̃

a
 , through some penalty term 

P [18]:

In equation (21), ‖⋅‖ denotes the Euclidean norm and s is a 
real positive scalar that controls the degree of smoothing. 
The penalty term P is defined from the point-values of the 
p-th derivative of �̃

a
 at the grid points; in the case of the 

second-order derivative, it reads

In the one-dimensional case, the differentiation matrix � 
simply reads

The minimization of G leads to the expression of the smooth 
estimate �̃

a
 [18]

where DCT and IDCT respectively refer to the discrete 
cosine transform and the inverse cosine transform, and ◦ 
denotes Hadamard product (pointwise product). In the one-
dimensional case, �(s) is a vector whose components are 
given by

where the parameter �i is given by

 The extension of the smoother to the two-dimensional 
case is straightforward [18]. The optimal smoother param-
eter s that avoids over- or under-smoothing is then esti-
mated using the method of generalized cross-validation 
(GCV) introduced by [22]. The smoothing of the exper-
imental data is thus fully automatic and the smoothing 
parameter estimate provided by the GCV method is unique 
[18, 23].

(21)G

(
�̃
a
)
=
‖‖‖�

a − �̃
a‖‖‖

2

+ sP
(
�̃
a
)
.

(22)P

(
�̃
a
)
=
‖‖‖��̃

a‖‖‖
2

.

(23)� =
1

Δx2

⎛
⎜⎜⎜⎜⎜⎝

−1 1 … 0

1 − 2 1 ⋮

0 ⋱ ⋱ ⋱ 0

⋮ 1 − 2 1

0 … 1 − 1

⎞
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(24)�̃
a
= IDCT(�(s)◦DCT(�a)),

(25)Γi =
1

1 + s�2
i

,

(26)�i = 2 − 2cos

(
(i − 1)�

N − 2ka

)
.



where Φ and Ψ are the angles associated with the X-ray 
direction. In the case of an isotropic elastic material, it is 
straightforward to note that

In the particular case Φ = 0◦ and Ψ = 0◦ , we have 
�Φ=0◦,Ψ=0◦ = �33 , and therefore it is readily seen from equa-
tion (28) that

Since the XRD measurements are performed on the surface 
of normal e3 , the normal stress �33 is null. Using equations 
(27) and (29), the bi-axial stress �h finally reads

Consequently the determination of the interatomic spacing 
dΦ=0◦,Ψ=0◦ allows a fast mapping of the bi-axial stress �h since 
only one X-ray direction is required (with Φ = Ψ = 0◦ ). In 
practice, the free-stress interatomic lattice spacing d0 is also 
required; it is determined in several points of the specimen 
(by calculating the full stress tensor using for instance 13 
angles Ψ).
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,
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E

(
�11cos

2(Φ) + �12sin(2Φ) + �22sin
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)
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E
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E
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