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Abstract—This paper presents EDICT, a tool for simulating
Edge interactions in IoT-enhanced environments. Recently, ML
and AI-based techniques have gained prominence to solve IoT-
related challenges. However, such models require large and
diverse datasets to perform well. Finding real-world datasets that
capture the performance of IoT systems is a challenging task due
to the cost of deploying devices and instrumenting environments,
as well as privacy/security concerns. This task becomes more
challenging when datasets for specific situations (e.g., overloaded
system, emergency scenarios) are needed. EDICT enables IoT
systems designers to evaluate the performance of their IoT sys-
tems at design time. EDICT is capable of generating performance
metrics datasets for specific instances of IoT-enhanced envi-
ronments under different configuration parameters. To support
runtime adaptation of smart environments, EDICT enables rapid
performance prediction using ML techniques.

Index Terms—Simulation, Smart Environments, QoS, Data
Exchange

I. INTRODUCTION

With the advent of Internet of Things (IoT) devices and
supporting technologies, spaces (e.g. buildings, homes) are
becoming smarter and interconnected. Edge-based infrastruc-
tures of today’s sensorized environments include: IoT devices
to sense physical phenomena or receive actuation commands;
software components to distribute the processing of raw data
and provide semantically enriched data; message brokers to
exchange data; Edge servers as hosting machines; and the
networking infrastructure. IoT applications operating over
such Edge-based infrastructures provide services to improve
people’s daily activities, life quality, and public safety: for
example, IoT applications for building utility optimization,
air/noise monitoring, enforcing emergency & rescue proce-
dures. Such applications are composed of different Quality
of Service (QoS) requirements such as end-to-end latency
bounds, throughput, and tolerated message loss rates. IoT
systems designers have to tune the data exchange infrastructure
to ensure that the QoS requirements of deployed applications
are satisfied. For instance, designers must ensure sufficient
network and processing resources for timely data exchange
between devices and applications, and at the same time proac-
tively address dynamic situations that may require additional
resources. Currently, designing such a distributed IoT system
is a manual “by-experience” process that is error-prone and
time consuming.

Commercial and open-source simulation tools [1]–[4] have
been developed to facilitate such tasks prior to system deploy-

ment. They enable simulating some aspects of IoT systems
and provide system performance insights in terms of energy-
efficiency, battery consumption, etc. Network emulators [5]–
[7] can be used to emulate networking events and evaluate the
performance of networking infrastructures. These simulators
usually provide graphical/command line interfaces, or scripts
to create a virtual representation of the IoT system and run
simulations. IoT designers have to spend considerable effort in
learning how to use a simulator for representing an IoT system.
In addition, it is often hard to define the desired output (e.g.,
performance measurements and energy consumption). Finally,
creating variations of an IoT system that represents multiple
situations, often requires complex simulation deployments.
Hence, there is a need for a simulation tool enabling IoT
designers to quickly simulate IoT systems designed based on
standard IoT representations and data exchange architectures.

This paper presents EDICT, a simulation tool for evaluat-
ing the performance of Edge interactions in distributed IoT-
enhanced environments. EDICT abstracts the hardware and
network implementation details, as well as the application-
layer interactions of an IoT system as a queueing network [8],
[9] (also called generic QoS model). First, EDICT leverages
the standard NGSI-LD protocol specification [10] to repre-
sent systems deployed in IoT-enhanced environments. Second,
Edge interactions are represented based on the IoT-suitable
publish/subscribe interaction paradigm [11]. These are given
as input to the EDICT generic QoS model to be instantiated
for simulating and evaluating the performance of Edge interac-
tions. Multiple QoS model instances can be used to represent
different situations (e.g., number of devices/applications), or
QoS configuration parameters (e.g., applying priorities and
resource allocation policies) can be applied to provide design-
ers with a performance metrics dataset that can be used for
design time system tuning. In addition, to support runtime
adaptation of IoT systems, EDICT provides designers with a
QoS prediction component that rapidly generates performance
metrics when changes in the IoT system occur.

The key contributions of this paper are:
• A standard representation of IoT data exchange in smart

environments using an extended NGSI-LD model and a
publish/subscribe architecture (§IV).

• A simulation tool for generating multiple, customizable
datasets containing performance metrics of Edge interac-
tions in distributed IoT-enhanced environments (§V).



• A QoS prediction mechanism for rapid runtime adapta-
tion (§VI).

The rest of the article is organized as follows. In §II, we
compare EDICT against existing IoT simulators. An overview
of the EDICT architecture is presented in §III. We then present
in §IV details related to the representation of IoT-enhanced
environments. In §V we present the generic QoS Model used
to model the performance of IoT systems. §VI describes how
IoT systems designers can use the EDICT prototype for design
time system tuning and runtime adaptation. We conclude the
paper with a look towards future extensions of EDICT in §VII.

II. RELATED WORK

This section presents an overview of IoT simulators. We
present in Table I a comparative summary of such tools.

To allow the evaluation of IoT systems prior to deployment,
the research community has developed simulation tools repre-
senting IoT system deployments. Tools such as iFogSim [12]
and IoTSim-Edge [15] provide simulation environments that
evaluate the effects of resource allocation and provisioning
techniques for improving the performance of IoT systems in
terms of end-to-end latency, energy consumption, and network
congestion. IoTSim [13] allows the simulation and perfor-
mance evaluation of big data analytics, such as MapReduce,
in cloud environments. iFogSim [12], IoTSim-Edge [15], and
IoTSim [13] are built on top of CloudSim [18], a toolkit that
allows modeling and simulating large-scale Cloud computing
environments, such as data centers. iFogSim, IoTSim-Edge
and IoTSim follow a similar approach for the allocation of
cloud related-resources needed for IoT applications. Kaala [16]
aims to bridge the gap between simulators and real-world
resources by integrating the simulated devices with real-world
Cloud services such as AWS and Google IoT cloud services.
DPWSim [4] focuses on service-oriented IoT applications
and relies on the OASIS DPWS standard to provide devel-
opers with a simulator that allows them to prototype their
applications prior to deployment. Commercial tools, such as
IoTIFY [1] and CupCarbon [2], are able to simulate IoT
interactions within a smart city environment.

In addition, there are simulators that focus on simulating
events at the network layer. These tools model communication
protocols and packet-based interactions. For example, OM-
NeT++ [7] and QualNet [5] provide environments for simulat-
ing network interactions in distributed and large-scale systems,
and allow to evaluate the performance of network protocols.
NS-3 [6] is a discrete-event network simulator that allows
users to evaluate the performance of packet data networks.
SenseSim [17], on the other hand, does not focus on wireless
communication issues but provides a tool for simulating WSN
and IoT systems under changing environments.

While the above tools are powerful enough for simulating
IoT systems, we identify the following challenges:
IoT-layer Abstractions. Even though network emulators such
as NS-3 [6], OMNeT++ [7], and QualNet [5] can be used
to simulate the network aspects of IoT systems, they require
configuring the network infrastructure of the IoT system. This

is not always convenient, especially when IoT designers need
to only simulate application-level events. EDICT abstracts the
hardware and network implementation details and helps users
focus on application-layer interactions in Edge environments.
Usability. IoT designers often have to learn and get used
to the specifics of the simulator they choose to use. Tools
like CupCarbon [2] require users to learn a new scripting
language and write scripts to program sensor nodes. This
requires spending considerable time figuring out how to use
the tool to get the desired output. In contrast, EDICT users
only need to provide the standard NGSI-LD description of
their system, as shown in § III. EDICT then automatically
simulates Edge interactions in the provided environment and
provides simulation results as a performance metrics dataset.
System Reconfiguration. Simulating the same environment
with multiple configuration parameters usually requires cre-
ating a new simulation with new instances of IoT devices
and applications. This can be time consuming especially
when IoT designers need to evaluate the performance of
their systems in different situations by applying multiple
configuration parameters (to identify which configuration is
best-suited for their needs). EDICT provides simulation results
per subscription and per application category for multiple
configuration parameters of the IoT system in one iteration.
Automating System Tuning. Support for automated system
tuning is not straightforward when using the simulation results
of existing tools. Such tools provide results visually ( [12],
[15], [14], [13]) or provide them in files that require further
processing ( [6], [7]). As shown in §V-B and §VI-C, EDICT
provides a CSV-based performance metrics dataset that can
easily be integrated as part of an automated approach for
system tuning. This is especially useful given the recent
advances in ML and AI techniques to enable autonomous IoT
systems and to solve IoT-related challenges.
Support for Runtime Adaptation. Existing simulation tools
do not provide support for runtime adaptation of IoT systems.
At rutime, if changes occur in the Edge infrastructure, IoT
designers have to re-run the simulations; this process is time
consuming and cannot be applied at runtime. A distinguishing
feature of EDICT is that it provides a QoS prediction com-
ponent that can be integrated as part of a runtime adaptation
approach for timely readaptation of IoT systems.

III. EDICT OVERVIEW

EDICT leverages NGSI-LD models and queueing networks
to represent and simulate IoT data exchange in smart environ-
ments. We present next a motivating example and an overview
of EDICT’s architecture.
Motivation. Edge-based infrastructures of today’s sensorized
spaces (homes, buildings, etc.) include: (i) IoT devices to
sense physical phenomena or receive actuation commands;
(ii) virtual sensors that process one or more flows of IoT
raw data and provide new, possibly high-level, data (e.g.,
occupancy of spaces); (iii) messaging systems to enable decou-
pling between IoT devices and applications/services; (iv) Edge
servers as hosting nodes; and (v) the networking infrastructure.



Tool IoT Layer Abstraction Scope Input Automated System Tuning Simulation Domain Support for Readaptation
DPWSim [4] Fog/Cloud Deployment of web services on IoT devices GUI Through graphs Generic No

iFogSim [12] Fog/Edge
Resource management /
application scheduling

GUI / API calls /
JSON configuration file

Through graphs Generic No

IoTSim [13] Cloud Big data processes API calls Through graphs Generic No
IoTNetSim [14] Cloud/Edge/Network Simulation of IoT services API calls Through graphs Generic No

IoTSim-Edge [15] Edge
Application composition /

mobility modeling /
resource provisioning

GUI / JSON Configuration Through graphs
Healthcare/Buildings/

Transportation/
Manufacturing

No

Kaala [16] Cloud Interaction with real-world cloud services Configuration file N/A Generic No
SenseSim [17] Network Simulation of network interactions in WSN GUI N/A Generic No

IoTIFY [1] Cloud Large-scale IoT deployment GUI / API calls Through graphs / API Smart City No

CupCarbon [2] Network
Evaluation of distributed algorithms /
creation of environmental scenarios

GUI Through CSV files Smart City No

OMNeT++ [7] Network Discrete event simulation NED files / C++ modules sources Through TXT files Generic No

QualNet [5] Network
Heterogeneous networks /

distributed applications
GUI / Configuration files Through STAT files Generic No

NS-3 [6] Network Discrete network event simulation API calls Through PCAP / ASCII files Generic No

EDICT Edge interactions over pub/sub
Simulation of Edge interactions in IoT environments

using Queueing Networks
GUI / NGSI-LD models Through CSV files Generic Yes

TABLE I: Comparison of Existing IoT Simulation Tools
IoT applications operating over such infrastructures provide
a variety of services, such as energy monitoring, audio and
video conferencing, and emergency response services. These
applications have to specify QoS requirements to be met—
such as energy consumption, accuracy, and end-to-end latency.

We classify IoT applications into categories that each define
QoS parameters to be satisfied. In particular, we identify
five application categories: (i) real-time (RT), e.g. a robot
delivering mails in a university campus; (ii) streaming (ST),
e.g. a video surveillance application; (iii) transactional (TS),
e.g. a meeting-room reservation tool; (iv) IoT analytics (AN),
e.g. an occupancy-based application using WiFi connectivity
data; and (v) emergency response (EM), e.g. a fire detection
application. Currently, IoT system designers have to manually
use different system configurations for different situations to
satisfy QoS requirements of the deployed applications. This
task becomes more challenging when we consider the evolu-
tion of smart environments over time due to adding/removing
IoT devices and applications. Thus, evaluating the performance
of IoT systems under all possible situations through manual
deployment and testing is virtually impossible.

EDICT introduces an IoT simulation tool that enables sys-
tems designers to quickly setup and simulate the performance
of IoT systems deployed in smart environments under different
configurations without the need of real-world deployments.
The output of the simulation is a performance metrics dataset
that can be used for system tuning or performance predictions
by relying on basic ML techniques.

EDICT Architecture. Fig. 1 shows the high-level architecture
of EDICT. To represent characteristics of smart environments,
we leverage the Next Generation Service Interfaces-Linked
Data (NGSI-LD) [10] specification. In particular, EDICT uses
existing data models for the standard representation of smart
environments as NGSI-LD entities that are further enhanced
with IoT aspects based on our proposed application categories
and QoS requirements. More details about the proposed NGSI-
LD representation are presented in §IV-A. The IoT-enhanced
NGSI-Model can be instantiated to represent the interactions
of smart environments to be simulated. NGSI-LD instances
of smart environments and their interactions are represented
using JSON-LD notation, a JSON-based serialization format.

To simulate interactions between IoT-enhanced NGSI-LD
entities, we rely on Queueing Networks [9]. In particular,
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Fig. 1: EDICT architecture

we define a generic QoS Model that consists of series of
queues to model IoT interactions in smart environments. Such
queueing networks can be composed, on-the-fly, depending
on the corresponding smart environment instance and the
ongoing situation (e.g., applications activated for emergency
response)—more details in § V. Finally, the EDICT end-user
can configure simulations by applying parameters such as
priorities, dropping rates, routing policies, network allocation
policies, that can improve the end-to-end performance (i.e.,
latency and throughput) of IoT interactions. Depending on the
given NGSI-LD instance and the configuration parameters, the
Queueing Composer instantiates the composed code artifacts
that, when executed, simulate end-to-end IoT interactions
(from the IoT sensor to the IoT application) using the open-
source queueing simulator Java Modeling Tools (JMT) [19].

We define a JMT simulation model as an instance of the
generic QoS Model that represents a specific situation of
a smart environment with specific configuration parameters.
Different JMT simulation models represent IoT interactions
of different situations in smart environments. In addition, a
number of additional JMT simulation models may be generated
due to the applied configuration parameters. Executing the
composed JMT simulation models results in the creation
of a dataset of performance metrics that includes end-to-
end latency, throughput, energy consumption, etc. The QoS
prediction component uses this dataset to train ML models and
predict performance metrics without running time-consuming
JMT simulations. Such component can be used at runtime,
alongside a real IoT system that may require to be adapted to
new situations (e.g., emergency response). IoT designers can
rely on the generated dataset for IoT system tuning at design
time and ensure efficient runtime behavior.



IV. IOT SYSTEM REPRESENTATION

To build a tool for simulating IoT interactions at the Edge
of any smart environment, it is essential to represent: (i) the
environment and its IoT capabilities; and (ii) the interactions
between IoT entities by relying on a generic architecture.
Related generic models are presented in this section.

A. IoT Domain Model

We use Next Generation Service Interfaces-Linked Data
(NGSI-LD) [10] as a flexible and dynamic basis for the
modeling of smart environments. In short, NGSI-LD is a
data model for the standard representation of smart envi-
ronments, and it provides an API for publishing, querying,
and subscribing to context data. NGSI-LD has the unique
characteristic of deriving its information model from property
graphs, its meta model on the basis of RDF/RDFS/OWL [20]–
[22], and partially on the basis of JSON-LD. Its purpose is
to facilitate open exchange and sharing of structured data
amongst various parties. While other data models exist to
describe smart environments (e.g., BOT [23], SAREF [24]),
we use NGSI-LD entities that can be easily imported into
triple stores (i.e., RDF) [25] because they are serialized in
JSON-LD [26].

NGSI-LD is utilized in Smart Cities, Smart Industry, and
Smart Agriculture, as well as the IoT, Cyber-Physical Sys-
tems, Systems of Systems, and Digital Twins more generally.
However, existing models are focused on describing the func-
tional semantics of IoT systems and not QoS semantics such
as requirements of applications and categories. In addition,
entities that represent observations are missing, as well as
entities for the processing of raw data. We extend the NGSI-
LD representation of an IoT system by introducing Entities and
Relationships as shown in Fig. 2. First, an existing Device
entity is extended by adding attributes and relationships with
new entities to represent the general function of IoT de-
vices. In addition, we create a new SmartEnvironment
entity that can either extend existing NGSI-LD models
(e.g. Building, Museum) or define a new environment. IoT
devices deployed in the smart environment can be ei-
ther sensors that sense physical characteristics and generate
Observations or ActuationCommands, or actuators
that receive ActuationCommands. An Observation
represents a quantitative measurement in a specific physi-
cal space. For example, a temperature sensor deployed in
room324 would generate the observation "temperature
in room324". Thus, an application can easily receive the
necessary data by specifying the type of data needed along
with the name/id of the space.

We also create a new Entity type VirtualSensor,
which represents software components that process raw
IoT data to produce high-level measurements. Unlike phys-
ical sensors, virtual sensors take as input one or more
Observations, process the received data, and output a
new type of Observation. Finally, to represent different
categories and QoS semantics of applications (see § III), we
classify them into ApplicationCategories with each

Device
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Existing Data Model
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generates
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Fig. 2: Representing IoT-enhanced Environments using the
NGSI-LD Data Model

category specifying QoSRequirements (e.g., end-to-end la-
tency, energy consumption, and drop rates) that have to be met.
The NGSI-LD model presented in Fig. 2 can be instantiated
to describe an IoT system in any smart environment. We show
how to use the NGSI-LD model to define an instance of an
IoT system in §VI-A and §VIII. Our extended NGSI-LD data
models along with examples of smart environments can be
found at https://github.com/SAMSGBLab/edict--datamodels.

B. IoT Data Exchange Model

Existing IoT deployments consist of devices employing
network access protocols (e.g., ZigBee and Z-Wave) for data
collection in IoT gateways (or IoT agents in NGSI-LD),
as well as application-layer protocols (e.g., CoAP, MQTT,
ZeroMQ, and AMQP) that forward data from IoT gateways
(or directly from devices) to message brokers (e.g., EMQx,
Mosquitto, and RabbitMQ) for data processing and dissemi-
nation to IoT applications [27]. Data exchanged between IoT
devices, applications and message brokers, are based on the
publish/subscribe interaction paradigm [11].

EDICT relies on the publish/subscribe paradigm to represent
IoT interactions at the Edge of smart environments, where IoT
devices and applications interact via a message broker. We
develop a generic QoS model (§V-A) that abstracts the under-
lying network, different application categories, and application
instances that interact via the message broker with the IoT
devices. The broker manages all the traffic at the Edge and
for this reason message handling strategies are applied at the
broker. As depicted in Fig. 3, IoT devices act as publishers that
produce data related to the environment sensed; these data are
encapsulated into messages that are tagged with a topic name
for routing. Messages of a topic can be captured from both IoT
devices and virtual sensors, while topics are characterized from
the observation type (e.g., temperature data), the space that a
device is deployed (e.g., room 2065), the average message size
and the message frequency. Such information can be found
in the NGSI-LD instance describing a smart environment.
Virtual sensors, actuators, and applications subscribe to re-
ceive relevant messages using topic-based subscription filters.
Virtual sensors receive input from one or more sources of
messages, process the received messages (e.g., using AI-based
algorithms), and generate output messages that are sent back
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to the message broker [28]. Note that such processed messages
can be received by applications or other virtual sensors.

IoT applications can be characterized by heterogeneous
QoS requirements and they can be grouped into application
categories (RT, ST, TS, AN, EM), as specified in § III. A
message broker system is responsible for forwarding data
from IoT devices to the corresponding application recipients.
IoT systems designers can configure the data exchange in-
frastructure according to their needs. For instance, they can
assign priorities to some topics via a Data Flow Management
component, or/and specify a network resources allocation
policy (e.g., max-min policy [29]) via a Network Resource
Management component. Thus, IoT systems designers can
use different configurations to tune the system and ensure the
desired QoS performance at runtime.

V. QOS MODELING FOR IOT SIMULATION

This section presents a generic (Quality of Service) model
that can be used to model the performance of IoT systems.
Given a specific smart environment, a queueing network can
be created using the EDICT composer that is presented next.

A. IoT Data Exchange Formal Model

This section presents the formal model of data exchange
systems following the model presented in §IV-B. EDICT
leverages Open Queueing Networks [9] to dynamically com-
pose queueing networks (i.e., QoS models) that evaluate the
performance of diverse data exchange systems. As depicted
in Fig 4, each IoT device di ∈ D = {di : i ∈ [1..|D|]}1

(e.g., smoke detector) acts as a publisher and publishes data
to one or more topics tj ∈ T . Note that a topic represents
a mapping based on an observation type and a space (e.g.,
“smoke in room312”). IoT devices may also publish actuation
commands (e.g., water sprinklers activation commands), which
are aimed to be received by actuators. Let Tdi

be the set of
topics that device di publishes to. We represent each topic tj
as a class switch xtj that receives incoming messages from
devices D and tags them with the appropriate topic.

Topics can be characterized by an average message size
Gtj and the rate λtj at which messages are produced. Note
that λtj is based on a probability distribution (e.g. Normal
or Exponential) or by relying on real-world traces of existing
smart environments (more details in § VI). A virtual sensor

1The subscript of a notation represents the index of an element in the
corresponding set. For the remainder of this paper, we omit the explanation
of subscripts to simplify our approach.

Fig. 4: Queueing Representation of an IoT Data Exchange
System

vsi ∈ VS subscribes to receive data from a set of topics,
denoted by Tvsi . Let τvsi be the average processing time of
a virtual sensor. A queue qvsi with a service rate of µvsi =
1

τvsi
represents data processing by the virtual sensor. vsi then

publishes the processed high-level data (e.g., occupancy) to
the message broker using a topic tk ∈ T .

At the message broker side, an input queue Qin (of type
G/G/1) accepts the publications of devices and virtual sensors.
Its service rate µin represents the subscription matching pro-
cess that is applied to identify data recipients based on the
available subscriptions. Let KQin be the queue’s maximum
capacity that represents the data exchange system’s overall
capacity. To model the networking infrastructure between the
message broker and the system’s subscribers (i.e., application-
s/actuators/virtual sensors), we use a multiclass queue Qnet .
The service rate µnet of Qnet represents the available network
resources WDX between the data exchange system and all
subscribers. Then, µnet is calculated based on WDX and the
average message size Gtj of the corresponding topic. Note
that Qnet can act as a priority queue, and prioritize messages
matching topics based on assigned priorities by the EDICT
user. Also, EDICT offers the ability to choose a network
allocation policy π.

The default policy πall uses all available network resources
to transmit all messages (typical allocation policy used at the
NIC of an Edge server). On the other hand, middleware-based
approaches [29], [30] offer to application designers different
policies for allocating resources. The πshared policy can be
used to equally share resources between all application cate-
gories. The πtopics policy allocates resources to each category
based on the arrival rate of topics: application categories that
receive more data are allocated more resources. Finally, the
πmax -min policy allocates resources that guarantee fairness
among all subscribers. Therefore, IoT designers can choose
a policy π from Π = {πall , πshared , πtopics , πmax -min}. Be-
cause some IoT applications can be loss-tolerant and several
middleware-based approaches support message dropping (e.g.,
JMS, MQTT, CoAP, AMQP [11]), we model message losses
by routing a percentage of messages ωnet matching a topic
to a sink node. Currently, EDICT models message dropping
only at the middleware layer and assumes no message losses
due to the network coverage. However, the QoS model can be
extended to represent message losses due to network coverage
(e.g., modeling coverage impacts on wireless protocols).



At the application side, let appi ∈ A be the applica-
tion table with attributes {cat , qos , topics}, where cat ∈
{AN,RT, ST, TS,EM} represents the category of the ap-
plication, qos is a tuple representing the QoS requirements
of the applications, and topics is the set of topics Tappi

that
appi has subscribed to. Each appi is modelled as a queue
qappi

that receives messages from Qnet according to the ap-
plication’s subscriptions. A subscription is defined as the tuple
rij = (appi, tj) ∈ R. We consider that qos = (δmax, θmin,
ωmax), where δmax represents the application’s maximum
tolerated end-to-end latency, θmin represents the minimum
required throughput, and ωmax represents the application’s
tolerated drop rate. Note that appi.qos can be extended to
include more QoS requirements. Similarly to applications,
each actuator aci ∈ AC is modelled as a queue qaci and
subscribes to one or more topics taci

∈ T .

B. IoT-aware Queueing Composition

The generic model defined in §V-A provides all the basic
elements to compose a queueing network, as well as the
necessary configuration parameters used by application de-
signers (network policies, priorities, etc.) to parameterize the
composed queueing network. For each situation s ∈ S and
configuration parameters p ∈ P , the function f(s, p) instan-
tiates the QoS model to compose the queueing network rep-
resenting the environment under situation s and configuration
parameters p. Depending on the IoT environment and deployed
devices/applications, EDICT provides the basic queueing net-
work, defined as a default network, which models the default
performance of the IoT data exchange system. Then, EDICT
offers different configuration parameters (priorities, dropping,
network policies) to model the system’s performance.

To enable such dynamic queueing network composition, we
leverage the JMT (Java Modelling Tools) simulator [19], [31].
JMT is an open-source suite of applications that offer a com-
prehensive framework for system modelling with analytical
and simulation techniques, and performance evaluation. While
JMT JSIMgraph provides a graphical user interface to design
queueing models, we use JMT’s API to dynamically compose
and run the simulations. As depicted in Fig. 5, we design a
Queueing Composer that instantiates the corresponding JMT
queueing representation of an IoT environment’s situation and
parameterization. The composer takes as input (i) the NGSI-
LD instance of an IoT-enhanced environment (see §IV-A), and
(ii) the generic QoS model (see §V-A). Through calls to the
JMT Library, the composer then creates the queueing network
that represents the IoT-enhanced environment.

QoS Model

Queueing 
Composer

NGSI-LD Instance

JMT Library

addStation()
setConnection()

...

Dataset

System 
Tuning

Response times
Throughput
Dropping
….

QoS 
Prediction

Fig. 5: Queueing Network Composition Process

We implement a Queueing Network Composer to generate
the JMT queueing network that represents a specific instance
of an IoT-enhanced environment. The Queueing Composer
parses the JSON-LD files that represent the smart environment
to retrieve the following IoT information: IoT devices, vir-
tual sensors, actuators, and applications deployed; application
categories and their QoS requirements; and data exchange
configuration parameters (e.g., available network resources).
Then, using the generic QoS model presented in § V-A, it
composes the queueing network using the JMT library. The
library contains functions that enable creating a JMT-based
queueing model, such as adding queueing stations, creating
connections between stations, and setting service times for
queues. For example, the code of Listing 1 is used to create
and connect the input and network queues of the QoS model.

1 p u b l i c s t a t i c vo id composeQueueingNetwork ( ) {
2 CommonModel jmtModel = new CommonModel ( ) ;
3 inQueue = model . a d d S t a t i o n ( ” inQueue ” , CommonConstants . STATION TYPE SERVER) ;
4 netQueue = model . a d d S t a t i o n ( ” netQueue ” , CommonConstants . STATION TYPE SERVER) ;
5 model . s e t S t a t i o n Q u e u e S t r a t e g y ( netQueue , model .

STATION QUEUE STRATEGY NON PREEMPTIVE PRIORITY) ;
6 f o r ( A p p l i c a t i o n app : a p p l i c a t i o n s )
7 model . s e t C o n n e c t e d ( netQueue , app . ge tQueue ( ) , t r u e ) ;
8 f o r ( Topic t o p i c : t o p i c s ) {
9 model . s e t R o u t i n g S t r a t e g y ( netQueue , t o p i c . g e t C l a s s ( ) , p r o b R o u t i n g ) ;

10 model . s e t S e r v i c e T i m e D i s t r i b u t i o n ( netQueue , t o p i c . g e t C l a s s ( ) ) , n e t R e s o u r c e s ) ;}}

Listing 1: Queueing Composer code snippet

The EDICT composer first instantiates a JMT common
model (see Line 2) that represents an instance of a queue-
ing network. This holds all the elements of the queueing
model, runs the simulation, and saves its results. Then,
the addStation function adds sources, queues, forks
and joins, and sinks: e.g. the input and network queues
at Lines 3–4. A queue’s discipline can be updated us-
ing the setStationQueueStrategy: e.g. the network
queue is defined as a priority queue at Line 5. After
adding all the components, connections between stations
are created by calling the setConnection: e.g. connec-
tions between the network queue and application queues
at Lines 6–7. Data flowing from IoT sources to the data
recipients are configured by setting the appropriate rout-
ing strategies using setRoutingStrategy: e.g. data
routed based on the topic class at Lines 8–9. Finally, the
setServiceTimeDistribution is used to set the ser-
vice time: e.g. based on network resources between the net-
work queue and applications at Line 10.

Once a default queueing network is created, the EDICT
user has the option to specify the performance metrics to be
saved, such as the end-to-end latency and throughput for flows
matching subscriptions, the utilization of the system, and the
data loss. EDICT also offers the option to configure the system
by setting priorities and drop rates, and by specifying the
available network resources and the resource allocation policy.
Having different configurations of the data exchange system
helps in creating a richer dataset that includes performance
metrics for each of the configurations of the system.
Performance Metrics Dataset Generation. The JMT com-
posed models are provided as XML-based files that contain
the topology of the queueing network and the simulation
parameters. Using the JMT library, EDICT simulates the



queueing network and appends the results to the same XML
files. The EDICT dataset generator parses the XML file and
creates a dataset of performance metrics as a set of csv files,
which are easy to read and widely used. Metrics are saved
for each flow matching a subscription, and when applicable,
for the whole system. For example, EDICT stores end-to-end
latency per flow and the utilization of the data exchange system
under all configurations specified. The format of the dataset
is shown in Table II. Each row contains the metrics for a
flow matching a subscription under different configurations
parameters. For example, if the developer chooses to simulate
an IoT system using the default network allocation policy as
well as the max-min policy, a subscription flow rij would
have two entries in the dataset that represent its metrics under
these two policies. Note that EDICT datasets are generated to
contain features that impact the performance of IoT systems,
based on the QoS model presented in §V-A. These features
represent the configuration parameters that are applied to the
data exchange system , i.e., priorities, drop rates, network
allocation policy, and available network resources. Generating
the dataset in this format makes applying ML models easier,
as it is easy to extract the needed features for prediction. In
addition, this approach can be extended to include features
for other QoS models (e.g., energy consumption) to support
potential extensions of EDICT (§V-C).

The dataset generated by EDICT can be leveraged by
automated approaches for system tuning. For example, the
PlanIoT [32] framework relies on EDICT-related performance
metrics datasets to automatically manage IoT data flows using
AI planning. EDICT datasets can also be used for training
ML models for performance prediction purposes. This is
especially useful when dynamic changes are happening in a
smart environment (e.g., subscriber churn).

C. EDICT’s Extensibility

A unique characteristic of EDICT is the generic QoS model
and different application classes that can be instantiated for
different IoT systems. EDICT ’s extensibility is enhanced
due to the use of queueing networks. Such fundamental QoS
modeling methodologies provide accurate performance met-
rics without deploying and benchmarking the actual software
and hardware entities of IoT systems. The generic queueing
model of EDICT can be extended using different types of
queues to represent the parameters that impact the perfor-
mance of IoT systems. Currently, EDICT supports message
prioritization, assigning drop rates to data flows, and setting
up buffer capacities for the message broker. However, the
generic queueing model can be easily extended to model
wireless communication channel error rates [33], hardware
infrastructure and computing resources. This section describes
some of the extensions that can be applied to EDICT.
Modeling the network infrastructure. To avoid having
complex queueing networks modeling all layers of IoT sys-
tems, EDICT provides metrics related to the performance of
IoT systems at the middleware layer. However, hierarchical
queueing models [34] can be used to model the performance

of IoT systems at different layers (middleware, network, etc.).
Using such models, we can represent message losses due to
network coverage by considering that applications connect to
a wireless access protocol. Similarly, such a specific network,
along with message losses, maximum bit rate, and other
network parameters can be modeled using a queueing network
dedicated for modeling the network infrastructure.
Device properties. Extensions can also be provided to model
hardware and computing resources of devices. For instance,
queues with an intermittent available server [11] can be used to
represent the IoT devices’ sleep patterns. Computing resources
of devices can be taken into account by appropriately setting
the service rate of queues that model devices.
Performance metrics. EDICT can be extended to provide
a wider range of metrics that give IoT developers insights
into the performance of their system. For example, the energy
consumption of data flows can be measure using Energy
Packet Networks [35].

VI. EDICT EVALUATION

This section presents the evaluation of EDICT by (i) demon-
strating how the EDICT prototype can be used to represent IoT
infrastructure components and generate a performance metrics
dataset (§VI-A); (ii) creating an experimental setup of an IoT-
enhanced building (§VI-B); (iii) showing how EDICT enables
design-time system tuning (§VI-C); and (iv) showing how
EDICT’s QoS prediction component enables rapid adaptation
when changes happen to the Edge infrastructure (§VI-D).
The EDICT source code can be found on https://github.com/
SAMSGBLab/edict.

A. Using the EDICT Prototype

As a first step, IoT designers need to define the components
of their IoT system infrastructure. For this purpose, EDICT
provides a Graphical User Interface2 to add, edit, and delete
such components. The devices interface (Fig. 8) allows de-
signers to add new devices, and edit and delete existing ones.
For each device, designers have the option to specify the size
of messages and the probability distribution based on which
messages are generated by the device, the frequency at which
messages are generated, and the observations that the device
captures. Next, the applications interface (Fig. 9) window
allows adding new applications and editing their properties
(the application category they belong to, the observations they
receive, and the rate at which they process messages). This
is where designers also have the option to define specific
priorities for applications. In a similar fashion, designers can
define properties of application categories, QoS requirements,
and observations in dedicated interfaces.

Once all IoT system components are defined, EDICT gen-
erates the JSON-LD files3 corresponding to these components
according to the NGSI-LD model presented in IV-A. Listing 2
shows how an IoT device is defined in JSON-LD format.

2Screenshots showing EDICT’s GUI are available in §VIII-A
3The JSON-LD notations for defining all the IoT system components are

available in §VIII-B



subscriptionFlow category priorityAN priorityRT priorityTS priorityVS droppingAN droppingRT droppingTS droppingVS networkPolicy networkResources ressponseTime throughput ...
amazonecho/app14 TS 0 0 0 0 0 0 0 0 default 650 1.694455 ... ...

intrusion/app12 RT 0 0 0 0 5 0 0 2 default 650 1.232349 ... ...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

TABLE II: Output Dataset Format

Each device has a name and is identified by a unique URN
(id). A device sends messages with a messageSize at a
specific publishFrequency. In addition, we consider that
devices generate messages based on a probability distribution
(dataDistribution). A device captures one or more ob-
servation; this is represented in the capturesObservation

relationship.

1 "id": "urn:ngsi-ld:edict:Device:dcbd9ee7-...",
2 "type": "Device",
3 "name": "device 1",
4 "publishFrequency": 150,
5 "messageSize": 2000,
6 "dataDistribution": "exponential",
7 "capturesObservation": ["urn:ngsi-ld:edict:Observation:85

c38830-...", ... ],
8 ...

Listing 2: IoT device JSON-LD definition

Similarly, the definition of applications deployed in the smart
space is shown in Listing 3. Each application belongs to
an applicationCategory and is assigned a priority.
Note that a lower integer represents a higher priority. Appli-
cations receive one or more observation, which are defined
as a list in the receivesObservation field. In addition,
applications process the received messages at a specific rate
(processingRate), and following an exponential probability
distribution (processingDistribution). Each application
deployed belongs to a specific category (Listing 4), and each
category defines QoS requirements in terms of maximum
response time (in seconds), minimum throughput (in Kbps),
and maximum drop rate (Listing 5). Note that IoT designers
that already have a representation of their IoT system in the
JSON-LD notation may readily upload their files to EDICT.

After defining the components of their IoT system infras-
tructure, designers can now specify the configuration parame-
ters of their systems, as shown in Fig. 6. Designers can specify
the available network resources (i.e., the available bandwidth
between the data exchange system and the applications), and
the network resource allocation policy to be used. Currently,
EDICT supports three network allocation policies: (i) the
default policy, where all network resources are used to forward
all data flows, (ii) the shared policy, where network resources
are equally shared between the application categories defined,
and (iii) the max-min policy, which shares network resources
among categories based on the max-min resource allocation
policy. Moreover, the configuration parameters include setting
drop rates for application categories, and defining the capacity
(in number of messages) of the data exchange system. Design-
ers can then define some simulation settings: the simulation
duration, an alias to be used for saving the simulations results,
and a global message size to be used when running the
simulation.

Fig. 6: EDICT Parameters

IoT-enhanced Environment Properties QoS Requirements
App. categories |A| |R| WDX δmax θmin ωmax

AN 6 21

650 MB /s

best effort best effort best effort
RT 9 17 <400 ms 384 KB / s 0%
TS 6 12 <4 s - 0%
ST 9 10 <2 s 384 KB / s <2%

Total 30 60 650 MB/s

TABLE III: Experimental Setup
B. Experimental Setup

We demonstrate the utility of EDICT by simulating IoT
interactions in an environment that has the properties presented
in Table III. We rely on the works presented in [36], [37] to set
the values for the message sizes and publishing frequencies for
the devices. We consider a smart office building equipped with
726 sensors/IoT devices that generate 9 types of observations
and publish them to an Edge broker. 30 applications belonging
to 4 application categories (AN, RT, TS, ST) subscribe to
receive data from one or more observation. The total number
of subscriptions is 60. We use the ETSI TS 1212 105 V15.0.0
standard [38] to compose the QoS requirements for the four
application categories. However, IoT designers can use other
existing standards or define their own requirements.

Using the setup displayed in Table III and the NGSI-
LD model presented in §IV-A, we create the corresponding
NGSI-LD instance of the smart building. The complete JSON-
LD files for this setup can be found at https://github.com/
SAMSGBLab/edict--datamodels.

C. Design-time System Tuning

We feed the JSON-LD files to EDICT that composes the
queueing models and simulates them using JMT. EDICT then
generates the performance metrics dataset that captures the
Edge interactions in the smart building described above. Note
that the realism of the generated dataset has been validated
in our previous work [33] using a real IoT system imple-
mentation. The JMT composed network and the dataset can
be found on https://github.com/SAMSGBLab/edict. As men-
tioned in §V-B, the generated dataset contains metrics for the
performance of the IoT system under different configuration
parameters.



The simulation results show an 82% utilization of the
system. Fig. 7 shows the average end-to-end latency for each
application category for some of the configurations: (i) the
default configuration, where all network resources are used
to transmit all data without setting any priorities or drop
rates, (ii) using the max-min network allocation policy [29],
(iii) prioritizing time-sensitive applications based on the QoS
requirements (RT applications), and (iv) setting a dropping
rate of 2% for loss-tolerant applications based on the QoS
requirements (AN and ST applications). Running simulations
with multiple configuration parameters allows IoT designers
to know which configuration is best suited for their needs.
For instance, based on the results of Fig. 7, IoT designers can
consider that they have to prioritize flows belonging to RT
applications (prioritize RT) to satisfy all applications’ QoS
requirements. EDICT saves IoT designers the tedious effort
needed to manually test different configurations after deploy-
ment. The dataset generated by EDICT can be integrated as a
part of an automated approach for system tuning.

Fig. 7: End-to-End Latency per Application Category

D. Enabling Rapid Runtime Adaptation

To enable runtime adaptation in smart environments, IoT
designers need to know the performance of their systems on-
the-fly when changes in the Edge infrastructure occur. The
time needed to run simulations is too long to allow for a
rapid performance analysis of the system at runtime. For
example, EDICT simulations can take up to 5 minutes to
converge; this time is convenient for running design time
simulations, but is too long to perform runtime adaptation.
EDICT supports runtime readaptation through an ML-based
QoS prediction component that quickly provides insights into
the performance of the IoT system when subscriptions or
configuration parameters change.

We validate EDICT’s QoS prediction mechanism in two
ways: (i) by considering a changing number of subscriptions,
and (ii) by considering changing configuration parameters.
In the remainder of this section, we consider the following
configurations: prioritizing one of the four application cate-
gory, prioritizing applications based on their QoS requirements
(giving the highest priority to RT applications, then to ST
applications, then to TS applications, then to AN applications),
and applying a drop rate of 2% for loss-tolerant applications

New subscriptions New configurations
Dataset size KNN LR DT DW KNN LR DT DW
220 0.035 0.036 0.031 0.035 0.0203 0.021 0.022 0.024
440 0.069 0.191 0.072 0.205 0.235 0.195 0.233 0.162
660 0.101 0.648 0.110 0.706 0.090 0.27 0.066 0.118
880 0.199 2.882 0.193 3.165 0.247 3.973 0.062 1.424
1100 0.195 3.487 0.204 3.875 0.346 7.975 0.202 3.027

TABLE IV: Comparison of RMSE (sec) of QoS prediction

(AN and ST). In the case of a congested system, we apply
more aggressive drop rates (5% and 10%).

For the sake of comparison, we test four QoS prediction
models that EDICT uses to support rapid runtime adaptation:
(i) the KNN algorithm, (ii) the Linear Regression algorithm,
(iii) Decision Trees, and (iv) AWS’s DataWig library [39].
DataWig is a deep learning-based framework to impute miss-
ing values in datasets. To predict the metrics values for new
subscriptions or configurations, we consider these values as
unknown, and use DataWig to impute them. We compare the
RMSE and the prediction time needed for the four aforemen-
tioned models.

We start first by evaluating EDICT’s predictions when new
subscriptions are added. We consider different dataset sizes
that have an increasing number of subscriptions. For each
dataset, the number of samples is equal to the number of
subscriptions times the number of configurations. For example,
when simulating a system with 20 subscriptions under 11
configurations, the number of samples is 220. We test EDICT’s
prediction mechanism on 5 datasets. For each iteration, we
train the models on the dataset generated by EDICT, and
then use the models to predict the end-to-end latency for
new subscriptions that are added to the IoT system. We
validate the predicted values by using EDICT to simulate
the IoT system with the new subscriptions. Table IV shows
the RMSE for the ML models when predicting metrics for
new subscriptions. We notice that KNN and Decision Trees
have the best performance even when the size of the dataset
increases: the maximum RMSE for KNN is 0.195 s and that of
Decision Trees is 0.204 s. In contrast, the RMSE of the Linear
Regression model and DataWig increases significantly as the
dataset size increases. This is caused by the non-linear nature
of queueing delays that cannot be captured by these models.
In terms of prediction time, Decision Trees achieve the best
performance they can predict metrics for new subscriptions in
less than 4ms. The linear regression model also has a low
prediction time of 20ms—albeit with a much higher error.
Even though KNN’s prediction time is significantly lower than
DataWig’s for small datasets, both models tend to have a
similar prediction time of 2s when the dataset size increases.

Next, we test how well the four models perform when
predicting the performance of the IoT system under new
configuration parameters. Similarly to the approach above, we
test EDICT’s predictions on 5 datasets. However, instead of
using the models to predict the metrics values when we add
new subscriptions, we test how well the models can predict
the metrics values for existing subscriptions under different
configuration parameters. For instance, we train the models



on a dataset generated by EDICT that contains prioritizing
AN, RT, and ST applications, then we test the models by
giving them as an input a new configuration that prioritizes
TS applications. The models then have to predict the metrics
for the subscriptions under the given configuration. This task
is challenging since the models have to predict values for
configurations not seen during training. Again, as Table IV
shows, KNN and Decision Trees perform better than DataWig
and the Linear Regression model, with a maximum RMSE of
0.34 s and 0.233 s, respectively. We notice that the execution
time for predicting metrics under new configurations is higher
than that for predicting new subscriptions for all models.
Decision Trees can predict metrics in 18ms and a Linear
Regression model takes about 10ms. As expected, KNN and
DataWig have a much higher prediction time above 3s. This is
due to the lazy nature of KNN and the fact that DataWig relies
on neural networks, which are complex and have a higher
prediction time than other models.

VII. CONCLUSION AND FUTURE WORK

This paper presents EDICT, a simulation tool for evaluating
the performance of Edge interactions in smart environments.
EDICT leverages the NGSI-LD information model to represent
data exchange in smart environments. We also present a
generic QoS model that can be instantiated to create queueing
networks that represent the smart environments instances.
These queueing networks are simulated to provide a metrics
dataset that evaluates the performance of data exchange for
multiple situations and configuration parameters of an IoT-
enhanced environment. The output dataset can be integrated
into an automated system tuning approach by IoT systems
designers. To support runtime adaptation, EDICT provides
a QoS prediction mechanism that allows designers to get
the performance of their systems on-the-fly when changes in
subscriptions or configurations occur. Our future work includes
adding more performance metrics in the dataset such as the
energy consumption of the devices and the needed accuracy
of the data. We shall also extend EDICT to support more
input types (e.g., RDF), and investigate more QoS prediction
techniques to allow faster and more accurate predictions.
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VIII. APPENDIX

A. EDICT’s Graphical User Interface (GUI)

IoT systems designers can add, edit, and delete devices
using the interface shown in Fig. 8.

Fig. 8: EDICT Devices

Similarly, they can manage the properties of the applications
deployed in the smart environment using the interface shown
in Fig. 9.

Fig. 9: EDICT Applications

Fig. 10 shows an example of the queueing network com-
posed using JMT.

B. Defining the IoT System Components Using JSON-LD

Listing 3 shows how an application is defined using JSON-
LD notation.

Fig. 10: JMT Composed Queueing Network

1 "id": "urn:ngsi-ld:edict:Application:a3b6dc85-...",
2 "type": "Application",
3 "name": "app 1",
4 "applicationCategory": "AN",
5 "priority": 0,
6 "processingRate": 1000,
7 "processingDistribution": "exponential",
8 "receivesObservation": ["urn:ngsi-ld:edict:Observation

:01437e79-...", "urn:ngsi-ld:edict:Observation:58
f0581d-...", ... ],

9 "@context": ["https://raw.githubusercontent.com/SAMSGBLab
/edict--datamodels/main/context.jsonld"]

Listing 3: Application JSON-LD definition

Listing 4 shows how to define an application category using
JSON-LD notation.
1 "id": "urn:ngsi-ld:edict:ApplicationCategory:b340208c

-...",
2 "type": "ApplicationCategory",
3 "name": "analytics",
4 "@context": ["https://raw.githubusercontent.com/SAMSGBLab

/edict--datamodels/main/context.jsonld"]

Listing 4: Application category JSON-LD efinition

Listing 5 shows how to define the QoS requirements of
application categories using JSON-LD notation.
1 "id": "urn:ngsi-ld:edict:QosRequirement:9ffd2f4b-...",
2 "type": "QosRequirement",
3 "name": "realtime requirements",
4 "maxResponseTime": 0.4,
5 "minThroughput": 28.2,
6 "maxDropRate": 0.02,
7 "@context": ["https://raw.githubusercontent.com/SAMSGBLab

/edict--datamodels/main/context.jsonld"]

Listing 5: QoS requirements JSON-LD definition


