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ABSTRACT
We present a surrogate-assisted multiobjective optimization algo-

rithm. The aggregation of the objectives relies on the Uncrowded

Hypervolume Improvement (UHVI) which is partly replaced by

a linear-quadratic surrogate that is integrated into the CMA-ES

algorithm. Surrogating the UHVI poses two challenges. First, the

UHVI is a dynamic function, changing with the empirical Pareto set.

Second, it is a composite function, defined differently for dominated

and nondominated points. The presented algorithm is thought to be

used with expensive functions of moderate dimension (up to about

50) with a quadratic surrogate which is updated based on its rank-

ing ability. We report numerical experiments which include tests

on the COCO benchmark. The algorithm shows in particular linear

convergence on the double sphere function with a convergence

rate that is 6-20 times faster than without surrogate assistance.
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1 INTRODUCTION
Many practical optimization problems have competing or even in-

commensurable objectives, the computation of which takes substan-

tial numerical effort. Multiobjective optimization (MO) algorithms
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tackle such problems but they are typically more costly than single-

objective algorithms as they approximate the Pareto set which may

be infinite in size. In this context, MO algorithms may be equipped

with surrogates of the objectives in order to circumvent evaluations

of the expensive objectives and hence save computing time.

The use of surrogates (or metamodels) dates back to the origins

of the single-objective optimization methods in the 50’s when it was

introduced as the response surface methodology [4]. The addition of

surrogates to MO algorithms, while being much more recent ([16] is

one of the early contributions), has already received much attention.

Recent reviews can be found in [1, 7]. Including surrogates in MO

algorithms raises four main questions.

Which quantity should be surrogated? In MO, one can choose to

surrogate the objectives [19] or a function aggregating them, for

example the hypervolume improvement. In [18], the aggregating

function is learned through a support vector machine classifying

Pareto and non-Pareto points. A taxonomy of the possible combi-

nations of aggregated functions of the objectives and constraints

which are then metamodeled is presented in [9].

With which surrogate? Many possible surrogates exist such as

quadratic response surfaces, Gaussian processes, support-vector

machines, and neural networks. A basic rationale for choosing the

surrogate is to compromise between the numerical cost of building

the surrogate (number of points needed and algorithmic complexity)

and the required accuracy, which depends on the problem at hand.

In particular, it should be decidedwhether the scope of the surrogate

is local to a trusted region or global to the entire design space. The

targeted problem dimension is relevant for the choice too.

How to handle simultaneously the primary goal of solving an opti-
mization problem and the secondary goal of learning the surrogate?
This question has given rise to the notion of acquisition criteria,

popular in Bayesian optimization. In the MO context, points are

commonly selected based on the expected hypervolume improve-

ment [3].

How is the surrogate used in the optimization algorithm? A surro-

gate can replace calls to the objective functions during all or some

phases of the algorithm (as in the “local searches” of [19]). It can

also filter out some points predicted to be bad (e.g., in [18]).

The current article studies the addition of a linear-quadratic

surrogate to a multiobjective version of CMA-ES. We surrogate the

Uncrowded Hypervolume Improvement (UHVI) from COMO-CMA-

ES [21]. The approach is quite straightforward as we can simply
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replace the single-objective CMA-ES [13] in the COMO-CMA-ES

with the surrogate based lq-CMA-ES [11].

Our idea is that the aggregated criterion is what really matters

in MO and we expect to better control the effects of the surrogate

errors by directly working with the UHVI figure of merit. This is a

way to account for the coupling between the different objectives

which independent surrogates cannot do. In passing, this allows

to build only one surrogate (as opposed to one for each objective)

which is an ingredient for numerical sparsity.

A linear-quadratic surrogate is conceptually simple and numeri-

cally stable and we target problem dimensions larger than ten for

which it is not clear that more flexible surrogates can be learned

[11]. The acquisition criterion is directly the value of the UHVI. Con-

trarily to Bayesian optimizers [20], there is no need for a specific

acquisition criterion here because the surrogate is not interpolat-

ing and the diversity is controlled through the randomness of the

evolutionary sampling.

Our surrogate replaces calls to the objective functions. As a first

step towards rank-invariance, tests of its ranking ability control the
proportion of points for which the true functions are calculated.

This work and [17] share the use of quadratic surrogates but in [17]

the objectives are approximated and a trust-region mechanism is

implemented.

Section 2 gives a short summary of the UHVI and the linear-

quadratic rank-oriented surrogate. The implementation of the linear-

quadratic surrogate of the UHVI in the Sofomore framework is

presented in Section 3. Numerical experiments are described and

discussed in Section 4 and Section 5 concludes the paper.

2 PREVIOUS WORK
The algorithm introduced in this paper is an instance of the Sofo-

more framework with lq-CMA-ES as a single objective optimizer. To

understand the underlying algorithmwe first describe the Sofomore

framework and the lq-CMA-ES algorithm.

2.1 Sofomore: multiobjective optimization with
single objective algorithms

The Sofomore framework [21] reformulates a multiobjective opti-

mization problem as multiple single-objective problems where each

problem corresponds to a dynamically chosen trade-off between the

objective functions. The dynamic aggregation of objectives is called

Uncrowded Hypervolume Improvement (UHVI) [21]. It is defined

for nondominated solutions as the hypervolume improvement. For

dominated solutions it is the Euclidean distance to the nondomi-

nated region in the objective space. The UHVI allows to maximize

the hypervolume of 𝑝 points via optimizing 𝑝 single-objective dy-

namic problems with 𝑝 instantiations of a single objective opti-

mization algorithm. Each single objective algorithm maximizes the

hypervolume given the 𝑝 − 1 incumbent solutions of the other 𝑝 − 1
optimizers. One instance of Sofomore is COMO-CMA-ES [21] with

CMA-ES as single objective algorithm.

2.2 Surrogating CMA-ES
The lq-CMA-ES [11] is a surrogate assisted variant of CMA-ES

that uses a linear or quadratic model to approximate the values of

the objective function, in our case the uncrowded hypervolume

Algorithm 1 The COMO-lq-CMA-ES: an instance of the Sofomore

framework with the lq-CMA-ES as single-objective optimizer

1: Required:
2: objective functions 𝑓 = (𝑓1, . . . , 𝑓𝑘 ) in dimension 𝑑

3: initialSampler() returns initial solutions ∈ R𝑑

4: number of desired solutions 𝑝

5: global initial step-size 𝜎0 for all CMA-ES

6: fixed reference point 𝑟 ∈ R𝑘
for the hypervolume indicator

7: a UHVI𝑟 () function
8: Initializations:
9: 𝑥 (𝑖 ) = initialSampler(), 1 ≤ 𝑖 ≤ 𝑝

10: evaluate 𝑓 (𝑥 (1) ), . . . , 𝑓 (𝑥 (𝑝 ) )
11: es(𝑖) ← (𝜇/𝜇, 𝜆)-CMA-ES(𝑥 (𝑖 ) , 𝜎0), 1 ≤ 𝑖 ≤ 𝑝

12: lq(𝑖) ← lq.initialize(UHVI𝑟 , 𝑥
(1) , 𝑓 (𝑥 (1) ), . . . , 𝑥 (𝑝 ) , 𝑓 (𝑥 (𝑝 ) )),

1 ≤ 𝑖 ≤ 𝑝

13: while not stopping criterion do
14: sample at random a permutation 𝜋 of {1, . . . , 𝑝}
15: for 𝑖 = 1 to 𝑝 do
16: {𝑠1, . . . , 𝑠𝜆} ← es(𝜋 (𝑖)) .ask() # get 𝜆 offspring from

# 𝜋 (𝑖)th CMA-ES

17: lq(𝜋 (𝑖)) .update(𝑠1, . . . , 𝑠𝜆) # calls between 1 and 𝜆 vec-

# tors of objective functions

# 𝑓 through UHVI𝑟

18: compute the fitness Φ(𝑠 𝑗 ) = lq(𝜋 (𝑖)) .evaluate(𝑠 𝑗 ),
1 ≤ 𝑗 ≤ 𝜆

19: es(𝜋 (𝑖)).tell(Φ(𝑠1), . . . ,Φ(𝑠𝜆))
20: 𝑥 (𝜋 (𝑖 ) ) ← es(𝜋 (𝑖)) .mean

21: update the stored objective vector 𝑓 (𝑥 (𝜋 (𝑖 ) ) )
22: add (𝑥 (𝜋 (𝑖 ) ) , 𝑓 (𝑥 (𝜋 (𝑖 ) ) ) to the data queueM

of lq(𝜋 (𝑖))
23: return 𝑥 (1) , . . . , 𝑥 (𝑝 )

improvement (UHVI) which maps solutions from the search space

either to their contributing hypervolume or to their 𝑓 -distance to

the nondominated domain (see above). Because CMA-ES requires

only the ranking of solutions w.r.t. to the objective function, the

surrogate model building and management is based on its ability

to rank solutions and the lq-CMA-ES uses the Kendall-𝜏 to monitor

the model’s quality. The lq-CMA-ES can, at least in principle, be

used for the dynamic and composite UHVI without any essential

algorithm changes, as described in the following section.

3 INTEGRATING LQ-CMA-ES INTO
SOFOMORE

Integrating lq-CMA-ES into the Sofomore framework is straight-

forward, as we mainly replace each single-objective CMA-ES in

COMO-CMA-ES with the lq-CMA-ES as single-objective optimiza-

tion algorithm.

Using the single-objective lq-CMA-ES of [11] within the Sofo-

more framework [21] results in the surrogate-assisted multiob-

jective COMO-lq-CMA-ES algorithm. Algorithm 1 shows its pseu-

docode using an ask-and-tell interface. In the following, we describe

its components in more detail.
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Basic structure. In the Sofomore framework, 𝑝 single-objective

optimization algorithms optimize the multiobjective problem con-

certedly in the sense that their 𝑝 incumbents aim at approximating

the optimal 𝑝-distribution of the hypervolume indicator [2]. Hence-

forth, single-objective optimization algorithms will also be called

kernels (they represent in our case also a unimodal probability

density over the input space whose modal and mean value is the

kernel’s incumbent). Using a single-objective algorithm (a kernel)

with an ask-and-tell interface [14], the algorithm boils down to a

few basic steps: after an initial sampling (lines 9–10) and the ini-

tialization of the 𝑝 kernels (line 11) and surrogates (line 12), the

COMO-lq-CMA-ES advances each of the 𝑝 kernels in a random

order by one ask-and-tell step each. The objective function is given

by the linear-quadratic surrogate to the UHVI of the entire set

of incumbents without the incumbent of the currently advancing

kernel—thus dynamically changing from one iteration to the next

because the incumbents of the other kernels changed in the mean-

time. The objective function is called during the updating of the

surrogate, line 17. In addition to the evaluations of the incumbents

on the objective function (line 21), there are between one and 𝜆

(the population size) calls to the true 𝑓 at each iteration of each

CMA-ES optimizer. The exact number of calls to 𝑓 depends on

the Kendall-𝜏 test within the lq.update function, which is depicted,

along with other functionalities of the lq surrogate in Algorithm 2.

At least 2% of the population is evaluated at the first Kendall-𝜏 test.

The incumbent data points are added to the data queue of their

corresponding 𝑙𝑞 model (line 22 in Algorithm 1), which is not the

case in the original algorithm [11]. Additional details (e.g., the rate

of growth of the number of evaluated individuals) can be found in

[11].

Surrogate updates account for the dynamic function. The UHVI

is a dynamic function, changing with the position of the (other)

incumbents (empirical Pareto front). This is readily taken care of

by i) recalculating at each iteration the UHVI of all the data points

inM, and ii) refitting the quadratic surrogate afterwards, as done
in lq.update, Algorithm 2. This is feasible thanks to the numerical

efficiency of this surrogate whose computational cost is that of a

pseudo-inverse of a matrix of size the number of parameters of the

surrogate, for a total cost of O(𝑑6) (O(𝑑2) parameters in the qua-

dratic response surface and the cost of the pseudo-inverse is cubic).

Additionally, recalculating the (contributing) hypervolume of 𝑘 ker-

nels takes only Θ(𝑘 log𝑘) for two objectives, which is negligible

compared to model building.

Modeling capacity of the quadratic surrogate. The quadratic sur-
rogate can correctly predict any twice continuously differentiable

function in a sufficiently small neighborhood around a point. This

is not the case everywhere of the UHVI function (cf. Figure 1 top

right in [21]) and no trust region control is included in lq-CMA-ES

since the step size 𝜎 evolves according to the CMA-ES dynamics.

However, when the quadratic surrogate does not correctly predict

the ranks, all 𝜆 points of the population end up being evaluated

with the true functions 𝑓 and the surrogate is not used at this itera-

tion. In other words, when the quadratic surrogate does not work,

lq-CMA-ES degenerates into CMA-ES (see lq.update and lq.evaluate

functions in Algorithm 2).

Algorithm 2 The linear-quadratic surrogate functionnalities

within lq-CMA-ES

Required:
UHVI𝑟 (), a function which uses the reference point 𝑟 and

a set of 𝑝 vectors of objective functions, 𝑓 (𝑥 (1) ), . . . , 𝑓 (𝑥 (𝑝 ) )

function lq.initialize(UHVI𝑟 , 𝑥
(1) , 𝑓 (𝑥 (1) ), . . . , 𝑥 (𝑝 ) , 𝑓 (𝑥 (𝑝 ) ))

start a data queueM made of sorted (𝑥 (𝑖 ) , 𝑓 (𝑥 (𝑖 ) )),
𝑖 = 1, . . . , 𝑝 , the best last in queue

return a quadratic surrogate for lq-CMA-ES approximating

the UHVI with 𝑟 as reference point and the empirical Pareto

front extracted from 𝑓 (𝑥 (1) ), . . . , 𝑓 (𝑥 (𝑝 ) )

function lq.update(𝑠1, . . . , 𝑠𝜆)

recalculate UHVI𝑟 () for all points in the queueM and refit

the surrogate # because the Pareto front may have

# changed (without new call to 𝑓 )

while Kendall-𝜏 < 0.85 and not all population evaluated do
sort 𝑠1, . . . , 𝑠𝜆 according to lq.evaluate(𝑠𝑖 ), 𝑖 = 1, . . . , 𝜆

evaluate UHVI𝑟 () of a small, increasing fraction of them,

starting with the surrogate bests # (UHVI𝑟 (𝑠𝑖 ) calls
# the true 𝑓 (𝑠𝑖 ))

calculate Kendall-𝜏 between the true and surrogated

UHVI of the fraction of individuals

add the newly evaluated points to the queueM, the best

last in queue. Remove oldest individuals fromM until

its size ismax(𝜆, 2×number of surrogate parameters)
refit the quadratic surrogate toM

return lq

function lq.evaluate(𝑠)

if 𝑠 ∈ last population and all 𝜆 individuals evaluated then
return UHVI𝑟 () at 𝑠

else
return surrogate prediction for UHVI𝑟 () at 𝑠

4 NUMERICAL EXPERIMENTS
In this section, we show experiments on the double sphere function

and on the bbob-biobj test suite [5] of the COCO benchmarking

platform [12].

4.1 Double Sphere Function
We investigate the convergence behavior of COMO-lq-CMA-ES on

the double sphere function.

4.1.1 Experimental setup. We run experiments with COMO-CMA-

ES and COMO-lq-CMA-ES with 𝑝 = 2, 10, 30 on the double sphere

function

𝑓1 (𝑥) =
𝑑∑︁
𝑖=1

𝑥2𝑖 , 𝑓2 (𝑥) = (𝑥1 − 3)
2 +

𝑑∑︁
𝑖=2

𝑥2𝑖 (1)

with the reference point at (10, 10). We initialize each 𝑥0 uniformly

at random in [−5, 5]𝑑 and set the initial step size 𝜎0 = 2/
√
𝑑 . The

termination conditions tolfun, tolfunhist, tolstagnation, and
tolx were set to 0 to avoid early termination within the displayed
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budget. We use the parameter settings for lq-CMA-ES as in [11] (in

particular Kendall-𝜏 threshold of 0.85 and the minimum number

of function evaluations per iteration of 2%). The population size

of the kernels is set to a popsize_factor×(4 + 3 × ln(𝑑)) with
popsize_factor = 1 and 4.

4.1.2 Single runs. Figure 1 shows plots from two single runs on

the 20-dimensional double sphere function with two kernels.

In addition to the plots from the cma Python module, we moni-

tored also the performance of the surrogate model. The surrogate

fitness values as used in the selection of lq-CMA-ES and plotted by

the cma module are in itself uninformative. Hence we show in the

upper right subfigures the UHVI of the distribution mean of the

lq-CMA-ES when the second kernel is at the optimum, as the gap

to its value when both kernels are at the optimum. This graph and

the convergence of the variables (upper middle) and the step-size 𝜎

indicate linear convergence to the optimum. As the second kernel

exhibits the same behavior for the UHVI (not shown), the optimal

hypervolume of 72 is approached. Apart from a subtle dip around

100 and 50 iterations, respectively for population size 12 and 51,

the dynamic nature of the fitness seems to have no visible impact

on the behavior while the convergence rate per iteration is about

10-20% slower than for CMA-ES on the sphere function. The dip

is much more pronounced in the Kendall-𝜏 correlation between

the surrogate and the true UHVI values for the population (green

and black lines in the lower right plot) indicating a comparatively

poor model fit. This could be due to a fast moving kernel or to the

difficulty to model the composite UHVI on the boundary between

domination and nondomination.

Peculiarly, the Kendall-𝜏 ’s drop to zero for the final 50-100 iter-

ations and consequently all solutions are evaluated during these

iterations. We attribute this effect to numerical precision problems

in the model building process.

The principal axis of the sample ellipsoid (lower left) and the

standard deviations in the coordinates (lower middle) stay within a

factor of about 2-3. The standard deviation for the first variable is

about two times smaller, indicating that the sensitivity along the

Pareto set is slightly higher than in the perpendicular directions.

Overall, this suggests that the UHVI landscape for the double sphere

function is relatively benign.

4.1.3 Performance effects from the surrogate. Figure 2 shows the
progression of the gap between the hypervolume achieved by all

kernels to the largest observed hypervolume (in the subplot) for

COMO-lq-CMA-ES and COMO-CMA-ES on the double sphere func-

tion. Both algorithms exhibit, after an initial phase, linear conver-

gence up to apparent numerical precision limits. The convergence

rate of COMO-lq-CMA-ES is about six and 20 times faster than that

of COMO-CMA-ES with the default and 4× default population size,

respectively. Below a gap of 10
−10

(and 10
−8

with 32 kernels), the

convergence rate of COMO-lq-CMA-ES drops back to the rate of

COMO-CMA-ES, because all solutions are evaluated (see above).

4.2 COCO
We use the biobjective test suite [5] of the COCO benchmarking

framework [12] to evaluate the effect of the introduced surrogate

model building on a wide variety of functions.

4.2.1 Experimental setup. We run experiments on the bbob-biobj
test function suite from COCO in dimensions 2, 3, 5, 10, 20. We used

the same setup as in the previous subsection for the double sphere

function for both algorithms. The reference point is provided for

each problem by its attribute largest_fvalues_of_interest. We

run the experiments until the budget of 10, 000 × 𝑑 function evalu-

ations is exhausted without restarts. Moreover, with our current

settings we only hit the maximum number of function evaluations

termination condition.

The performance assessment is done in two different ways: (i) by

the COCO standard assessment based on all evaluated solutions to

compute the hypervolume and (ii) by using only the incumbents of

the algorithms for the hypervolume computation. Specifically, we

evaluate only the incumbent(s) of the advancing kernel(s) on the

observed problem as often as the number of function evaluations

used for the model building. We adopt this approach to reduce the

effects from random sampling since we optimize for the 𝑝-optimal

distribution on the Pareto front. Both results are presented in this

paper. The assessment from incumbents is distinguished by adding

the ker prefix to the name of the algorithm.
1

Statistical significance test results are those provided by the

COCO platform (rank sum tests).

4.2.2 Results. Figure 3 shows overall empirical runtime distribu-

tions for the kernel hypervolume of ten kernels (orange and blue)

and hundred kernels (red and green) as quality measure of COMO-

lq-CMA-ES and COMO-CMA-ES .

For ten kernels, the COMO-lq-CMA-ES (blue) is in all dimensions

overall about 25% faster than COMO-CMA-ES (orange). For 100

kernels, the COMO-lq-CMA-ES (green) is in all dimensions overall

two to three times faster than COMO-CMA-ES (red).

Figures 4 and 5 show the results on the single functions in di-

mension 20. The COMO-lq-CMA-ES is statistically significantly

better than the other three variants for at least one of the five target

precisions 1, 10
−1
, 10
−2
, 10
−3

and 10
−4

on functions 1–6, 9, 12, 21,

28, 29, 33, 35, 36, 39, 46, 53 for ten kernels and on functions 1, 4, 5,

6, 9, 22, 29, 35, 41, 46 for 100 kernels.

We also find the COMO-lq-CMA-ES with 10 kernels to be statis-

tically significantly better than the other three variants for at least

one target on 1, 0, 3, 11 and 17 of the 55 functions in dimension 2,

3, 5, 10 and 20, respectively. With 100 kernels, COMO-lq-CMA-ES

is statistically significantly better than the other three variants on

1, 3, 8, 10 and 10 of the 55 functions in dimension 2, 3, 5, 10 and

20, respectively, for at least one target. On the other hand, COMO-

CMA-ES was never observed to be statistically significantly better

than the other three variants.

Figure 6 shows empirical runtime distributions aggregated over

all functions where, as by default, all evaluated solutions are taken

into account for the performance assessment (see Section 4.2.1).

Apart from our results with COMO-CMA-ES and COMO-lq-CMA-

ES, we show results for MO-CMA-ES [15, 22] and COMO-CMA-ES

(as COMO-100), both benchmarked in [10], and for NSGA-III [8] as

benchmarked in [6] and denoted by N-III-111.
2
The shown algo-

rithms have a population size of 100 except for N-III-111 with a

1
All experimental COCO data are at https://mgharafi.github.io/COMO-lq-CMA-ES .

2
The data sets (COMO-100_dufosse, MO-CMA-ES-100, NS-III-111-platypus) are
taken from https://numbbo.github.io/data-archive/data-archive/bbob-biobj/2019 .

https://mgharafi.github.io/COMO-lq-CMA-ES/
https://numbbo.github.io/data-archive/data-archive/bbob-biobj/2019
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Figure 1: Two single runs of COMO-lq-CMA-ES on the double sphere function in dimension 20 with 𝑝 = 2 and population
size 𝜆 = 12 (above) and 51 (below). Shown are quantities related to one of the two kernels. The upper left figure shows, per
iteration, the absolute value of the population-best surrogate value (blue, negative values in magenta), its difference to the
overall minimum value (cyan), its difference between two iterations (cyan with gaps), the step-size 𝜎 (green), and the largest and
smallest sample standard deviation per coordinate (magenta). The lower left figure shows the square root of the eigenvalues of
the covariance matrix (principal axes lengths). The upper middle figure shows for each variable the difference to the optimal
value in symlog scale. The lower middle figure shows the sample standard deviations in each coordinate divided by the step-size
𝜎 . The upper right figures display the known UHVI at the optimum minus the UHVI of the kernel given the other kernel is at
the optimum. The lower right figure displays the ratio of evaluated solutions (red) and various Kendall-𝜏 ’s. The measurements
tau0 and tau1 are those used to decide on making further 𝑓 -evaluations in lq-CMA-ES after, respectively, the first and the last
evaluation of the iteration [11]. The measurements true_tau0 and true_tau1 give the ranking mismatch between surrogate
values and true UHVI values of the population, respectively before the first and after the last evaluation of the iteration.

population size of 111. The notable difference between our COMO-

CMA-ES experiment and the data of COMO-100_dufosse are due

to the 𝑑/2 times larger initial step-size in the latter data (as we

have confirmed in additional experiments). Overall, similar to the

previous observations, COMO-lq-CMA-ES is about 25% faster than

COMO-CMA-ES in dimension 3 (above 500𝑑 evaluations), the per-

formance gap increases with increasing dimension, and it becomes
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Figure 2: Hypervolume gap on the double sphere function of COMO-lq-CMA-ES (red) and COMO-CMA-ES (blue) with pop-
size_factor=1 (top, 5 runs) and popsize_factor=4 (bottom, 5 runs) and, from left to right, 2, 10 and 32 kernels. The hypervolume
gap is computed as the difference to the largest hypervolume observed within each subplot.
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Figure 3: Empirical cumulative distribution of the number of 𝑓 -evaluations divided by dimension (FEvals/DIM) for 58 targets
with target precision in {−10−4,−10−4.2, −10−4.4,−10−4.6,−10−4.8,−10−5, 0, 10−5, 10−4.9, 10−4.8, . . . , 10−0.1, 100} for all functions in
dimensions 3, 5, 10, and 20-D. As reference algorithm, the artificial best algorithm from BBOB 2016 is shown as light thick line
with diamond markers.

between a factor of about 1.5 and four in dimension 20 where the

gap diminishes with increasing runtimes.

Up to a budget of somewhere above 1000×𝑑 evaluations, NS-III
is the best algorithm in all dimensions, then overtaken by MO-CMA-ES,
and above around 5×104𝑑 evaluations COMO-lq-CMA-ES becomes

the best algorithm except in dimension 3.

5 SUMMARY AND CONCLUDING REMARKS
In this paper, we have added the linear-quadratic surrogate model

building procedure as it was introduced in the lq-CMA-ES [11] into

the COMO-CMA-ES [21]. Even though the CMA-ES must optimize

a dynamically changing fitness within COMO, the lq-CMA-ES does

not require any additional model building effort when integrated

in COMO.

Our experiments do not reveal any particular flaws or failures

from integrating the linear-quadratic surrogate model into COMO-

CMA-ES. On the double sphere function, the COMO-lq-CMA-ES

achieves a six times faster convergence rate than COMO-CMA-

ES with default population size, and 20 times faster with a four

times larger population size. On the bbob-biobj test suite from

COCO, a saving of 20-60% of the function evaluations is achieved

on average. These improvements are however smaller than those

observed in the single-objective case [11], in particular in smaller

dimensions or with a small number of kernels or with a larger



Multiobjective optimization with a quadratic surrogate-assisted CMA-ES GECCO ’23, July 15–19, 2023, Lisbon, Portugal

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerCom10

kerLQ-10

kerCom1e2

kerLQ-1e2

best 2016bbob-biobj f1, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

1 Sphere/Sphere

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerCom10

kerLQ-10

kerCom1e2

kerLQ-1e2

best 2016bbob-biobj f2, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

2 Sphere/sep. Ellipsoid

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerLQ-10

kerCom10

kerCom1e2

kerLQ-1e2

best 2016bbob-biobj f3, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

3 Sphere/Attr. sector

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerLQ-10

kerCom10

kerCom1e2

kerLQ-1e2

best 2016bbob-biobj f4, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

4 Sphere/Rosenbrock

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerLQ-10

kerCom10

kerCom1e2

kerLQ-1e2

best 2016bbob-biobj f5, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

5 Sphere/Sharp ridge

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerCom10

kerLQ-10

kerCom1e2

kerLQ-1e2

best 2016bbob-biobj f6, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

6 Sphere/Different Powers

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerCom1e2

kerCom10

kerLQ-10

kerLQ-1e2

best 2016bbob-biobj f7, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

7 Sphere/Rastrigin

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerLQ-10

kerCom10

kerCom1e2

kerLQ-1e2

best 2016bbob-biobj f8, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

8 Sphere/Schaffer F7

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerCom10

kerLQ-10

kerCom1e2

kerLQ-1e2

best 2016bbob-biobj f9, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

9 Sphere/Schwefel

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerCom10

kerLQ-10

kerCom1e2

kerLQ-1e2

best 2016bbob-biobj f10, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

10 Sphere/Gallagher 101

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerLQ-10

kerCom10

kerCom1e2

kerLQ-1e2

best 2016bbob-biobj f11, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

11 sep. Ellipsoid/sep. Elli.

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerLQ-1e2

kerCom1e2

kerCom10

kerLQ-10

best 2016bbob-biobj f12, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

12 sep. Ellipsoid/Attr. sector

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerLQ-10

kerCom10

kerCom1e2

kerLQ-1e2

best 2016bbob-biobj f13, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

13 sep. Ellipsoid/Rosenbrock

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerCom10

kerLQ-10

kerCom1e2

kerLQ-1e2

best 2016bbob-biobj f14, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

14 sep. Ellipsoid/Sharp ridge

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerCom10

kerLQ-10

kerCom1e2

kerLQ-1e2

best 2016bbob-biobj f15, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

15 sep. Ellipsoid/Diff. Powers

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerCom1e2

kerLQ-10

kerCom10

kerLQ-1e2

best 2016bbob-biobj f16, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

16 sep. Ellipsoid/Rastrigin

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerLQ-10

kerCom1e2

kerLQ-1e2

kerCom10

best 2016bbob-biobj f17, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

17 sep. Ellipsoid/Schaffer F7

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerCom10

kerLQ-10

kerLQ-1e2

kerCom1e2

best 2016bbob-biobj f18, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

18 sep. Ellipsoid/Schwefel

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerLQ-10

kerCom10

kerLQ-1e2

kerCom1e2

best 2016bbob-biobj f19, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

19 sep. Elli./Gallagher 101

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

kerCom1e2

kerLQ-1e2

kerLQ-10

kerCom10

best 2016bbob-biobj f20, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.6.1.158, hv-hash=ff0e71e8cd978373

20 Attr. sector/Attr. sector
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21 Attr. sector/Rosenbrock
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22 Attr. sector/Sharp ridge
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Figure 4: Empirical cumulative distribution of runtimes, measured in number of 𝑓 -evaluations, divided by dimension
(FEvals/DIM) for the 58 targets {−10−4,−10−4.2, −10−4.4,−10−4.6,−10−4.8,−10−5, 0, 10−5, 10−4.9, 10−4.8, . . . , 10−0.1, 100} in dimension
20.
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Figure 5: Empirical cumulative distribution of the number of objective function evaluations divided by dimension (FEvals/DIM)
as in Fig. 4 but for functions 𝑓36 to 𝑓55 in 20-D.
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Figure 6: Empirical cumulative distribution of the number of 𝑓 -evaluations divided by dimension (FEvals/DIM) for 58 targets
with target precision in {−10−4,−10−4.2, −10−4.4,−10−4.6,−10−4.8,−10−5, 0, 10−5, 10−4.9, 10−4.8, . . . , 10−0.1, 100} for all functions in 3,
5, 10 and 20-D. As reference algorithm, the artificial best algorithm from BBOB 2016 is shown as light thick line with diamond
markers.

budget. While the advantage of COMO-lq-CMA-ES is on many

functions statistically significant, we observe no case where COMO-

CMA-ES is statistically significantly better than COMO-lq-CMA-

ES. All our experiments were conducted with the original default

parameter settings without any additional parameter tuning.
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