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A B S T R A C T

The detection of anomalies is at the basis of any 3D printing control. In this paper, we propose a methodology
for detection of anomalies based on computer vision. This methodology is composed of three modules: (1)
image acquisition, (2) interlayer line and layer segmentation and (3) characterization of the local geometry
and texture of the layers and detection of anomalies. The image acquisition is performed with a camera fixed
to the printing nozzle. The proposed layer segmentation method recognizes and locates the lines separating
the printed layers (F-score = 91%). The third module – taking as input the segmentation and the original
image – evaluates the geometry of the layers and the texture of the material. The results are used to detect
geometry anomalies when the values are outside the expected range. The material texture is classified into
four classes of quality (macro-averaged F-score = 94%). We present the results and show the suitability of
our methodology for automatic detection and localization of anomalies on images acquired during a printing
session.
1. Introduction

Construction based on additive manufacturing is now heading to-
wards its maturity [1], with practical examples of 3D concrete printing
3DCP) at the building scale [2]. However, despite these high-profile

applications, there is still work to be done on material development,
construction strategies and the process control to make this technology
reproducible and certifiable.

In principle, extrusion-based 3D printing is based on an established
workflow: (1) design of the part, (2) definition of the print path and (3)
extrusion of the material (printing) [3]. Nevertheless, many different
process parameters influence the 3DCP extrusion e.g. the velocity of
the extrusion nozzle, the distance between the nozzle and the surface
of deposition, the dosing pump pressure, the extruded concrete’s rhe-
ological properties, etc. For this reason, various monitoring methods
have been proposed at different stages: before printing (determining
the feasibility of the process), during printing (process feedback), and
at post-production stages (post-printing processing) [4].

The primary objective of inline monitoring (during printing) is to
allow the operators to carry out corrective actions in case of anomalous
behavior. This principle can be extended to automatic control systems,
as seen in the literature for manufacturing processes at different size

scales. For example, in [5], a feedforward control system is tested
for fused filament fabrication. In [6], a closed-loop control system is
tested for 3DCP. In both cases, a vision system is used to measure
the parameter of interest: the layer width, which can be controlled by
adjusting the velocity of the extrusion nozzle.

Nonetheless, the layer width is not the only parameter that can be
measured to be able to take corrective action and minimize defects.
Some examples of geometrical deformations caused by process defects,
that can be identified by inspecting the layers’ thickness, are described
in [7]:

• Excessive velocity appears when the velocity of the extrusion
nozzle exceeds the extrusion rate, producing discontinuous layers
also called longitudinal tearing (Fig. 1(a))

• Over-pressing occurs when the pressing force resulting from the
extruded layer exceeds the strength of the penultimate layer,
resulting in staggered layer patterns with a loss of control of layer
width and thickness (Fig. 1(b))

• Flow-out occurs when the yield stress of the material is not suffi-
cient to hold its own weight. This introduces distance between the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.addma.2022.103175&domain=pdf
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Fig. 1. Printing process defects and their influence in the local geometry of printed samples [7].
Fig. 2. Summary of the proposed methodology.
printed piece and the extrusion nozzle, producing a poor material
deposition (e.g. coiling) (Fig. 1(c))

The measurement of the layers’ thickness can be performed by
ision systems too. Furthermore, vision systems are not limited to the
onitoring of geometrical properties, allowing the analysis of the ob-

erved surfaces in terms of properties such as the texture. In this work,
sing a lateral view of the printed piece, we propose a methodology for
nline 3D concrete printing monitoring using computer vision methods
see Fig. 2). Our contributions can be summarized as:

1. A method for automatic layer segmentation. We use a model
based on Deep Learning (DL) to locate the interlayer lines in
an image (i.e. the lines separating two printed layers), and
we segment independent printed layers by using these lines as
guide.

2. A monitoring method based on geometrical characterization of
the layers. We use image processing to determine the local
geometry, based on the interlayer lines, in terms of: orientation,
curvature, layer thickness and distance to the nozzle. These
measurements are used to detect and locate anomalies with
respect to the expected values in the observed layers.

3. A monitoring method based on textural characterization of the

layers. We use a machine learning approach to classify the
extruded concrete, region-wise, based on textural properties.
Textures are classified either as good or as one of fluid, dry and
tearing. These classes, which are dependent on the water content
of the mixture, are highly related to the layer’s rheological
properties.

The rest of this paper is organized as follows. In Section 2, we make
a literature review of approaches used for inline 3DCP monitoring.
In Section 3, we describe our experimental setup, focusing on the
inline image acquisition. In Section 4, we discuss the properties of the
images used in our experiments and the method used for interlayer line
segmentation. The methods for layer geometry characterization and
texture classification are described in Section 5. In Section 6, we show
our results on experimental images acquired in a 3DCP laboratory. In
Section 7, we discuss these results and close the paper by proposing
future improvements.

2. Related literature

For inline monitoring of 3DCP, a lot of research has been published
on rheological properties of the material. For example, an online yield
strength measurement on an uni-axial flow [13], where the mass
of concrete drops is measured, provides information about the yield
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Table 1
Summary of methods based on optics for 3DCP inline monitoring.

Work Sensor Type of property Measurements Approximate costa

[8] 1D Time-of-Flight Geometrical Layer to nozzle height
(top view)

5 USD

[9] Laser triangulation Geometrical Layer to nozzle height
(top view)

6500 USD

[10] RGB camera Geometrical Layer width
(top view)

40 USD

[6] Monochromatic
camera

Geometrical Layer width
(top view)

349 USD

[11] RGB camera Geometrical Layer orientation
(lateral view)

40 USD

[12] 3D scanner Geometrical Printed piece cloud to 3D model cloud distance
(lateral view)

472 USD

Ours RGB camera Geometrical,
textural

Layer to nozzle height; layer thickness; interlayer line
orientation and curvature; texture classification
(lateral view)

57 USD

aEstimated with base on the sensor models and/or specifications reported in the respective cited works.
trength and heterogeneity of the material before the printing. The
aterial properties can be controlled in real time using approaches

uch as a two-component strategy — with the addition of accelerator
t the nozzle outlet [14]. This type of information is useful because
nsufficient stiffness or strength of fresh concrete can lead to an un-
cceptable cumulative error or even failure, as observed in [15]. On
he other hand, other parameters may not make the printing process
ompletely fail but would lead to the creation of visible defects leading
o the rejection of the 3D printed part afterwards [16].

As a non-invasive approach to inline monitoring, methods based
n specialized optical sensors have shown promising results to detect
uch defects. Most published research in this direction focuses on
eometrical features. For example, a 1D Time-of-Flight distance sensor
as mounted on the printing nozzle in [8]. The goal was to ensure

hat the printing nozzle is always at an adequate distance with respect
o the last printed layer, so that the extruded material does not get
nexpected deformations in its trajectory from the nozzle to the surface
f deposition.

This method allows compensating the effect of non-planar print
eds, and it forces the robot to extrude material at a proper distance
ven if lower layers are deformed by the weight of recent layers (flow-
ut). However, if such a flow-out deformation exist, the final result
ill be lower than the reference model, with excessively wide layers.
his problem can be solved with approaches such as the one proposed
y [9]. There, the printing method is shotcrete rather than layer
xtrusion; for printing monitoring, the authors use laser triangulation.
imilarly to [8], the authors measure the distance from the nozzle to
he last printed layer. In this work, however, the used printing method
llows compensating the height of the printed piece if the bottom layers
uffered deformation.

Although this method allows correcting the height of the piece,
ny anomaly in the width of the layer (over-pressing) is ignored. With
espect to this problem, we can find alternatives like the one discussed
n [17] based on computer vision.

.1. Computer vision

3DCP monitoring can be performed with data retrieved from eco-
omic devices such as RGB cameras. For example, the work of [10]
roposed a monitoring system fully based on computer vision, using a
amera fixed to the extrusion nozzle. In that work, the image is first
onverted to grayscale and blurred with a Gaussian filter; the filtered

mage is binarized with the Otsu’s method to segment the printed
layer from the background. Finally, the authors map the width of the
segmented layer from pixels to inches (with a top view). The patent
number US 8944799 B2 [18] was generated based on this method that
adopts computer vision techniques for contour crafting. Low extrusion
rates are expected to create thinner layers, while wider layers are
produced by high extrusion rates. Another similar work is presented
in [6], where the borders of the printed layer are detected as edges.
There, the width of the layers is associated with the velocity of the
extrusion nozzle, rather than the extrusion rate.

Towards more robust vision systems, DL has gained a significant
attention in recent years. For printed concrete monitoring, we can see
the example of [11]. There, DL-based segmentation is performed to
distinguish a contour-crafting-printed piece from background (similarly
to [10]). In that work, the camera acquires images from an external,
post-printing, lateral view rather than from an inline top view. This
allows simultaneously monitoring the piece’s height and the interlayer
lines. Once the printed piece is isolated from the background in the
captured images, a surface smoothing filter is used along with the
Canny edge detector to identify the interlayer lines in the printed
piece. Then, the Hough transform is used to estimate, region-wise, the
orientation of these lines. Finally, a module for defect detection locates
lines with unexpected orientations inside the printed piece.

For 3D geometry assessment, [12] compares the 3D model used for
printing with a point cloud obtained (post-printing) by scanning the
printed piece on a rotatory base. Using techniques from mathematical
morphology, the authors calculate a distribution of cloud-to-cloud dis-
tances; this distribution allows quantifying global (all piece) and local
(layer-wise) errors with respect to the model used to design the printing
path.

As seen in the reviewed literature, optical sensors are useful for
non-invasive 3DCP monitoring methods. However, research on these
methods is still limited in the literature. Furthermore, research on
methods based on computer vision is even more scarce. While geomet-
rical assessment is a popular trend in methods using computer vision,
monitoring of the surface has been ignored in 3DCP. In fact, surface
analysis for inline monitoring of small-scale extrusion is an active topic
of research [19]. Among the methods based on computer vision, the
ones based on texture analysis for surface quality assessment can be
extended for the monitoring of extruded concrete.

In this work, we propose to detect anomalies in both aspects –
the geometry and the texture – with a single camera, during the
printing process. Our methodology is compared in Table 1 with the

different works based on optical sensors that were discussed in this
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section. With the experiments presented in this work, we will show
that: (1) an analysis of the interlayer lines allows measuring multi-
le geometrical parameters of the printed piece to locate anomalies,
aking the segmentation of these lines an important task; (2) the

exture of the extruded layers allows locating abnormal regions when
he mixture presents anomalies in the water content; (3) the analysis
f the geometry and the texture can be performed from the input of a
ingle RGB camera.

3. Experimental setup

For the results presented in this paper, we created a dataset from
images recorded during a printing session run in the 3D printing
laboratory of École des Ponts ParisTech. The cell is composed of a 6-
axes industrial robot ABB IRB 6620,1 using the xHEAD printing head
developed by XTreeE2 as extruder. It relies on a bi-component strategy,
similar to the one described in [20], with an external feeding pump
for the concrete, and a dosing pump for concrete and accelerator in
the printing head. A mixing paddle guarantees the homogeneity of
dispersion of accelerator in a mixing chamber. The material is the
NAG3 concrete developed by Lafarge and tested in [21]. The nominal
speed is 80 mm/s, with a nozzle diameter of 20 mm, while the pipe
diameter is 30 mm. The typical flow rate is 1 L/min, but may slightly
vary during the experiment.

The robot trajectories are constructed from a 3D model and a
simple slicing algorithm in Grasshopper [22], which outputs a series
of planes (targets). These targets are later converted into RobotStudio
files through HAL [23], a general programming language for industrial
robotics. Constraints of orientation were added in order to guarantee
the perpendicularity between the camera frame and the deposited
layer; the inverse kinematics is solved with HAL, which also indicates if
a position is not accessible and allows either repositioning the printed
piece in a more accessible region or changing its geometry in the 3D
modeling environment.

The robot controller controls the position and speed of the robot,
the flow rate of the dosing pump and the flow rate of accelerator. The
printing parameters used during the session were dynamically varied
to purposely create geometrical and textural imperfections (see Fig. 3).

Using this setup, the proposed monitoring methodology consists of
sequential modules (see blue dashed rectangles in Fig. 2):

1. Image acquisition
2. Interlayer line and layer segmentation
3. Local layer characterization and anomaly detection

. Image acquisition and interlayer line segmentation

Several setups for image acquisition are possible. As illustrated in
ig. 4(a), we chose a camera fixed to the nozzle in order to have a
ixed point of view with respect to the extrusion zone.

.1. Image acquisition setup

To avoid blur in the acquired images, caused by regions of the
rinted piece outside the depth of field of the camera, the camera
rientation should remain perpendicular with respect to the printed
all. This normally requires a seven axis in the robot that allows the
xtrusion nozzle to rotate around its longitudinal axis. This problem of
rientation also exists when printing with non-circular nozzles, which
re common place in 3DCP; although out of the scope of this paper,
here are technical solutions to this issue [24].
t

Fig. 3. (a) Experimental sample printed with purposely created defects. (b) Example
of acceptable printing without purposely created defects.

Regarding image resolution, it should allow correctly capturing
texture i.e. identifying the aggregates in the concrete. In the experi-
ments for this article, the largest aggregate is roughly 0.3 mm. The
desired camera resolution is therefore >3.3 px/mm. Due to eventual
deformations or lack of control of width, small apertures are preferred
in our applications: for a smaller aperture, the depth of field increases,
allowing obtaining sharp images even if the distance between the
observed concrete and the lens differs from the expected value.

Small aperture is usually used with long exposure times, which
implies a trade-off on this parameter, because mitigation of motion
blur requires short exposure times. Here, we are mostly in the case of
linear motion blur. If we want the blur to be limited to 1 pixel, we
get a constraint on exposure time. Using experimental data, we get an
upper bound of 𝑡𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ∼ 1∕3000 s, which holds for a wide range of
printed concretes, where typical aggregate size remains submillimetric
and robot speed in the 100 mm/s range.

4.1.1. Properties of the acquired images
The distance of the lens was adjusted to contain approximately 4

layers per frame, with an expected layer thickness of 6 mm. To acquire
images, a Raspberry Pi Camera High Quality Module featuring a SONY
IMX477 CMOS sensor with a macro lens was fixed on the printing
nozzle (more camera specifications available at [25]). This allowed
aving a fixed distance (∼13 cm) between the lens and the extruded
aterial. Additionally, we mounted a led lamp on the nozzle to allow
short, and constant, exposure time; this is illustrated in Fig. 4(a). The

mage resolution is 1280 × 960 pixels; therefore, our images contain
40 px/mm. The focus, exposure time and lens aperture were manually
djusted prior to printing the piece and fixed during extrusion.

To have uniformity in our final dataset, from the acquired images
e chose a subset of pictures meeting 2 conditions: (1) no background

s visible at the sides of the printed piece, (2) the center of the nozzle
s coplanar with the center of the observed wall (as illustrated in
ig. 4(a)). We preserved 628 raw images in total; a schematic diagram
f a typical frame with acceptable printing is shown in Fig. 4(b).

.2. Interlayer line and layer segmentation

Once an image is acquired, the next step in our methodology is

o segment its interlayer lines. On dry pieces, the detection of these

https://new.abb.com/products/robotics/en/robots-industriales/irb-6620/


Fig. 4. The printing process with inline image acquisition.
Fig. 5. In contrast with dry concrete, the interlayer lines in fresh concrete can appear black, white, or invisible, because of layer superposition and specular reflectance caused by
the material’s humidity.
Fig. 6. Architecture of U-VGG19 as provided in [26].
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lines can be based on finding dark edges (see Fig. 5(a)). However,
fresh concrete exhibits specular reflectance as well as layer merging and
superposition. Consequently, interlayer lines can take different aspects:
black, bright or even not visible at all (see Fig. 5(b)). Furthermore,
given the constraints imposed by inline image acquisition (as described
in Section 4.1), the problem becomes particularly hard: loss of focus,
unexpected motion blur, camera vibration, polluted air (presence of
particles), etc.

To approach this problem, we trained a neural network originally
used for crack segmentation: U-VGG19 [26]. It is a fully convolutional
neural network inspired by U-net which uses VGG19 as backbone
model; the architecture of this encoder–decoder network is illustrated
in Fig. 6. By using this network, we get as output a binary mask with
the location of the interlayer lines in the input image (as illustrated in
Fig. 7).

Given an input image 𝐼 , let us denote by 𝑆 ⊂ Z2 the interlayer lines

segmented by the model. This segmentation 𝑆 can be used to extract f
the layers delimited vertically between each two lines. Let us denote
by 𝑅𝑂𝐼 ⊂ Z2 this set of layers (see Fig. 7(c)).

. Inline 3D concrete printing monitoring

Once the interlayer lines and the independent layers are segmented,
he next step in our methodology is to perform a local layer character-
zation for anomaly detection.

.1. Geometrical characterization

The proposed geometrical characterization consists of local mea-
ures of the geometry of the printed layers and interlayer lines. These
easures, and the posterior anomaly detection, are performed using the
ollowing methods.
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Fig. 7. (a) One image from the collected dataset; the field of view was adjusted to contain mostly concrete regions including the last printed layer. (b) Interlayer lines segmented
y U-VGG19. (c) Regions of interest in white; regions within a layer that are not contained between two interlayer lines are ignored because the layer is not seen entirely in the
ertical axis.
Fig. 8. Method proposed to measure the local thickness of the layers. (a) Distance transform of S𝑇 . (b) Maxima from the distance transform in the vertical direction. (c) Local
ayer centers.
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.1.1. Local orientation of interlayer line
As discussed by [11], studying the orientation of the interlayer lines

llows detecting deformations in the printed layers. To do this, we
ropose a method based on image filtering using rotating structuring
lements [27].

First, we perform a thinning [28] to approximate the interlayer lines
o 1-pixel-width lines. Let 𝑆𝑇 ⊂ Z2 denote the thinned image, 𝑅(𝑑, 𝑙) a
ine oriented by 𝑑 with length 𝑙, and 𝐷 the set of possible orientations
∈ [−90, 90). The line length 𝑙 is chosen to be 1/5 of the image width.
his hyperparameter presents a trade off between the available line
ngles [27] and the locality of the measurement. The value (256 pixels)
as selected to be similar to the expected layer thickness, but it is
ot critical for the method. Let 𝑝 ∈ Z2 be a point in an image. Then,

𝐹 (𝑝, 𝑑) = [𝑆𝑇 ∗ 𝑅(𝑑, 𝑙)](𝑝) is the convolution of 𝑆𝑇 with a line oriented
n 𝑑. Finally, our local orientation map 𝜙 is defined as:

(𝑝) =

{

argmax𝑑∈𝐷 F(𝑝, 𝑑), 𝑝 ∈ 𝑆𝑇

undefined, otherwise
(1)

.1.2. Local curvature of interlayer line
Let 𝐿̂𝑛 be a piece-wise approximation of the 𝑛th interlayer line in

𝑇 , using 𝑚 cubic splines [29]:

̂ 𝑛(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑠1𝑛(𝑡 − 𝑡0), 𝑡0 ≤ 𝑡 < 𝑡1
⋮

𝑠𝑚𝑛 (𝑡 − 𝑡𝑚−1), 𝑡𝑚−1 ≤ 𝑡 < 𝑡𝑚

(2)

The knots are selected to split the interlayer line of interest into 𝑚
ixed-length segments. This length is a hyperparameter, and it implies
trade-off between the accuracy and the smoothness of the spline
pproximation. The value was chosen to be 1/10 of the image width
128 pixels), but it is not critical for the method. The independent
ariable 𝑡 corresponds to a parametric representation of the spline
𝑖
𝑛(𝑡) = (𝑥(𝑡), 𝑦(𝑡)).

Since this smooth approximation is twice differentiable, the local
curvature 𝜅 of 𝐿̂𝑛 at point 𝑡 can be computed as:

𝜅(𝑡) =
𝑥′𝑦′′ − 𝑦′𝑥′′

(𝑥′2 + 𝑦′2)
3
2

(3)

The primes refer to the derivatives with respect to 𝑡. The magnitude
of 𝜅(𝑡) is the inverse of the radius of the osculating circle touching the
point (𝑥, 𝑦) defined by 𝐿̂𝑛(𝑡). The sign indicates the concavity.

5.1.3. Local thickness of layer
The local thickness of a layer is determined by the distance between

its two interlayer lines. We calculate this thickness using the fast
Euclidean Distance Transform (EDT) [30].

Recall, 𝑆𝑇 is the image containing the 1-pixel-wide representation of
the interlayer lines. The function 𝐷 ∶ Z2 → R+ is the result of applying
the EDT to 𝑆𝑇 (see Fig. 8(a)). The local maxima of 𝐷 indicate the
centers of the printed layers (see Fig. 8(b–c)). Since we expect the layers
to be nearly horizontal in the input picture, we estimate the locations
of these local maxima along the vertical direction. Let 𝑘1 = (0,−1, 1)𝑇

and 𝑘2 = (1,−1, 0)𝑇 be vertical kernels. The convolution of the distance
map 𝐷 with these kernels allows detecting the maxima of 𝐷:

𝑃 = {𝑝 ∣ [sign(𝐷 ∗ 𝑘 ) ∗ 𝑘 ](𝑝) = 2} (4)
𝑀 1 2
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For the points located in the middle of two interlayer lines (the layer
center), and inside ROI (see Fig. 7(c)), the layer thickness 𝑊 is

𝑊 (𝑝) =

{

2𝐷(𝑝), 𝑝 ∈ (𝑃𝑀 ∩ 𝑅𝑂𝐼)
undefined, otherwise

(5)

The factor 2 allows obtaining the thickness (the double of the
shortest distance from 𝑆𝑇 to the centerline).

5.1.4. Relative nozzle height
Similarly to [8,9], we measure the relative height of the printing

nozzle with respect to the surface of deposition. From the lateral point
of view proposed in this paper, this height corresponds to the vertical
distance from the nozzle to the line receiving the currently printed
layer.

Since the camera is fixed to the robot, the center of the nozzle is at a
constant position 𝑐 = (𝑥𝑐 , 𝑦𝑐 ) in the image. Let 𝐿2, the second interlayer
line from top to bottom in the image, be the set of points 𝑝 = (𝑥𝑝, 𝑦𝑝)
separating the currently printed layer from the layer of deposition (see
Fig. 9). Then, the relative nozzle height is:

𝐻(𝑝) =

{

𝑦𝑝 − 𝑦𝑐 , 𝑝 ∈ 𝐿2

undefined, otherwise
(6)

With the vertical axis pointing downwards in an image, this height
is positive as long as 𝑝 is below the nozzle.

5.1.5. Geometrical anomalies
To summarize the information retrieved by Eqs. (1), (3), (5) and

(6) (orientation, curvature, thickness and height, respectively), we
btain a histogram per measure. Under good printing conditions, the
istributions generated from these histograms should be centered and
oncentrated inside a range of admissible values.

The principle is illustrated in Fig. 10. There, we show the interlayer
egmentation maps from a frame with acceptable printing and one
xhibiting signs of over-pressing (see Fig. 1 for reference). Additionally,
e show the distributions of layer thickness measured pixel-wise by our
ethod for each frame. The hypothesis is that a defect can be modeled

s a deviation (Fig. 10(d)) from the distribution expected for a defect-
ess printing (Fig. 10(c)). Then it becomes straightforward to identify
he position of these deviations and localize the corresponding portion
f layer in the frame. Since the fixed pose of the camera with respect to
he nozzle is known, and the pose of the nozzle at the time of acquiring
he analyzed frame can be retrieved from the robot’s control software,
t is possible to calculate the physical localization of the anomalies in
he printed piece.

In the next section, we present the characterization of the texture
f the printed layers.

.2. Texture characterization

The rheological properties of the extruded material are directly re-
ated to the composition of the mixture — which impacts the structural
roperties of the printed piece. In this work, we focus on the water
ontent: lack of water can cause cold joints at the interface, but an
xcess of water makes the layers more prone to deformation or even
ollapse. The water content is one of the several factors affecting the
exture of the extruded layers (see Fig. 11). When the texture exhibits
bnormal properties, it becomes a good visual indicator of anomalies
n the printing process.

In our method, the texture of the printed piece is analyzed locally,
ayer by layer, in small windows as shown in Fig. 12. The height of
he windows is adapted as to cover the entire thickness of either layer,
xcluding adjacent layers. The windows have a fixed width of 200
ixels (∼5 mm) and are adjacent each to another. The value of this
yperparameter (chosen to have near-square windows) presents a trade
ff between the available area to analyze per window and the locality
f the analysis. Each window is then independently classified, either as
ood or one anomalous class.

.2.1. Pre-processing
Before extracting the windows, we level the image’s grayscale in-

ensities to preserve textural information while reducing the effects
f lightning and shadows. Given the input image 𝐼 , first we obtain
local-mean-intensity image using a Gaussian filter with 𝜎 = 40. By

ubtracting the filtered image from 𝐼 , we obtain a new image with
n intensity distribution centered around 0. We further subtract the
inimum to avoid negative values. The result of this whole process

s illustrated in Fig. 13.

.2.2. Texture features
Each window is analyzed individually to provide a label using a

achine learning approach. Our feature extraction is based on two
isual descriptors: gray-level co-occurrence matrices (GLCMs) and local
inary patterns (LBP). These descriptors are obtained from the maxi-
um rectangular box contained within concrete pixels in the window.

et each of these boxes be called a 𝑇𝑏𝑜𝑥.
Before feature extraction, each 𝑇𝑏𝑜𝑥 is quantized to 𝑞 discrete values.

o avoid that outlier intensity values have an undesired influence, each
𝑏𝑜𝑥 is clipped to values in the range 𝑚𝑒𝑎𝑛(𝑇𝑏𝑜𝑥) ± 3.1 ⋅ 𝑠𝑡𝑑(𝑇𝑏𝑜𝑥) before
uantization. Let the quantized version of the image, in the range [0,
-1], be called a 𝑇 𝑞

𝑏𝑜𝑥.
GLCMs. Lets define a GLCM [31] as:

𝐿𝐶𝑀𝐼
𝛥𝑥,𝛥𝑦(𝑖, 𝑗) =

𝑤
∑

𝑥=1

ℎ
∑

𝑦=1

⎧

⎪

⎨

⎪

⎩

1, if I(x, y)=i and
I(x + 𝛥x, y + 𝛥y)=j

0, otherwise
(7)

Here, ℎ and 𝑤 are the height and the width of an analyzed image 𝐼 ,
respectively; 𝛥𝑥 and 𝛥𝑦 are a horizontal and a vertical offset, respec-
tively. 𝐼(𝑥, 𝑦) returns the intensity value of the pixel at the position 𝑥, 𝑦
in 𝐼 .

GLCMs are distributions of co-occurring pixel values at a given scale
(the chosen offset). From preliminary experiments, 𝑞 = 12 was chosen
for GLCM calculation. With 12 intensity levels in a 𝑇 𝑞

𝑏𝑜𝑥, per each offset
we obtain a square 12 × 12 matrix (see Fig. 14). Per each GLCM, we
obtain scalar features in terms of statistical properties. With 𝑃𝑖,𝑗 the
value of the normalized GLCM at the position 𝑖, 𝑗 (i.e. the probability of
the intensity pair (𝑖, 𝑗)), the features are obtained based on 5 properties:



Fig. 10. Distributions of layer thickness, measured pixel-wise. (c) In a defect-free process, the distribution of any measured parameter is contained in an expected interval. (d)
When printing defects occur, a deviation from this interval is observed.
Fig. 11. Texture of concrete with different water contents.

Contrast : the expected squared difference of intensities in the GLCM.
It is defined as:

𝑙𝑒𝑣𝑒𝑙𝑠−1
∑

𝑖,𝑗=0
𝑃𝑖,𝑗 ⋅ (𝑖 − 𝑗)2 (8)

Dissimilarity : the expected absolute difference of intensities in the
GLCM. It is defined as:

𝑙𝑒𝑣𝑒𝑙𝑠−1
∑

𝑃𝑖,𝑗 ⋅ |𝑖 − 𝑗| (9)

𝑖,𝑗=0
Fig. 12. Windows used to analyze the textures of Fig. 7(a). The width is fixed (200
px ≈ 5 mm) and the height is adapted to contain the entire thickness of the layer.

Fig. 13. Raw input (left) and leveled image (right) for texture analysis.



(

Fig. 14. Example of extracted GLCM.

Homogeneity : a measure of the closeness of the distribution of
elements in the GLCM to its diagonal. It is defined as:
𝑙𝑒𝑣𝑒𝑙𝑠−1
∑

𝑖,𝑗=0

𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2
⋅ |𝑖 − 𝑗| (10)

Energy : the square root of the sum of squared elements in the GLCM.
It is defined as:
√

√

√

√

√

𝑙𝑒𝑣𝑒𝑙𝑠−1
∑

𝑖,𝑗=0
𝑃 2
𝑖,𝑗 (11)

Correlation: a measure of how correlated are the pixels to their
neighbors with the given offset. It is defined as:
𝑙𝑒𝑣𝑒𝑙𝑠−1
∑

𝑖,𝑗=0
𝑃𝑖,𝑗 ⋅

(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗 )
√

𝜎2𝑖 ⋅ 𝜎
2
𝑗

(12)

Due to the printing process, the texture properties are anisotropic.
Because of this, we extract GLCMs with offsets in the horizontal and
vertical directions. Per each direction, we use offset distances from 1
to 50 with step 1. The total number of features obtained per 𝑇 𝑞

𝑏𝑜𝑥 is 500
2 directions × 50 distances × 5 statistical properties).
LBP. This descriptor consists of assigning a 𝑛-bit binary number to

each pixel depending on its 𝑛 neighbors with radius 𝑅 [32]. Following
the neighbors along the hypothetical circle of radius R, each bit is
assigned a 0 if the center pixel’s intensity value is greater than the
corresponding neighbor’s value. Otherwise, the bit is assigned a 1.
The transformed image contains, per pixel, the decimal equivalent of
the binary number calculated according to their neighbors. We use 8
neighbors, therefore the transformed images contain values in the range
[0, 255].

From preliminary experiments, 𝑞 = 64 was chosen for quantization
to extract LBP (see Fig. 15). After getting the LBP transform of a 𝑇 𝑞 ,
𝑏𝑜𝑥
Fig. 15. Example of extracted LBP.

we calculate the histogram of intensities of the transformed image to
extract a fixed-size vector per 𝑇 𝑞

𝑏𝑜𝑥. To reduce the dimensionality of this
vector, the histograms are calculated using 8 bins. These histograms are
normalized so that their magnitudes are not influenced by the size of
the 𝑇 𝑞

𝑏𝑜𝑥.
Similarly to GLCMs, we use different radii to extract information at

different scales. These radii are from 1 to 31 with step 10. The total
number of features per 𝑇 𝑞

𝑏𝑜𝑥 is 32 (4 radii × 8 bins).

5.2.3. Classification
With the extracted textural features, we classify each 𝑇 𝑞

𝑏𝑜𝑥 into 1
of 4 classes as illustrated in Fig. 16: excessively fluid, good quality,
excessively dry, and tearing.

The fluid class is characterized by a smooth surface. Since the
fluidness is associated with high water content, this class is also char-
acterized by a high specular reflectance. The good class corresponds
to the desired material properties. The amount of present water is
adequate, producing the appearance of more visible grains at the
surface with higher homogeneity and a lower reflectance. The dry class
is characterized by a rougher texture, caused by an increased amount
of visible grains with bigger size. Since the amount of water is reduced,
the material exhibits very low to no reflectance. However, this class is
also determined by the absence of cracks. The tearing class is the one
characterized by the appearance of cracks. It is also identified by the
lack of reflectance and often by a rougher texture than the dry class.

From the images acquired during the printing process, we extracted
and labeled a total of 111 texture windows. Each of these windows
is labeled by the agreement of two annotators. The distribution of
classes is: 24 fluid, 27 good, 24 dry and 36 tearing. The base dataset
is composed by the 532 features calculated per each of these images
(GLCM + LBP features), and their corresponding class labels. To avoid
that some features dominate the classifier because of their magnitude,
we standardize each one of them during training.

The model used to learn from this domain is a small convolutional
neural network (CNN) with one convolutional input layer and one fully-
connected output layer (see Fig. 17). Because of the feature extraction
implementation, adjacent elements in the feature vector represent the
same property but with different offsets (see Fig. 18). Since these
features have a high likelihood of being correlated, we use the convo-
lution to capture meaningful information from the neighborhood. The
kernel size is 6, with a ReLu activation to obtain non-linear outputs. To
reduce the likelihood of overfitting, we use dropout regularization with
30% probability. The output layer has 4 neurons and uses a softmax
activation so that ∑𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑃 (𝑐|features) = 1.

5.2.4. Textural anomalies
Similarly to the approach used for geometrical anomaly detection,

we can summarize an image in terms of the histogram of window
labels. In this case, the categorical distribution should be centered
and concentrated in the good class. High occurrence of other classes

indicates some anomaly in the printing process.



Fig. 16. Examples of extracted windows for the four proposed classes (with improved contrast for visualization).
m
a
T

Fig. 17. CNN for texture classification.

Fig. 18. Feature vector for texture classification. Adjacent elements represent the same
property but with different offsets.
 i
6. Experiment results

6.1. Segmentation

Once an image from the printing process is acquired, the next step is
to segment the interlayer lines to obtain the binary segmentation maps.

We used 128 manually annotated images for training and 32 for
testing. The labeling was done in Krita 4.4.5 using a circular brush
with a diameter of 20 pixels (see Fig. 19 for an example of manual
segmentation). During training, we provided 256 × 256 image crops
with a batch size of 4. We implemented U-VGG19 using Tensorflow
2.1.0. Similarly to [26], we initialized the weights of the encoder with
those of the convolutional layers of VGG19 (pre-trained on ImageNet).
We used the same optimizer and loss function i.e. Adam and a weighted
combination of binary cross-entropy loss and dice score loss. The model
is trained during 200 epochs, with an early stop if the testing loss did
not improve for 20 consecutive epochs. The learning rate was decreased
by a factor of 2 on testing loss plateau with 5 epochs tolerance; the
initial learning rate was 10−4.

We evaluate the performance of U-VGG19 on the test images in
terms of precision, recall and F-score. We calculate each score per
image and we report the average over all the test images. There is
a possibility of offsets between prediction and annotation caused by
the inaccuracy of the annotators at the moment of locating the center
of the interlayer lines. To address this, we use a tolerance margin
similarly to works such as [33,34]. The chosen tolerance is 2 pixels,

eaning that predicted positive pixels no more than 2 pixels away from
positive pixel in the manual annotation are considered true positives.
his represents approximately 0.5 mm in real life. The scores are shown

n Table 2.
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Fig. 19. Comparison between manual and predicted segmentation. The color code is: (Green) True positives, (Red) False positives, (Blue) False negatives. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 20. Confusion matrices of the 5 testing folds for texture classification. The rows, corresponding to the true labels, are normalized.
Table 2
Interlayer line segmentation testing scores.

F-score (%) Precision (%) Recall (%)

90.63 92.14 89.22

The average precision and the average recall have very similar
alues (around 90%). Therefore, U-VGG19 exhibits a balanced ability to
etect interlayer lines while discriminating false positives. An example
f automatic interlayer line segmentation using U-VGG19 is illustrated
n Fig. 19. With an average F-score of 90.63%, we use the predictions
f U-VGG19 to perform the characterization methods proposed in this
aper.

.2. Texture classification

In this multi-class context, we evaluate the proposed method with
-folds stratified cross-validation i.e. each fold has the same proportion
f observations with a given class. To further reduce the likelihood of
verfitting, per iteration we perform another stratified split to divide
he training folds into a training and a validation split; the size of the
alidation split is half the size of the test split. Finally, we perform data
ugmentation on the images from the resulting training split, obtaining
6 additional images per texture window. The transformations are
otations (with angles −4, −3, −2, 2, 3, 4 degrees), zooms (with scale
actors 0.97, 0.98, 0.99, 1.01, 1.02, 1.03) and illumination rescales and
hifts defined by 𝛼 ⋅ intensity+𝛽 (with pairs 𝛼∕𝛽: 0.9/0, 1.1/0, 1.0/−50,
1.0/50).
Table 3
F-scores (%) of texture classification using 5-folds stratified cross-validation.

Class Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Class
macro-average

Fluid 100 100 100 100 100 100
Good 100 100 88.9 90.9 88.9 93.7
Dry 90.9 100 83.3 100 76.9 90.2
Tearing 93.3 100 92.3 92.3 83.3 92.2
Class macro-average 96.1 100 91.1 95.8 87.3

Per iteration, the approximate number of samples per split is 1326
training, 11 validation and 22 test. Validation and testing are per-
formed on real images only, while the training split does not contain
modified versions of the images in the validation and test splits. The
approximate class distribution is 22% fluid, 24% good, 22% dry and
32% tearing. We train the CNN with a binary cross-entropy loss using
the Adam optimizer with default parameters in Tensorflow 2.1.0. We
train for a maximum of 2000 epochs with batch size 32, with an
early stop if the loss in the validation split did not improve for 100
consecutive epochs.

We evaluate the trained models in terms of the macro-averaged F-
score in the test splits; the macro F-score gives equal importance to all
the classes. Table 3 shows the macro F-score per fold and per class; the
single F-scores per fold and class are shown too.

Among the four classes, fluid exhibited the best scores (100% in all
folds). On the other side, the most difficult class was dry, with a 90.2%
average over the 5 folds. The good and tearing classes have slightly
better averages: 93.7 and 92.2%, respectively. From an analysis of the
resulting confusion matrices per fold (see Fig. 20), we discovered that
the main source of these errors was classifying good and tearing images
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as dry. Nonetheless, this kind of confusion is understandable since the
ry class is, physically, a transitory state between good printing and 
earing. Furthermore, these errors are infrequent, as denoted by the
verage 94.1% macro-averaged F-score over the 5 folds (average of the 
ast row).

With good models for interlayer line segmentation and texture clas-
ification, in the next section we show the results of using these models
long with the proposed methods for characterization and anomaly
etection.

.3. Layer characterization and anomaly detection

In this section, we show two study cases to characterize, based on
he proposed measurements: interlayer line orientation and curvature;

nozzle height; and layer thickness and texture. Besides the measure-
ent of orientation, expressed in degrees, all the other geometrical

measurements are based on pixels as metric unit. Pixels are converted
to millimeters by taking 40 px/mm in our setup (Section 4.1.1). The
ocally measured values are plotted using color maps (see Fig. 21).

Additionally, we show the distributions resulting from these measure-
ments (see Fig. 22). The ranges of admissible values, delimited with
green dotted lines in the distributions, are user-defined; deviations
outside those ranges are considered anomalies, and they are plotted in 
blue if below the minimum threshold and in red if above the maximum 
one.

For orientation, we expect near-to-horizontal layers; the user-
defined range is (−10, 10) degrees. For curvature, we expect near-to-
straight layers; the range is (−0.05, 0.05) mm−1. The expected layer 
hickness is 6 mm; the range is (4.5, 7.5) mm. The nozzle should keep
 height close to the expected layer thickness; the range is (5, 7) mm.
egarding texture, any class but good is considered as anomaly; the tex-

ure classes are associated to a color code similar to the color maps used
or geometrical measurements: fluid/blue, good/green, dry/yellow,
earing/red. Additionally to the class, we show the probability of the 

prediction according to the classifier.
The first study case, analyzed in Figs. 21 and 22, portrays an overall

acceptable printing. As observed in Fig. 21(b–e), there are almost 
no geometrical anomalies (except a few high curvature segments); 
consequently, the distributions obtained from these plots are contained
nside the ranges of admissible values, as seen in Fig. 22(b–e).

The second study case, analyzed in Figs. 23 and 24, depicts a
scenario with severe anomalies. As observed in Fig. 24(b–e), the dis-
tributions of the geometrical measurements are very different from
the ones in Fig. 22: in all the distributions, there are high density
regions outside the range of admissible values. The most extreme case
is present in Fig. 24(e), where the distribution is concentrated outside
the admissible range. This behavior is likely to cause a coiling effect on
the material deposition; in fact, as depicted in Figs. 23(c) and 24(c), we
see high curvatures that can be directly related to this phenomenon.

Furthermore, with respect to the texture analysis, we see that the
second layer from top to bottom exhibits many regions with tearing.
This is the extreme case of texture anomalies, since it implies the
appearance of cracks that can jeopardize the structural safety of the
printed piece.

As shown by this study case, as well as the first one with overall
acceptable printing, the proposed methodology is able to provide an in-
line characterization of the process based on visual inspection of the last
printed layers. With this characterization, the proposed methodology
detects and locates anomalies in the extruded layers.

7. Conclusions and future work

In the present article, we proposed a methodology for computer-
vision based, inline monitoring of 3D concrete printing. This method-
ology consists of three sequential modules: (1) image acquisition,
(2) interlayer line and layer segmentation, and (3) local layer
characterization and anomaly detection.

With the presented experiments using the aforementioned method-
ology, we show that:

• The use of Deep Learning allows an inline segmentation of the
interlayer lines separating adjacent extruded layers. The proposed
model obtains an F-score of 91%. We demonstrate that locating
these lines in the analyzed images allows a further segmentation
of the independent layers.

• An analysis of the segmented interlayer lines allows measuring
multiple geometrical properties of the printed piece simultane-
ously. We demonstrate that the measurement of these properties
allows detecting and locating anomalies in the printed piece.

• An analysis of the texture of the independent layers allows detect-
ing when the extruded material exhibits anomalies in the water
content. We suggest 4 classes for this analysis, and the model
proposed to classify the textures obtains a macro-averaged F-score
of 94%.

Our experiments show that the geometrical and the textural analy-
ses can be performed simultaneously from the input of a single RGB
camera. With this, we extend the catalogue of possible geometri-
cal measurements using computer vision with respect to the current
proposals in the literature. Additionally, we are the first to propose
an analysis based on texture for 3D concrete printing, inspired by
the approaches already used in small-scale, extruded-based additive
manufacturing.

In the two presented study cases, we show that our methodology
provides the operator with the exact position and nature of the detected
anomalies. If the results are recorded, they can serve as a quality report
after the printing process is finished. This report can serve as a proof
of acceptability of the printed piece. Inversely, it can also serve, when
severe anomalies are detected to reject the piece — and even before the
end the printing to avoid material and time waste. Finally, the nature
and severity of the detected anomalies can be reported to the operator
to make corrective adjustments.

A future research could extend this monitoring towards a closed-
loop control. The nature and the severity of the anomalies could be used
as feedback to an automated decision system issuing a corrective action
on the printing system. It could stem from a rule-based expert system,
vector-to-action dictionaries, supervised machine learning models, etc.

The images and annotations used for the results presented in this
paper are available as a public dataset named I3DCP: https://github.
com/Sutadasuto/I3DCP. The code to reproduce our results is available
at https://github.com/Sutadasuto/3dcp_cv_monitoring.
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Fig. 21. Plots from the first study case. The black pixels in the plots b–e correspond to undefined values in the 2D space. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 22. Distributions from the first study case. The doted lines represent the range of admissible values; regions with values outside these ranges are detected as anomalies in
Fig. 21.



Fig. 23. Plots from the second study case. The black pixels in the plots b–e correspond to undefined values in the 2D space. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 24. Distributions from the second study case. The doted lines represent the range of admissible values; regions with values outside these ranges are detected as anomalies in
Fig. 23.
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Data availability

Links to Github repositories containing our data and source code,
respectively, are provided in the conclusions of the article.
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