
HAL Id: hal-04078307
https://hal.science/hal-04078307

Submitted on 22 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How the Move Acceptance Hyper-Heuristic Copes With
Local Optima: Drastic Differences Between Jumps and

Cliffs
Benjamin Doerr, Arthur Dremaux, Johannes Lutzeyer, Aurélien Stumpf

To cite this version:
Benjamin Doerr, Arthur Dremaux, Johannes Lutzeyer, Aurélien Stumpf. How the Move Accep-
tance Hyper-Heuristic Copes With Local Optima: Drastic Differences Between Jumps and Cliffs.
The Genetic and Evolutionary Computation Conference (GECCO ’23), Jul 2023, Lissabon, Portugal.
�10.1145/3583131.3590509�. �hal-04078307�

https://hal.science/hal-04078307
https://hal.archives-ouvertes.fr

ar
X

iv
:2

30
4.

10
41

4v
1

 [
cs

.N
E

]
 2

0
A

pr
 2

02
3

How the Move Acceptance Hyper-Heuristic Copes With Local
Optima: Drastic Differences Between Jumps and Cliffs∗

Benjamin Doerr
Laboratoire d’Informatique (LIX),

École Polytechnique, CNRS,
Institut Polytechnique de Paris,

Palaiseau, France

Arthur Dremaux
École Polytechnique,

Institut Polytechnique de Paris,
Palaiseau, France

Johannes Lutzeyer
Laboratoire d’Informatique (LIX),

École Polytechnique, CNRS,
Institut Polytechnique de Paris,

Palaiseau, France

Aurélien Stumpf
École Polytechnique,

Institut Polytechnique de Paris,
Palaiseau, France

ABSTRACT

In recent work, Lissovoi, Oliveto, and Warwicker (Artificial Intel-
ligence (2023)) proved that the Move Acceptance Hyper-Heuristic
(MAHH) leaves the local optimum of the multimodal cliff bench-
mark with remarkable efficiency. With its $ (=3) runtime, for al-
most all cliff widths 3, the MAHH massively outperforms the
Θ(=3) runtime of simple elitist evolutionary algorithms (EAs). For
the most prominent multimodal benchmark, the jump functions,
the given runtime estimates of$ (=2<<−Θ(<)) and Ω(2Ω (<)), for
gap size< ≥ 2, are far apart and the real performance of MAHH
is still an open question.

In this work, we resolve this question. We prove that for any
choice of the MAHH selection parameter ? , the expected runtime
of the MAHH on a jump function with gap size < = > (=1/2)
is at least Ω(=2<−1/(2< − 1)!). This renders the MAHH much
slower than simple elitist evolutionary algorithms with their typi-
cal $ (=<) runtime.

We also show that the MAHHwith the global bit-wise mutation
operator instead of the local one-bit operator optimizes jump func-

tions in time$ (min{<=<, =2<−1

<!Ω (<)<−2 }), essentially the minimum

of the optimization times of the (1 + 1) EA and the MAHH. This
suggests that combining several ways to cope with local optima
can be a fruitful approach.

CCS CONCEPTS

• Theory of computation → Theory of randomized search

heuristics; •Mathematics of computing→ Evolutionary algo-

rithms.

∗Author-generated version.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
GECCO ’23, July 15–19, 2023, Lisbon, Portugal

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590509

KEYWORDS

Keywords: Hyper-heuristics, non-elitism, mutation, cliff bench-
mark.

ACM Reference Format:

Benjamin Doerr, Arthur Dremaux, Johannes Lutzeyer, and Aurélien
Stumpf. 2023. How the Move Acceptance Hyper-Heuristic Copes With
Local Optima: Drastic Differences Between Jumps and Cliffs. In Ge-

netic and Evolutionary Computation Conference (GECCO ’23), July 15–

19, 2023, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3583131.3590509

1 INTRODUCTION

Compared to the intensive analysis of evolutionary algorithms
(EAs) via mathematical means over the last 30 years [5, 23, 37, 48],
the rigorous analysis of hyper-heuristics is much less developed
and has so far mostly focused on unimodal problems (however,
with highly interesting results, see Section 2 for more detail).

In the first and so far only work on how hyper-heuristics solve
multimodal problems, that is, how they cope with the presence of
true local optima, Lissovoi, Oliveto, and Warwicker have shown
the remarkable result that the simple move-acceptance hyper-
heuristic (MAHH), which randomly mixes elitist selection with ac-
cepting any new solution, optimizes all Cliff functions in time
$ (=3) (and depending on the cliff width3 even better). TheMAHH
thus struggles much less with the local optimum of this bench-
mark than elitist EAs (typically having a runtime of Θ(=3) [49]),
the (1, _) EA having a runtime of roughly $ (=3.98) (shown for
3 = =/3 only, this result requires a very careful choice of the
population size) [35], and the Metropolis algorithm, which has
a runtime of Ω(=3−0.5/(log=)3−1.5) for constant 3 and a super-
polynomial runtime for super-constant 3 .

The surprisingly goodperformance of theMAHHonCliff func-
tions raises the question of whether the convincing performance
on Cliff of the MAHH generalizes to other functions or whether
it a particularity of the Cliff benchmark. To answer this question,
we study the performance of the MAHH on the multimodal bench-
mark most prominent in the mathematical runtime analysis of ran-
domized search heuristics, the Jump benchmark. For this problem,
with jump size< ≥ 2, only the loose bounds$ (=2<<−Θ(<)) and

http://arxiv.org/abs/2304.10414v1
https://doi.org/10.1145/3583131.3590509
https://doi.org/10.1145/3583131.3590509

Ω(2Ω (<)) were shown in [45]. These bounds allow no conclusive
comparison with simple evolutionary algorithms, which typically
have a Θ(=<) runtime.

In this work, we prove a general non-asymptotic lower bound
for the runtime of theMAHHon Jump functions, valid for all values
of the problem size =, the jump size< ≥ 2, and the mixing parame-
ter ? of the hyper-heuristic. As the most interesting special case of
this bound, we derive that for< = > (=1/2) and all values of ? , this
runtime is at least Ω(=2<−1

(2<−1)!). This is significantly larger than the
Θ(=<) runtime of many evolutionary algorithms.

Our lower bound is relatively tight. We prove that the MAHH

with ? =
<
= has a runtime of $ (=2<−1

<!<<−2). In particular, for con-
stant jump size<, which is the only regime in which polynomial
runtimes exist, the runtime of the MAHH with optimal parame-
ter choice is Θ(=2<−1). Therefore, our bounds allow us to answer
the question on the generalization of the good performance of the
MAHH: The MAHH performs comparatively poorly on Jump func-
tions, i.e., the surprisingly good performance on Cliff does not
extend to Jump functions.

Noting the significant performance gap between, e.g., the
(1 + 1) EA and the MAHH, we propose to use the MAHH with
bit-wise mutation, the variation operator of the (1 + 1) EA, in-
stead of one-bit flips. This global mutation operators renders
the analysis of the MAHH significantly more complex and in
particular forbids the use of our lower bound arguments. With
a suitable potential function in the drift argument, we manage
to adapt our upper bound proof and show an upper bound of

$ (min{<=<, =2<−1

<!Ω (<)<−2 }). This shows that, in principle, combin-

ing the global variation operator popular in evolutionary compu-
tation with a local search hyper-heuristic can be an interesting ap-
proach. We note that this was suggested for the Metropolis algo-
rithm in [19], but analyzed only via experiments on Cliff func-
tions with problem size= = 100 and cliff height 3 = 3. In particular,
no proven performance guarantees were given in [19].

We believe that this is a promising direction for future research,
but we also note that we were not able to prove an $ (=3) upper
bound for this new algorithm on Cliff functions, so we cannot
rule out that the strong performance of the classic MAHHonCliff
functions is lost when using bit-wise mutation. More research in
this direction to answer such questions is needed. At the moment,
themainmissing piece towardsmore progress is amethod to prove
lower boundswhen less restricted mutation operators than one-bit
flips are used.

2 PREVIOUS WORKS

We now describe the main previous works. This being a mathe-
matical runtime analysis, we concentrate on such works. We re-
fer to [9] for a general introduction to hyper-heuristics. We refer
to [5, 23, 37, 48] for introductions to mathematical runtime analy-
ses of randomized search heuristics.

2.1 Hyper-Heuristics

The mathematical runtime analysis of randomized search heuris-
tics, mostly concerned with the analysis of evolutionary algo-
rithms, is an established field for more than 30 years now [5, 23,

37, 48]. Themathematical runtime analysis of hyper-heuristics was
started much more recently by Lehre and Öczan [41] in work on
random mixing of mutation operators and random mixing of ac-
ceptance operators. We refer to the survey [16, Section 8] for a
detailed discussion of random mixing of mutation operators and,
in particular, a comparison to very similar earlier works that were
not called hyper-heuristics at their time such as [33, 47]. We dis-
cuss the results on acceptance operators further below.

In [1], for the first time, more complex selection hyper-
heuristics for choosing suitable mutation operators were studied,
however, no superiority over randommixing could be shown. That
this is not the fault of the authors, but rather a misconfigura-
tion of these hyper-heuristics, was shown in the seminal work
of Lissovoi, Oliveto, and Warwicker [44]. In this work, the au-
thors first show that the three more complex hyper-heuristics op-
timize the LeadingOnes benchmark in exactly (ignoring lower or-
der terms) the same runtime as the simple random mixing heuris-
tics. They observe that the true reason for this behavior is the
short-sightedness of these heuristics: As soon as no improvement
is found, they switch to a different low-level heuristic. If instead
longer learning periods are used, that is, a change of the currently
used low-level heuristic is made only after a certain number of
successive failures, then the more complex hyper-heuristics per-
form very well and attain the best possible performance that can
be obtained from the given low-level heuristics. The length of this
learning period is crucial for the success of the hyper-heuristic, but
as shown in [22], it can be determined in a self-adjusting manner.
These works were extended to other benchmark problems in [43].

Besides some artificial problems constructed to demonstrate
particular effects, all works above regard unimodal benchmarks.
The first and so far only work to analyze the performance of hyper-
heuristics on multi-modal problems is [45]. This work takes up the
random mixing of selection operators idea of [41]. There, a ran-
dom mixing between an all-moves (ALLMOVES) operator, accept-
ing any new solution, and an only-improving (ONLYIMPROVING)
operator, accepting only strict improvements, was proposed and it
was shown that the (unimodal) royal-road problem can only be
solved by mixing these two operators. As noted in [45], this result
heavily relies on the fact that the ONLYIMPROVING operator was
used instead of the, in evolutionary computation more common,
improving-and-equal (IMPROVINGANDEQUAL) operator, which
accepts strict improvements and equally good solutions.

The results in [45] do not depend on this particularity. For this
reason, let us refer to the hyper-heuristic which randomly mixes
between the ALLMOVES (with probability ? , the only parame-
ter of the algorithm) and either of the ONLYIMPROVING and
IMPROVINGANDEQUAL operator, as the move-acceptance hyper-

heuristic (MAHH). In other words, the MAHH heuristic starts with
a random solution and then, in each iteration, moves to a random
neighbor of the current solution and, with probability ? always ac-
cepts this move and with probability 1−? only accepts this move if
the new solution is at least as good or strictly better (for the prob-
lems discussed in the remainder, both versions will behave identi-
cal). See Section 3 for a more detailed description of the algorithm.

2

The striking result of [45] is that the simple MAHHwithmixing
parameter ? =

1
(1+Y)= , Y > 0 a constant, optimizes the Cliff bench-

mark with cliff width 3 in an expected number of $ (=3

32 + = log=)
iterations. This is remarkably efficient compared to the runtimes
of other algorithms on this benchmark, see Section 2.2. This result
raises the question if MAHH has the general strength of leaving
local optima or whether this behavior is particular to the Cliff

problem, which with its particular structure (a single acceptance
of an inferior solution suffices to leave the local optimum) appears
to be the perfect benchmark for the MAHH.

To answer this question, the authors of [45] regard also other
multimodal problems, however, with non-conclusive results.

For the most prominent multimodal benchmark Jump< ,< ≥ 2,

in [45] the bounds Ω(2Ω (<) += log=) and$ ((1+Y)
<−1=2<−1

<2<!
) were

shown for the parameter choice ? =
1

(1+Y)= . We note that the con-

ference version [42] states, without proof, a stronger upper bound

of $ (=2<−1
<), but since the journal version only proves a weaker

bound, we assume that only the bound in the journal version is
valid. In any case, these bounds are significantly distant to the
known runtime Θ(=<) of simple evolutionary algorithms on the
jump benchmark, and thus do not allow a conclusive comparison
of these algorithms.

2.2 Runtimes Analyses on Cliff and Jump

Functions

We now briefly collect the main runtime results for the Cliff and
Jump benchmarks. Cliff functions (with fixed cliff width 3 = =/3)
were introduced in [36] to show that the (1, _) EA can profit from
its non-elitism. This result was made precise in [35]. For the best
choice of the population size, a runtime of approximately$ (=3.98)
was shown, however, the result also indicates that small deviations
from this optimal parameter choice lead to significant performance
losses.

Comparably simple elitist evolutionary algorithms can leave the
local optimumof a general Cliff function, and similarly Jump func-
tion, with cliff width 3 only by flipping the right 3 bits, hence they
have a runtime of Θ(=3) when using bit-wise mutation with muta-
tion rate 1

= (this follows essentially from the result on Jump func-
tions in the classic work [30], but was shown separately for Cliff
functions in [49]). When using the heavy-tailed mutation operator
proposed in [21], again as for Jump functions, the runtime reduces
to =33−Θ(3) . A combination of mathematical and experimental ev-
idences suggests that the compact genetic algorithm has an expo-
nential runtime on the Cliff function with 3 = =/3 [46].

The Metropolis algorithm profits at most a little from its abil-
ity to leave local optima when optimizing Cliff functions. For
constant 3 , a lower bound of Ω(=3−0.5(log=)−3+1.5) was shown
in [45], for super-constant3 it was shown that the runtime is super-
polynomial. For a recent tightening and extension of this result, we
refer to [19].

We note that some artificial immune systems employing an
aging operator were shown to optimize Cliff functions in time
$ (= log =) [11]. Since artificial immune systems are even less un-
derstood than hyper-heuristics, it is hard to estimate the general

meaning of this result. Hence in summary, we agree with the au-
thors of [45] that the performance of the MAHH on Cliff func-
tions is remarkably good.

The Jump functions benchmark is by far the most studied mul-
timodal benchmark in the theory of randomized search heuris-
tics. It was proposed already in [30], where the runtime of the
(1 + 1) EA on this benchmark was shown to be Θ(=<) for all val-
ues of <. Since then is has been intensively studied and given
rise to many important results, e.g., it is one of the few exam-
ples where crossover was proven to give significant performance
gains [4, 13, 39, 40], estimation-of-distribution algorithms and ant-
colony optimizers were shown to significantly outperform classic
evolutionary algorithms on Jump functions [7, 14, 34], and it led to
the development of fast mutation [21] and a powerful stagnation-
detection mechanism [51]. Several variations of jump functions
have been proposed and analyzed [6, 8, 24–26, 28, 32, 38, 50, 56].

In the context of our work, it is important to note that typi-
cal elitist mutation-based algorithms optimize Jump functions in
time Θ(=<). A speed-up by a factor of Ω(<Ω (<)) can be obtained
from fast mutation [21] and various forms of stagnation detec-
tion [27, 50–52] (where stagnation detection usually gives run-
times by a factor of around

√
< smaller than fast mutation). With

crossover, the (` +1) GAwithout additional modifications reaches
runtimes of $̃ (=<−1) [13, 18]. With suitable diversity mechanisms
or other additional techniques, runtimes up to $ (=) were ob-
tained [2–4, 12, 31, 53, 55], but the lower the runtimes become, the
more these algorithms appear custom-tailored to jump functions,
see, e.g., [56]. The extreme end is marked by an$ (=

log=) time algo-

rithm [10] designed to witness the black-box complexity of jump
functions.

Non-elitism could not be used effectively on Jump functions so
far. The (1, _) EA for essentially all reasonable parameter choices
was proven to have at least the runtime of the (1 + _) EA [15].
In [45, Theorem 14], the Metropolis algorithm for any value of
the acceptance parameter was shown to have a runtime of at least
2Ω (=) with at least constant probability.1

3 PRELIMINARIES

Wenow formally define theMAHHalgorithm, our considered stan-
dard benchmark functions aswell as somemathematical tools used
in our runtime analysis.

3.1 Algorithms

Wewill analyse the runtime of theMAHH algorithm applied to the
problem of reaching the optima of a benchmark function defined
on the space of =-dimensional bit vectors.

In each iteration of the algorithm, one bit of the current vector G
is chosen at random and flipped to create a mutation G ′. This muta-
tion is accepted with probability ? (ALLMOVES operator), and ac-
cepted only if the value of the benchmark function increases with
probability 1 − ? (ONLYIMPROVING operator). We provide a de-
tailed overview of the Move Acceptance Hyper-Heuristic in Algo-
rithm 1.

1The result [45, Theorem 14] says “with probability 1 − 2−Ω (=) ”, but this seems to
overlook that the proof from the second sentence on only regards the case that the
random initial solution has at least =/2 zeroes.

3

Algorithm 1: Move Acceptance Hyper-Heuristic
(MAHH).

Data: Choose G ∈ {0, 1}= uniformly at random
1 while termination criterion not satisfied do

2 G ′ ← FLIP-RANDOM-BIT(G);

3 ACC←
{
ALLMOVES, with probability ?;

ONLYIMPROVING, otherwise;

4 if ACC(G, G ′) then
5 G ← G ′;

Algorithm 2: METROPOLIS Algorithm.

Data: Choose G ∈ {0, 1}= uniformly at random
1 while termination criterion not satisfied do

2 G ′ ← FLIP-RANDOM-BIT(G);
3 Δ5 ← 5 (G ′) − 5 (G);
4 if Δ5 ≥ 0 then

5 G ← G ′;
6 else

7 A ← D ∈ [0, 1] chosen uniformly at random;

8 if A ≤ U (=)Δ5 then

9 G ← G ′;

Algorithm 3: (1+1) Evolutionary Algorithm.

Data: Choose G ∈ {0, 1}= uniformly at random
1 while termination criterion not satisfied do

2 G ← flip each bit of G with probability 1
= ;

3 Δ5 ← 5 (G ′) − 5 (G);
4 if Δ5 ≥ 0 then

5 G ← G ′;

We will furthermore compare the runtime of the MAHH algo-
rithm to the performance of several well-known algorithms. In par-
ticular, we will be considering the METROPOLIS Algorithm, in Al-
gorithm 2, and the (1+1) Evolutionary Algorithm, in Algorithm 3.

3.2 Benchmark Function Classes

We will now define the various benchmark functions that we will
use to analyse the performances of the algorithm.

We first define the OneMax function as

OneMax(G) =
=∑

8=1

G8 .

TheOneMax function has a constant slope leading to a global opti-
mum placed at the 1= bit-string. It is used to evaluate the hillclimb-
ing performance of randomized search heuristics.

We define the Cliff3 class of functions (for 1 ≤ 3 ≤ =/2) as
follows,

Cliff3 (G) =
{
OneMax(G), if ‖G ‖1 ≤ = − 3 ;
OneMax(G) − 3 + 1/2, otherwise.

The Cliff3 class of functions are examples of functions where evo-
lutionary algorithms only accepting the best proposed moves seen
so far (called elitist evolutionary algorithms) will perform poorly.
It is therefore used to evaluate the ability of the algorithm to escape
local optima.

In this paper, we will present a runtime analysis of the MAHH
hyperheuristic on the Jump< class of functions defined as follows,

Jump< (G) =

= +<, if ‖G ‖1 = =;

< + OneMax(G), if ‖G ‖1 ≤ = −<;

= − OneMax(G), otherwise.

The Jump< class of functions are examples of functions where the
local optimum has a wide basin of attraction, which will make
it more difficult for the hyper-heuristics to escape the basin and
reach the global optimum.

3.3 Mathematical Tools

We now introduce several of themathematical tools, that we use to
prove our lower and upper bound in Sections 4 and 5, respectively.

The expected time to reach a state with 8 + 1 one-bits, given
a state with 8 one-bits can be obtained using the following recur-
rence formula.

Lemma 3.1 ([29]). We denote by) +8 the expected time to reach a

state with 8 + 1 one-bits, given a state with 8 one-bits. We denote by

?−8 and ?+8 the transition probabilities to reach states with 8 − 1 and

8 + 1 one-bits, respectively. Then

E
[
) +8

]
=

1

?+8
+
?−8
?+8
E
[
) +8−1

]
.

Lemma 3.1 allows us to link a step of the algorithm to previous
steps while taking the local variations of the benchmark function
into account. The formula can be expanded to give an explicit for-
mula for the expected time to increase the number of one-bits by
one.

Lemma 3.2. Following the notation defined in Lemma 3.1,

E[) +8] =
8∑

:=0

1

?+
:

8∏

ℓ=:+1

?−ℓ
?+ℓ

.

Each term of the sum can be interpreted as the expected time
of the path starting from the state with 8 one-bits and returning to
the state with : one-bits (: < 8) before reaching the state with 8 +1
one-bits.

The following Multiplicative Drift Theorem provides upper
bounds on the expected runtime in the case where the progress
can be bounded from below by an expression proportional to the
distance from the target (which is zero in the formulation of the
theorem below).

Theorem 3.3 (Multiplicative Drift Theorem [20]). Let (⊆
R be a finite set of positive numberswith minimum B<8= . Let (-C)C≥0
be a sequence of random variables over (∪ {0}. Let) be the random

variable that denotes the first point in time C ∈ N for which -C = 0.

Suppose further that there exists a constant X > 0 such that

E[-C − -C+1 | -C = B] ≥ XB,

4

holds for all B ∈ (with P[-C = B0] > 0. Then, for all B0 ∈ (with

P[-0 = B0] > 0,

E[) | -0 = B0] ≤
1 + log(B0/B<8=)

X
.

In our analysis in Section 5 we furthermore make use of Wald’s
formula, which we introduce now.

Theorem 3.4 (Wald’s Formula [54]). If we assume (-=)=≥0 to

be a sequence of random independent variables following the same

law and to be integrable, and # to be a waiting time integrable and

adapted to (-=)=≥0, i.e., the events {# = =} are determined by

(-1, ..., -=). Then,

E

[
#∑

8=1

-8

]

= E[#]E[-1] .

4 LOWER BOUND ON THE RUNTIME OF

MAHH ON Jump<
In this section, we prove a general formula for E[) +=−1] by using
Lemma 3.2 for 8 = = − 1, and use it to compute more precise lower
bounds for the runtime of the MAHH algorithm.

Theorem 4.1 (General Formula for the ExpectedDuration

of the Last Step). We consider the MAHH algorithm on Jump< .

Let) +=−1 be the expected time for the MAHH algorithm to reach the

state with = 1-bits, given a state with (= − 1) 1-bits. For any ? > 0, =

and< ≤ =, we have

E[) +=−1] = ?=−2<+1
=−<−1∑

:=0

?−:
(
=

:

)
+ ?1−=

=−1∑

:==−<

(
=

:

)
?: . (1)

Proof. This result is a direct consequence of Lemma 3.2 for 8 =
= − 1,

E[) +=−1] =
=−1∑

:=0

1

?+
:

=−1∏

ℓ=:+1

?−ℓ
?+ℓ

. (2)

We now need to compute the
?−
ℓ

?+
ℓ

terms. A straightforward calcu-

lation counting the number of bits that we can flip, and adding a
factor ? in cases where the Jump< score reduces, gives us

?−
:

?+
:

=

:
=−: ?, if 0 ≤ : ≤ = −< − 1;
:

=−: =
=−<
< , if : = = −<;

:
=−:

1
? , if = −< + 1 ≤ : ≤ = − 2;

= − 1, if : = = − 1.

(3)

We will now consider different ranges of : case by case since
the exact expressions of ?−ℓ and ?+ℓ depend on : .

We begin with the case where 0 ≤ : ≤ = −< − 1. The product
terms in (2) can be split as follows,

=−1∏

ℓ=:+1

?−ℓ
?+ℓ

=

(
=−<−1∏

ℓ=:+1

?−ℓ
?+ℓ

)
?−=−<
?+=−<

(
=−2∏

ℓ==−<+1

?−ℓ
?+ℓ

)
?−=−1
?+=−1

. (4)

Plugging in the formulas for
?−
:

?+
:

in (3) into the product terms in

(4) yields,

=−<−1∏

ℓ=:+1

?−ℓ
?+ℓ

= ?=−<−:−1
=−<−1∏

ℓ=:+1

ℓ

= − ℓ ,

=−2∏

ℓ==−<+1

?−ℓ
?+ℓ

=

(
1

?

)<−2 =−2∏

ℓ==−<+1

ℓ

= − ℓ .

Therefore, for 0 ≤ : ≤ = −< − 1 the summands in (2) are

1

?+
:

=−1∏

ℓ=:+1

?−ℓ
?+ℓ

=

1

?+
:

(
=−<−1∏

ℓ=:+1

?−ℓ
?+ℓ

)
?−=−<
?+=−<

(
=−2∏

ℓ==−<+1

?−ℓ
?+ℓ

)
?−=−1
?+=−1

=

=

= − : ?
=−<−:−1

(
1

?

)<−2 =−1∏

ℓ=:+1

ℓ

= − ℓ

=?=−2<−:+1
=!

(= − :)!:!

=

(
=

:

)
?=−2<−:+1. (5)

In the case where = −< ≤ : ≤ = − 2, by once again plugging

the formulas for
?−
:

?+
:

in (3) into the product terms in (2) we obtain,

=−1∏

ℓ=:+1

?−ℓ
?+ℓ

=

(
=−2∏

ℓ=:+1

?−ℓ
?+ℓ

)
?−=−1
?+=−1

=

(
1

?

)=−:−2 (=−2∏

ℓ=:+1

ℓ

= − ℓ

)

(= − 1)

=

(
1

?

)=−:−2 (= − 1)!
:!(= − (: + 1))! .

Therefore, for = −< ≤ : ≤ = − 2 the summands in (2) are

1

?+
:

=−1∏

ℓ=:+1

?−ℓ
?+ℓ

=

(
1

?

)=−:−1
=(= − 1)!
:!(= − :)!

=

(
=

:

) (
1

?

)=−:−1
. (6)

Finally, by inserting (5) and (6) into (2) we obtain,

E[) +=−1] = ?=−2<+1
=−<−1∑

:=0

(
=

:

)
?−: + ?1−=

=−1∑

:==−<

(
=

:

)
?: .

�

In Theorem 4.1, we proved a general formulawhich will be used
to derive a lower bound for the expected time of the MAHH to
arrive at the maximum of Jump< functions for two different forms
of<.

4.1 Case Where< = > (
√
=)

We first consider the case where< = > (
√
=), which means that the

descent is small relative to =.

Theorem 4.2. If < = > (
√
=), then the expected runtime of the

MAHH on Jump< , denoted by) , is

E[)] = Ω

(
=2<−1

(2< − 1)!

)
.

Proof. By only taking the term : = =−2< +1 in (1), we obtain,

E
[
) +=−1

]
≥

(
=

= − 2< + 1

)

=

=(= − 1)...(= − 2< + 2)
(2< − 1)!

5

=

=2<−1 (1 − 1
=)...(1 −

2<−2
=)

(2< − 1)!

≥
=2<−1 (1 − 2<−2

=)2<−1

(2< − 1)!

≥ =2<−1

(2< − 1)!4
− (2<−1) (2<−2)

= (7)

∼
<=> (

√
=)

=2<−1

(2< − 1)! ,

where we make use of the fact that (1 − G)~ ≤ 4−G~ in (7). �

4.2 Case Where< = U= With U < 0.5

We now consider the case where the descent has a length linear
in =. We shall prove that irrespective of the choice of the param-
eter ? , the runtime of the hyper-heuristics is exponential in this
case.

Theorem 4.3. The expected runtime of the MAHH on Jump< , de-

noted by) , in the case where < is linear in =, i.e., < = U= with

U < 0.5, is such that there exists V > 1 for which we have the expo-

nential lower bound,

E[)] = Ω
(
V=

)
.

Proof. By only taking the term : = = −< in (1), we obtain

E[) +=−1] ≥
(

=

= −<

)
?1−<

≥
(

=

= −<

)
.

Stirling’s formula gives

=! ∼
(=
4

)=√
2c=,

((1 − U)=)! ∼
(
(1 − U)=

4

) (1−U)=√
2c (1 − U)=,

(U=)! ∼
(U=
4

)U=√
2cU=.

Therefore,

((1 − U)=)!(U=)! ∼ UU= (1 − U) (1−U)=
(=
4

)=
2c=

√
(1 − U)U,

=!

((1 − U)=)!(U=)! ∼ �
^=
√
=
,

with ^ =
1

UU (1−U)1−U > 1.

Hence, for 1 < V < ^ , we have

E[)] = Ω
(
V=

)
.

�

5 UPPER BOUND ON THE RUNTIME OF

MAHH ON Jump<
We will now derive an upper bound on the runtime of the MAHH
on Jump< in the case ? =

<
= to show that our lower bound in

Section 4 is in fact optimal for this parameter choice.

Theorem 5.1. If ? =
<
= , the expected runtime) of the MAHH on

Jump< is

E[)] = $

(
= log= + =2<−1

<!<<−2

)
.

The remainder of this section contains the proof of Theorem 5.1.
In order to prove this result, we split the expected waiting time)
in two waiting times,

) =)1 +)2,
where)1 is the time to reach the local maximum from the 0= bit-
string and)2 is the time to reach the 1= bit-string from the local
maximum.

We define the distance3 to the local optimum, for allG ∈ {0, 1}= ,
by

3 (G) = |= −< − ‖G ‖1 |.

Lemma 5.2. If we denote by (- (C))C≥0 the sequence of states of a

run of the MAHH algorithm on Jump< , then while =−<− ‖G ‖1 ≥ 0,

i.e., while we are on the left of the local optimum,

E

[
3
(
- (C)

)
− 3

(
- (C+1)

) ���3
(
- (C)

)]
≥

3
(
- (C)

)

=
.

Proof. We compute

E

[
3
(
- (C+1)

) ���3
(
- (C)

)]

=

(
3
(
- (C)

)
− 1

) = − ‖G ‖1
=

+
(
3
(
- (C)

)
+ 1

)
?
‖G ‖1
=

+ 3
(
- (C)

)
(1 − ?) ‖G ‖1

=

= 3
(
- (C)

)
+ ? ‖G ‖1

=
− = − ‖G ‖1

=

= 3
(
- (C)

)
+ (? + 1) ‖G ‖1

=
− 1

= 3
(
- (C)

)
+ (? + 1)

= −< − 3
(
- (C)

)

=
− 1

≤ 3
(
- (C)

)
+

(<
=
+ 1

) = −< − 3
(
- (C)

)

=
− 1 (8)

≤ 3
(
- (C)

)
−
3
(
- (C)

)

=
+ =2 −<2

=2
− 1

≤ 3
(
- (C)

) (
1 − 1

=

)
,

where we use the fact that ? ≤ <
= in (8). Therefore we obtain

E

[
3
(
- (C)

)
− 3

(
- (C+1)

) ���3
(
- (C)

)]
≥

3
(
- (C)

)

=
.

�

Lemma 5.3. If we denote by (- (C))C≥0 the sequence of states of a

run of the MAHH algorithm on Jump< , then while =−<− ‖G ‖1 ≤ 0,

i.e., while we are on the right of the local optimum,

E

[
3
(
- (C)

)
− 3

(
- (C+1)

) ���3
(
- (C)

)]
≥

3
(
- (C)

)

=
.

6

Proof. We compute

E

[
3
(
- (C+1)

) ���3
(
- (C)

)]

=

(
3
(
- (C)

)
+ 1

)
?
= − ‖G ‖1

=

+
(
3
(
- (C)

)
− 1

) ‖G ‖1
=

(9)

+ 3
(
- (C)

)
(1 − ?)= − ‖G ‖1

=

= 3
(
- (C)

)
+ ? = − ‖G ‖1

=
− ‖G ‖1

=

= 3
(
- (C)

)
+ ?
−3

(
- (C)

)
+<

=
−
3
(
- (C)

)
+ = −<
=

= 3
(
- (C)

) (
1 − 1

=

)
− ?

3
(
- (C)

)

=
− = −<

=
+ ?<

=

≤ 3
(
- (C)

) (
1 − 1

=

)
− = −<

=
+ ?<

=

≤ 3
(
- (C)

) (
1 − 1

=

)
.

�

We can now bound)1. Indeed, we have,

)1 = min{C : 3 (- (C+1)) = 0}.

By themultiplicative drift theorem (Theorem 3.3) appliedwith B0 =

3 (- (0)) = = −<, Bmin = 1 and X =
1
= , we obtain

E[)1] = $ (= log =).

To bound)2 we define phases of random times (%8)8≥0 when -
returns to {G loc, G∗}, where G loc denotes the local optimum and G∗

denotes the global optimum,

%0 =)1,

%8+1 = min{: : : ≥ %8 + 1 and -: ∈ {G loc, G∗}}.

Therefore, we have

)2 =

#∑

8=1

%8 − %8−1,

where # is the random number of phases until - reaches G∗. As
the (- (C))C≥0 verifies the Markov property, the (%8+1 − %8)8≥0 are
independent and following the same law.

We first prove the following lemma,

Lemma 5.4. If ? ≤ <
= , then we have along the running of the

MAHH algorithm on Jump< ,

E[%8+1 − %8] = $ (<).

Proof. In order to prove this lemma, we will use the multiplica-
tive drift again. We observe that from the local optimum three pos-
sible moves exist: 1) the randomwalk stays at the local optimum, 2)
the random walk goes left of the local optimum, or 3) the random
walk moves right of the local optimum.

In case 1), the expected phase length is 1.

In case 2), we can use Lemma 5.2 with initial position B0 =

3 (- (%8+1)) = 1. In this case, the multiplicative drift theorem gives
an expected phase length of $ (=).

In case 3), we use Lemma 5.3 for the right part of the local optima
with initial position B0 = 3 (- (1)) = 1. The multiplicative drift
theorem gives an expected duration of$ (=).

Jointly considering these three cases allows us to establish,

E[%8+1 − %8] = ?E
[
%8+1 − %8

��� ‖- (%8+1) ‖1 < ‖G loc‖1
]

+ (1 − ?)E
[
%8+1 − %8 | ‖- (%8+1) ‖1 = ‖G loc ‖1

]

+ ?E
[
%8+1 − %8 | ‖- (%8+1) ‖1 > ‖G loc‖1

]

= ?$ (=) + (1 − ?) + ?$ (=)
= $ (<), (10)

where in (10) we make use of ? ≤ <
= . �

The path starting at the local optima and going straight to the
global optimum has a probability of

<∏

:=1

:

=
?<−1 =

<!

=<
?<−1.

Therefore, the probability that the phase ends in G∗ is

P
[
-%8+1 = G∗

]
≥ <!

=<
?<−1 .

Lemma 5.5. If ? ≥ <
= , then we have along the running of the

MAHH algorithm on Jump< ,

E[#] = $

(
=2<−1

<!<<−1

)
.

Proof. For each new phase %8 , for 8 ≥ 0, the algorithm has
the same probability of reaching the global maximum during the
next phase. Therefore, the random variable # follows a geometric
distribution with parameter

P
[
-%8+1 = G∗

]
≥ <!

=<
?<−1 .

Hence, if ? ≥ <
= ,

E[#] = 1

P
[
-%8+1 = G∗

] ≤ =2<−1

<!<<−1 .

�

We can now combine the results of Lemmas 5.4 and 5.5 and
Wald’s formula (Theorem 3.4), to obtain that if ? =

<
= ,

E[)2] = E[#]E[%1 − %0]
= $ (<E[#])

= $

(
=2<−1

<!<<−2

)
.

This proves that the MAHH heuristic performs much worse
than the elitist heuristic which has an expected time of$ (=<).

7

Algorithm 4: MAHH with Global Mutation

Data: Choose G ∈ {0, 1}= uniformly at random
1 while termination criteria not satisfied do

2 G ′ ← flip each bit of G with probability 1
= ;

3 ACC←
{
ALLMOVES, with probability ?;

ONLYIMPROVING, otherwise;

4 if ACC(G, G ′) then
5 G ← G ′;

6 USING GLOBAL MUTATION

We have just proven in Section 5 that the MAHH with ? =
<
=

has a runtime of $
(

=2<−1

<!<<−2

)
. For < = > (

√
=), this is signifi-

cantly larger than the Θ(=<) runtime of many evolutionary algo-
rithms. Noting this performance gap between the (1 + 1) EA and
the MAHH, we propose to use the MAHH with bit-wise mutation,
the variation operator of the (1 + 1) EA, instead of one-bit flips. As
we will see, this reduces the runtime to essentially the runtime of
the (1 + 1) EA (apart from a factor of<). Our runtime guarantee is
never worse than the one of the classic MAHH, so in the (extremal)
cases where the classic MAHH is superior to the (1 + 1) EA, this
algorithms is as well. We note that it may appear natural that an
algorithm equipped with two mechanisms to leave local optima
shows such a best-of-two-worlds behavior, but since the global mu-
tation operator opens also many other search trajectories, it is not
immediately obvious that a combination of two operators results
in the minimum performance of the two individual performances.
In fact, in our proofs we will see that the global mutation operator
also leads to (small) negative effects. We discuss this in more detail
in the sketch of the proof.

We show the following runtime guarantee for the MAHH with
global mutation (bit-wise mutation with mutation rate 1

=).

Theorem 6.1. If ? =
<
84= , the expected runtime) of the MAHH

with global mutation on Jump< verifies

E[)] = $

(
= log= +<min

(
4=<,

8<−1 (4=)2<−1
<!<<−1

))
.

In order to prove this result, we will follow the same general
approach via Wald’s equation as in Section 5. Again, a phase is the
time interval starting from the current solution being on the local
optimum to the current solution for the first time being again on
the local optimum or being the global optimum.

As before, the expected number of phases is the reciprocal of the
probability that a phase ends on the global optimum. Since this is
the sum of the probabilities that the global optimum is reached
with a mutation step going right from the local to the global op-
timum and the probability that the MAHH uses the trajectory
through the valley of low fitness, we indeed have the best-of-two-
worlds effect for the expected number of phases.

The difference to our situation in Section 5 lies in the way our
algorithm returns to the local optimum. Of course, again, the typ-
ical phase (of length one) is that the algorithm just stays on the
local optimum, either because the offspring equals the parent (this

can happen now that we use bit-wise mutation) or because the new
solution, which is worse than the parent unless it is the global opti-
mum, is not accepted (which happens with high probability 1− ?).

The different behavior arises when the current solution is in the
fitness valley, that is, when ‖G ‖1 is strictly between = −< and =.
For the classic MAHH, in this case we have a strong additive drift
towards the local optimum, see (9) (this strong drift was not fully
exploited in the remainder to allow a uniform analysis of the cases
that the algorithm is to the left and to the right of the local op-
timum, this is why this drift does not appear in the statement of
Lemma 5.3). This constant drift implies that it takes only constant
time to reach the local optimum when in the fitness valley at con-
stant distance to the local optimum.

Now that we use global mutation, it can happen that the algo-
rithm flips several one-bits to zero and thereby goes from the area
right of the local optimum to the left of the local optimum. There,
a much smaller drift to the local optimum is present, leading to
times of order at least Ω(=/<) to reach the local optimum. We
note that this event of moving from the right to the left of the local
optimum is not rare, but happens in fact with constant probability
(simply, because with constant probability several bits are flipped
and here, with constant probability, all these bits are one). Conse-
quently, now the time to regain the local optimum when in con-
stant distance to the right of the local optimum is at least Ω(=/<),
as opposed to $ (1) with local mutation. This shows why it is not
obvious that a combination of two mechanisms to leave local op-
tima gives a best-of-two-worlds behavior.

To nevertheless show a best-of-two-worlds phenomenon, we de-
sign a suitable potential function. It accounts for distances from
the local optimum stemming from the fitness valley by a constant
factor U larger than distances on the other side. With a careful
analysis, estimating in particular the effect of changing the side,
we show that this potential function still shows a multiplicative
drift behavior, and this gives us the same$ (<) expected length of
a phase as in Section 5.

For reasons of space, the formal proof had to be moved into the
appendix of this work.

7 CONCLUSION

In this work, we conducted a precise runtime analysis of the
MAHH on the Jump benchmark, the most prominent multimodal
benchmark in the theory of randomized search heuristics. Our
main result is that the MAHH on the Jump benchmark does not
exhibit the extremely positive performance on the Cliff bench-
mark [45], but instead has a runtime that for many jump sizes, in
particular, the more relevant small ones, is drastically above the
runtime of many evolutionary algorithms. This could indicate that
the Cliff benchmark is a too optimistic model for local optima in
heuristic search.

On the positive side, we propose to use the MAHH with the
global bit-wise mutation operator common in evolutionary algo-
rithms and prove the non-obvious result that this leads to a run-
time which is essentially the minimum of the runtimes of the clas-
sic MAHH and the (1 + 1) EA.

Since we observed this best-of-two-worlds effect so far only
on the Jump benchmark, more research in this direction is clearly

8

needed. We note that in general it is little understood how evolu-
tionary algorithms and other randomized search heuristics profit
from non-elitism. So, also more research on this broader topic
would be highly interesting.

ACKNOWLEDGMENTS

This work was supported by a public grant as part of the
Investissements d’avenir project, reference ANR-11-LABX-0056-
LMH, LabEx LMH.

REFERENCES
[1] Fawaz Alanazi and Per Kristian Lehre. 2014. Runtime analysis of selection hyper-

heuristics with classical learning mechanisms. In Congress on Evolutionary Com-
putation, CEC 2014. IEEE, 2515–2523.

[2] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. 2021. Lazy parameter
tuning and control: choosing all parameters randomly from a power-law distri-
bution. In Genetic and Evolutionary Computation Conference, GECCO 2021. ACM,
1115–1123.

[3] Denis Antipov and Benjamin Doerr. 2020. Runtime analysis of a heavy-tailed
(1 + (_, _)) genetic algorithm on jump functions. In Parallel Problem Solving
From Nature, PPSN 2020, Part II. Springer, 545–559.

[4] Denis Antipov, Benjamin Doerr, and Vitalii Karavaev. 2022. A rigorous runtime
analysis of the (1 + (_, _)) GA on Jump functions. Algorithmica 84 (2022), 1573–
1602.

[5] Anne Auger and Benjamin Doerr (Eds.). 2011. Theory of Randomized Search
Heuristics. World Scientific Publishing.

[6] Henry Bambury, Antoine Bultel, and Benjamin Doerr. 2021. Generalized jump
functions. In Genetic and Evolutionary Computation Conference, GECCO 2021.
ACM, 1124–1132.

[7] Riade Benbaki, Ziyad Benomar, and Benjamin Doerr. 2021. A rigorous runtime
analysis of the 2-MMASib on jump functions: ant colony optimizers can cope
well with local optima. In Genetic and Evolutionary Computation Conference,
GECCO 2021. ACM, 4–13.

[8] Chao Bian, YawenZhou,Miqing Li, andChaoQian. [n. d.]. Stochastic population
update can provably be helpful in multi-objective evolutionary algorithms. In
International Joint Conference on Artificial Intelligence, IJCAI 2023. to appear.

[9] Edmund K. Burke, Michel Gendreau, Matthew R. Hyde, Graham Kendall,
Gabriela Ochoa, Ender Özcan, and Rong Qu. 2013. Hyper-heuristics: a survey of
the state of the art. Journal of the Operational Research Society 64 (2013), 1695–
1724.

[10] Maxim Buzdalov, Benjamin Doerr, and Mikhail Kever. 2016. The unrestricted
black-box complexity of jump functions. Evolutionary Computation 24 (2016),
719–744.

[11] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. 2020. When hypermuta-
tions and ageing enable artificial immune systems to outperform evolutionary
algorithms. Theoretical Computer Science 832 (2020), 166–185.

[12] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian
Lehre, Pietro S. Oliveto, Dirk Sudholt, and Andrew M. Sutton. 2016. Escaping
local optima with diversity mechanisms and crossover. In Genetic and Evolution-
ary Computation Conference, GECCO 2016. ACM, 645–652.

[13] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian
Lehre, Pietro S. Oliveto, Dirk Sudholt, and Andrew M. Sutton. 2018. Escaping
local optima using crossover with emergent diversity. IEEE Transactions on Evo-
lutionary Computation 22 (2018), 484–497.

[14] Benjamin Doerr. 2021. The runtime of the compact genetic algorithm on Jump
functions. Algorithmica 83 (2021), 3059–3107.

[15] Benjamin Doerr. 2022. Does comma selection help to cope with local optima?
Algorithmica 84 (2022), 1659–1693.

[16] Benjamin Doerr and Carola Doerr. 2020. Theory of parameter control for dis-
crete black-box optimization: provable performance gains through dynamic pa-
rameter choices. In Theory of Evolutionary Computation: Recent Developments
in Discrete Optimization, Benjamin Doerr and Frank Neumann (Eds.). Springer,
271–321. Also available at https://arxiv.org/abs/1804.05650.

[17] Benjamin Doerr, Arthur Dremaux, Johannes Lutzeyer, and Aurélien Stumpf.
2023. How the move acceptance hyper-heuristic copes with local optima: drastic
differences between jumps and cliffs. In Genetic and Evolutionary Computation
Conference, GECCO 2023. ACM. To appear.

[18] Benjamin Doerr, Aymen Echarghaoui, Mohammed Jamal, and Martin S. Krejca.
2023. Lasting Diversity and Superior Runtime Guarantees for the (`+1) Genetic
Algorithm. CoRR abs/2302.12570 (2023). arXiv:2302.12570

[19] Benjamin Doerr, Taha El Ghazi El Houssaini, Amirhossein Rajabi, and Carsten
Witt. 2023. How well does the Metropolis algorithm cope with local optima?.

In Genetic and Evolutionary Computation Conference, GECCO 2023. ACM. To
appear.

[20] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. 2012. Multiplicative
drift analysis. Algorithmica 64 (2012), 673–697.

[21] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. 2017.
Fast genetic algorithms. In Genetic and Evolutionary Computation Conference,
GECCO 2017. ACM, 777–784.

[22] BenjaminDoerr, Andrei Lissovoi, Pietro S. Oliveto, and JohnAlasdairWarwicker.
2018. On the runtime analysis of selection hyper-heuristics with adaptive learn-
ing periods. In Genetic and Evolutionary Computation Conference, GECCO 2018.
ACM, 1015–1022.

[23] Benjamin Doerr and Frank Neumann (Eds.). 2020. The-
ory of Evolutionary Computation—Recent Developments in
Discrete Optimization. Springer. Also available at
http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html.

[24] Benjamin Doerr and Zhongdi Qu. 2023. A first runtime analysis of the NSGA-
II on a multimodal problem. Transactions on Evolutionary Computation (2023).
https://doi.org/10.1109/TEVC.2023.3250552.

[25] Benjamin Doerr and Zhongdi Qu. 2023. From understanding the population
dynamics of the NSGA-II to the first proven lower bounds. In Conference on
Artificial Intelligence, AAAI 2023. AAAI Press. To appear.

[26] Benjamin Doerr and Zhongdi Qu. 2023. Runtime analysis for the NSGA-II: Prov-
able speed-ups from crossover. In Conference on Artificial Intelligence, AAAI 2023.
AAAI Press. To appear.

[27] Benjamin Doerr and Amirhossein Rajabi. 2023. Stagnation detection meets fast
mutation. Theoretical Computer Science 946 (2023), 113670.

[28] Benjamin Doerr andWeijie Zheng. 2021. Theoretical analyses of multi-objective
evolutionary algorithms on multi-modal objectives. In Conference on Artificial
Intelligence, AAAI 2021. AAAI Press, 12293–12301.

[29] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2000. Dynamic parameter
control in simple evolutionary algorithms. In Foundations of Genetic Algorithms,
FOGA 2000. Morgan Kaufmann, 275–294.

[30] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2002. On the analysis of the
(1+1) evolutionary algorithm. Theoretical Computer Science 276 (2002), 51–81.

[31] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Samadhi Nallaperuma, Frank
Neumann, and Martin Schirneck. 2016. Fast building block assembly by major-
ity vote crossover. In Genetic and Evolutionary Computation Conference, GECCO
2016. ACM, 661–668.

[32] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and Amirhossein Rajabi. 2022.
Escaping local optima with local search: A theory-driven discussion. In Paral-
lel Problem Solving from Nature, PPSN 2022, Part II, Günter Rudolph, Anna V.
Kononova, Hernán E. Aguirre, Pascal Kerschke, Gabriela Ochoa, and Tea Tusar
(Eds.). Springer, 442–455.

[33] Oliver Giel and Ingo Wegener. 2003. Evolutionary algorithms and the maxi-
mum matching problem. In Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 2003. Springer, 415–426.

[34] Václav Hasenöhrl and Andrew M. Sutton. 2018. On the runtime dynamics of
the compact genetic algorithm on jump functions. In Genetic and Evolutionary
Computation Conference, GECCO 2018. ACM, 967–974.

[35] Mario Alejandro Hevia Fajardo and Dirk Sudholt. 2021. Self-adjusting offspring
population sizes outperform fixed parameters on the cliff function. In Founda-
tions of Genetic Algorithms, FOGA 2021. ACM, 5:1–5:15.

[36] Jens Jägersküpper and Tobias Storch. 2007. When the plus strategy outperforms
the comma strategy and when not. In Foundations of Computational Intelligence,
FOCI 2007. IEEE, 25–32.

[37] Thomas Jansen. 2013. Analyzing Evolutionary Algorithms – The Computer Sci-
ence Perspective. Springer.

[38] Thomas Jansen. 2015. On the black-box complexity of example functions: the
real jump function. In Foundations of Genetic Algorithms, FOGA 2015. ACM, 16–
24.

[39] Thomas Jansen and Ingo Wegener. 2001. Evolutionary algorithms - how to cope
with plateaus of constant fitness and when to reject strings of the same fitness.
IEEE Transactions on Evolutionary Computation 5 (2001), 589–599.

[40] Timo Kötzing, Dirk Sudholt, and Madeleine Theile. 2011. How crossover helps
in pseudo-Boolean optimization. In Genetic and Evolutionary Computation Con-
ference, GECCO 2011. ACM, 989–996.

[41] Per Kristian Lehre and Ender Özcan. 2013. A runtime analysis of simple hyper-
heuristics: to mix or not to mix operators. In Foundations of Genetic Algorithms,
FOGA 2013. ACM, 97–104.

[42] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. 2019. On the
time complexity of algorithm selection hyper-heuristics for multimodal optimi-
sation. In Conference on Artificial Intelligence, AAAI 2019. AAAI Press, 2322–
2329.

[43] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. 2020. How the
duration of the learning period affects the performance of random gradient selec-
tion hyper-heuristics. In Conference on Artificial Intelligence, AAAI 2020. AAAI
Press, 2376–2383.

9

https://arxiv.org/abs/1804.05650
http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html
https://doi.org/10.1109/TEVC.2023.3250552

[44] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. 2020. Simple
hyper-heuristics control the neighbourhood size of randomised local search op-
timally for LeadingOnes. Evolutionary Computation 28 (2020), 437–461.

[45] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. 2023. When
move acceptance selection hyper-heuristics outperform Metropolis and elitist
evolutionary algorithms and when not. Artificial Intelligence 314 (2023), 103804.

[46] Frank Neumann, Dirk Sudholt, and Carsten Witt. 2022. The compact genetic
algorithm struggles on Cliff functions. In Genetic and Evolutionary Computation
Conference, GECCO 2022. ACM, 1426–1433.

[47] Frank Neumann and Ingo Wegener. 2007. Randomized local search, evolution-
ary algorithms, and the minimum spanning tree problem. Theoretical Computer
Science 378 (2007), 32–40.

[48] Frank Neumann and CarstenWitt. 2010. Bioinspired Computation in Combinato-
rial Optimization – Algorithms and Their Computational Complexity. Springer.

[49] Tiago Paixão, Jorge Pérez Heredia, Dirk Sudholt, and Barbora Trubenová. 2017.
Towards a runtime comparison of natural and artificial evolution. Algorithmica
78 (2017), 681–713.

[50] Amirhossein Rajabi and CarstenWitt. 2021. Stagnation detection in highly mul-
timodal fitness landscapes. In Genetic and Evolutionary Computation Conference,
GECCO 2021. ACM, 1178–1186.

[51] Amirhossein Rajabi and Carsten Witt. 2022. Self-adjusting evolutionary algo-
rithms for multimodal optimization. Algorithmica 84 (2022), 1694–1723.

[52] Amirhossein Rajabi and Carsten Witt. 2023. Stagnation detection with random-
ized local search. Evolutionary Computation 31 (2023), 1–29.

[53] Jonathan E. Rowe and Aishwaryaprajna. 2019. The benefits and limitations of
voting mechanisms in evolutionary optimisation. In Foundations of Genetic Al-
gorithms, FOGA 2019. ACM, 34–42.

[54] AbrahamWald. 1944. On cumulative sums of random variables. Annals of Math-
ematical Statistics 15 (1944), 283–296.

[55] Darrell Whitley, Swetha Varadarajan, Rachel Hirsch, and Anirban Mukhopad-
hyay. 2018. Exploration and exploitation without mutation: solving the jump
function in Θ(=) time. In Parallel Problem Solving from Nature, PPSN 2018, Part
II. Springer, 55–66.

[56] CarstenWitt. 2023. Howmajority-vote crossover and estimation-of-distribution
algorithms cope with fitness valleys. Theoretical Computer Science 940 (2023),
18–42.

APPENDIX

This appendix contains material omitted in the conference ver-
sion [17] for reasons of space.

Detailed Proof of Theorem 6.1

We split the random waiting time) in two random waiting times,

) =)1 +)2,
where)1 is the expected time to reach the local maximum from
the 0-bit and)2 is the expected time to reach the 1-bit from the
local maximum.

We will use the same type of proof as in Section 5. Again we
define a new distance function, for an U that we will determine
later,

3 (G) =
{
= −< − ‖G ‖1, if ‖G ‖1 ≤ = −<;

U (‖G ‖1 − (= −<)), otherwise.

We first prove the following lemma.

Lemma .1. For U > 1 and ? =
<

2U4= , if we denote by (- (C))C≥0
the sequence of states of a run of the MAHH algorithm on Jump< ,

then while = −< − ‖G ‖1 ≥ 0, i.e., while we are on the left of the local

optimum,

E

[
3
(
- (C)

)
− 3

(
- (C+1)

)
| 3

(
- (C)

)]
≥

3
(
- (C)

)

4=
.

Proof. We begin by introducing notation for the two events
describing the two directions in which our joint heuristic can
progress. We use �: (-) to denote the event in which we start in
state - and move : bits closer to the local optimum, while staying
left of the local optimum, and � (-) the event in which we start
at state - and get strictly closer to the optimum, while staying on
the left of the local optimum. We furthermore use �left

:
(-) for the

event in which we start in state - and move : bits away on the
left of the local optimum and �left for the event to drift strictly

away from the local optimum on the left. We also use �
right
:
(-)

for the event in which we start in state - and move : bits away
on the right of the local optimum and �right for the event to drift
strictly away from the local optimum on the right. Additionally,
we use�: (-) to denote the event in which we start in state- and
move to a position, which is : bits away from the local optimum,
and �(-) to denote the random variable of the number of bits we
move away from the local optimum when starting in state - . Fi-
nally, we define ((-) as the event in which we start in state- and
stay in the same state.

E

[
3
(
- (C+1)

)
| 3

(
- (C)

)]

=

3 (- (C))∑

:=1

(
3
(
- (C)

)
− :

)
P

(
�:

(
- (C)

))

+
<∑

:=1

U:P
(
�
right
:

(
- (C)

))

+
=−<−3 (- (C))∑

:=1

(
3
(
- (C)

)
+ :

)
P

(
�left
:

(
- (C)

))

10

+ 3
(
- (C)

)
P

(
(
(
- (C)

))

≤3
(
- (C)

)
−
3 (- (C))∑

:=1

:P
(
�:

(
- (C)

))
+ 2U

=∑

:=1

: P
(
�:

(
- (C)

))

≤3
(
- (C)

)
− P(� (-)) + 2UE[�(-)] .

We furthermore use, to denote the event in which we flip only
one 0-bit to a 1-bit. We have that

P(� (-)) ≥ P(,)

≥ 1

=

(
1 − 1

=

)=−1 (
3
(
- (C)

)
+<

)

∼
3
(
- (C)

)
+<

24=
,

for= large enough.Moreover, we denote by# (-) the randomnum-
ber of bits flipped,

E[�(-)] ≤ ?E[# (-)]
≤ ?,

as the distance away from the local optimum is always inferior to
the number of bits flipped.

Therefore, for ? =
<

2U4= , we obtain

E

[
3
(
- (C)

)
− 3

(
- (C+1)

)
| 3

(
- (C)

)]
≥

3
(
- (C)

)

4=
.

�

We can now bound)1. Indeed, we have,

)1 = min{C : 3
(
- (C+1)

)
= 0}.

By themultiplicative drift theorem (Theorem 3.3) appliedwith B0 =

3 (- (0)) = = −<, B<8= = 1 and X =
1
4= , we obtain,

E[)1] = $ (= log =).

Lemma .2. For ? =
<
84= , there exists Δ > 0 such that if we denote

by (- (C))C≥0 the sequence of states of a run of the MAHH algorithm

on Jump< , then while = −< − ‖G ‖1 ≤ 0, i.e., while we are on the

right of the local optimum,

E

[
3
(
- (C)

)
− 3

(
- (C+1)

)
| 3

(
- (C)

)]
≥

3
(
- (C)

)
Δ

=
.

Proof. We again make use of the events and random variables
defined in the proof of Lemma .1. Moreover, use � (-) to denote
the event in which we start in state - and move closer to the lo-
cal optimum, while staying on its right. We furthermore, separate
�(-) the drift away from the optimum into two random variables
:�left (-) and�right (-). For the same reason as the case on the left
of the local optimum, we have,

E

[
3
(
- (C+1)

)
| 3

(
- (C)

)]

≤3
(
- (C)

)
− UP(� (-)) + E[�(-)]

≤3
(
- (C)

)
− U ‖G ‖1

=

(
1 − 1

=

)=−1
+ E[�(-)]

≤3
(
- (C)

)
− U = −<

=4
+ E

[
�right (-)

]
+ E

[
�left (-)

]

≤3
(
- (C)

)
− U

24
+ ?U + E

[
�left (-)

]
.

And if we further denote the event in which we move from state
- (C) to = −< − 8 by �3 (- (C))−8 , as well as the event in which we

flip 8 1-bits to 0s by � ,

E[�left (-)] ≤
+∞∑

8=3 (- (C))+1
8P

(
�3 (- (C))−8

)

≤
+∞∑

8=3 (- (C))+1
8P(�)

≤
+∞∑

8=3 (- (C))+1
8
1

=8

(
1 − 1

=

)=−8 (‖G ‖1
8

)

≤
+∞∑

8=U

1

(8 − 1)! .

This is the rest of a converging sum, and therefore tends towards
0 when U → ∞. Therefore, for U big enough, E

[
�left (-)

]
≤ U

24 .

In this case U = 4 works. This choice of U results in the choice
? =

<
84= . Furthermore, Δ =

U
24 − E

[
�left (-)

]
=

2
4 − E

[
�left (-)

]
.

E

[
3
(
- (C+1)

)
| 3

(
- (C)

)]
≤ 3

(
- (C)

)
− U

24
+ ?U + E

[
�left (-)

]

≤ 3
(
- (C)

)
− Δ

≤ 3
(
- (C)

) (
1 − Δ

=

)
.

By taking Δ ≤ 1
4 , we obtain a unified drift along the runnning

of the algorithm

E

[
3
(
- (C)

)
− 3

(
- (C+1)

)
| 3

(
- (C)

)]
≥

3
(
- (C)

)
Δ

=
.

�

To bound)2, we define phases of random random times (%8)8≥0
when - returns to {G;>2 , G∗},

%0 =)1;

%8+1 = min{: : : ≥ %8 + 1 and -: ∈ {G loc, G∗}}.

Therefore, we have

)2 =

#∑

8=1

%8 − %8−1,

where # is the random number of phases until - reaches G∗ . As
the (- (C))C≥0 verifies the Markov property, the (%8+1 − %8)8≥0 are
independent and following the same law.

We first prove the following lemma,

Lemma .3. If ? ≤ <
84= , then we have along the running of the

MAHH algorithm on Jump< ,

E[%8+1 − %8] = $ (<).
11

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Benjamin Doerr, Arthur Dremaux, Johannes Lutzeyer, and Aurélien Stumpf

Proof. In order to prove this lemma, we will use the multiplica-
tive drift again.

If the random walk stays on the local optimum, the expected
duration of the phase is 1.

In the second case, we can use Lemma .2 with initial position
B0 = 3 (- (%8+1)). In this case, the multiplicative drift theorem gives
an expected duration of $ (= log B0).

Therefore , we have,

E[%8+1 − %8] ≤ 1 + ?$ (E[= log B0])
≤ $ (<E[log B0]) .

The expected number of bits flipped at each step is equal to one,
i.e., E[# (-)] = 1. The expected value E[B0] is the expected num-
ber of bits at which we land from the local optimum after one run
of mutations, therefore it is also a constant. Thanks to the concav-
ity of log, we know that E[log B0] is smaller than a constant that
does not depend on =. Therefore,

E[%8+1 − %8] = $ (<).

�

The path starting at the local optimum and going directly to the
1-bit with the mutation operator by only flipping one 0-bit has a
probability of< (1− 1

=)=−<
1
=< . Therefore the probability that the

phase ends in G∗ is

P
[
-%8+1 = G∗

]
≥

(
1 − 1

=

)=−<
1

=<

≥ 1

4=<
.

Lemma .4. We have for a run of the MAHH algorithm on Jump< ,

E[#] = $

(
min

(
4=<,

8<−1 (4=)2<−1
<!<<−1

))
.

Proof. At each new phase %8 , for 8 ≥ 0, the algorithm has the
same probability of reaching the global maximum during the next
phase via a global mutation of exactly the right bits with probabil-
ity at least 1

4=< . We can furthermore consider the option of arriv-
ing at the global optimum as the result of a succession of individual
bit flips moving us in the right direction, as in Lemma 5.5, the prob-
ability of taking such a path is at least <!

(4=)< ?<−1.
Therefore, in the geometric distribution of the random vari-

able # we can take both success probabilities into account in the
distributional parameter, which can be lower bounded as follows,

P
[
-%8+1 = G∗

]
≥ 1

4=< +
<!
(4=)< ?<−1 ≥ max

(
1

4=< , <!
(4=)< ?<−1

)
, for

? =
<
84= ,

E[#] = 1

P
[
-%8+1 = G∗

] ≤ min

(
4=<,

8<−1 (4=)2<−1
<!<<−1

)
.

�

In Lemma .4 we observe how the combination of algorithms al-
lows us to increase the probability of reaching the global optimum,
which serves as motivation to further study the combination of
well chosen algorithms in future research.

We can now combine the results of Lemmas .3 and .4 with
Wald’s formula (Theorem 3.4), to obtain that if ? =

<
84=

E[)2] = E[#]E[%1 − %0]
= $ (<E[#])

= $

(
<min

(
4=<,

8<−1 (4=)2<−1
<!<<−1

))
.

	Abstract
	1 Introduction
	2 Previous Works
	2.1 Hyper-Heuristics
	2.2 Runtimes Analyses on Cliff and Jump Functions

	3 Preliminaries
	3.1 Algorithms
	3.2 Benchmark Function Classes
	3.3 Mathematical Tools

	4 Lower Bound on the Runtime of MAHH on Jump m
	4.1 Case Where m = o(n)
	4.2 Case Where m = n With < 0.5

	5 Upper Bound on the Runtime of MAHH on Jump m
	6 Using Global Mutation
	7 Conclusion
	Acknowledgments
	References

