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Automatisation de la structuration des logs pour le Cloud Computing

Les registres de logs sont une composante fondamentale des systèmes informatiques modernes. Ils permettent aux équipes d'analyse et de surveillance de comprendre les comportements anormaux ou malveillants ayant pu survenir. Cependant, l'augmentation permanente du volume de logs générés par ces systèmes a rendu impossible l'inspection manuelle et pose un véritable défi d'automatisation du processus. Afin de traiter automatiquement ces données, plusieurs solutions de structuration des logs ont vu le jour. Dans cet article, nous analysons les capacités de deux d'entre elles à répondre aux enjeux du Cloud Computing en termes d'efficience et d'efficacité. Nos travaux se concentrent sur l'impact des paramètres et du prétraitement sur les performances de ces méthodes, deux étapes importantes, car nécessitant une intervention humaine incompatible avec l'automatisation du processus de structuration des logs.

Introduction

Les plateformes de Cloud Computing mettent à disposition de leurs clients différentes ressources informatiques à la demande. Cette externalisation rend les fournisseurs garants de la haute disponibilité et de la qualité de leurs services. La gestion d'un parc de ressources mutualisées en croissance constante demande de minimiser l'intervention humaine afin de suivre le changement d'échelle des infrastructures et d'éviter les erreurs. Pour atteindre cet objectif, on doit pouvoir se servir de toutes les informations à disposition afin de développer des outils autonomes servant à contrôler et assurer le respect de la qualité de service.

La journalisation des événements ou logs, consiste à enregistrer de manière détaillée des informations relatives à un programme pendant son exécution. Ces logs constituent une source d'information précieuse, utilisée pour retracer les différentes étapes d'un processus à la recherche de l'origine d'erreurs ou de pannes, mais également pour identifier des anomalies de performance ou analyser les statistiques d'utilisation [START_REF] Zhu | Tools and benchmarks for automated log parsing[END_REF].

Malgré toutes les possibilités offertes par les logs et l'information qu'ils contiennent, les traiter efficacement est une tâche complexe. Les développeurs ayant très peu de contraintes dans l'écriture des macros destinées à produire les messages logs, ceux-ci suivent un format semi-structuré. Par exemple, le protocole RFC 5424 pour rsyslog (Network Working Group, 2009) fixe un format en trois parties : un en-tête (HEADER), une partie optionnelle pour des données structurées (STRUCTURED-DATA) et un message (MSG). À l'inverse du HEADER qui possède un format prédéfini contenant la priorité et l'origine du message, le champ MSG doit uniquement contenir un message libre fournissant des informations sur l'événement.

Du fait de la complexité croissante et du besoin de scalabilité des plateformes Cloud, la volumétrie des logs ne fait qu'augmenter, et ce de façon rapide. En 2013, Alibaba produisait environ 30 à 50 gigaoctets (environ 120 à 200 millions de lignes) par heure [START_REF] Mi | Toward fine-grained, unsupervised, scalable performance diagnosis for production cloud computing systems[END_REF]. [START_REF] Zhu | Tools and benchmarks for automated log parsing[END_REF] évoquent un système de Huawei produisant plusieurs téraoctets de logs par jour en 2019. De notre côté, nous produisons actuellement chez 3DS OUTSCALE (fournisseur de Cloud français) une moyenne de 250 000 logs par seconde dans un de nos systèmes. Le traitement de cette volumétrie demande un système autonome nécessitant le moins d'intervention humaine possible. Afin de réagir le plus rapidement possible à une potentielle dégradation du service fourni, ce système doit pouvoir fonctionner en temps quasi réel.

L'importance de la structuration des logs a motivé la recherche et durant ces dernières années plusieurs comparatifs des algorithmes existants ont vu le jour [START_REF] He | An evaluation study on log parsing and its use in log mining[END_REF][START_REF] Zhu | Tools and benchmarks for automated log parsing[END_REF]. Ces études évaluent la précision et la robustesse de différentes solutions de structuration des logs sur des jeux de données provenant d'applications différentes. Les résultats de ces études illustrent l'utilisation possible de méthodes existantes pour le traitement des logsen temps réel. Cependant, à notre connaissance aucune étude ne pointe les limites restantes pour une automatisation complète du processus. En utilisant deux méthodes de traitement de logs, opérant en ligne et présentant de bons résultats, nous avons étudié deux points indispensables à leur automatisation : l'indépendance de ces méthodes au paramétrage et au prétraitement.

Nos contributions sont : une étude de l'impact du paramétrage sur la précision des méthodes et une étude de l'influence du prétraitement sur le temps de traitement et la précision. Ces travaux illustrent la faible dépendance d'une des méthodes étudiées au paramétrage avec cependant un impact modéré, mais potentiellement négatif du prétraitement sur sa précision. A contrario de la seconde méthode étudiée pour laquelle la précision et le temps de traitement dépendent fortement des étapes étudiées.

Dans ce qui suit, nous présentons l'état de l'art pour la structuration de logs(Sec. 2), dans la Sec. 3 nous présentons d'autres travaux comparatifs des algorithmes existants. La Sec. 4 présente notre étude des caractéristiques fondamentales pour un système autonome dans le Cloud : la précision et le temps de traitement en fonction du paramétrage et du prétraitement. Enfin, nous concluons le document dans la Sec. 5.

Structuration des logs

La structuration des logs se focalise sur la partie libre du message et cherche à identifier deux composantes : 1/ une composante fixe qui sert de patron 2/ une composante variable, contenant les spécificités du message. Dans le message " New process started: process x92 started on port 42", le patron identifié par l'expression régulière est "New process started: process . * started on port . * " ; le contenu spécifique est représenté par la liste : [x92, 42].

Trois qualités sont primordiales dans la structuration des logs : la précision, la robustesse et l'efficacité [START_REF] Zhu | Tools and benchmarks for automated log parsing[END_REF]. La précision évalue la bonne détection des différentes parties d'un message. Dans un système où la volumétrie des logs à traiter est conséquente et peut évoluer rapidement, il est nécessaire de disposer de solutions robustes, à même de maintenir leurs performances dans un environnement changeant. Ces solutions doivent également être efficaces et capables de traiter les messages en temps quasi réel. Dans un cadre industriel, il est humainement coûteux et pas toujours possible d'obtenir un jeu de données labellisées pour paramétrer un système, d'où la nécessité de restreindre l'impact de cette étape sur les performances. Il est courant d'utiliser la connaissance d'un système pour commencer à structurer ses logs à l'aide d'expressions régulières servant à identifier des composantes variables. À l'aide d'expressions simples, on peut identifier le chiffre et l'adresse IP du message "Send 92 bytes to system x32 at 112.13.92.1" et ainsi obtenir un message prétraité : "Send * bytes to system x32 at * ", les * symbolisant l'emplacement d'une variable identifiée. L'inconvénient de ce prétraitement est qu'il demande une connaissance précise des données traitées et l'intervention d'un ou plusieurs experts pour définir les expressions régulières à employer. De plus, le prétraitement peut impacter négativement la performance (Section 4).

Les logs étant générés sous forme de flux, le meilleur moyen de les traiter est de suivre le même fonctionnement. Plusieurs log parsers présentés dans la littérature permettent cela. On retrouvera SHISO [START_REF] Mizutani | Incremental mining of system log format[END_REF] qui se base sur un arbre de structuration enrichi durant le fonctionnement, LenMa [START_REF] Shima | Length matters : Clustering system log messages using length of words[END_REF] qui utilise la séquence constituée par la longueur de chaque mot dans un log pour classifier une entrée, Spell [START_REF] Makanju | A lightweight algorithm for message type extraction in system application logs[END_REF] basé sur la recherche de la plus longue séquence commune pour rattacher un log à un patron déjà connu ou en découvrir un nouveau, et enfin Drain [START_REF] He | Drain : An online log parsing approach with fixed depth tree[END_REF] qui construit un arbre de partitionnement de profondeur fixe pour structurer les logs.

3 Travaux connexes [START_REF] He | An evaluation study on log parsing and its use in log mining[END_REF] présentent et comparent la précision et le temps de traitement de 4 méthodes de structuration sur 4 jeux de données issus d'applications différentes. Leurs travaux mettent en valeur l'importance du temps de traitement et de la distribution des calculs pour tenir la charge dans de gros systèmes industriels. De la même façon, les travaux de synthèse de Logpai [START_REF] Zhu | Tools and benchmarks for automated log parsing[END_REF] 

Évaluation

Nos travaux analysent l'impact du paramétrage et du prétraitement sur la précision et le temps de traitement des méthodes considérées. Cette section est consacrée à la présentation et à l'analyse des résultats obtenus.

Contexte expérimental. Comme discuté dans la Sec. 3, nous avons retenu Spell [START_REF] Du | Spell : Streaming parsing of system event logs[END_REF] et Drain [START_REF] He | Drain : An online log parsing approach with fixed depth tree[END_REF], solutions les plus prometteuses en vue de leur application dans un environnement Cloud. Deux métriques ont été choisies : la précision de structuration [START_REF] Zhu | Tools and benchmarks for automated log parsing[END_REF] définie comme le rapport entre le nombre de logs dont le patron est correctement identifié et le nombre total de messages et le temps de calcul par log servant à représenter l'efficacité. Trois jeux de données libres, disponibles sur la plateforme LogHub1 ont été utilisés : OpenStack, Android et HDFS ; des échantillons labellisés de 2 000 lignes ont servi pour le calcul de la précision, les jeux de données complets ont eux été utilisés pour l'évaluation du temps de calcul. Nos expériences ont été réalisées sur une machine virtuelle Cloud de type CentOS Linux 7.8.2003 avec 62 GB de RAM.

Impact des paramètres sur la précision

Les paramètres sont des variables fixées lors de la configuration d'un système. Dans cette section, nous présentons une étude de l'influence de ces paramètres sur la précision de Spell et Drain afin de savoir si des valeurs génériques sont envisageables. 

TAB. 3 -Expressions régulières utilisées dans le prétraitement

Spell n'utilise qu'un seul paramètre servant de seuil pour déterminer si un log appartient à un patron déjà connu, τ ∈ [0, 1], qui est le rapport entre la plus grande séquence commune et la longueur du log. De son côté, Drain possède deux paramètres : une profondeur de l'arbre de recherche depth et un seuil ST ∈ [0, 1] qui sert à déterminer si un log appartient à un groupe existant.

La Figure 1 présente l'évolution de la précision en fonction des valeurs des paramètres. La valeur de τ maximisant la précision de Spell diffère pour chaque jeu de données : 0,8 pour OpenStack, 0,85 pour Android et 0,5 pour HDFS. Le jeu de données le plus touché par le choix de τ est HDFS : la moitié des valeurs de τ considérées donnent une précision inférieure à 0,7, pouvant même faire tomber la précision à 0. Dans les deux autres jeux de données, le choix de τ peux faire gagner jusqu'à 15 % de précision pour OpenStack et 20 % pour Android. Drain a un comportement inégal pour les différents jeux de données. Bien que des valeurs élevées de ST (>0,7) ne donnent pas de bons résultats, la valeur de depth est importante pour obtenir des résultats précis pour OpenStack et Android. De plus, dans le cas d'Android, la précision maximale obtenue est de 0,75 alors que 0,9 est atteint dans les deux autres jeux. Pour les jeux de données concernés, Drain atteint la plus haute précision avec un ST compris en 0,2 et 0,5 ; depth en revanche est plus versatile, sa valeur optimale étant de 5 pour Android, 6 pour HDFS et 7 pour OpenStack. On peut conclure que la précision des deux solutions est influencée par les choix de paramètres.

Impact du prétraitement sur la précision

L'étape de prétraitement permet d'identifier des variables avant de commencer le processus de structuration d'un log. Nous avons sélectionné un ensemble d'expressions régulières (Tab. 3) identifiant des blocs bien connus dans chaque jeu de données, tels que les chiffres, les adresses IP ou les mots commençant par "blk_-" pour HDFS.

La Table 4 présente les résultats obtenus sur les échantillons de 2 000 lignes. Chaque méthode a tourné avec et sans prétraitement, nous avons calculé la précision, mais également le nombre de patrons afin de détecter une éventuelle surclassification des logs. Les paramètres utilisés sont ceux pour lesquels chaque méthode présente la plus haute précision avec prétraitement.

Spell arrive à multiplier par 1,5 sa précision avec l'utilisation du prétraitement, et même par 3,6 dans le cas de HDFS. Même constat pour les patrons : Spell bénéficie d'une influence Le prétraitement a donc un effet, mais pas toujours positif sur la précision. Cette étape est de plus coûteuse car exigeant de déterminer à l'avance les expressions régulières.

Impact sur le temps de calcul

Notre dernière évaluation porte sur le temps du traitement : celui-ci doit rester le plus bas possible pour espérer des résultats en temps réel. Nous avons dans un premier temps essayé de faire tourner Spell et Drain sans prétraitement mais le temps d'exécution de Spell était trop long. En effet, au bout de trois heures, Spell n'avait pas terminé les calculs et ce pour les trois jeux de données contre quelques dizaines de minutes avec prétraitement. Les valeurs présentées dans cette section concernent donc les résultats avec étape de prétraitement.

Les résultats présentés dans la Figure 2 montrent la distribution du temps de traitement sur les différents jeux de données. Le temps moyen de traitement de Drain reste dans un ordre de 10**2 ns sur chaque jeu de données et est toujours inférieur à celui de Spell. Il est également important de noter qu'il existe un nombre conséquent de logspour lesquels le temps de traitement peut être jusqu'à 500 fois supérieur à la moyenne. Il est important de noter ces temps divergents car ils sont susceptibles de créer des décalages par rapport au temps réel dans un environnement de production.

Conclusion et travaux futurs

L'analyse des fichiers de logs est primordiale pour la maintenance des systèmes informatiques et l'automatisation de celle-ci passe par une étape de structuration visant à exploiter l'information contenue dans les messages. Dans cet article, nous nous sommes intéressés à la robustesse et l'efficience de deux méthodes issues de la littérature récente. Ces deux aspects sont cruciaux dans un environnement Cloud où l'interaction humaine doit être minimale pour 

  FIG. 1 -Précision en fonction des paramètres

  FIG. 2 -Temps de traitement total en fonction du nombre de logs déjà structurés

  Online log parsers présentés dans[START_REF] Zhu | Tools and benchmarks for automated log parsing[END_REF].

	Log parser	Année	Technique	Efficacité Couverture Pré-traitement
	SHISO	2013	Clustering	High	oui	non
	LenMa	2016	Clustering	Medium	oui	non
	Spell	2016	Longest common subsequence	High	oui	non
	Drain	2017	Parsing tree	High	oui	oui
		TAB. 1 -			

  évaluent la précision, la robustesse et l'efficacité de 13 méthodes sur 16 jeux de données. La Table1résume les caractéristiques des méthodes analysées adaptées au traitement en flux des logs. Les solutions les plus prometteuses en termes d'efficacité sont Drain, Spell et SHISO, Drain étant présenté comme la solution la plus performante selon ces mêmes critères. L'article met en valeur la combinaison des résultats sur 16 jeux de données et l'impact fort du système d'information sur la précision des solutions.Nous avons choisi de concentrer nos expériences sur les deux méthodes présentant la meilleure précision dans les études précédentes : Spell et Drain. Dans le cadre de notre étude, Caractéristiques de certains jeux de données présentés dans[START_REF] Zhu | Tools and benchmarks for automated log parsing[END_REF].nous avons ciblé et repris des jeux de données proches de l'environnement d'un fournisseur de Cloud (Tab. 2), les méthodes variant en fonction du système d'information dont provient chaque jeu de données." OpenStack est une solution Cloud permettant un déploiement de plateformes IaaS ; le volume du jeu de données reste cependant trop faible pour l'assimiler à un acteur industriel. Nous avons retenu Android pour ses nombreux patrons différents et ses logs de type système d'exploitation (allocation de ressources, gestion des processus et du réseau, etc.). Pour finir, nous avons décidé de considérer HDFS, celui-ci étant largement utilisé dans la littérature malgré son aspect peu complexe et son faible nombre de patrons et de parties variables. Les travaux présentés dans cette section forment une base solide pour comparer di-

	Jeu de données	Taille	#Messages	#Patrons #Mots uniques
	OpenStack	60,01 MB	207,820	51	942
	Android	3,38 GB	30,348,042	76,923	3599
	HDFS	1,47 GB	11,175,629	30	1445
	TAB. 2 -				

verses méthodes existantes dans de nombreux environnements. Toutefois, ils ne contiennent pas de données concrètes sur l'impact du paramétrage et du prétraitement sur la précision de l'analyse et le temps de calcul nécessaire pour traiter des jeux de données comme HDFS et Android.

  Précision en fonction du prétraitement positive en se rapprochant du nombre réel. Pour Drain, les résultats diffèrent selon le jeu de données, tandis que pour Android, nous notons une amélioration une amélioration similaire à celle de Spell avec le prétraitement. Pour OpenStack, la précision et le nombre de patrons empirent avec les mêmes expressions régulières grâce auxquelles on a constaté des améliorations dans le cas de Spell. Cette baisse de précision est liée à des mots de la forme 54b44eb-2d1a-4aa2-ba6b-074d35f8f12c présents dans 3 patrons. Sans prétraitement, celui-ci altère un niveau de l'arbre de partitionnement. En revanche, avec prétraitement ce mot est découpé en plusieurs parties : *b*eb-*d*a-*aa*-ba*b-*d*f*f*c et altère plusieurs niveaux de l'arbre , faisant ainsi tomber à 0 la précision de Drain pour tout log contenant ce type de mot. Spell n'est pas affecté car sa précision sur les patrons contenant ce mot est déjà nulle.

	Jeu de	Spell (sans)	Spell (avec)	Drain (sans)	Drain (avec)
	données	prec. nb. patrons	prec.	nb. patrons	prec. nb. patrons	prec.	nb. patrons
	Android	0.60	425	0.91(x1.5) 180(x0.42)	0.67	217	0.91(x1.4) 171(x0.79)
	HDFS	0.28	684	1.00(x3.6) 14(x0.02)	1.00	17	1.00(x1)	16(x0.94)
	O.Stack	0.23	692	0.77(x3.3) 451(x0.65)	0.84	75	0.73(x0.8) 299(x3.99)
			TAB. 4 -				

https ://github.com/logpai/loghub

Summary

Logs are a fundamental component of modern computer systems. They enable the analysis and monitoring teams to understand any abnormal or malicious behavior that may have occurred. The continuous increase in the volume of logs generated by these systems made it unsuitable for manual inspection and represents a real challenge with regard to process automation. In order to process these data, several log-structuring solutions have been developed.

In this article, we analyze the capabilities of two solutions in order to meet the challenges of Cloud Computing in terms of efficiency and effectiveness. Our work focuses on the impact of parameterization and preprocessing on the performance of these methods-two important steps as they require human intervention, which is incompatible with with the automation of the log-structuring process.