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2 École polytechnique and INRIA
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Abstract. We introduce a method to prove that a proof search method
is not an instance of another. As an example of application, we show
that Polarized resolution modulo, a method that mixes clause selection
restrictions and literal selection restrictions, is not an instance of Ordered
resolution with selection.

1 Introduction

An important property of the resolution method [4] is its refutational complete-
ness, that is the possibility to derive the empty clause from any unsatisfiable set
of clauses. However, the search space to derive this clause can be unnecessarily
big. For instance, to derive the empty clause from the set formed with the clause
P , the clause ¬P,Q and the clause ¬Q, we can first generate the clause Q from
P and ¬P,Q and then the empty clause from this clause and ¬Q. Alternatively,
we can generate the clause ¬P from ¬P,Q and ¬Q and then the empty clause
from this clause and P . These two derivations are redundant and eliminating
such redundancies is a key issue to design an efficient proof search method. Sev-
eral types of restrictions may be applied to eliminate these redundancies, while
preserving refutational completeness.

First, we may impose some restriction on the choice of clauses, allowing the
resolution rule to be applied to some pairs of clauses and forbidding it to be
applied to others. This type of restriction is used, for instance, in the Hyper-
resolution method [5], in the Set-of-support method [7], and in the Semantic
resolution method [6]. For instance, in the Set-of-support method, we identify
a consistent subset of the set of clauses to be refuted, called the theory, for
instance, the subset formed with the clauses P and ¬P,Q. Then, the resolution
rule can be applied to a pair of clauses if at most one clause is in this set, but it
is forbidden if both are.

Then, we may impose some restriction on the choice of literals, allowing
the resolution rule to be applied to some literals of the resolved clauses and
forbidding it to be applied to others. This type of restriction is used, for instance,
in Ordered resolution with selection. In this method, a selection function and an



order relation define a set of selected literals in each clause. Then, the resolution
rule may be applied to a pair of clauses if the resolved literal are selected in the
clauses, but it is forbidden otherwise.

It is easy to remark that combining clause selection restrictions and literal
selection restrictions in the theory clauses may jeopardize completeness, even
when the theory is consistent and the selected literals are defined with respect
to an order, as in the Ordered resolution with selection.

Example 1. Consider the clauses

Theory

{
P ∨Q
¬P ∨Q

Other clauses { ¬Q

where the selected literals are underlined. We cannot derive the empty clause
if we restrict the application of the resolution rule to clauses such that at most
one of them is the theory and the resolved literal in a theory clause is selected.
However, the theory is consistent, so the Set-of-support restriction alone is com-
plete; and literals are selected according to the order Q ≺ P , so the Ordered
resolution with selection alone also is complete.

2 Polarized resolution modulo

To prove the completeness of the combination of the Set-of-support method and
the Ordered resolution with selection method, we therefore need a stronger con-
dition than the consistency of the theory and the use of an order to define selected
literals. As we shall see, this condition is exactly the cut elimination property
for the polarized sequent calculus modulo some rewrite rules corresponding to
the theory clauses.

Indeed, the recently introduced Polarized resolution modulo method [3], com-
bines these two restrictions. In this method, we first identify a subset of the set
of clauses to be refuted. This set is called the theory and its elements one-way
clauses. Then, in each of these clause, we identify a selected literal, and we impose
the following restrictions:

– the resolution rule may be applied to a pair of clauses if at most one clause
is a one-way clause, but it is forbidden when both are,

– the resolution rule can be applied to a pair of clauses containing a one-way
clause, if the resolved literal in the one-way clause is the selected one, but
not otherwise.

A last feature of Polarized resolution modulo is that unification is replaced by
equational unification, but we shall not use this here.

Example 2. Consider an arbitrary set of clauses containing the clauses

P ,Q



P ,¬Q

then taking all the clauses of this subset to be one-way clauses and selecting the
underlined literals is a complete restriction of resolution.

Example 3. Consider an arbitrary set of clauses containing the clauses

¬ε(x ∨̇ y), ε(x), ε(y)

ε(x ∨̇ y),¬ε(x)

ε(x ∨̇ y),¬ε(y)

¬ε(¬̇ x),¬ε(x)

ε(¬̇ x), ε(x)

¬ε(∀̇T x), ε(x y)

ε(∀̇T x),¬ε(x HT (x))

¬ε(Null (S x))

ε(Null 0)

and clauses containing no occurrences of the symbols HT . Then, taking all these
clauses of this subset to be one-way clauses and selecting the underlined literals
is a complete restriction of resolution.

Replacing unification with equational unification makes this method com-
plete for Simple Type Theory [3].

As we saw in Example 1, this method is not always complete even if the theory
is consistent and if the selected literals are maximal for some order on atoms.
But, we have proved in [3] that the completeness of this method is equivalent
to cut elimination for the polarized sequent calculus modulo the rewrite system
associated to the set of one-way clauses, where the rules of the polarized sequent
calculus modulo are given in Fig. 1 and the relation between clauses with selected
literals and polarized rewrite rules is defined as follows.

Definition 1. Let T be a set of clauses, such that in each clauses, a literal is
selected. The rewrite system associated with T is defined by:

To each selected literal L in a clause L,C1, ..., Cp corresponds a rewrite rule

– if L is a negative literal ¬P , the rule P −→− ∀x1...∀xn(C1 ∨ ... ∨ Cp)
– if L is a positive literal P , the rule P −→+ ¬∀x1...∀xn(C1 ∨ ... ∨ Cp)

where x1, ..., xn are the variables free in C but not in P .

Theorem 1. Let T be a set of one-way clauses and R be the rewrite system
associated with T . Polarized resolution modulo with the set of one-way clauses
T is complete if and only if the polarized sequent calculus modulo R admits the
cut rule.



axiom if A −→∗
− P,B −→∗

+ P and P atomic
A ⊢ B

Γ,B ⊢ ∆ Γ ⊢ C,∆ cut if A −→∗
− B,A −→∗

+ C
Γ ⊢ ∆

Γ,B,C ⊢ ∆ contr-left if A −→∗
− B,A −→∗

− C
Γ,A ⊢ ∆

Γ ⊢ B,C,∆ contr-right if A −→∗
+ B,A −→∗

+ C
Γ ⊢ A,∆

Γ ⊢ ∆
weak-leftΓ,A ⊢ ∆

Γ ⊢ ∆ weak-right
Γ ⊢ A,∆

⊥-left if A −→∗
− ⊥

Γ,A ⊢ ∆

Γ ⊢ B,∆ ¬-left if A −→∗
− ¬B

Γ,A ⊢ ∆

Γ,B ⊢ ∆ ¬-right if A −→∗
+ ¬B

Γ ⊢ A,∆

Γ,B ⊢ ∆ Γ,C ⊢ ∆ ∨-left if A −→∗
− (B ∨ C)

Γ,A ⊢ ∆

Γ ⊢ B,C,∆ ∨-right if A −→∗
+ (B ∨ C)

Γ ⊢ A,∆

Γ,C ⊢ ∆ ⟨x,B, t⟩ ∀-left if A −→∗
− ∀x B, (t/x)B −→∗

− C
Γ,A ⊢ ∆

Γ ⊢ B,∆ ⟨x,B⟩ ∀-right if A −→∗
+ ∀x B, x ̸∈ FV (Γ∆)

Γ ⊢ A,∆

Fig. 1. Polarized sequent calculus modulo



Proof. Corollary of Theorem 1 of [3].

For instance, the polarized sequent calculus modulo the rewrite system

P −→+ ¬Q

P −→+ ¬¬Q
has the cut elimination property (Proposition 7 of [2] proves that this property
holds whenever the left hand sides of the positive and of the negative rules are
disjoint sets) hence the completeness in Example 2.

In the same way, the polarized sequent calculus modulo the rewrite system

ε(x ∨̇ y) −→− (ε(x) ∨ ε(y)) ε(x ∨̇ y) −→+ ¬¬ε(x)
ε(x ∨̇ y) −→+ ¬¬ε(y)

ε(¬̇ x) −→− ¬ε(x) ε(¬̇ x) −→+ ¬ε(x)
ε(∀̇T x) −→− ∀y ε(x y) ε(∀̇T x) −→+ ¬¬ε(x HT (x))

ε(Null 0) −→+ ¬⊥
ε(Null (S x)) −→− ⊥

has the cut elimination property for all sequents containing no occurrences of
the symbols HT , hence the completeness in Example 3.

3 Comparing Polarized resolution modulo with
Set-of-support resolution

In contrast, the polarized sequent calculus modulo the rewrite system

P −→− Q

P −→+ ¬Q
does not have the cut elimination property. Indeed, the proposition Q has a proof
by cutting through P , but no cut free proof. This explains the incompleteness
in Example 1.

The next example shows that Polarized resolution modulo can fail in finite
time for some input when Set-of-support resolution loops.

Example 4. Consider the one-way clause

P (f(x)),¬P (x)

and another clause
P (a)

for some constant a. Both Polarized resolution modulo and Set-of-support res-
olution are complete. However, Polarized resolution modulo fails in finite time
to derive the empty clause (the two clauses cannot be resolved due to the con-
dition on the selected literal), whereas Set-of-support resolution loops, deriving
the clauses P (f(. . . (f(︸ ︷︷ ︸

i times

a) . . .)) for all i > 0.

In this example, we see the importance of having a selection function. How-
ever, having such a selection function is not enough, as we will see in Section 4.



4 Comparing Polarized resolution modulo with Ordered
resolution with selection

Ordered resolution with selection [1] is a proof search method parametrized by a
computable selection function S, that associates to each clause a set of negative
literals of this clause and a decidable order relation ≺ on atoms that is stable
by substitution and total on ground atoms. Each pair ⟨S,≺⟩ defines a different
proof-search method. Thus Ordered resolution with selection is a family of proof
search methods rather than a single method.

Many known restrictions of resolution are instances of Ordered resolution
with selection for an appropriate selection function and order. Thus, we may
wonder if Polarized resolution modulo is, in the same way an instance of Ordered
resolution with selection. We prove now that this is not the case.

We prove more generally, that if m and m′ are two proof-search methods
and T is a theory such that the completeness of m can be proved in T and m′

fails in finite time attempting to prove a contradiction in T , then m and m′ are
different methods: they are separated by the theory T .

4.1 Separation of proof-search methods

Consider a decidable set of axioms T , that is an ω-consistent extension of arith-
metic. We can express in the language of T , a proposition Bew with two free
variables, such that if U is a decidable set of axioms (i.e. the index of a total
computable function characterizing these axioms) and A is a proposition (i.e. the
index of a proposition) then the sequent T ⊢ Bew(U,A) is provable in predicate
logic if and only if the sequent U ⊢ A is.

Consider a proof-search method m. We can build, in the language of T , a
proposition M with two free variables, such that if U is a decidable set of axioms
and A is a proposition then

– if the method m applied to the theory U and to the proposition A succeeds
then the sequent T ⊢ M(U,A) is provable,

– if the method m applied to the theory U and to the proposition A does not
succeed (i.e. fails in finite time or loops) then the sequent T ⊢ M(U,A) is
not provable,

– if the method m applied to the theory U and to the proposition A fails in
finite time then the sequent T ⊢ ¬M(U,A) is provable.

Assume, moreover that the completeness of the method m is provable in T ,
i.e. that the sequent

T ⊢ ∀U∀A (Bew(U,A) ⇒ M(U,A))

is provable in predicate logic. Then, by Gödel second incompleteness theorem,
the sequent

T ⊢ ¬Bew(T,⊥)



is not provable in predicate logic, hence the sequent

T ⊢ ¬M(T,⊥)

is not provable either. Thus, if the completeness of m can be proved in the theory
T , then the method m attempting to prove ⊥ in the theory T cannot fail in finite
time: it must loop.

If m′ is a proof-search method that fails in finite time attempting to prove
⊥ in the theory T , then m and m′ are different.

4.2 Translations

This can be generalized in the following way. Assume that ϕ is a translation
from theories to theories whose completeness can be proved in T , i.e. such that
the sequent

T ⊢ ∀U (Bew(U,⊥) ⇒ Bew(ϕ(U),⊥))

is provable. Assume, moreover that the completeness of the method m, is prov-
able in T , i.e. that the sequent

T ⊢ ∀U∀A (Bew(U,A) ⇒ M(U,A))

is provable in predicate logic. Then, by Gödel second incompleteness theorem,
the sequent

T ⊢ ¬Bew(T,⊥)

is not provable in predicate logic, hence the sequent

T ⊢ ¬M(ϕ(T ),⊥)

is not provable either. Thus, if the completeness of the translation ϕ and that of
the method m can be proved in T , then the method m attempting to prove ⊥
in the theory ϕ(T ) cannot fail it finite time: it must loop.

If m′ is a proof-search method that fails in finite time attempting to prove
⊥ from T , then the application of m′ to a theory U is not the application of m
to ϕ(U).

4.3 Application to Ordered resolution with selection

Let H be the first-order presentation of Simple type theory of Example 3. The
completeness of Ordered resolution with selection can be proved in H provided
the stability and the totality of the order are provable in H.

Attempting to prove ⊥ in the theory H in Polarized resolution modulo fails
in finite time. Thus, Polarized resolution modulo is not an instance of Ordered
resolution with selection for any selection function and order relation whose
stability and totality can be proved in H. Neither it is the application of Ordered
resolution with selection to a translation of its input, for a translation provably
complete in H.



5 Conclusion

Polarized resolution modulo is a combination of a restriction on the choice of
clauses and a restriction on the choice of literals in resolution. Combining these
two restrictions makes the method so restrictive that it is not always complete,
even when the one-way clauses form a consistent subset and the selection of
literals is based on an ordering on atoms. But the completeness condition is
stronger, as completeness is equivalent to the cut elimination property for the
associated sequent calculus in Polarized deduction modulo. Thus, unlike Ordered
resolution with selection, the completeness of all instances of the method cannot
be proved in the same theory.

The advantage of such methods whose completeness of all instances cannot
be proved in the same theory is that their logical strength is not limited by the
logical strength of the theory in which the completeness of the method can be
proven.
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