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Abstract
Lot sizing is important in production planning. It consists of determining a production plan that
meets the orders and other constraints while minimizing the production cost. Here, we consider a
Discrete Lot Sizing and Scheduling Problem (DLSP), specifically the Pigment Sequencing Prob-
lem (PSP). We have developed a solution that uses Genetic Algorithms to tackle the PSP. Our
approach introduces adaptive techniques for each step of the genetic algorithm, including initial-
ization, selection, crossover, and mutation. We conducted a series of experiments to assess the
performance of our approach across some multiple trials using publicly available instances of the
PSP. Our experimental results demonstrate that Genetic Algorithms are practical and effective
approaches for solving DLSP.
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I INTRODUCTION

Lot sizing problems involve determining which items to produce, when to produce them, and
which machine to use in order to meet customer demand while also achieving financial goals.
These problems are complex, as they often require producing multiple types of items while
balancing conflicting objectives, such as minimizing production and stocking costs while also
meeting customer needs. Different types of lot-sizing problems have been studied in the lit-
erature. In recent years, researchers such as Houndji et al. [20] and Ceschia et al. [25] have
focused on an NP-Hard variant known as the Pigment Sequencing Problem. This problem is
included in the CSPlib repository [9] and involves producing multiple items on a single machine
with limited capacity (one item per period). The planning horizon is discrete and finite, with
predefined stocking and setup costs for each item.

Like many Discrete Lot Sizing and Scheduling Problems, the Pigment Sequencing Problem can
be formalized and solved with Genetic Algorithms. Genetic Algorithms are heuristic search
methods inspired by the natural evolution of living species. Based upon the concept of the
survival of the fittest, genetic algorithms are able, over multiple generations, to find the best
solution to a problem. Several studies [14] [29] [16] have shown how efficient they could be in
solving optimization problems. In the paper, we present a search method that relies on genetic
algorithms and experiment with this approach. The results indicate that Genetic Algorithm-
based methods are a promising solution for addressing Discrete Lot Sizing and Scheduling
Problems like the Pigment Sequencing Problem.
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This paper is organized as follows: Section 2 exposes some background on the Discrete Lot
Sizing and Scheduling Problems and Genetic Algorithms (GAs); Section 3 presents the problem
to be solved (the Pigment Sequencing Problem) and shows an instance of the problem; Section 4
gives details on our method based on genetic algorithms; Section 5 presents some experimental
results obtained from the implementation of our approach; and Section 6 concludes this paper
and provides some perspectives.

II BACKGROUND

2.1 Discrete Lot Sizing and Scheduling Problems (DLSP)

The PSP belongs to the category of Discrete Lot Sizing and Scheduling Problems (DLSP).
The PSP is a problem in which the total capacity available for a period is used to produce one
item. The origin of the multi-item DLSP traces back to Fleischmann (1990) [2]; in which a
branch-and-bound procedure is presented using Lagrangean relaxation for determining lower
bounds and feasible solutions. The relaxed problems are solved by dynamic programming,
yielding optimal solutions or at least feasible solutions with tight lower bounds in a few minutes.
Cattrysse et al [5] introduced a dual ascent and column generation heuristic to solve a DLSP
with setup times formulated as a Set Partitioning Problem (SPP). Later, Van Hoesel et al. [6]
formulated DLSP as an integer programming problem and presented two solution procedures:
the first procedure based on a reformulation of DLSP as a linear programming assignment
problem, with additional restrictions to reflect the specific (setup) cost structure; the second
procedure based on dynamic programming (DP).

Besides, Jordan et al. [8] solved a Discrete Lot Sizing and Scheduling Problem for one machine
with sequence-dependent setup times and setup costs as a single machine scheduling problem
and which they termed the batch sequencing problem. This bach sequencing problem is solved
with a branch-and-bound algorithm which is accelerated by bounding and dominance rules.
Much later, Miller and Wolsey [12] formulated the DLSP with setup costs not dependent on
the sequence as a network flow problem. They exposed some MIP formulations for various
modifications (with backlogging, safety stock, and initial supply). Moreover, several more MIP
formulations and variants have been proposed and discussed by Pochet and Wolsey [15].
Gicquel et al. [17] exposed a formulation in which they derived valid inequations for the DLSP
with several items and sequential setup costs and periods. This formulation is a modification of
the problem proposed by Wolsey [11]. A new approach is again proposed by Gicquel et al. [18]
to the modelization of the DLSP with several items and sequential setup costs and periods that
considers relevant physical attributes such as color, dimension, and the level of quality. This
allowed them to effectively reduce the number of variables and constraints in the MIP models.
Houndji et al. [20] introduced a new global constraint they named stocking cost to solve the
PSP with Constraint Programming. They tested it on new instances and published it on CSPlib
(Gent and Walsh [9]). The experimental results showed that stocking cost is effective in filtering
compared to other constraints used mainly in the community of Constraint Programming. In ad-
dition, Ceschia et al. [24] used the Simulated Annealing (SA) to solve the PSP. They introduced
an approach along with a statistically-principled tuning procedure that guides the local search
and used it to solve new instances available in the Opthub repository. Their solver was able to
find near-optimal solutions in short time for all instances, including those that are not solved by
state-of-the-art methods [25]. More recently, Park et al [34] proposed a framework for solving
the DLSP using reinforcement learning in which they formalized the scheduling process as a
sequential decision-making problem with the Markov decision process.
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2.2 Genetic Algorithms and Optimization problems

Genetic Algorithms are stochastic search algorithms that mimic living species’ natural evolu-
tion and reproduction mechanisms. They were proposed for the first time by John Holland [4]
in 1970. One of the main principles of these algorithms is the concept of the "survival of the
fittest", which states that one individual whose features fit the best the environment is more
likely to survive. Goldberg et al [1] introduced the concept of Messy Genetic Algorithms which
solved problems by combining relatively short, well-tested building blocks to form longer, more
complex strings that increasingly cover all features of a problem. This approach stood in con-
trast to the usual fixed-length, fixed-coding genetic algorithm. By emulating natural mecha-
nisms, Genetic Algorithms assure the evolution of a population over several generations with
concepts such as Initialization [21], Selection [23], Crossover [27], or mutation [33] as shown
in Figure 1.

Several studies explored the application of genetic algorithms in the context of optimization
problems. A. Kimms [7] introduced a mixed-integer programming formulation for the multi-
level, multi-machine proportional lot sizing and scheduling problem and presented a genetic
algorithm to solve that problem. Later, J. Duda [13] presented a study of genetic algorithms ap-
plied to a lot sizing problem, which has been formulated for an operational production planning
in a foundry. Three variants of genetic algorithm were considered, each of them using special
crossover and mutation operators as well as repair functions. Moreover, Xie et al [10] proposed
heuristic genetic algorithms for lot sizing problems by designing a domain-specific encoding
scheme for the lot-sizes and by providing a heuristic shifting procedure as the decoding sched-
ule. More recently, Larroche et al [32] dealt with a complex production planning problem with
lost sales, overtimes, safety stock and sequence dependent setup times on parallel and unrelated
machines by developing a genetic algorithm that combines several operations already defined
in the literature to solve the problem.

III PROBLEM DEFINITION

Several studies addressed the Pigment Sequencing Problem - PSP (see, for example, [24, 31]).
It can be described as a problem that requires to produce various items on one machine with
predefined setup costs. Setup costs are necessary for the transition from an item i to another
item j so that i ̸= j. Often, the production planning needs to meet the customer orders while:

• not exceeding the production capacity of the machine;
• minimizing the setup and stocking costs.

Without loss of generality, it is assumed that only one item is produced per period and all orders
are normalized i.e., the machine’s production capacity is restricted to one item per period and
d(i, t) ∈ {0, 1} with i the item and t the period. The PSP is a production planning problem with
the following specifications: a discrete and finite planning horizon, some capacity constraints,
a deterministic and static order, several items, small buckets, setup costs, only one level, and
without shortage.
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Figure 1: Flow chart of Genetic Algorithms.

Formally, the problem can be formulated as [15] :

min
M∑

i,j=0

P∑
t=0

qi,jX i,j
t +

M∑
i=0

P∑
t=1

hisit (1)

si0 = 0,∀i ∈ M (2)

xi
t + sit−1 = dit + sit, ∀i ∈ M, t ∈ P (3)

xi
t ≤ yit,∀i ∈ M, t ∈ P (4)∑
i

yit = 1, ∀i, j ∈ M, t ∈ P (5)

X i,j
t ≥ yit−1 + yjt − 1,∀i, j ∈ M, t ∈ P (6)

with the following indices and index sets:
• M : set of item indices, i, j ∈ M and M ⊆ N;
• P : set of period indices, t ∈ P and P ⊆ N;

the parameters:
• hi: the holding cost of the item i with i ∈ M ;
• qi,j: the changeover cost from item i to item j with i, j ∈ M ;

and the following variables:
• xi

t: binary production variable that is 1 if item i is produced in period t, 0 otherwise;
• yit: binary setup variable that is 1 if the machine is set for the production of item i in

period t, 0 otherwise;
• dit: binary variable that is 1 if item i is ordered in period t, 0 otherwise;
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• X i,j
t : binary changeover variable that is 1 if in period t, we transitioned from the produc-

tion of item i to the one of item j, 0 otherwise;
• sit: integer variable that represents the number of item i stored in the period t, sit ∈ R+.

The goal is to minimize the overall stocking and setup costs as expressed by (1). Constraint (2)
clearly states that there is no initial stock. Constraint (3) expresses the rule of flow conservation.
Constraint (4) aims to get the setup variable yit to equal 1 if the item i is produced in the period
t. Constraint (5) ensures the machine is always set to produce an item. Therefore, yit is bound
to take the value that minimizes the changeover cost. Furthermore, if there is no production in
the period t, yit = yit−1 or yit = yit+1. Thus, it is interesting to set up the machine for production
even if there is no item to produce. Constraint (6) sets values to changeover variables. If yit−1

and yit equal 1, then X i,j
t is bound to equal 1 otherwise X i,j

t would equal 0 thanks to the goal
function that minimizes the changeover cost.

Example: Consider the following relatively easy problem:
• Number of items: NI = 2;
• Number of periods: NT = 5;
• Order per period. Be d(i, t) the order of item i in the period t: d(1, t) = (0, 1, 0, 0, 1) and
d(2, t) = (1, 0, 0, 0, 1);

• Stocking cost. Be h(i) the stocking cost of the item i, h(1) = h(2) = 2

Let xT be the production planning representing a potential solution to the problem. It is an array
of size NT. A possible solution to the problem is xT = (2, 1, 2, 0, 1) with a cost of q(2, 1) +
q(1, 2) + q(2, 1) + 2h(2) = 15. The optimal solution is xT = (2, 1, 0, 1, 2) with a cost of
q(2, 1) + q(1, 2) + h(1) = 10.

IV OUR APPROACH

In this section, we present each aspect of our implementation of genetic algorithms to solve the
PSP.

4.1 Genetic representation

When implementing genetic algorithms to solve a problem, finding the proper representation
for the individual is important and influences the efficiency of the whole algorithm. One of
the most straightforward representations used in genetic algorithms is the one used by John
Holland [3]: the bit-array representation where a chromosome is represented by a string of bits
containing 0 and 1 to express if an item i has been produced at a given period t as pictured on
Figure 2.

Figure 2: Chromosome bit-array representation.
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Although correct, this representation significantly increases the complexity of the whole algo-
rithm forcing us to go through a list of nT ∗ nI items with nT: the number of periods and nI:
the number of items. All of this prompted the emergence of another representation, as used by
Mirshekarian et al. [30], in which the chromosome is represented by a string of integers of the
length of the planning horizon (nT). In this string, each integer corresponds to the item’s index
produced at the exact period and 0 otherwise as pictured in Figure 3. Thus, the complexity is
considerably reduced.

Figure 3: Chromosome final representation.

4.2 Initialization

As stated earlier, the initialization process consists of generating the initial population. We
have opted for the heuristic algorithm based on the breadth-first search technique described in
Algorithm IV.1. The process starts at the end of the planning horizon and backtracks to the first
production period. The goal is to seed the best possible individuals for the initial population.
At every step of the process, the algorithm determines which of the subsequent child nodes are
the best to expand. This process produces better individuals than random seeding [21], helping
bootstrap the overall search process.

4.3 Evaluation

Each chromosome is evaluated before proceeding to the selection. The cost estimation is a
key input to the selection process and the element that our genetic-based algorithm seeks to
minimize. In our study, the cost function is based on the aforementioned MIP formulation (1)
and can be stated as follows:

F (x) =
M∑

i,j=0

P∑
t=0

qi,jX i,j
t +

M∑
i=0

P∑
t=1

hisit (7)

It consists of two costs:
• the setup cost

∑M
i,j=0

∑P
t=0 q

i,jX i,j
t : the sum of the setup costs for all periods;

• the stocking cost
∑M

i=0

∑P
t=1 h

isit: the sum of the stocking time slots of all items multi-
plied by the stocking cost hi of each item i

6



Algorithm IV.1 Population initialization algorithm.

1 BEGIN
2 READ Expected_Population_Size, PSP_Instance
3 SET population to []
4 SET queue to firstNode
5 SET popCounter to queue length
6 WHILE population length is less than Expected_Population_Size
7 IF queue is empty THEN
8 BREAK
9 SET node to popFirst (queue)

10 DECREMENT popCounter
11 IF node is leafNode THEN
12 ADD node chromosome to population
13 CONTINUE
14 ENDIF
15 FOR child in node children (PSP_Instance)
16 APPEND child to queue
17 INCREMENT popCounter
18 IF popCounter is greater than Expected_Population_Size THEN
19 BREAK
20 ENDFOR
21 ENDWHILE
22 END

4.4 Selection

The selection operator we chose to implement is based on the process commonly known as
the "Roulette wheel" [23]. Hence, each chromosome is given a probability of being selected
based on its fitness. Therefore, the fittest chromosome is given the highest chance. Then, a
selector is used to pick two chromosomes based on their probability. Those chromosomes will
mate and produce offspring. We evaluate each chromosome based on the data provided by each
instance and for each item (stocking cost and setup cost) (7). The higher the cost, the less fit the
chromosome is and the lower the probability of being chosen is too. In practice, the fitness of
each chromosome in a population is computed (8) relative to the cost of the fittest chromosome
of this population (9)

M = max(c),∀c ∈ P (8)

pi = ((M + 1)−Bi)/
∑
c

((M + 1)−Bc)) (9)

.

along with the following variables:
• M : the cost of the fittest chromosome of the population P ;
• pi: the "Roulette wheel" probability of the chromosome i;
• Bi: the production cost of the chromosome i;

7



4.5 Crossover

In the crossover, the two chromosomes obtained from the selection process are mated only if
it has been randomly decided so. A random number is drawn, and if it is below the crossover
rate, the crossover occurs. In the implementation (Algorithm IV.2), we mate two chromosomes
to produce one offspring, which consists in iteratively moving Chromosome 1 towards Chro-
mosome 2 while reducing its production cost and therefore, improving its fitness. This method
is inspired by the principle of the heuristic crossover as described by Umbarkar et al. [22].
We ensure the generated offspring is a new chromosome in the sense that it has never been
encountered before. This crossover implementation is interesting because it improves the over-
all fitness score of the population over the generations. The process is best illustrated by the
following example (each chromosome is represented with its cost):
Parent 1: (2, 2, 1, 1, 3, 0, 2, 0) : 592 -> the one chosen for yielding the offspring
Parent 2: (0, 2, 2, 2, 3, 1, 0, 1) : 375
Offspring (Step 1): (2, 2, 1, 1, 0, 3, 2, 0) : 580
Offspring (Step 2): (2, 2, 1, 0, 1, 3, 2, 0) : 570
Offspring (Step 3): (2, 2, 0, 1, 1, 3, 2, 0) : 560
Offspring (Final Step): (2, 0, 2, 1, 1, 3, 2, 0) : 545

Algorithm IV.2 Crossover operator algorithm.

1 BEGIN
2 READ chromosome1, chromosome2, crossoverRate, PSP_instance
3 SET randomValue to random()
4 SET distanceD to distance (chromosome1, chromosome2)
5 IF randomValue is less than crossoverRate THEN
6 FOR neighborChromosome in random shuffle(chromosome.neighbors(PSP_instance))
7 IF distance (neighborChromosome, chromosome2) is less than distanceD and
8 neighborChromosome is new THEN
9 IF neighborChromosome.cost is less than chromosome.cost THEN

10 CALL crossover with neighborChromosome, chromosome2, crossoverRate
11 and PSP_instance
12 ENDIF
13 ENDFOR
14 ENDIF
15 CALL localSearch with chromosome1, chromosome2 and PSP_instance
16 END

4.6 Mutation

Once the crossover is performed, the random process of mutation takes place. For each offspring
obtained from the crossover, it is randomly decided whether or not a chromosome should un-
dergo a mutation. A mutation occurs if the randomly drawn number is below the mutation rate.
The algorithm checks, for each randomly picked chromosome gene, if it is possible to switch
place with another nearby gene. Plainly, it is about checking if it is possible to produce an item
at another period other than the one it is currently produced without violating the constraints of
the instance as described by Algorithm IV.3 . Not only does it have to respect the constraints,
but this process also has to ensure the generated chromosome is a new chromosome in the sense
that it has never been encountered before. This condition allows for the exploration of new
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areas of the search space. The process is best illustrated by the following example:
Input Chromosome: (2, 2, 1, 0, 1, 3, 2, 0) -> with a possible mutation (switch) of periods 2
and 3
Result of mutation: (2, 2, 0, 1, 1, 3, 2, 0)

Algorithm IV.3 Mutation operator algorithm.

1 BEGIN
2 READ chromosome, mutationRate, PSP_instance
3 SET randomValue to random()
4 IF randomValue is less than mutationRate THEN
5 FOR neighborChromosome in random shuffle(chromosome neighbors(PSP_instance))
6 IF neighborChromosome is new THEN
7 RETURN neighborChromosome
8 ENDFOR
9 ENDIF

10 RETURN None
11 END

4.7 Application of the Hybridization concept

The hybridization concept suggests combining two search methods to produce better results. As
shown by Gopal et al [19], local search and Genetic Algorithms are two complement solutions.
Genetic algorithms perform well on the global scale because they are capable of quickly finding
promising regions, but they take a relatively long time to find the optima in those regions. Local
search can find the local optima with high accuracy and fast convergence but suffers from the
problem of foot hills. This justifies the implementation of a local search in our study. This local
search (Algorithm IV.4) is performed every time the crossover cannot generate a new offspring.
It is a variant of the Hill climbing method. The algorithm searches in a large neighborhood of
Chromosome 1 towards Chromosome 2 to see if a better result can be found. This algorithm
is also helpful as it prevents getting stuck at some local optima. The figure 4 provides some
measurements backing our use of a local search algorithm to refine individuals and improve
the quality of the solutions. On the axis x, are displayed the labels of the CSPlib repository’s
instances [5.2] used to prove this; and on the axis y, are shown the average gap between the
found solutions and the optimal ones. The blue bars (AverageGap1) picture this average gap
while using the local search algorithm and the red ones present this average gap (AverageGap2)
without any use of a local search algorithm whatsoever. Hence, the hybridization improves the
quality of the found solution across the board on average by over 81.5%.

4.8 Termination

We define that the algorithm stops once it cannot improve the best solution found so far over
a given number of generations. In our case, this number is 5. We call these generations idle
generations.

V EXPERIMENTAL RESULTS

In this section, we first present the tools used in the implementation and tests, then the instances
on which we performed our approach of Genetic Algorithms and the parameters we defined.
Finally, we expose the experimental results obtained from the tests.
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Algorithm IV.4 Local search algorithm.

1 BEGIN
2 READ chromosome1, chromosome2, PSP_instance
3 SET distanceD to distance (chromosome1, chromosome2)
4 FOR neighborChromosome in random shuffle(chromosome neighbors(PSP_instance))
5 IF distance (neighborChromosome, chromosome2) is less than distanceD
6 and neighborChromosome is new THEN
7 IF neighborChromosome cost is less than chromosome1 cost THEN
8 RETURN neighborChromosome
9 CALL localSearch with neighborChromosome, chromosome2 and PSP_instance

10 ENDIF
11 ENDFOR
12 RETURN None
13 END

5.1 Tools

Our approach (available at [28]) is implemented using Python, specifically version 3.6 and on a
computer with the following specifications:

• Operating system: Linux Ubuntu 18.04.6 LTS ;
• Processor: Intel® Core TM i5-8250U CPU @ 1.60GHz * 8 ;
• Memory: 11.6 GiB ;
• Type of the operating system: 64 bits ;
• Graphics: Intel® UHD Graphics 620 (KBL GT2) ;

5.2 Benchmarks

From our literature review and the extent of our knowledge, the Pigment Sequencing Problem
has two publicly available benchmarks. Houndji et al. proposed some publicly available in-
stances (and their corresponding best solutions) in the CSPlib. Some of these instances are
characterized by a number of periods of NT=20, a number of items of NI=5, and a number of
orders of ND=20. Others are characterized by a much higher number of periods (100 or 200)
and a higher number of items (10 or 15): pigment100a, pigment100b, pigment200a.

1 2 3 4 5 8 21 23 35 36 53 58 61 69 73 78 85 87 90 94

0

5

10

Instances

A
ve

ra
ge

G
ap

AverageGap1
AverageGap2

Figure 4: Chart of the average gaps with (AverageGap1) and without (AverageGap2) local search.
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Later, in their study of the PSP and seeking to apply their Simulated Annealing approach on
some more complex instances of the problem, Ceschia et al [24] developed a parameterized
generator that receives as input the number of items m, the number of periods n, and the den-
sity of requests δ (i.e., total request divided by n) and produces a random instance with those
features. For our tests and given that we are in an early phase of our application of Genetic
Algorithms to the Pigment Sequencing Problem, we set, for the present paper, to resolve the
instances available in the CSPlib repository, test and compare our approach on this benchmark
with 20 instances picked for the test.

5.3 Parameter tuning

The performance of Genetic Algorithms is greatly affected by the settings of their parameters.
These parameters, along with the population size, are specifically the probabilities of crossover
and mutation. Several studies [35] have explored the impact of these different parameters on
the quality of the solutions. The following notions can be derived from these studies:

• Crossover is made, in hope that new chromosomes will have good parts of old chro-
mosomes. Hence, the crossover probability, which is the controlling parameter here, is
expected to be a high value but not too high to let some part of the population survive to
the next generation.

• The mutation probability, which is the parameter that determines the likelihood that an
individual will undergo the mutation, is expected to be a low value. A high value of muta-
tion probability tends to prevent the population from converging to an optimum solution.

• The population size, which is the number of individuals in the population, tends to slow
the algorithm when too high and shrink the exploration space otherwise.

All these parameters are dependent on the problem being solved. However, for the sake of our
study, we randomly pick some instances from the CSPlib repository and draw from the state of
art to set the range of each of these parameters for our tuning exercise as follows: the mutation
probability [0.05, ..., 0.15] with a step of 0.01, the crossover probability [0.75, ..., 0.9] with a
step of 0.1, the population size [25, ..., 40] with a step of 1 with 10 trials over each instance.
The only performance characteristic is the accuracy of the solution. The figure 5 pictures the
distribution of the error rate symbolizing the performance of the algorithm throughout the pa-
rameter tuning. This distribution is left skewed showing that, for most of the values of the
population size, the mutation rate and the crossover rate; the error rate is fairly low (lower than
0.001). However, the computation of the correlation coefficient of the error rate with these same
variables (the population size, the mutation rate and the crossover rate respectively 0.063, -0.052
and -0.19) exposes a weak correlation of these parameters with the error rate that we attribute
to the fairly stochastic nature of the overall scheme. Nevertheless, after multiple iterations, a
recurring set of values emerged and can be represented as follows:

• Size of the population Lp: 30;
• Probability of mutation Pm: 0.05;
• Probability of crossover Pc: 0.9.
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Figure 5: Histogram of the error rate representing the algorithm’s performance during the parameter
tuning.

5.4 Results

Once our parameter values are set and to test our approach, we draw a very miscellaneous set
of 20 instances from the CSPlib repository and run it ten times over each instance using the
aforementioned parameter values [5.3] to configure every run.

For each instance, after ten runs, we write down the solutions found and determine the best
solution among them and the time spent searching for it. The first table 1 compiles the results
of the experiment on the instances from the CSPlib repository. For each instance (represented
as Instance NI-NT), we note the optimal solution, the time spent by the CP algorithm to reach
it, the best solution found by our approach over ten runs, and the corresponding time, along
with the gap between the global optimum and the best solution, the coefficient of variation of
the solutions and the mean time of the search.

When analyzing these results, it appeared essential to proceed with a statistical analysis due
to the stochastic nature of Genetic Algorithms. From the results of Table 1, we notice that our
approach of Genetic Algorithms has successfully spotted the global optimum for most instances
(3/4 of the tested instances). For the remaining 1/4 of the instances, our approach identified a
solution close to the global optimum (on average 2.008% close) . We suspect these instances to
have a little bit more convoluted search space. On all the instances though, our approach finds
the global optimum or a solution close to this one quite easily with a gap between the global
optimum and the found solution not exceeding 7.3% and on average of 0.502%. We would
expect our approach to suffer from the increase of the number of periods (100 periods and 200
periods). However, the results from the instances p100a, p100b, p100c and p200a show a trend
similar to those with fewer periods (15, 20, 30 periods). On these larger instances, our approach
succeeds in finding the global optimum or a solution close to it (0.611% close on average) .
Given that Genetic Algorithms are stochastic methods and having tested each instance 10 times,

1the global optimum as available in Csplib repository
2the time (in seconds) spent by CP to find the global optimum [31]
3the best solution found by our approach
4the time (in seconds) spent by our approach to find its best solution
5the gap between the global optimum and the best solution found by our approach
6the coefficient of variation of all the solutions found over 10 trials
7the mean time (in seconds) of all the 10 trials
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Instance Opt1 CP time 2 GA Best 3 GA time 4 Gap 5 Coef var. 6 Mean time 7

1 5-20 1377 9.14 1377 1.838 0% 0.031 2.305
3 5-20 1107 2.946 1107 1.294 0% 0 1.765
5 5-20 1471 0.235 1471 0.949 0% 0.294 0.858
8 5-20 3117 25.352 3117 2.815 0% 0.285 2.583
23 5-20 1473 15.039 1473 1.418 0% 0.021 1.798
36 5-20 1493 121.909 1502 2.98 0.6% 0.756 2.495
58 5-20 1384 2.347 1386 2.767 0.1% 1.508 2.462
69 5-20 1619 1.223 1619 1.487 0% 0 1.757
78 5-20 1297 16.187 1297 1.173 0% 0 1.434
85 5-20 2113 9.404 2113 2.766 0% 0.242 2.954
90 5-20 2449 23.811 2449 1.861 0% 1.36 2.288
94 5-20 1403 11.726 1403 1.683 0% 0.763 2.207
p15b 10-15 1486 12 1486 6.819 0% 0.558 3.521
p15c 10-15 1583 16 1583 1.675 0% 0.133 2.03
p30a 5-30 1119 124 1201 1.51 7.327% 0.414 1.817
p30c 10-30 1707 156 1731 1.741 1.405% 0 2.351
p100a 10-100 1323 60 1323 4.863 0% 0.239 7.853
p100b 10-100 1962 10 1974 8.004 0.611% 2.863 9.067
p100c 15-100 1982 143 1982 10.358 0% 0.182 15.749
p200a 15-200 2324 854 2324 28.61 0% 0 32.848
Average - 80.715 - 4.33 0.502% 0.482 5.007

Table 1: Experimental results on 20 CSPlib instances.

we analyze the coefficient of variation of all the solutions found for each instance. We note that
this metric, which measures the dispersion of the found solutions around a mean, doesn’t exceed
a maximum value of 1.508. This helps us infer that over the 10 trials for each instance, our
approach has consistently found a solution quite close to the mean. These results are to be put
in perspective with the ones of the CP implementation shown in Table 1. We recall again here
that the CP is a paradigm for solving combinatorial problems by using constraints to reduce the
set of values that each problem’s variable can take. This implementation (Houndji et al [26]) of
CP as shown here, has successfully found the optimum for all these instances.

Overall, these results suggest that our approach of Genetic Algorithms can easily find, over
multiple trials, a solution quite close to the global optimum for this type of instances of the PSP
(the ones proposed by Houndji et al. [26]) .

VI CONCLUSION AND PERSPECTIVES

In this paper, we have solved the Pigment Sequencing Problem (PSP), a Discrete Lot Sizing
and Scheduling Problem (DLSP), using Genetic Algorithms. We have exposed the basic con-
cepts supporting the implementation of Genetic Algorithms. Solving a Discrete Lot Sizing and
Scheduling Problem with Genetic Algorithms is met with some exciting challenges, including
the good design of the chromosome and the right choice in implementing aspects such as the
selection, the initialization, the crossover, and the mutation. We have experimentally shown that
using Genetic Algorithms’ approaches to solving a DLSP can be a promising research area.
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As further works, we would like to dive deeper into designing and experimenting with new
approaches of crossover and mutation. It would also be interesting to test our approach on more
complex instances or variants of DLSP.
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