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Abstract
Lot sizing is important in production planning. It consists of determining a production plan that
meets the orders and other constraints while minimizing the production cost. Here, we consider
a Discrete Lot Sizing and Scheduling Problem (DLSP), notably the Pigment Sequencing Problem
(PSP). We have implemented an approach based on Genetic Algorithms to solve the PSP. We have
proposed adaptive ways for each step of the genetic approach: initialization, selection, crossover,
and mutation. We experimentally evaluate the performance of the approach over multiple trials
on some publicly available instances of the PSP. These experimental results show that Genetic
Algorithms are promising and practical approaches to solving DLSP.
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I INTRODUCTION

Solving lot sizing problems consists of identifying items to produce, when to produce, and
on which machine to meet the demands while seeking to achieve some financial goals. Such
problems have been studied lately. Not only are several types of items required to be produced,
but the production planning must often meet opposite goals, such as satisfying customer needs
and minimizing production and stocking costs. Several versions of lot sizing problems have
been explored in the literature. Over the last decade, Houndji et al. [21] and Ceschia et al.
[26] have worked on an NP-Hard variant known as the Pigment Sequencing Problem (Pochet
and Wolsey [15]), included in the CSPlib library (Gent and Walsh, [9]). It requires to produce
several items on a single machine whose capacity is restricted to one item per period. The
planning horizon is discrete and finite, with predefined stocking and setup costs for each item.

Like many Discrete Lot Sizing and Scheduling Problems, the Pigment Sequencing Problem can
be formalized and solved with Genetic Algorithms. Genetic Algorithms are heuristic search
methods inspired by the natural evolution of living species. Based upon the concept of the
survival of the fittest, genetic algorithms are able, over multiple generations, to find the best
solution to a problem. Several studies [14] [30] [16] have shown how efficient they could be in
solving optimization problems. In this paper, we expose a search method based on genetic al-
gorithms, then experiment with this approach. The results show that methods based on Genetic
Algorithms are an interesting path for solving Discrete Lot Sizing and Scheduling Problems
such as the Pigment Sequencing Problem.

This paper is organized as follows: Section 2 exposes some background on the Discrete Lot
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Sizing and Scheduling Problems and Genetic Algorithms (GAs); Section 3 presents the problem
to be solved (the Pigment Sequencing Problem) and shows an instance of the problem; Section 4
gives details on our method based on genetic algorithms, Section 5 presents some experimental
results obtained from the implementation of our approach, and Section 6 concludes this paper
and provides some perspectives.

II BACKGROUND

2.1 Discrete Lot Sizing and Scheduling Problems (DLSP)

The PSP belongs to the Discrete Lot Sizing and Scheduling Problems (DLSP) category. The
PSP is a problem in which the full capacity available for a period is used to produce one
item. The origin of the multi-item DLSP traces back to Fleischmann (1990) [2]; in which
a branch-and-bound procedure is presented using Lagrangean relaxation for determining both
lower bounds and feasible solutions. The relaxed problems are solved by dynamic program-
ming yielding optimal solutions or at least feasible solutions with tight lower bounds in a few
minutes. Cattrysse et al [5] introduced a dual ascent and column generation heuristic to solve
a DLSP with setup times formulated as a Set Partitioning Problem (SPP). Later, Van Hoesel
et al. [6] formulated DLSP as an integer programming problem and presented two solution
procedures: the first procedure based on a reformulation of DLSP as a linear programming as-
signment problem, with additional restrictions to reflect the specific (setup) cost structure; the
second procedure based on dynamic programming (DP).
Besides, Jordan et al [8] solved a Discrete Lot Sizing and Scheduling Problem for one machine
with sequence-dependent setup times and setup costs as a single machine scheduling problem
and which they termed the batch sequencing problem. This bach sequencing problem is solved
with a branch-and-bound algorithm which is accelerated by bounding and dominance rules.
Much later, Miller and Wolsey [12] formulated the DLSP with setup costs not dependent on
the sequence as a network flow problem. They exposed some MIP formulations for various
modifications (with backlogging, safety stock, and initial supply). Moreover, several more MIP
formulations and variants have been proposed and discussed by Pochet and Wolsey [15].
Gicquel et al. [17] exposed a formulation in which they derived valid inequations for the DLSP
with several items and sequential setup costs and periods. This formulation is a modification
of the problem proposed by Wolsey [11]. A new approach is again proposed by Gicquel et al.
[18] to the modelization of the DLSP with several items and sequential setup costs and periods
that considers relevant physical attributes such as color, dimension, and level of quality. This
allowed them to effectively reduced the number of variables and constraints in the MIP models.
Houndji et al. [21] introduced a new global constraint they named stocking cost to solve the
PSP with Constraint Programming. They tested it on new instances and published it on CSPlib
(Gent and Walsh [9]). The experimental results showed that stocking cost is effective in filtering
compared to other constraints used mainly in the community of Constraint Programming. In
addition, Ceschia et al. [25] used the Simulated Annealing (SA) to solve the PSP. They intro-
duced an approach along with with a statistically-principled tuning procedure that guides the
local search and used it to solve new instances available on the Opthub library. Their solver was
able to find near-optimal solutions in short time for all instances, including those that are not
solved by state-of-the-art methods [26]. More recently, Park et al [34] proposed a framework
for solving the DLSP using reinforcement learning in which they formalized the scheduling
process as a sequential decision-making problem with the Markov decision process.
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2.2 Genetic Algorithms and Optimization problems

Genetic Algorithms are stochastic search algorithms that mimic living species’ natural evolu-
tion and reproduction mechanisms. They were proposed for the first time by John Holland [4]
in 1970. One of the main principles of these algorithms is the concept of the "survival of the
fittest", which states that one individual whose features fit the best the environment is more
likely to survive. Goldberg et al [1] introduced the concept of Messy Genetic Algorithms which
solved problems by combining relatively short, well-tested building blocks to form longer, more
complex strings that increasingly cover all features of a problem. This approach standed in con-
trast to the usual fixed-length, fixed-coding genetic algorithm.
By emulating natural mechanisms, Genetic Algorithms assure the evolution of a population over
several generations with concepts such as Initialization [22], Selection [24], Crossover [28], or
mutation [33] as shown in Figure 1.
Numerous studies explored the application of genetic algorithms in the context of optimization
problems. A. Kimms [7] introduced a mixed-integer programming formulation for the multi-
level, multi-machine proportional lot sizing and scheduling problem and presented a genetic
algorithm to solve that problem. Later, J. Duda [13] presented a study of genetic algorithms ap-
plied to a lot sizing problem, which has been formulated for an operational production planning
in a foundry. Three variants of genetic algorithm were considered, each of them using special
crossover and mutation operators as well as repair functions. Moreover, Xie et al [10] proposed
heuristic genetic algorithms for lot sizing problems by designing a domain-specific encoding
scheme for the lot-sizes and by providing a heuristic shifting procedure as the decoding sched-
ule. More recently, Larroche et al [32] dealt with a complex production planning problem with
lost sales, overtimes, safety stock and sequence dependent setup times on parallel and unrelated
machines by developing a genetic algorithm that combines several operations already defined
in the literature to solve the problem.

III PROBLEM DEFINITION

Several studies addressed the Pigment Sequencing Problem - PSP (see, for example, [20, 25]).
It can be described as a problem that requires producing various items on one machine with
predefined setup costs. Setup costs are necessary for the transition from an item i to another
item j so that i ̸= j. Often, the production planning needs to meet the customer orders while:

• not exceeding the production capacity of the machine;
• minimizing the setup and stocking costs.

Without loss of generality, it is assumed that only one item is produced per period and all orders
are normalized i.e., the machine’s production capacity is restricted to one item per period and
d(i, t) ∈ {0, 1} with i the item and t the period. The PSP is a production planning problem with
the following specifications: a discrete and finite planning horizon, some capacity constraints,
a deterministic and static order, several items, small buckets, setup costs, only one level, and
without shortage.
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Figure 1: Flow chart of Genetic Algorithms

Formally, the problem can be formulated as [15] :

min
M∑

i,j=0

P∑
t=0

qi,jX i,j
t +

M∑
i=0

P∑
t=1

hisit (1)

si0 = 0,∀i ∈ M (2)

xi
t + sit−1 = dit + sit, ∀i ∈ M, t ∈ P (3)

xi
t ≤ yit,∀i ∈ M, t ∈ P (4)∑
i

yit = 1,∀i, j ∈ M, t ∈ P (5)

X i,j
t ≥ yit−1 + yjt − 1,∀i, j ∈ M, t ∈ P (6)

with the following indices and index sets:
• M : set of item indices, i, j ∈ M and M ⊆ N;
• P : set of period indices, t ∈ P and P ⊆ N;

the parameters:
• hi: the holding cost of the item i with i ∈ M ;
• qi,j: the changeover cost from item i to item j with i, j ∈ M ;

and the following variables:
• xi

t: binary production variable that is 1 if item i is produced in period t, 0 otherwise;
• yit: binary setup variable that is 1 if the machine is set for the production of item i in

period t, 0 otherwise;
• dit: binary variable that is 1 if item i is ordered in period t, 0 otherwise;
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• X i,j
t : binary changeover variable that is 1 if in period t, we transitioned from the produc-

tion of item i to the one of item j, 0 otherwise;
• sit: integer variable that represents the number of item i stored in the period t, sit ∈ R+.

The goal is to minimize the overall stocking and setup costs as expressed by (1). Constraint (2)
clearly states that there is no initial stock. Constraint (3) expresses the rule of flow conservation.
Constraint (4) aims to get the setup variable yit to equal 1 if the item i is produced in the period
t. Constraint (5) ensures the machine is always set to produce an item. Therefore, yit is bound
to take the value that minimizes the changeover cost. Furthermore, if there is no production in
the period t, yit = yit−1 or yit = yit+1. Thus, it is interesting to set up the machine for production
even if there is no item to produce. Constraint (6) sets values to changeover variables. If yit−1

and yit equal 1, then X i,j
t is bound to equal 1 otherwise X i,j

t would equal 0 thanks to the goal
function that minimizes the changeover cost.

Example: Consider the following relatively easy problem:
• Number of items: NI = 2;
• Number of periods: NT = 5;
• Order per period. Be d(i, t) the order of item i in the period t: d(1, t) = (0, 1, 0, 0, 1) and
d(2, t) = (1, 0, 0, 0, 1);

• Stocking cost. Be h(i) the stocking cost of the item i, h(1) = h(2) = 2

Let xT be the production planning representing a potential solution to the problem. It is an array
of size NT. A possible solution to the problem is xT = (2, 1, 2, 0, 1) with a cost of q(2, 1) +
q(1, 2) + q(2, 1) + 2h(2) = 15. The optimal solution is xT = (2, 1, 0, 1, 2) with a cost of
q(2, 1) + q(1, 2) + h(1) = 10.

IV OUR APPROACH

In this section, we present each aspect of our implementation of genetic algorithms to solve the
PSP.

4.1 Genetic representation

When implementing Genetic Algorithms to a problem, finding the proper representation for the
individual is important and influences the efficiency of the whole algorithm. One of the most
straightforward representations used in genetic algorithms is the one used by John Holland [3]:
the bit-array representation where a chromosome is represented by a string of bits containing 0
and 1 to express if an item i has been produced at a given period t as pictured on Figure 2.

Figure 2: Chromosome bit-array representation

Although correct, this representation significantly increases the complexity of the whole algo-
rithm forcing us to go through a list of nT ∗ nI items with nT: the number of periods and nI:
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the number of items. All of this prompted the emergence of another representation, as used by
Mirshekarian et al. [31], in which the chromosome is represented by a string of integers of the
length of the planning horizon (nT). In this string, each integer corresponds to the item’s index
produced at the exact period and 0 otherwise as pictured in Figure 3. Thus, the complexity is
considerably reduced.

Figure 3: Chromosome final representation

4.2 Initialization

As stated earlier, the initialization process consists in generating the initial population. We
have opted for the heuristic algorithm based on the breadth-first search technique described in
Algorithm IV.1. The process starts at the end of the planning horizon and backtracks to the first
production period. The goal is to seed the best possible individuals for the initial population. At
every step of the process, the algorithm determines which of the subsequent children nodes are
the best to expand. This process produces better individuals than random seeding [22], helping
bootstrap the overall search process.

4.3 Evaluation

Each chromosome is evaluated before proceeding to the selection. The cost estimation is a
key input to the selection process and the element that our genetic-based algorithm seeks to
minimize. In our study, the cost function is based on the aforementioned MIP formulation (1)
and can be stated as following:

F (x) =
M∑

i,j=0

P∑
t=0

qi,jX i,j
t +

M∑
i=0

P∑
t=1

hisit (7)

It consists of two costs:
• the setup cost

∑M
i,j=0

∑P
t=0 q

i,jX i,j
t : the sum of setup costs for all periods;

• the stocking cost
∑M

i=0

∑P
t=1 h

isit: the sum of the stocking time slots of all items multi-
plied by the stocking cost hi of each item i
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Algorithm IV.1 Population initialization algorithm

1 BEGIN
2 READ Expected_Population_Size, PSP_Instance
3 SET population to []
4 SET queue to firstNode
5 SET popCounter to queue length
6 WHILE population length is less than Expected_Population_Size
7 IF queue is empty THEN
8 BREAK
9 SET node to popFirst (queue)

10 DECREMENT popCounter
11 IF node is leafNode THEN
12 ADD node chromosome to population
13 CONTINUE
14 ENDIF
15 FOR child in node children (PSP_Instance)
16 APPEND child to queue
17 INCREMENT popCounter
18 IF popCounter is greater than Expected_Population_Size THEN
19 BREAK
20 ENDFOR
21 ENDWHILE
22 END

4.4 Selection

The selection operator we chose to implement is based on the process commonly known as the
"Roulette wheel" [24]. Hence, each chromosome is given a probability of being selected based
on its fitness. Therefore, the fittest chromosome is given the highest chance. Then, a selector
is used to pick two chromosomes based on their probability. Those chromosomes will mate
and produce an offspring. We evaluate each chromosome based on the data provided by each
instance and for each item (stocking cost and setup cost) (7). The higher the cost, the less fit
the chromosome and the lower the probability of being chosen. In practice, the fitness of each
chromosome in a population is computed (8) relative to the cost of the fittest chromosome of
this population (9)

M = max(c),∀c ∈ P (8)

pi = ((M + 1)−Bi)/
∑
c

((M + 1)−Bc)) (9)

.

along with the following variables:
• M : the cost of the fittest chromosome of the population P ;
• pi: the "Roulette wheel" probability of the chromosome i;
• Bi: the production cost of the chromosome i;
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4.5 Crossover

In the crossover, the two chromosomes obtained from the selection process are mated only if
it has been randomly decided so. A random number is drawn, and if it is below the crossover
rate, the crossover occurs. In the implementation (Algorithm IV.2), we mate two chromosomes
to produce one offspring, which consists in iteratively moving Chromosome 1 towards Chro-
mosome 2 while reducing its production cost and therefore, improving its fitness. This method
is inspired by the principle of the heuristic crossover as described by Umbarkar et al. [23].
We ensure the generated offspring is a new chromosome in the sense that it has never been
encountered before. This crossover implementation is interesting because it improves the over-
all fitness score of the population over the generations. The process is best illustrated by the
following example (each chromosome is represented with its cost):
Parent 1: (2, 2, 1, 1, 3, 0, 2, 0) : 592 -> the one chosen for yielding the offspring
Parent 2: (0, 2, 2, 2, 3, 1, 0, 1) : 375
Offspring (Step 1): (2, 2, 1, 1, 0, 3, 2, 0) : 580
Offspring (Step 2): (2, 2, 1, 0, 1, 3, 2, 0) : 570
Offspring (Step 3): (2, 2, 0, 1, 1, 3, 2, 0) : 560
Offspring (Final Step): (2, 0, 2, 1, 1, 3, 2, 0) : 545

Algorithm IV.2 Crossover operator algorithm

1 BEGIN
2 READ chromosome1, chromosome2, crossoverRate, PSP_instance
3 SET randomValue to random()
4 SET distanceD to distance (chromosome1, chromosome2)
5 IF randomValue is less than crossoverRate THEN
6 FOR neighborChromosome in random shuffle(chromosome.neighbors(PSP_instance))
7 IF distance (neighborChromosome, chromosome2) is less than distanceD and
8 neighborChromosome is new THEN
9 IF neighborChromosome.cost is less than chromosome.cost THEN

10 CALL crossover with neighborChromosome, chromosome2, crossoverRate
11 and PSP_instance
12 ENDIF
13 ENDFOR
14 ENDIF
15 CALL localSearch with chromosome1, chromosome2 and PSP_instance
16 END

4.6 Mutation

Once the crossover is performed, the random process of mutation takes place. For each offspring
obtained from the crossover, it is randomly decided whether or not a chromosome should un-
dergo a mutation. A mutation occurs if the randomly drawn number is below the mutation rate.
The algorithm checks, for each randomly picked chromosome gene, if it is possible to switch
place with another nearby gene. Plainly, it is about checking if it is possible to produce an item
at another period other than the one it is currently produced without violating the constraints of
the instance as described by Algorithm IV.3 . Not only does it have to respect the constraints,
but this process also has to ensure the generated chromosome is a new chromosome in the sense
that it has never been encountered before. This condition allows for the exploration of new
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areas of the search space. The process is best illustrated by the following example:
Input Chromosome: (2, 2, 1, 0, 1, 3, 2, 0) -> with a possible mutation (switch) of periods 2
and 3
Result of mutation: (2, 2, 0, 1, 1, 3, 2, 0)

Algorithm IV.3 Mutation operator algorithm

1 BEGIN
2 READ chromosome, mutationRate, PSP_instance
3 SET randomValue to random()
4 IF randomValue is less than mutationRate THEN
5 FOR neighborChromosome in random shuffle(chromosome neighbors(PSP_instance))
6 IF neighborChromosome is new THEN
7 RETURN neighborChromosome
8 ENDFOR
9 ENDIF

10 RETURN None
11 END

4.7 Application of the Hybridization concept

The hybridization concept suggests combining two search methods to produce better results.
As shown by Gopal et al [19], local search and genetic algorithm are two complement solu-
tions. Genetic algorithms performs good in finding global searching because they are capable
of quickly finding promising regions, but they take relatively long time to find the optima in
those regions. Local search are capable to find the local optima with high accuracy and fast
convergence but suffers from the problem of foot hills. This justifies the implementation of
a local search in our study. This local search (Algorithm IV.4) is performed every time the
crossover cannot generate a new offspring. It is a variant of the Hill climbing method. The
algorithm searches in a large neighborhood of Chromosome 1 towards Chromosome 2 to see if
a better result can be found. This algorithm is also helpful as it prevents from getting stuck at
some local optima.

Algorithm IV.4 Local search algorithm

1 BEGIN
2 READ chromosome1, chromosome2, PSP_instance
3 SET distanceD to distance (chromosome1, chromosome2)
4 FOR neighborChromosome in random shuffle(chromosome neighbors(PSP_instance))
5 IF distance (neighborChromosome, chromosome2) is less than distanceD
6 and neighborChromosome is new THEN
7 IF neighborChromosome cost is less than chromosome1 cost THEN
8 RETURN neighborChromosome
9 CALL localSearch with neighborChromosome, chromosome2 and PSP_instance

10 ENDIF
11 ENDFOR
12 RETURN None
13 END
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4.8 Termination

We define that the algorithm stops once it cannot improve the best solution found so far over
a given number of generations. In our case, this number is 5. We call these generations idle
generations.

V EXPERIMENTAL RESULTS

In this section, we first present the tools used in the implementation and tests, then the instances
on which we performed our approach of Genetic Algorithms and the parameters we defined.
Finally, we expose the experimental results obtained from the tests.

5.1 Tools

Our approach (available at [29]) is implemented using Python, specifically version 3.6 and on a
computer with the following specifications:

• Operating system: Linux Ubuntu 18.04.6 LTS ;
• Processor: Intel® Core TM i5-8250U CPU @ 1.60GHz * 8 ;
• Memory: 11.6 GiB ;
• Type of the operating system: 64 bits ;
• Graphics: Intel® UHD Graphics 620 (KBL GT2) ;

5.2 Benchmarks

From our literature review and up to our knowledge, the Pigment Sequencing Problem has two
publicly available benchmarks. Houndji et al proposed some publicly available instances (and
their corresponding best solutions) in the CSPlib [20]. Some of these instances are characterized
by a number of periods NT=20, a number of items NI=5, and a number of orders ND=20.
Others are characterized with a much higher number of periods (100 or 200) and a higher
number of items (10 or 15) among others: pigment100a, pigment100b, pigment200a.
Later, in their study of the PSP and seeking to apply their Simulated Annealing approach on
some more complex instances of the problem, Ceschia et al [25] developed a parameterized
generator which receives as input the number of items m, the number of periods n, and the
density of requests δ (i.e., total request divided by n) and produces a random instance with
those features.
For our tests and given that we are in an early phase of our application of Genetic Algorithms
to the Pigment Sequencing Problem, we set, for the present paper, to resolve the instances
available in the CSPlib repository (Houndji et al[20]), test and compare our approach on this
benchmark with 20 instances picked for the test.

5.3 Parameter tuning

The performance of Genetic Algorithms is greatly affected by the settings of their parameters.
These parameters are typically, the probabilities of crossover and mutation, along with the pop-
ulation size. Several studies [35] have explored the impact of these different parameters on the
quality of the solutions. The following notions can be derived from these studies:
- Crossover is made in hope that new chromosomes will have good parts of old chromosomes.
Hence, the crossover probability which is the parameter that controls that, is expected to be a
high value but not too high in order to leave some part of population survive to the next gener-
ation.
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- The mutation probability, which is the parameter that determines the likelihood that an in-
dividual will undergo the mutation, is expected to be a low value. A high value of mutation
probability tends to prevent the population from converging to an optimum solution.
- The population size, which is the number of individuals in the population, tends to slow the
algorithm when too high and shrink the exploration space otherwise.
All these parameters are dependent on the problem being solved; however for the sake of our
study, we randomly pick some instances from the CSPlib repository and draw from the state of
art to set the range of each of these parameters for our tuning exercise as follows: the mutation
probability [0.05, ..., 0.15] with a step of 0.01, the crossover probability [0.75, ..., 0.9] with a
step of 0.1, the population size [25, ..., 40] with a step of 1 with 10 trials over each instance.
The only performance characteristic is the accuracy of the solution. Over all the iterations, the
best parameter values can be stated as following:

• Size of the population Lp: 30;
• Probability of mutation Pm: 0.05;
• Probability of crossover Pc: 0.9.

5.4 Results

Once our parameter values set and in order to test our approach, we draw a very miscellaneous
set of 20 instances from the CSPlib repository and run it ten times over each instance using the
aforementioned parameter values [5.3] to configure every run.

For each instance, after ten runs, we write down the solutions found and determine the best
solution among them and the time spent searching for it. The first table 1 compiles the results
of the experiments on the instances from the CSPlib repository. For each instance (represented
as: Instance NI-NT), we note the optimal solution, the time used by the CP algorithm to reach
it, the best solution found by our approach over ten runs, and the corresponding time; along
with the gap between the global optimum and the best solution, the coefficient of variation of
the solutions and the mean time of the search.

When analyzing these results, it appeared essential to proceed with a statistical analysis due
to the stochastic nature of genetic algorithms. From the results of Table 1, we notice that our
approach to genetic algorithms has successfully spotted the global optimum for most of the
instances (3/4 of the tested instances). For the remaining 1/4 of the instances, our approach
identified a solution close to the global optimum (on average 2.008% close) in a relative short
period of time (3.4 seconds). We suspect these instances to have a more convoluted search
space. On all the instances, our approach finds the global optimum or a solution close to this
one relatively quickly too (4.33 seconds) with a gap between the global optimum and the found
solution not exceeding 7.3% and on average of 0.502%. We would expect our approach to
suffer from the increase of the number of periods (100 periods and 200 periods). However,
the results from the instances p100a, p100b, p100c and p200a show a trend similar to the ones
with a lower number of periods (15, 20, 30 periods). On these larger instances, our approach
succeeds in finding the global optimum or a solution close to it (0.611% close on average) in a

1the global optimum as available in Csplib repository
2the time (in seconds) spent by CP to find the global optimum [20]
3the best solution found by our approach
4the time (in seconds) spent by our approach to find its best solution
5the gap between the global optimum and the best solution found by our approach
6the coefficient of variation of all the solutions found over 10 trials
7the mean time (in seconds) of all the 10 trials
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Instance Opt1 CP time 2 GA Best 3 GA time 4 Gap 5 Coef var. 6 Mean time 7

1 5-20 1377 9.14 1377 1.838 0% 0.031 2.305
3 5-20 1107 2.946 1107 1.294 0% 0 1.765
5 5-20 1471 0.235 1471 0.949 0% 0.294 0.858
8 5-20 3117 25.352 3117 2.815 0% 0.285 2.583
23 5-20 1473 15.039 1473 1.418 0% 0.021 1.798
36 5-20 1493 121.909 1502 2.98 0.6% 0.756 2.495
58 5-20 1384 2.347 1386 2.767 0.1% 1.508 2.462
69 5-20 1619 1.223 1619 1.487 0% 0 1.757
78 5-20 1297 16.187 1297 1.173 0% 0 1.434
85 5-20 2113 9.404 2113 2.766 0% 0.242 2.954
90 5-20 2449 23.811 2449 1.861 0% 1.36 2.288
94 5-20 1403 11.726 1403 1.683 0% 0.763 2.207
p15b 10-15 1486 12 1486 6.819 0% 0.558 3.521
p15c 10-15 1583 16 1583 1.675 0% 0.133 2.03
p30a 5-30 1119 124 1201 1.51 7.327% 0.414 1.817
p30c 10-30 1707 156 1731 1.741 1.405% 0 2.351
p100a 10-100 1323 60 1323 4.863 0% 0.239 7.853
p100b 10-100 1962 10 1974 8.004 0.611% 2.863 9.067
p100c 15-100 1982 143 1982 10.358 0% 0.182 15.749
p200a 15-200 2324 854 2324 28.61 0% 0 32.848
Average - 80.715 - 4.33 0.502% 0.482 5.007

Table 1: Experimental results on 20 CSPlib instances

short time length (on average 12.95 seconds).
Given that Genetic Algorithms are stochastic methods and having tested each instances 10
times, we proceed to analyze the coefficient of variation of all the solutions found for each
instance. We note that this metric which measures the dispersion of the found solutions around
a mean, doesn’t exceed a maximum value of 1.508. This helps us infer that over the 10 trials
for each instance, our approach has consistently been able to find a solution quite close to the
mean. These results are to be put in perspective with the ones of the CP implementation that
are also shown in Table 1 and that has succeeded in finding the global optimum on all these
instances in (on average) 80.715 seconds.
Overall, these results suggest that our approach of Genetic Algorithms can find, over multiple
trials, the global optimum or a solution quite close to the global optimum for this type of in-
stances of the PSP (the ones proposed by Houndji et al [27]) and in a relative short period of
time.

VI CONCLUSION AND PERSPECTIVES

In this paper, we have solved the Pigment Sequencing Problem (PSP), a Discrete Lot Sizing and
Scheduling Problem (DLSP), using Genetic Algorithms. Then, we have exposed the basic con-
cepts supporting the implementation of Genetic Algorithms. Solving a Discrete Lot Sizing and
Scheduling Problem with Genetic Algorithms is met with some exciting challenges, including
the good design of the chromosome and the right choice in implementing aspects such as the
selection, the initialization, the crossover, and the mutation. We have experimentally shown that
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the application of approaches based on Genetic Algorithms to solving a DLSP are an interesting
research area.

As further works, we would like to dive deeper into designing and experimenting with new
approaches of crossover and mutation. It would also be interesting to test our approach on more
complex instances or variants of DLSP (Opthub).
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