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Abstract

Lot sizing is essential in production planning. It consists of determining a production plan that
meets the orders and other constraints while minimizing the production cost. Here, we consider a
Discrete Lot Sizing Problem (DLSP), notably the Pigment Sequencing Problem (PSP). We have
implemented an approach based on genetic algorithms to solve the PSP. We have proposed adap-
tive ways for each step of the genetic approach: initialization, selection, crossover, and mutation.
We experimentally evaluate the performance of the approach over multiple trials on some pub-
licly available instances of the PSP. These experimental results show that genetic algorithms are
promising and practical approaches to solving DLSP.
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I INTRODUCTION

Solving Lot Sizing Problems consists of identifying items to produce, when to produce, and
on which machine to meet the demands while seeking to achieve some financial goals. Such
problems have been studied lately. Not only are several types of items required to be produced,
but the production planning must often meet opposite goals, such as satisfying customer needs
and minimizing production and stocking costs. Several versions of Lot Sizing Problems have
been explored in the literature. Lately, Houndji et al. [12] and Ceschia et al. [17] have worked
on an NP-Hard variant known as the Pigment Sequencing Problem (Pochet and Wolsey [7]),
included in the CSPIlib library (Gent and Walsh, [3]). It requires producing several items on
a single machine whose capacity is restricted to one item per period. The planning horizon is
discrete and finite, with predefined stocking and setup costs for each item.

Like many discrete lot sizing problems, the Pigment Sequencing Problem can be formalized and
solved with genetic algorithms. Genetic algorithms are heuristic search methods inspired by the
natural evolution of living species. Based upon the concept of the survival of the fittest, genetic
algorithms are able, over multiple generations, to find the best solution to a problem. Several
studies [6] [21] have shown how efficient they could be in solving optimization problems. In
this paper, we expose a search method based on genetic algorithms, then experiment with this
approach. The results show that genetic algorithms are a promising method for solving Discrete
Lot Sizing Problems such as the Pigment Sequencing Problem.

This paper is organized as follows: Section 2 exposes some background on the Pigment Se-
quencing Problem and Genetics Algorithms (GAs), Section 3 gives details on our method based
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on genetic algorithms, Section 4 presents some experimental results obtained from the imple-
mentation of our approach, and Section 5 concludes this paper and provides some perspectives.

I BACKGROUND

2.1 Overview of the state of the art

The PSP belongs to the Discrete Lot Sizing Problems (DLSP) category. The PSP is a problem
in which the full capacity available for a period is used to produce one item. Miller and Wolsey
[5] formulated the DLSP with setup costs not dependent on the sequence as a network flow
problem. They exposed some MIP formulations for various modifications (with backlogging,
safety stock, and initial supply). In addition, several more MIP formulations and variants have
been proposed and discussed by Pochet and Wolsey [7]. Gicquel et al. [8] exposed a formula-
tion. They derived valid inequations for the DLSP with several items and sequential setup costs
and periods, which is a modification of the problem proposed by Wolsey [4]. Furthermore,
Gicquel et al. [9] proposed a new approach to the modelization of the DLSP with several items
and sequential setup costs and periods that considers relevant physical attributes such as color,
dimension, and level of quality. This allowed them to effectively reduced the number of vari-
ables and constraints in the MIP models. Houndji et al. [12] introduced a new global constraint
they named stocking cost to solve the PSP with constraint programming. They tested it on new
instances and published it on CSPlib (Gent and Walsh [3]). The experimental results showed
that stocking cost is effective in filtering compared to other constraints used mainly in the com-
munity of Constraint Programming. Lately, Ceschia et al. [16] used the Simulated Annealing
(SA) to solve the PSP. They introduced an approach that guides the local search and used it to
solve new instances available on the Opthub library [17].

2.2 The Pigment Sequencing Problem

Several studies addressed the PSP (see, for example, [11, 16]). It can be described as a problem
that requires producing various items on one machine with predefined setup costs. Setup costs
are necessary for the transition from an item i to another item j so that i # j. Often, the
production planning needs to meet the customer orders while:

* not exceeding the production capacity of the machine;

* minimizing the setup and stocking costs.
Without loss of generality, it is assumed that only one item is produced per period and all orders
are normalized i.e., the machine’s production capacity is restricted to one item per period and
d(i,t) € {0, 1} with i the item and ¢ the period. The PSP is a production planning problem with
the following specifications: a discrete and finite planning horizon, some capacity constraints,
a deterministic and static order, several items, small buckets, setup costs, only one level, and
without shortage.



Formally, the problem can be formulated as [7] :
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along with the following variables:

e x!: binary production variable that is 1 if the item i is produced in the period ¢ and 0O
otherwise;

e y!: binary setup variable that is 1 if the machine is set for the production of the item i and
0 otherwise;

e si: integer variable that represents the number of item i stored in the period ;

* ¢"J: the changeover cost from item i to item j with 4, j € {0, ..., NT};

e di: binary variable that is 1 if the item i is ordered in the period 7 and 0 otherwise;

* h;: the holding cost of the item i with ¢ € {1,..., NI};

e X, "J: binary variable that is 1 if in the period #, we transitioned from the production of
item i to the one of item j and O otherwise.

The goal is to minimize the overall stocking and setup costs as expressed by the first constraint
(1). Constraint (2) clearly states that there is no initial stock. Constraint (3) expresses the rule
of flow conservation. Constraint (4) aims to get the setup variable y! to equal 1 if the item i is
produced in the period ¢. Constraint (5) ensures the machine is always set to produce an item.
Therefore, yg is bound to take the value that minimizes the changeover cost. Furthermore, if
there is no production in the period 7, y; = y;_, or y; = y;.,. Thus, it is interesting to set up
the machine for productlon even if there is no item to produce. Constraint (6) sets values to
changeover variables. If y_, and ! equal 1, then X "7 is bound to equal 1 otherwise X}~ would
equal O thanks to the goal function that minimizes the changeover cost.

Example: Consider the following relatively easy problem:

e Number of items: NI = 2;

e Number of periods: NT' = b5;

* Order per period. Be d(i, t) the order of item i in the period #: d(1,¢) = (0,1,0,0, 1) and

d(2,t) =(1,0,0,0,1);

* Stocking cost. Be A(i) the stocking cost of the item i, h(1) = h(2) =
Let xT be the production planning representing a potential solution to the problem. It is an array
of size NT. A possible solution to the problem is 27" = (2,1,2,0, 1) with a cost of ¢(2,1) +
q(1,2) + ¢(2,1) + 2h(2) = 15. The optimal solution is 27" = (2,1,0,1,2) with a cost of
q(2,1) 4+ q(1,2) + h(1) = 10.



2.3 Genetic Algorithms

Genetic algorithms are stochastic search algorithms that mimic living species’ natural evolu-
tion and reproduction mechanisms. They were proposed for the first time by John Holland
[2] in 1970. One of the main principles of these algorithms is the concept of the "survival of
the fittest", which states that one individual whose features fit the best with the environment is
more likely to survive. Emulating the process of natural evolution, Genetic Algorithms induce
the random exchange of genetic material among individuals of the same population. This sec-
tion exposes its implementation in the context of optimization problems with concepts such as
Initialization, Selection, Crossover, or mutation.

Initialization. It consists of creating the first population, a set of individuals (potential so-
lutions). There are several strategies when making the initial population. The initialization
can be stochastic or deterministic [13]. Stochastic initialization means that solutions, usually a
sequence of numbers, are "seeded" without any logic driving the process while respecting all
constraints. Deterministic initialization, on the opposite, is a deterministic method of initial-
izing the population using heuristics to determine the best potential solutions close enough to
optimal solutions. A good design of the initialization process is essential when implementing
genetic algorithms.

Selection. It consists in choosing individuals from a given population for later breeding.
Individuals are picked based on their fitness. Individuals with better genetic material are more
likely to be selected. There are various selection methods, among which the "Roulette wheel"
method [15] is the most common. It consists in assigning a probability to each individual in the
population based on their fitness.

Crossover. It occurs after two or more individuals have been selected for breeding. The
process produces offspring combining the genetic material of the selected individuals. Several
strategies can be used to generate offspring. The crossover process can be single-point, two-
point, or k-point or be uniform [19].

Mutation. It is a genetic operator that randomly alters the genetic material of randomly
selected individuals [22]. In doing so, mutation strives to infuse diversity into the population
over generations. Ultimately, the mutation is designed to avoid premature convergence in the
population and the trap of a local optimum.

Termination criterion.  Several criteria can be used to stop or terminate genetic algorithms.
It can, for example, be decided to stop a genetic algorithm once a convergence occurs, meaning
that all the individuals in the population are similar or after a set number of generations. Figure
1 summarizes all these concepts.

III OUR APPROACH

In this section, we present each aspect of our implementation of genetic algorithms to solve the
PSP.

3.1 Genetic representation

When implementing genetic algorithms to a problem, finding the proper representation for the
individual is important and influences the efficiency of the whole algorithm. One of the most
straightforward representations used in genetic algorithms is the one used by John Holland [1]:
the bit-array representation where a chromosome is represented by a string of bits containing 0
and 1 to express if an item 7 has been produced at a given period ¢ as pictured on Figure 2.
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Figure 1: Flow chart of genetic algorithms

Although correct, this representation significantly increases the complexity of the whole algo-
rithm forcing us to go through a list of n’I" x nl items with nT: the number of periods and nl:
the number of items. All of this prompted the emergence of another representation, as used by
Mirshekarian et al. [21], in which the chromosome is represented by a string of integers of the
length of the planning horizon (nT). In this string, each integer corresponds to the item’s index
produced at the exact period and 0 otherwise. Thus, the complexity is considerably reduced.

3.2 Initialization

As stated earlier, the initialization process consists in generating the initial population. We
have opted for the heuristic algorithm based on the bread-first search technique described in
Algorithm III.1. The process starts at the end of the planning horizon and backtracks to the first
production period. The goal is to seed the best possible individuals for the initial population.
At every step of the process, the algorithm determines which of the subsequent children nodes
are the best to expand. This process produces better individuals than random seeding, helping
bootstrap the overall search process.

3.3 Selection

The selection operator we chose to implement is based on the process commonly known as the
"Roulette wheel". Hence, each chromosome is given a probability of being selected based on
its fitness. Therefore, the fittest chromosome is given the highest chance. Then, a selector is
used to pick two chromosomes based on their probability. Those chromosomes will mate and
produce offspring. We evaluate each chromosome based on the data provided by each instance
and for each item (stocking cost and setup cost). The higher the cost, the less fit the chromosome
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Figure 2: chromosome bit-array representation

and the lower the probability of being chosen. In practice, the fitness of each chromosome in a
population is computed (8) relative to the cost of the chromosome with the highest cost in this
population (9)

M = max(c),¥c € P @)
pi=((M+1)=B)/ > (M+1) = B)) 9

along with the following variables:
* M: the cost of the chromosome with the highest cost in the population P;
* p;: the "Roulette wheel" probability of the chromosome i;
* B;: the production cost of the chromosome i;

3.4 Crossover

In the crossover, the two chromosomes obtained from the selection process are mated only if
it has been randomly decided so. A random number is drawn, and if it is below the crossover

Algorithm IIIL.1 Initial population algorithm

1 initialize (Expected_Population_Size, PSP_Instance)
2 population := []

3 queue := firstNode (PSP_Instance)

4 popCounter := queue. length

5 while population . length < Expected_Population_Size
6 if queue.empty

7 break

8 node := queue. popFirst ()

9 popCounter := popCounter — 1

10 if node is leafNode

11 population . add(node.chromosome)

12 continue

13 for child in node. children (PSP_Instance)

14 queue.append(child)

15 popCounter := popCounter + 1

16 if popCounter > Expected_Population_Size
17 break




rate, the crossover occurs. In the implementation (Algorithm III.2), we mate two chromosomes
to produce one offspring, which consists in iteratively moving Chromosome 1 towards Chro-
mosome 2 while reducing its production cost and therefore, improving its fitness. This method
is inspired by the principle of the heuristic crossover as described by Umbarkar et al. [14].
The process produces offspring. We ensure the generated offspring is a new chromosome in
the sense that it has never been encountered before. This crossover implementation is funda-
mental because it boots the improvement of the overall fitness score of the population over the
generations.

Algorithm IIL.2 Crossover operator algorithm

1 crossover (chromosomel, chromosome?2, crossoverRate, PSP_instance)

2 randomValue := random()

3 distanceD := distance (chromosomel, chromosome?2)

4 if randomValue < crossoverRate

5 for neighborChromosome in random.shuffle(chromosome.neighbors(PSP_instance))
6 if distance (neighborChromosome, chromosome?2) < distanceD and

7 isNewChromosome(neighborChromosome)

8 if neighborChromosome.cost < chromosome.cost

9 return crossover (neighborChromosome, chromosome?2, crossoverRate, PSP_instance)
10
11 return localSearch (chromosomel, chromosome2, PSP_instance)

3.5 Mutation

Once the crossover is performed, the random process of mutation takes place. For each offspring
obtained from the crossover, it is randomly decided whether or not a chromosome should un-
dergo a mutation. A mutation occurs if the randomly drawn number is below the mutation rate.
The algorithm checks, for each randomly picked chromosome gene, if it is possible to switch
place with another nearby gene. Plainly, it is about checking if it is possible to produce an item
at another period other than the one it is currently produced without violating the constraints of
the instance as described by Algorithm II1.3. Not only does it have to respect the constraints, but
this process also has to ensure the generated chromosome is a new chromosome in the sense that
it has never been encountered before. This condition is essential to our approach to exploring
new areas of the search space.

Algorithm III.3 Mutation operator algorithm

1 mutate (chromosome, mutationRate, PSP_instance)

2 randomValue := random()

3 if randomValue < mutationRate

4 for neighborChromosome in random.shuffle(chromosome.neighbors(PSP_instance))
5 if isNewChromosome(neighborChromosome)

6 return neighborChromosome

7 return None

3.6 Hybridization

The hybridization concept suggests combining two search methods to produce better results.
Genetic algorithms are reasonably suitable methods for finding promising areas (exploration).
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When exploiting the located regions, it is better to rely on a local search method to yield a
better individual [10]. In our case, a local search (Algorithm III.4) is performed every time the
crossover cannot generate a new offspring. The algorithm searches in a large neighborhood of
Chromosome 1 towards Chromosome 2 to see if a better result can be found. This algorithm is
also helpful as it prevents getting stuck at some local optima and allows one to search beyond
any encountered local optimum.

Algorithm III.4 Local search algorithm

1 localSearch (chromosomel, chromosome2, PSP_instance)

2 distanceD := distance (chromosomel, chromosome?2)

3 for neighborChromosome in random.shuffle(chromosome.neighbors(PSP_instance))

4 if distance (neighborChromosome, chromosome?2) < distanceD and isNewChromosome(neighborChromos
5 if neighborChromosome.cost < chromosomel.cost

6 return neighborChromosome

7 return localSearch (neighborChromosome, chromosome?2, PSP_instance)

8 return None

3.7 Termination

We define that the algorithm stops once it cannot improve the best solution found so far over
a given number of generations. In our case, this number is 5. We call these generations idle
generations.

IV EXPERIMENTAL RESULTS

In this section, we first present the tools used in the implementation and tests, then the instances
on which we performed our approach of genetic algorithms and the hyperparameters we defined.
Finally, we expose the experimental results obtained from the tests.

4.1 Tools

Our approach (available at [20]) is implemented using Python, specifically version 3.6. Python
is well suited for this kind of implementation thanks to the vast amount of packages available for
handling such data. We implemented the tests on a computer with the following specifications:
* Operating system: Linux Ubuntu 18.04.6 LTS ;
* Processor: Intel® Core TM 15-8250U CPU @ 1.60GHz * 8 ;
* Memory: 11.6 GiB ;
Type of the operating system: 64 bits ;
Graphics: Intel® UHD Graphics 620 (KBL GT2) ;

4.2 Instances

To test our approach, we use a set of 20 instances out of the 100 proposed by Houndji et al.
[18] in the CSPIib library. We have chosen the first five ones and fifteen random others. These
instances are characterized by the number of periods NT=20, the number of items N/=5, and
the number of orders ND=20.



Instance Opt' CPtime’ GA Best GA time GA worst coef var. mean time bst occ. *

1 1377 9.14 1377 1.518 1381 0.121 2.042 70
2 1447 7.292 1447 1.737 1471 0.708 1.690 70
3 1107 2.946 1107 1.604 1107 0 1.992 100
4 1182 1.784 1182 1.759 1189 0.306 1.864 60
5 1471 0.235 1471 1.549 1480 0.321 1.397 50
8 3117  25.352 3117 3.065 3141 0.290 2.958 40
21 27714 11.177 2774 1.763 2793 0.223 1.914 70
23 1473 15.039 1473 1.821 1476 0.085 1.988 70
35 2655 12.846 2655 2.516 2674 0.275 2.644 20
36 1493 121.909 1505 2.552 1543 0.760 2.730 0

53 1108 0.935 1108 2.368 1128 0.748 2.330 20
58 1384 2.347 1384 4.374 1496 2.704 3.257 10
61 977 0.711 977 1.541 1053 2.546 1.970 60
69 1619 1.223 1619 1.755 1635 0.313 1.905 90
73 1104 12.508 1130 3.618 1172 1.326 2.775 0

78 1297 16.187 1297 1.276 1297 0 1.631 100
85 2113 9.404 2113 3.112 2136 0.386 2.817 30
87 1152 1.589 1152 2.586 1182 1.065 2.430 30
90 2449  23.811 2449 2412 2520 1.098 2.380 20
94 1403 11.726 1403 1.866 1415 0.270 1.960 90

Table 1: Experiment results

4.3 Results

We have tested our approach by running it ten times over each instance and used the following
parameters to configure every run:

* size of the population: 25 individuals;
e mutation rate: 0.05 ;
e crossover rate: 0.8.

For each instance, after ten runs, we write down the solutions found and determine the best
solution among them and the time spent searching for it. Table 1 contains, for each instance,
the optimal solution, the time used by the CP algorithm to reach it, the best solution found by
our approach over ten runs, and the corresponding time. Table 1 also shows, for each instance,
the worst result obtained and some computed data, such as the coefficient of variation of the
solutions, the mean time of the search, and the percentage of occurrences of global optimum in
these ten runs.

When analyzing the results, it appeared essential to proceed with a statistical analysis due to the
stochastic nature of genetic algorithms. From the results of Table 1, we notice that our approach
to genetic algorithms has successfully spotted the global optimum for all the instances except
for two (Instances 36 and 73). Furthermore, for most instances (16 out of 20), the global opti-
mum has been spotted much more quickly (on average, 75% faster) than the CP exact approach.
Besides, even though our approach has underperformed the CP implementation in time on some
instances (5, 53, 61, 69), it has found the global optimum in each of these instances. When fo-
cusing on the overall quality of the results found for the 20 instances, the mean time for solving
the 20 instances confirms that the gain in time noticed earlier is consistent. The improvements
are noticeable (on average, 79%). The compute of the coefficient of variation, as displayed in



Table 1, which measures the dispersion of the results around an expected value, shows that for
all the 20 instances (with ten runs each), the results found tend to be close to the global optimum
(the coefficient of variation for 15 of the instances is less than 1%) with 2 of the instances for
which the algorithm is consistently able to find the global optimum (instances 3 and 78). These
results suggest that our approach of genetic algorithms can find, over multiple trials, the global
optimum or a solution quite close to the global optimum for this type of instance of the PSP
(the ones proposed by Houndji et al. [18]).

V  CONCLUSION AND PERSPECTIVES

In this paper, we have solved the Pigment Sequencing Problem (PSP), a Discrete Lot Sizing
Problem (DLSP), using Genetic Algorithms. Then, we have exposed the basic concepts sup-
porting the implementation of Genetic Algorithms. Solving Discrete Lot Sizing Problem with
Genetic Algorithms is met with some exciting challenges, including the good design of the
chromosome and the right choice in implementing aspects such as the selection, the initializa-
tion, the crossover, and the mutation. We have experimentally demonstrated that the Genetic
based approaches to solving a DLSP are a promising research area.

As further works, we would like to dive deeper into designing and experimenting with new
approaches of crossover and mutation. It would also be interesting to test our approach on other
variants of DLSP.
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