
HAL Id: hal-04078010
https://hal.science/hal-04078010

Submitted on 21 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Translatability of Multiple Sclerosis Animal Models
for Biomarkers Discovery and Their Clinical Use

Dafni Birmpili, Imane Charmarke Askar, Kévin Bigaut, Dominique Bagnard

To cite this version:
Dafni Birmpili, Imane Charmarke Askar, Kévin Bigaut, Dominique Bagnard. The Translatability
of Multiple Sclerosis Animal Models for Biomarkers Discovery and Their Clinical Use. International
Journal of Molecular Sciences, 2022, 23 (19), �10.3390/ijms231911532�. �hal-04078010�

https://hal.science/hal-04078010
https://hal.archives-ouvertes.fr


Citation: Birmpili, D.; Charmarke

Askar, I.; Bigaut, K.; Bagnard, D. The

Translatability of Multiple Sclerosis

Animal Models for Biomarkers

Discovery and Their Clinical Use. Int.

J. Mol. Sci. 2022, 23, 11532. https://

doi.org/10.3390/ijms231911532

Academic Editor: Serge Nataf

Received: 26 August 2022

Accepted: 22 September 2022

Published: 29 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

The Translatability of Multiple Sclerosis Animal Models for
Biomarkers Discovery and Their Clinical Use
Dafni Birmpili 1, Imane Charmarke Askar 1, Kévin Bigaut 2,3,4 and Dominique Bagnard 1,*

1 Centre National de la Recherche Scientifique (CNRS) UMRS7242, Biotechnology and Cell Signaling,
Therapeutic Peptides Team, Institut du Médicament de Strasbourg (IMS), ESBS 300 Boulevard S. Brant,
67400 Illkirch-Graffenstaden, France

2 INSERM 1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategies, Centre de Recherche en
Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS),
Université de Strasbourg, 1 rue Eugène Boeckel, 67000 Strasbourg, France

3 Department of Neurology, Strasbourg University Hospital, 1 Avenue Molière, 67200 Strasbourg, France
4 INSERM CIC 1434, Clinical Investigation Centre, Strasbourg University Hospital, 1 Place de l’Hôpital,

67000 Strasbourg, France
* Correspondence: bagnard@unistra.fr

Abstract: Multiple Sclerosis (MS) is a chronic autoimmune disease affecting the central nervous
system which is characterized by demyelinating lesions and axonal damage. MS is a complex
disease characterized by important pathophysiological heterogeneity affecting the clinical appearance,
progression and therapeutic response for each patient. Therefore, there is a strong unmet need
to define specific biomarkers that will reflect the different features of the disease. Experimental
autoimmune encephalomyelitis (EAE) is the most commonly used experimental model for the study
of MS, as it resembles the pathological features of human MS in many aspects and has allowed for the
elucidation of pathogenesis pathways and the validation of certain targets for MS therapies. In this
review, we discuss clinically relevant MS molecular biomarkers, divided into five groups based on the
key pathological hallmarks of MS: inflammation, blood–brain barrier disruption, myelin and axonal
damage, gliosis and, ultimately, repair mechanisms. To address the feasibility of translation between
the animal model and human disease, we present an overview of several molecular biomarkers of
each category and compare their respective deregulation patterns. We conclude that, like any disease
animal model, EAE models can sometimes fail to mimic the entire spectrum of human disease, but
they can nonetheless recapitulate the disease’s primary hallmarks. We show that the EAE model is a
valuable tool for understanding MS physiopathological mechanisms and for identifying biomarkers
fundamental for drug development.

Keywords: biomarkers; multiple sclerosis; animal models; EAE

1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central ner-
vous system. It is characterized by inflammatory auto-immune attacks against myelin
sheaths leading to demyelination, axonal damage and neuronal loss. MS is a complex and
highly heterogeneous disease in regard to the histopathological features, clinical course
and therapy response of MS patients [1,2]. To date, there is no specific molecular test for the
treatment choice, which is based more on risk assessment than on the specific needs of the
patients [3,4]. Thus, it is of utmost importance to define specific molecular biomarkers ca-
pable of reflecting the disease activity and the underlying pathophysiological mechanisms.
This will facilitate the prediction of the clinical outcome and the therapeutic choice among
the growing number of treatments available for MS.

In many cases, early-stage biomarkers are first discovered and studied in animal
models and then validated in human disease to evaluate their potential for diagnosing,
predicting or treating human disease.
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Until today, MS has been unique to humans, as other species do not develop such
spontaneous disease. Experimental autoimmune encephalomyelitis (EAE) is the most
commonly used experimental model for the study of MS, as it resembles the pathological
features of human MS in many aspects, including inflammation, demyelination, axonal
loss, gliosis and immune reaction. However, the model has been criticized because of poor
translation in terms of predicting treatment efficacy [5]. The major difference in EAE disease
compared to MS is obviously the induction process. In EAE, inflammation and blood–brain
barrier (BBB) disruption are induced after external immunization against myelin antigens
boosted with adjuvants from bacterial origin. BBB disruption can be enhanced by pertussis
toxins, also of bacterial origin. This could lead to fundamental differences in the priming
and activation of inflammatory factors. Furthermore, in EAE models, CD4 T-cell-mediated
inflammation is dominant, whereas, in MS, the CD8 component is more important [6].

Effector T cells enter the CNS and lead to gliosis, myelin sheaths destruction and
axonal injury. The lesions mostly occur in the spinal cord, which is yet another difference
with MS, where the lesions occur mostly in the brain. Gliosis is present in the majority of
EAE models, as well as repair mechanisms following demyelination [7].

In this review, we discuss clinically relevant MS molecular biomarkers, organized into
five: BBB disruption, myelin and axonal damage, gliosis and, finally, repair mechanisms. We
provide a comprehensive overview of different biomarkers for which we provide a comparison
between murine models and the human disease to address the relevance of translation.

2. Major Pathological Hallmarks of MS
2.1. Inflammation

Inflammation is a physiological defense mechanism of the immune system triggered
by pathogens and damaged tissues and resolves quickly under normal circumstances.
However, in autoimmune diseases, such as MS, an inflammatory misbalance leads to
excessive inflammatory responses characterized by an upregulation of pro-inflammatory
cytokines amplifying the inflammatory response and defective resolutive mechanisms.
Autoreactive T-cells, after activation against myelin antigens, infiltrate the central nervous
system (CNS), leading to inflammatory responses, which are destructive for the myelin
sheath. In MS, this process is spontaneous, and its exact aetiology remains unknown [8].

However, in the EAE models, this process is externally induced by immunization,
which leads to massive inflammation against CNS. Eventually, the impaired resolution of
inflammation leads to persistent chronic inflammation in the CNS. The exact pathogenesis
of inflammation in the MS remains ambiguous, but its importance in the pathology is
highlighted by the effectiveness of immunomodulators and immunosuppressors currently
used to treat MS relapses [9].

Some of the actors participating in MS inflammation representing potential biomarkers
and therapeutic targets are discussed below.

2.1.1. Chemokine (C-X-C Motif) Ligand 13 (CXCL13)

CXCL13 is a lymphoid chemokine constitutively expressed in secondary lymphoid
tissues [10]. CXCL13 attracts CXCR5+ B lymphocytes and small subsets of CD4 and CD8
T cells [11] (Figure 1). Its primary function is the homing of B cells in primary follicles in
secondary lymphoid organs. This chemokine is normally expressed in secondary lymphoid
tissues. However, during chronic inflammation, this chemokine can also be expressed in
non-lymphoid tissues. In the CNS, it can be expressed by microglia, macrophages and
injured neurons [12]. CXCL13 expression is upregulated in the CNS of EAE animal models.
CXCL13 is highly upregulated in active MS lesions and in the cerebrospinal fluid (CSF) of
relapsing-remitting MS (RRMS) patients, with peaks of expression during relapses [13,14].
Studies in KO mice have shown that disease onset and B cell entry in the CNS are not
affected, but CXCL13 KO mice show milder EAE disease with decreased inflammation,
gliosis and demyelination, fewer infiltrating mononuclear cells in the spinal cord and
reduced levels of Th1 and Th17 cells in the periphery [15,16]. Overall, blocking CXCL13
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induction suppresses the formation of CNS lymphoid follicles and ameliorates the EAE
disease course. Its levels are attenuated after B cell therapy with anti-CD20 antibodies.
Meta-analysis data have shown that drug treatments decrease CXCL13 CSF levels in MS
patients [17]. Harris et al. have proposed CXCL13 as a response biomarker, as the intrathecal
synthesis of CXCL13 during MS is reflective of CNS lymphocyte trafficking [18]. On the
other hand, CXCL13 could not be used as a specific MS biomarker, as other diseases such
as lymphoma and viral meningitis present equal or even higher levels of CXCL13 [19].
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Figure 1. Schematic representation of inflammation in MS pathology. BBB: Brain Blood Barrier,
BCR: B-cell receptor; CXCL13: Chemokine (C-X-C Motif) Ligand 13, CXCR5: Chemokine (C-X-C
Motif) receptor type 5, IL-17: Interleukin 17, IL-17R: Interleukin 17 receptor, LB: lymphocytes B,
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2.1.2. Osteopontin (OPN)

OPN is a pleiotropic phosphoprotein functioning as either a free cytokine in body
fluids or as an extracellular matrix molecule implicated in inflammation and tissue remod-
eling [20]. It is produced by immune cells such as T cells and macrophages and glial cells
such as reactive astrocytes and microglia (Figure 1) [21].

The increased expression of OPN at the sites of pathology of different auto-immune
diseases such as lupus and inflammatory bowel disease (IBD) has attracted the attention of
researchers regarding the role of this protein in autoimmune pathogenesis [22,23]. Tran-
scriptomic studies in MS and EAE lesions have shown an abundant expression of OPN
transcripts in MS lesions, which are completely absent in the healthy brain [24]. Studies in
the EAE-MOG model have shown that mice deficient for OPN show milder clinical scores
with the downregulation of proinflammatory cytokines [24]. Interestingly, they presented
the same degree of demyelination and inflammatory foci, implying that OPN does not influ-
ence the inflammatory course of disease but potentially orchestrates the remission/relapse
phases, possibly by modulating the expression of proinflammatory cytokines. In vivo
and in vitro studies by Hur et al. suggested that OPN promotes the survival of activated
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immune cells, although it cannot be excluded that this could be an indirect effect mediated
by the cytokines attracted by OPN (and not by OPN itself). Moreover, the administration
of anti-OPN antibodies reduced clinical severity in EAE models, and vaccination with the
OPN-C fragment reduced disease severity and the secretion of pro-inflammatory cytokines
by T-cells, indicating that anti-OPN autoantibodies could promote a less aggressive disease
course [25]. Secondary progressive MS (SPMS) patients express higher plasma levels of OPN
compared to healthy and RRMS patients. RRMS patients, during relapse, present higher levels
compared to RRMS in remission [26]. OPN CSF levels are elevated in MS patients, and its
levels are correlated with disability and CNS inflammation [27,28]. However, according to
Szalardy et al., CSF OPN levels failed to predict clinical progression in patients [29].

Finally, serum anti-OPN autoantibodies have been detected in MS patients’ sera, and their
concentration is inversely correlated with the expended disability status scale (EDSS). So, OPN
auto-antibodies seem to have an effect on the disease course, and targeted drugs could be pro-
posed for therapy, especially for patients presenting low levels of anti-OPN autoantibodies [25].

2.1.3. Interleukin-17 (IL-17)

MS was, for a long time, considered as a Th1-mediated disease. Th0 cells are dediffer-
entiated in highly inflammatory Th1 cells, mainly in response to IL-12, and are characterized
by the expression of pro-inflammatory cytokines such as interferon gamma (IFN-γ) [30].
However, IL-12 KO are not only susceptible to EAE, but they also show more severe
disease [31]. Moreover, IFN-γ treatment ameliorates EAE symptoms [32,33]. These obser-
vations led to the identification of IL-17-producing Th17 cells as another T cell subset with
a high pathogenic potential, inducing inflammation and autoimmunity. High numbers
of Th17 cells are detected in the CNS of acute EAE. Similarly, high numbers of Th17 cells
are present in the CSF of MS patients, especially during relapses [34]. They attach to brain
endothelial cells better than Th1 cells expressing molecules such as CCR6, enhancing their
entry into the CNS [34,35]. They exert their effect by secreting the cytokine IL-17, although
they can also sometimes express IFN-γ, depending on the tissue environment [36]. IL-17
can be expressed not only by Th17 cells but also by astrocytes and oligodendrocytes in the
CNS lesions [37]. IL-17 plays a key role in MS inflammation (Figure 1). IL-17 activates and
supports microglial proliferation and further promotes neuroinflammation [38]. Indeed,
IL17 expression is increased in lymphocytes derived from EAE mice, and the IL17 receptor
is significantly upregulated in the CNS of EAE mice [39]. Immunization with IL-17 con-
ferred complete resistance to EAE [40]. IL-17 mRNA and protein levels are increased in both
brain lesions and the CSF-derived MNCs of MS patients [41,42]. Data from MS patients
have shown that IL-17 is increased in the CSF of RRMS patients and correlates with the CSF
serum albumin quotient representative of BBB disruption, implying a correlation of IL-17
in BBB disruption and indicating that targeting IL-17 could preserve BBB integrity [43].
Indeed, IL-17 KO mice [44] or mice administered with an anti-IL-17 antibody have shown
milder EAE scores with reduced immune cell CNS infiltration, reduced inflammation
and increased preservation of BBB integrity [45]. In an in vitro study by Rahman et al., it
has been demonstrated that IL-17 mediates the reorganization of actin and modifies the
localization of claudin and occludin, increasing BBB permeability. In vitro studies in both
human and murine brain-derived primary microvascular endothelial cells have shown that
IL-17 can disrupt their integrity [46]. As observed in IL-12 KO mice studies, anti-IL-12 or
anti-IL-23 antibodies (inducers of IL-17) have failed to show any therapeutic effects in MS
patients [47]. However, the encouraging preclinical data concerning the direct blocking of
IL-17 led to the use of an anti-IL17 antibody. The direct blocking of IL-17 by secukinumab
in a phase II clinical trial in MS patients has shown good tolerability but a low ability to
reduce MRI lesion activity [48].

Reactive microglia express inflammatory cytokines such as CXCL13 and OPN. CXCL13
attracts CXCR5+ B lymphocytes in the CNS. Th17 cells and reactive astrocytes secrete IL-17,
which activates microglia through its receptor IL17R. B cells differentiate into plasmocytes
and produce auto-antibodies targeting myelin.
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2.2. Blood–Brain Barrier Breakdown

The BBB is a highly regulated vasculature network consisting of endothelial cells
joined by tight junctions and surrounded by astrocytic end-feet and pericytes separat-
ing the immune-privileged CNS from the systemic blood circulation. It maintains CNS
homeostasis by selectively regulating the influx and efflux of solutes and immune cells in
the CNS. The maintenance of the BBB functionality and dynamic interactions is crucial
for proper CNS function. Changes in this regulated CNS microenvironment leading to
BBB breakdown have been observed in numerous CNS disorders such as MS [49]. The
loss of BBB integrity is observed in MS lesions and is considered as the initial step in MS
pathogenesis—the development of inflammatory lesions around venules which can be
visualized by susceptibility-based MRI sequences [50,51]. It is characterized by vascular
leakage, the decreased expression of tight junction proteins and the infiltration of CNS-
specific immune cells. Once these cells enter the CNS, they proliferate and trigger numerous
neuroinflammatory responses that result in the damage of myelin, oligodendrocytes and,
ultimately, neurons. BBB has been proposed as a therapeutic target for MS to refrain
leakage and immune cells infiltration in the CNS. Natalizumab, a monoclonal antibody
approved for the treatment of MS, blocks the VLA-4-dependent migration of immune cells
across the BBB by blocking their adhesion to VCAM-1 present on its activated endothelium.
Therefore, BBB is an interesting target for the development of novel treatments promoting
the restoration of the barrier function to limit immune cell attacks in the CNS, avoiding the
side effects of immunosuppressive treatments [49].

2.2.1. Metalloproteinase-2 and -9 (MMP2 & MMP9)

MMPs are endopeptidases responsible for the degradation of ECM proteins. They are
counteracted by tissue inhibitors of metalloproteinases (TIMPs) and play a crucial role in
tissue remodeling [52]. They are secreted, among other means, by T cells, monocytes, glial
and endothelial cells [53]. Since 1997, Chandler et al. have shown that the upregulation of
MMP9 leads to tissue destruction and cellular trafficking across BBB [52]. MMP9 CSF and
serum levels correlate with the MS clinical score [54,55], and its expression correlates with
Gd enhancements, reflective of BBB disruption [56]. EAE mice show increased spinal cord
levels of MMP-9, correlating with maximum disease severity [57]. The selective inhibition
of MMP9 resulted in an amelioration of the clinical score in an EAE model [58]. MMP9 KO
mice showed reduced BBB permeability. Mice deficient for MMP2 and MMP9 showed no
BBB permeability and no brain infiltration, implying a role of both MMPs in BBB lesions [59].
According to Agrawal et al., blood vessels are surrounded by two basement membrane
barriers. The first lies outside endothelial cells, and the second lies further within CNS,
adjacent to astrocytes. The inhibition of both MMPs caused the trapping of leukocytes in
the space between the first and the second membrane, demonstrating the importance of
MMPs for BBB disruption and auto-reactive lymphocytes’ infiltration [60]. Nevertheless,
there are conflicting results concerning the potential use of MMPs as disease biomarkers in
MS patients. The MMP9/TIMP-1 ratio has been proposed as reflective of disease activity by
some studies [61,62], but others found no correlation between MMP expression and disease
activity [63]. These differences could be explained by the fact that MMPs are regulated in
several levels: gene transcription, synthesis, secretion as a proenzyme, activation, poten-
tial inhibition by TIMPs and glycosylation, which protects MMPs from degradation [53].
Fainardi et al. studied CSF and serum MMP9 levels, detecting only active forms of MMP9.
This showed that MMP9 was increased in MS compared to other inflammatory diseases,
but the intrathecal synthesis represented only 18% of patients, suggesting that treatments
targeting MMP9 could be beneficial only for a subgroup of patients [64]. Nowadays, IFN-β
is the first disease-modifying treatment in MS, and even though its mechanism of action is
not completely elucidated, it is known that IFN-β treatment can suppress the expression of
MMPs [65]. The presence of neutralizing antibodies towards IFN-β is a cause of treatment
failure. Moreover, MMP9 can indeed degrade IFN-β. Studies by Nelissen et al. showed that
the proteolytic activity of MMP9 significantly reduced the bioactivity of administered and



Int. J. Mol. Sci. 2022, 23, 11532 6 of 20

endogenous IFN-β [66]. The treatment of patients with IFN-β—combined with tetracycline
or doxycycline, antibiotics counteracting MMP9—resulted in decreased lesion activity [67].
Overall, these results indicate a crucial role of MMP2 and MMP9 in BBB disruption and a
possible correlation with IFN-β treatment failure in MS patients.

2.2.2. A Disintegrin and Metalloproteinase with a Thrombospondin Type 1 Motif,
Member 13 (ADAMTS13)

ADAMTS13 is a metalloproteinase with an important role in coagulation, as a main
inhibitor of haemostasis. ADAMTS13 cleaves the large von Willebrand factor (VWF) in
smaller VWF multimers, thus decreasing platelet adhesion and aggregation (Figure 2) [68].
Haemostasis factors enter the CNS upon BBB breakdown and trigger the coagulation
cascade. ADAMTS13 expression showed beneficial effects in preserving BBB in some
CNS injury diseases such as stroke and intracerebral haemorrhage [69]. Studies in plasma
samples of MS patients have shown that ADAMTS13 levels are lower in the MS condi-
tion compared to healthy subjects [70]. Liu et al. in an EAE study, confirmed decreased
ADAMTS13 activity in the plasma of EAE mice [71]. In the EAE model, anticoagulation
treatment ameliorates the EAE disease course [71]. Treatment with ADAMTS13 reduced
clinical severity by reducing demyelination, CNS inflammation and CNS infiltration by in-
hibiting blood–spinal cord barrier disruption. The mechanism between immune infiltration
and ADAMTS13 is not fully understood. However, Lu et al. hypothesized that ADAMTS13
reduces cellular infiltration by regulating BBB permeability through the ADAMTS13-VWF
axis (Figure 2), as demonstrated in models of stroke and brain injury [72]. Overall, these
data suggest that a ADAMTS13 treatment could have beneficial effects in MS by regulating
BBB permeability.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 2. Schematic representation of BBB breakdown. ADAMTS13: A Disintegrin and Metallopro-
teinase with a Thrombospondin Type 1 Motif, Member 13, MMP2/9: Metalloproteinase-2 and -9, LB: 
lymphocytes B, LT CD4+: CD4 T lymphocytes, LT CD8+: CD8 T lymphocytes, VWF: Von Wil-
lebrand factor. 

MMP2 and MMP9 degrade extracellular matrix proteins, leading to BBB disruption and 
the entry of immune cells into the CNS. LB secrete auto-antibodies that target myelin. LT 
CD8+ and LT CD4+ cells produce cytotoxic agents and inflammatory cytokines, respectively, 
that contribute to myelin destruction and cell apoptosis. ADAMTS13 cleaves the von Wil-
lebrand factor, leading to the decrease in platelet adhesion and aggregation responsible for 
BBB permeability. 

2.3. Astrogliosis 
Glial cells are key cells of the CNS [73]. There are three types of glial cells: astrocyte, 

oligodendrocyte and microglia. Astrocytes are the most abundant cell type in the nerv-
ous system, making up half of the brain cells, and they are mostly involved in gli-
otransmission, synapse development, neuronal metabolic support and long-term plastic-
ity [74,75]. Increasing evidence shows the involvement of astrocytes in neurodegenera-
tive disorders due to their aberrant dysfunction [76]. Such deleterious mechanisms are 
known as reactive gliosis, mainly triggered by hypertrophic and hyperplasic astrocytes 
after CNS injury [77]. This leads to the formation of glial scars corresponding to the pro-
liferation and accumulation of fibrous astrocytes at the lesion sites. Therefore, dysfunc-
tional astrocytes secrete inflammatory cytokines in order to attract immune cells in the 
lesion sites [78]. This could constitute the first immune-related mechanism in which the 
astrocytes cause demyelination and contribute to the neurodegeneration. Failing in glu-
tamate recapture induces excitotoxicity, which leads to oligodendrocyte, axonal and 
neuronal injuries [79] (Figure 3). All of the above-mentioned mechanisms inhibit the re-
pair system. 

Figure 2. Schematic representation of BBB breakdown. ADAMTS13: A Disintegrin and Metalloproteinase
with a Thrombospondin Type 1 Motif, Member 13, MMP2/9: Metalloproteinase-2 and -9, LB: lymphocytes
B, LT CD4+: CD4 T lymphocytes, LT CD8+: CD8 T lymphocytes, VWF: Von Willebrand factor.

MMP2 and MMP9 degrade extracellular matrix proteins, leading to BBB disruption
and the entry of immune cells into the CNS. LB secrete auto-antibodies that target myelin.
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LT CD8+ and LT CD4+ cells produce cytotoxic agents and inflammatory cytokines, respec-
tively, that contribute to myelin destruction and cell apoptosis. ADAMTS13 cleaves the von
Willebrand factor, leading to the decrease in platelet adhesion and aggregation responsible
for BBB permeability.

2.3. Astrogliosis

Glial cells are key cells of the CNS [73]. There are three types of glial cells: astrocyte,
oligodendrocyte and microglia. Astrocytes are the most abundant cell type in the nervous
system, making up half of the brain cells, and they are mostly involved in gliotransmission,
synapse development, neuronal metabolic support and long-term plasticity [74,75]. Increas-
ing evidence shows the involvement of astrocytes in neurodegenerative disorders due to
their aberrant dysfunction [76]. Such deleterious mechanisms are known as reactive gliosis,
mainly triggered by hypertrophic and hyperplasic astrocytes after CNS injury [77]. This
leads to the formation of glial scars corresponding to the proliferation and accumulation of
fibrous astrocytes at the lesion sites. Therefore, dysfunctional astrocytes secrete inflamma-
tory cytokines in order to attract immune cells in the lesion sites [78]. This could constitute
the first immune-related mechanism in which the astrocytes cause demyelination and
contribute to the neurodegeneration. Failing in glutamate recapture induces excitotoxicity,
which leads to oligodendrocyte, axonal and neuronal injuries [79] (Figure 3). All of the
above-mentioned mechanisms inhibit the repair system.
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2.3.1. Glial Fibrillary Acidic Protein (GFAP)

GFAP is known to be an intermediate filament of the mature astrocytes cytoskele-
ton [80]. GFAP is widely used as a CNS biomarker in several neurological disorders such as
traumatic brain injury or in MS, where it is considered as a potential biomarker candidate of
astrogliosis related to disease progression and severity [81]. In EAE animal models, GFAP
is upregulated at the demyelination sites during the peak of the disease [82]. However, as-
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trocyte contribution in pathogenesis is more arduous given their dual function. Indeed, the
in vivo ablation of astrocytes worsened the disease at the early stage by allowing the prolif-
eration of infiltrated immune cells into the CNS, causing tissue damages [83]. Inversely, the
selective ablation of reactive astrocytes at the chronic phase of the disease decreases the
demyelination [84]. This may suggest a potential protective role of the astrocytes during
the early stage of the disease and a detrimental role during the late disease phase.

As the EAE model suggested, postmortem studies on patients correlate with GFAP
upregulation in the lesion sites. Moreover, studies conducted in the blood and CSF of RRMS
patients confirmed higher levels of GFAP compared to healthy controls, associated with
larger lesions detected on MRI scans and increased disability [85]. In addition, higher GFAP
levels were found in PPMS patients compared to RRMS patients, with a stronger correlation
with EDSS [86,87].Considering the pathological isomorphism with human disease, the
research of astrogliosis biomarkers in animal models is fundamental.

2.3.2. S100 Calcium Binding Protein B (S100B)

S100B is a small calcium binding protein synthesized mostly by astrocytes and, to
a lesser extent, by oligodendrocytes and some neuronal subpopulations. Secreted S100B
can exert both neurotrophic and neurotoxic effects in a dose-dependent manner. At low
doses (nM), it can promote neurite extension and survival (Figure 3). Inversely, in stress
conditions, astrocytes further secrete S100B, and its high concentration (µM) is recognized
as a DAMP signal that leads to microglia activation, migration and the release of oxidative
stress and proinflammatory factors that finally result in neuronal death [88,89]. In high
concentrations, S100B can also activate nearby granulocytes and monocytes, promoting
inflammation. In ex vivo demyelinating models, it has been shown that S100B levels
are increased upon demyelination, with a parallel activation of astrocytes and microglia
and an increased expression of inflammatory cytokines. However, the inhibition of this
protein results in decreased demyelination and gliosis and the decreased expression of
inflammatory molecules [89]. Moreover, increased S100B levels impair developmental
oligodendrogenesis and proper myelination in primary cultures of rat oligodendrocytes
and organotypic slices, respectively. These effects are taking place after the interaction
of S100B with its RAGE receptor [90]. The elevated expression of S100B has also been
observed in both active and chronic MS lesions [85], and its receptor RAGE is strongly
expressed by macrophages and microglia in active lesions [89]. The blockage of RAGE
leads to decreased demyelination in the EAE model [91], which implies that the S100B/RAGE
axis is a putative target to enhance myelination in MS. Elevated S100B levels have also been
detected in the sera [89] and the CSF samples of MS patients during relapses and the acute
disease phase, while decreasing levels are observed during the remission phase of the disease
and in natalizumab-treated patients [85,92]. In a recent study, pentamidine, an approved
antiprotozoal drug and an S100B inhibitor, resulted in the amelioration of the EAE course, a
reduction in immune cell infiltration and proinflammatory cytokines expression [93].

Reactive astrocytes highly express GFAP during gliosis and produce S100B proteins that
have a dual function. At low doses, S100B promotes neurite extension and neuronal survival.
Inversely, at high doses, S100B activates microglia, leading to the production of inflamma-
tory cytokines and contributing to the establishment of a neuroinflammatory environment.
Reactive astrocytes release glutamate, leading to neuronal death by excitotoxicity.

2.4. Myelin and Axonal Damage

Immune cell infiltration in the CNS contributes to the onset of myelin damage [94].
Indeed, once infiltrated in the CNS, CD4+ T cells proliferate and produce proinflamma-
tory cytokines that lead to the destruction of myelin sheaths [95]. Increasing evidence
suggests a role of cytotoxic CD8+ T cells in the recognition of oligodendrocytes and myelin
components. In addition, CD8+ T cells secrete myelinotoxic agents such as perforin and
granzymes, which have an immediate effect by damaging oligodendrocytes and neuronal
membrane cells [96]. Furthermore, glutamate release by reactive astrocytes leads to neu-
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ronal excitotoxicity [97]. This inflammatory and cytotoxic microenvironment leads to the
destruction of myelin sheaths and axonal damages.

2.4.1. Myelin and Oligodendrocyte Glycoprotein (MOG)

Myelin and oligodendrocyte glycoprotein is a minor protein component exclusively
expressed in the CNS [98,99]. According to ultrastructure studies, MOG is expressed on
the oligodendrocytes membrane and at the myelin sheath surface [100]. Its localization
made it the most common target during immune system overreaction, as in MS [101]
(Figure 4). MOG was first described as an autoantigen inducing intense demyelination
lesions and increasing EAE severity in guinea pig, rat and mouse EAE models [102,103].
In addition to the encephalitogenic T cell response, antibodies directed against MOG
are responsible for demyelination by targeting the component of the myelin membrane.
Moreover, correlation with MOG antibodies (MOG-Ab) titers and demyelination activity
was also established [104,105]. As a consequence, MOG became one of the most used
antigens to model PPMS [106]. The detection of MOG-Ab by ELISA in MS patients at the
beginning of the 2000s was a period of huge hope in terms of biomarkers of the disease [107].
However, MOG as a biomarker of MS fell out of favor after studies showed that MOG-Ab
had a low specificity in MS patients using ELISA or western blot and was not present
using cell-based assay methods. This is in addition to the emergence of a new phenotype
associated with MOG-Ab called MOG-associated disorder (MOGAD) in pediatric patients
with acute demyelinating encephalomyelitis and patients with a form of neuromyelitis
optica known as MOG-associated disorder (MOGAD) [108–113]. Although MOG-Ab is not
a good biomarker, MOG remains implicated in MS pathogenesis. Studies describe a blood
test based on the detection of circulating-free DNA markers released in the serum from
dying cells [114]. Based on this method, MOG circulating-free DNA (cfDNA) was found in
the serum of demyelinating models in high levels, which is indicative of oligodendrocyte
death. A high level of demethylated MOG cfDNA was also found in RRMS patients’ serum
compared to healthy controls [115]. This interesting result may offer an opportunity to use
MOG as a biomarker in order to predict disease course using a non-invasive method.

2.4.2. Myelin Basic Protein (MBP)

The myelin basic protein (MBP) is the second major protein in the CNS after the
proteolipid protein (PLP), constituting around 30% of myelin proteins [116]. MBP is thought
to be important in the compaction of myelin sheaths during development [117]. The lack of
MBP expression in Shiverer mice leads to a thinner myelin sheath and untimely death [118].
The same observation is made for Long Evans rats with a mutation in the MBP gene causing
a loss of myelin compaction and the death of oligodendrocytes [119]. High levels of MBP-Ig
in serum are found to be discriminative between acute demyelinating encephalomyelitis
and MS patients [120]. As MS is a demyelinating disease, it is not surprising to find the
MBP protein or its breakdown products in the CSF or serum (Figure 4). The CSF MBP
levels of RRMS patients highly increase during relapses [121], which correlates with disease
activity [122]. It is of note that MBP CSF levels are higher during relapse than progressive
MS [123]. Thus, MBP concentration could be indicative of the disease course.

2.4.3. Neurofilament

Neurofilament (Nf) is an intermediate filament of the neurons cytoskeleton and sup-
ports axonal architecture [124]. Several subunits exist, depending on their different molec-
ular weights: neurofilament light chain (NfL), neurofilament medium chain (NfM) and
neurofilament heavy chain (NfH) [125]. Nf is a hallmark of neuronal loss in several neu-
rological diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer’s, Parkinson’s
disease and MS, among others [126,127]. In EAE mice, some studies demonstrate a strong
correlation between axonal loss and a high NfH level in the serum after acute axonal
injury and at the peak of the disease. Nevertheless, NfH levels decreased in chronic non-
relapsing phases of the disease [128]. This suggests that axonal injury comes directly
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after the first inflammatory insult, making Nf a good biomarker, reflecting an ongoing
axonal injury process. In humans, the presence of elevated CSF NfL levels in a cohort of
RRMS patients correlated with the EDSS, which confirms its good application as a potential
biomarker [129]. NfH levels have also been investigated, and a high CSF level was detected
in a cohort of RRMS patients, as well as in CIS patients, compared to healthy controls [130].
Moreover, experimental and meta-analysis data comparing NfL and NfH levels confirm
that NfL better discriminates patients who develop MS compared to those who develop
CIS [131,132]. Additionally, high CSF NfL levels were found in CIS patients who secondly
developed an RRMS [133]. This suggests that NfL can predict the conversion of patients
with a first inflammatory episode onto patients with MS and can thereby be a prognostic
biomarker. Concerning the correlation between treatment response and Nf, several studies
underlined the decrease in NfL and NfH levels (serum and CSF) following treatments with
natalizumab and fingolimod [134,135]. Further, studies showed that higher concentrations
of GFAP and NfL in the serum are indicative of the severity of neurological damage [136].
The NfL titer is now used as a secondary endpoint of neurodegeneration in phase II/III
clinical trials in MS, but it is not yet in clinical use.
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Immune, inflammatory and cytotoxic attacks lead to the destruction of axonal (NfH
and NfL) and myelin (MOG and MBP) components. The residual fragments are released in
the interstitial tissue and drained into the blood stream and cerebrospinal fluid.

2.5. Repair

Remyelination mechanisms are characterized by the spontaneous generation of new
myelin sheaths by either surviving oligodendrocytes in lesion sites or oligodendrocyte
precursor cells (OPC) that migrate from distant sites. Two main steps of the remyelination
are described. The first step is the recruitment of OPCs by chemoattraction mechanisms
in the lesion sites due to the expression of chemoattractive molecules such as Semaphorin
3F [137]. Following the recruitment phase and the proliferation of OPCs (through the action
of platelet-derived growth factor), a second step of differentiation occurs in response to
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demyelination. A comprehensive review on the inhibitory factors impeding remyelination
can be found in Binamé et al., 2021 [138].

Nevertheless, the regenerative capacity of the adult CNS following myelin sheath and
oligodendrocyte attacks is very poor. The remyelination failure is in part explained by
(1) the impossibility of OPCs to be recruited in the lesion sites due to the overexpression
of chemorepellent molecules such as Semaphorin 3A and (2) by the inhibition of OPCs
differentiation and myelination through inhibitory molecules such as LINGO-1 [139].

A neuroprotective strategy consists in the preservation of the nervous tissue including,
by extension, remyelination strategies and neuronal protection. In this review, we will discuss
only the neuroprotective strategies targeting pathways used by neurotrophic factors.

Two of the principal neurotrophic factors participating in MS repair mechanisms and
representing potential therapeutic targets are discussed below.

2.5.1. Hepatocyte Growth Factor (HGF)

HGF is a pleiotropic cytokine produced by microglia, oligodendrocytes, astrocytes
and neurons, among others [140,141]. Its receptor, the tyrosine kinase c-Met, is expressed
in several tissues, including the CNS [142]. Initially described as a mitogen for hepatocytes,
HGF has demonstrated neurotrophic effects in the CNS [143] (Figure 5). Results in spinal
cord injury (SCI) [144] and Amyotrophic lateral sclerosis models [145], which showed
that the supplementation or overexpression of HGF delays disease progression, led to the
research of potential beneficial effects in other neurodegenerative diseases. In different
mouse models, HGF administration reduced disease severity by modulating both the
immune response and myelin repair. Explicitly, in an EAE model, Benkoucha et al. showed
that HGF overexpression resulted in decreased CNS infiltration and an increased Treg
number. Bai et al., in a non-immune-mediated spinal cord lysolecithin-induced spinal cord
lesion model, showed that HGF treatment improved remyelination [140,141]. In the CSF of
MS patients, according to Müller et al., HGF concentration is significantly lower compared
to healthy subjects [146]. Its concentration is even lower in patients with active disease, and
it does not seem to correlate with albumin concentration (an indicator of BBB disruption),
indicating that HGF expression by CNS cells is largely reduced in MS pathology.

2.5.2. Brain-Derived Neurotrophic Factor (BDNF)

BDNF is a member of the nerve growth factor neurotrophin family, with an important
role in neuron survival. BDNF plays an important role in CNS myelination, and it is involved
in the recruitment, proliferation, differentiation and maturation of OPC [147] (Figure 5).

It is expressed by CNS components, with neurons being the main source, followed
by reactive astrocytes [148] and immune components as activated T and B cells and mono-
cytes [149]. Various types of neurons express BDNF in the MS brain, but immune cells are
considered to be the major contributor of BDNF in MS lesions [149]. In the EAE model, its
expression in the spinal cord of EAE mice decreases during the peak of the disease [150].
Treatment with engineered bone marrow stem cells expressing BDNF led to a milder EAE
course, suggesting a potential protective effect of BDNF in EAE [151]. In MS plasma, the
results are contradictory. Some studies have shown that MS patients show decreased
levels of BDNF compared to healthy patients [152–154]. Other studies, on the contrary,
have shown that the levels of BDNF increase during relapses [155]. Although there is
indisputable evidence of the neuroprotective effects of BDNF, its exogenous delivery in the
CNS is difficult. A study from Kopec et al. showed that the intravenous administration of
BDNF with a BBB modulator peptide enhanced BDNF delivery in the CNS and suppressed
EAE relapse, promoting neuroprotective effects [156]. This could probably pave the way
for a future utilization in human disease. HGF inhibits the production of pro-inflammatory
cytokines and promotes the proliferation of Treg cells. Both HGF and BDNF contribute
to the migration and differentiation of oligodendrocyte precursor cells and to neuronal
survival by their respective receptors, c-Met and TrkB.
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3. Biomarkers Routinely Used in MS

The biomarker that played a major role in the diagnosis and prognosis of MS is defini-
tively MRI. Based on the MS diagnosis requiring the demonstration of the dissemination of
lesions in space and time, MRI is useful for distinguishing MS from an alternative diagnosis
in the context of neurological symptoms compatible with a lesion of the CNS [157]. For
MS, typical locations of T2-hyperintense lesions are periventricular, cortical or juxtacorti-
cal, infratentorial (brainstem, cerebellar peduncles or cerebellum) and medullar (usually
partial and posterior in axial images and fewer than two vertebral segments in sagittal
images) [158]. Thus, to hold dissemination in space criteria, at least two of these locations
must be involved. MRI is also helpful for dissemination in time, spotting recent lesions,
because active lesions are enhanced by gadolinium (usually during <8 weeks) [158]. Thus,
if only some lesions are enhanced and the others are not, the dissemination in time is
fulfilled. MRI is also a tool to predict the clinical course of MS. Indeed, patients with an
important lesions load, several lesions of the spinal cord or gadolinium-enhanced lesions
have poor outcomes, such as more relapses or disability [159–162].

Another biomarker used for the diagnosis is the oligoclonal bands (OCB) in CSF.
The presence of ≥2 CSF-specific OCBs indicates an intrathecal IgG synthesis. Although
the involvement of CSF-specific OCBs in MS pathogenesis remains under debate, they
are found in more than 85% of patients and is a clear independent predictor of a second
relapse [161,163–165]. Thus, CSF-specific OCBs were added for MS criteria as a substitute
for dissemination in time [157]. In the same way, oligoclonal IgM bands could be useful
for detecting MS patients with poor outcomes [166,167]. However, OCBs remain a non-
automated qualitative biomarker and could be substituted soon by the kappa free light
chain (KFLC) index. KFLC is a part of immunoglobulin and can be detected in serum and
CSF by an automated procedure. At this time, a precise cut-off has not yet been established
for use in clinical practice [168].

Thus, only a few molecular biomarkers are currently used in practice for MS. The
research for new molecular biomarkers is crucial in the era of personalized medicine.
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4. Conclusions

Overall, we conclude that, as in all disease animal models, EAE models sometimes fail
to reproduce the whole spectrum of human disease. However, we showed that different
biomarkers recapitulating the main hallmarks of the disease are comparably dysregulated
in EAE models and MS. This implies that the EAE model is a valuable tool to decipher
physiopathological mechanisms of MS and provides useful biomarkers that are fundamen-
tal for drug development. By identifying the upregulation and downregulation of markers
reflecting the different components of the disease, as proposed here, with this classification,
one may obtain a translatable molecular signature with relevance in the human disease.
Biomarkers expression between EAE models and MS disease often coincides, and most
of the treatments currently used in MS have been developed in the EAE model (Table 1).
Hence, we believe that the EAE model is a valuable tool for biomarker discovery and will
continue to provide MS drugs.

Table 1. Biomarkers expression in EAE models and MS disease.

Biomarkers in EAE Biomarkers in MS References

Inflammation

CXCL13
CXCL13 expression is

upregulated in the CNS of
the EAE model

Highly upregulated in the active MS
lesions and CSF of RRMS
patients during relapses

[13,14]

OPN OPN expression is upregulated
in EAE lesions

-OPN expression is upregulated in MS
lesions compared to the healthy brain
-Elevated CSF levels in MS patients

-Higher plasma levels in SPMS patients
compared to healthy and RRMS patients

[24,26,27]

IL-17
IL17 expression is increased

in EAE CNS and
EAE-derived lymphocytes

IL17 levels are increased
in MS lesions and MS patients-derived

blood and CSF lymphocytes
[39,41,42]

BBB breakdown

MMP9 Increased levels coincide
with disease severity

MMP9 CSF and serum levels
correlate with EDSS score

and Gadolinium enhancements
[55–57,62,64]

ADAMTS13 ADAMTS13 plasma activity is
decreased in EAE mice

ADAMTS13 plasma level is lower in MS
patients compared to healthy subjects [70,71]

Astrogliosis

GFAP
GFAP is upregulated
in EAE lesions during
the peak of the disease

GFAP levels are highly expressed in the
brain/CSF/plasma of RRMS patients [82,85,86]

Myelin/axonal damage

MOG
MOG antibodies titers correlate

with demyelination activity
in the EAE model

MOG circulating-free DNA (cfDNA) is
found in the serum of RRMS patients [104,114,115]

NF
High NfH serum levels correlate
with acute axonal injury at the

peak of EAE disease

NfL levels increase in the CSF of
RRMS patients and predict the

conversion from CIS to MS
[128,131,133]

Repair

BDNF
BDNF expression levels decrease

in the spinal cord of EAE mice
during the peak of the disease

BDNF levels are decreased
in the plasma of MS patients [150,152–154]
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