
HAL Id: hal-04077989
https://hal.science/hal-04077989

Submitted on 5 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient linear reformulations for binary polynomial
optimization problems
Sourour Elloumi, Zoé Verchère

To cite this version:
Sourour Elloumi, Zoé Verchère. Efficient linear reformulations for binary polynomial optimization
problems. Computers and Operations Research, 2023, 155, pp.106240. �10.1016/j.cor.2023.106240�.
�hal-04077989�

https://hal.science/hal-04077989
https://hal.archives-ouvertes.fr

Efficient linear reformulations for binary polynomial optimization
problems

Sourour Elloumia, Zoé Verchèreb,∗

aCNAM, CEDRIC, 292 Rue Saint-Martin, 75003, Paris, France
bUMA, ENSTA Paris, Institut Polytechnique de Paris, , 91120, Palaiseau, France

Abstract

We consider unconstrained polynomial minimization problems with binary variables (BPO).

These problems can be easily linearized, i.e., reformulated into a MILP in a higher dimensional

space. Several linearizations are possible for a given BPO, depending on how each monomial is

decomposed and replaced by additional variables and constraints. We focus on finding efficient lin-

earizations that maximize the continuous relaxation bound of the resulting MILP. For this purpose,

we introduce the notion of linearization patterns that allow us to model and enumerate the possible

decompositions of a degree-d monomial. The assignment of a unique pattern to each monomial of

BPO results in a reformulation of BPO into a MILP. Our method, called MaxBound, amounts to

searching for an optimal association between monomials and patterns in the sense that it leads to a

MILP with the best continuous relaxation bound. We show that this process can be formulated as a

MILP which we denote by (M̃B). We further highlight domination properties among the patterns

that allow us to discard the dominated patterns and to decrease the size of (M̃B). Another effect of

these domination properties is that it now makes sense to search for a reformulation that requires

as few additional variables as possible, based only on the non-dominated patterns. We call this

reformulation method ND-MinVar and again show that it can be found by solving another MILP.

We make an experimental study on degree 4 polynomials that compares the results of both methods

and shows the advantages and disadvantages of each.

Keywords: Polynomial optimization, MINLP, Linear reformulation

∗Corresponding author.

Preprint submitted to Elsevier

1. Introduction

Considering a positive integer n, we define the problem of minimizing a polynomial over the

binary variables x = (xi)1⩽i⩽n as follows:

(BPO)

{
min
x

∑
M∈P

cM
∏

i∈M

xi (1a)

s.t. x ∈ {0, 1}n (1b)

where P is a set of non-empty subsets M of {1, . . . , n} representing monomials and cM ∈ R, M ∈ P ,

are the corresponding monomial coefficients. We suppose w.l.o.g. that P contains all singletons {i}.

The cardinality |M | of monomial M is called the degree of M . The set P is called a polynomial,

and its degree is the maximal degree of its monomials. Since x is binary, we have x2 = x, hence

no higher order powers appear and the objective function is a multilinear function of x. This

objective function is sometimes called a pseudo-Boolean function in the literature, leading to the

field sometimes being called pseudo-Boolean optimization [3].

Problem BPO is known to be NP-hard, even if the degree of P is two [24], where BPO reduces

to the thoroughly studied quadratic unconstrained binary optimization problem (QUBO), see [21]

for a survey. In this context, some methods aim at solving BPO by reducing it to a quadratic

problem. Papers that present such methods focus on producing a quadratic reformulation with

specific properties [5, 2], with some also discussing how to best solve the reformulated problem

when needed [17]. Direct algorithms that do not involve linear or quadratic reformulations to solve

BPO have also been studied [6, 11].

It is also known that BPO can be equivalently reformulated by a mixed integer linear problem

[18]. A common linear reformulation is the standard linearization. For each monomial M ∈ P , one

considers a binary variable XM that will represent the value of the monomial, i.e., XM =
∏

i∈M xi.

The number of additional variables X is precisely the number of non-singleton monomials in P .

Standard linearization amounts to reformulating BPO into the following MILP:

2

(SL)



min
X

∑
M∈P

cMXM

s.t.

XM ≤ xi ∀ M ∈ P ∀ i ∈ M .

XM ≥
∑
i∈M

(xi − 1) + 1 ∀ M ∈ P

XM ⩾ 0 ∀ M ∈ P

xi ∈ {0, 1} ∀ i ∈ {1, . . . , n}

One can check that in any feasible solution of SL, the relation XM =
∏

i∈M

xi holds. Therefore,

solving SL actually solves BPO. A known drawback of SL is that its continuous relaxation bound

may be very weak, especially when P contains a large number of monomials. To overcome this

drawback, it is of interest to study the set XBP = {X ∈ {0, 1}|P | : XM =
∏

i∈M xi, ∀ M ∈ P}.

Some papers use the standard linearization as a basis, and focus on finding new classes of

valid inequalities for conv(XBP) in order to achieve better computational results and/or to attain

theoretical results through the study of the associated polyhedra. For example, reaching equality

to conv(XBP) is desirable since all extreme points of conv(XBP) are integer, hence solving the

linear relaxation of the problem over this polyhedron would give an integer solution, thus solving

the integer problem immediately.

In [7], Crama and Rodŕıguez-Heck propose a class of valid inequalities they name “2-link”

inequalities and study their impact on the resulting polyhedron, as well as in practice. In [12] and

[13], Del Pia and Khajavirad study inequalities that generalize those used by Crama and Rodŕıguez-

Heck. They also derive more general conclusions concerning the resulting polyhedron, and study

the computational impact of these inequalities in [14]. More recent papers have uncovered yet more

classes of valid inequalities and associated polyhedral results [10, 15].

Another approach lies in what we may call extended linear reformulations, where new variables

are introduced in order to represent certain parts of monomials, or certain products of variables.

Such techniques have been used in continuous polynomial optimization, as in RLT-POS and further

developments [9, 8], and more recently as the base relaxation in a solver called RAPOSa [19]. In

the case of binary variables, Hojny, Pfetsch and Walter [20] use such an approach to tackle BPO.

3

Our contribution

The general aim of the paper is to explore the set of extended linear reformulations in order to find

a reformulation with a good lower bound or a good compromise between bound quality and size of

the reformulation. We do not intend to provide the best possible bounds, and indeed better bounds

can be achieved through cutting plane methods [15, 13, 14] or SDP relaxations [17]. Instead, we

present a new idea centered around the concept of linearization patterns, and the idea of optimizing

the choice of these patterns with a specific goal in mind, namely the quality of the resulting bound

or the size of the resulting reformulation.

In Section 2, we give a definition for extended linear reformulations. To this end, we introduce

linearization patterns for monomials, and linearization graphs for polynomials. We then define

the linear reformulation of BPO corresponding to a linearization graph. In Section 3, we present

a new method to obtain a linear reformulation, named MaxBound, which consists in finding the

linear reformulation that yields the best continuous relaxation bound out of a wide class of possible

reformulations. We show that this objective can be reached from the solution of a MILP where

the decision variables help to choose a linearization pattern for any monomial M ∈ P . Next, we

show a domination property between linearization patterns that allows us to reduce the size of the

MILP. In Section 4, we introduce method ND-MinVar , the goal of which is to provide a linear

reformulation based on the same reduced set of monomial linearization patterns while minimizing

the total number of additional variables. This excludes dominated linearization patterns, including

the standard linearization. We also introduce a bi-objective problem hybridizing ND-MinVar and

MaxBound. Finally, in Section 5 we provide a detailed analysis of our computational experiments,

comparing our new methods with each other and with the standard linearization, across multiple

important parameters (root gap, computation time and more). Finally, in Section 6 we draw our

conclusions.

2. Extended linear reformulations of polynomials of binary variables

In this section, we establish a formal setting for extended linear reformulations of BPO. We define

linearization patterns and graphs, address the particular case of simple linearization patterns, and

show that some known linear reformulations and theoretical results can fit in our setting.

2.1. Linearization patterns, graphs, and extended linear reformulations

We start by defining linearization patterns.

4

Definition 1 (Linearization pattern of a monomial). Let M be a non-empty monomial. A lin-
earization pattern of M is a rooted acyclic directed graph GM = (VM , AM). Every vertex v ∈ VM

is a non-empty subset of M . Graph GM must satisfy the following:

• Root vertex: The unique root of GM is M .

• Singleton leaves: ∀i ∈ M , {i} is a leaf of GM . There are no other leaves.

• Succession by strict inclusion: AM is such that any non-leaf vertex v verifies v =
⋃

t∈δ+(v)

t

and t ⊊ v ∀v ∈ VM , ∀t ∈ δ+(v).

The idea behind this definition is that any monomial of a given degree can be linearized in

several ways. These ways of linearizing a monomial do not depend on the monomial but on the

structure of the linearization itself, hence why we call them patterns. A given linearization pattern

can be applied to any monomial of the appropriate degree.

Next, we define the linearization graph of a polynomial, as well as the underlying concept of

concatenation of linearization patterns and graphs.

Definition 2 (Linearization graph of a polynomial). Let P = (M1, . . . ,M|P |) be a set of monomials.
For each monomial Mi, a linearization pattern Gi is provided. The linearization graph of P is G =
C(G1, . . . , G|P |), where C is the linearization concatenation operator as defined below in Definition 3.

Definition 3 (Concatenation of linearization patterns and graphs). Let M1 and M2 be two mono-
mials, and G1, G2 their respective linearization patterns. Let P = {M1,M2}. Then, we can define
a linearization graph of P , G = C(G1, G2) = (VP , AP), in the following manner: GP is the union
of G1 and G2, and any vertices that appear in both G1 and G2 if and only if the subgraph originat-
ing from it is identical in both graphs. If it is not the case, we arbitrarily number the vertices to
distinguish them from one another.
We may concatenate more than two linearization patterns by doing so sequentially. That is to say,
for any k linearization patterns {G1, G2, . . . , Gk}, we have

C(G1, G2, . . . , Gk) = C(C(G1, G2), . . . , Gk) = · · · = C(C(G1, . . . , Gk−1), Gk).

Now that we have defined linearization patterns for monomials, we can now see how they

translate into a MILP formulation of BPO. We can define what this reformulation is, given a

linearization pattern for each monomial M ∈ P . We do so in the following definition, in which we

also give practical details on how to construct the MILP.

Definition 4 (Linear reformulation associated to a linearization graph.). Let P be the polynomial
involved in the objective function of BPO. Let GP = (VP , AP) be a linearization graph of P . We
introduce one variable Xv for every vertex v in

⋃
1⩽i⩽|P |

Gi. The variables corresponding to leaves

5

are binary.

The following mixed integer linear problem (MILPG):

(MILPG)



min
X

∑
M∈P

cMXM (2a)

s.t. Xv ⩽ Xs ∀v ∈ VP , ∀s ∈ δ+G(v) (2b)

Xv ⩾ 1 +
∑

s∈δ+G(v)

(Xs − 1) ∀v ∈ VP (2c)

Xv ∈ {0, 1} ∀v ∈ VP , v is a leaf (2d)

Xv ⩾ 0 ∀v ∈ VP , v is not a leaf (2e)

is the linear reformulation of BPO corresponding to the given linearization patterns of monomials
M ∈ P .

Lemma 5. Problems BPO and (MILPG) are equivalent.

Proof. For any solution x̃ of BPO, we can build a solution X̃ of (MILPG) by setting X̃{i} = x̃i for

all i ∈ {1, . . . , n}. In doing so, the rest of X̃ is fixed, because for all linearization patterns, if the
leaves take binary values, then all the vertices do so as well due to the nature of the constraints.
This entails that for all monomials M ∈ P , we have X̃M =

∏
i∈M

x̃i. Therefore, for any solution of

BPO, there exists a solution of (MILPG) of equal value.
Conversely, for any solution X̃ of (MILPG), we build a solution x̃ of BPO of equal value by setting
x̃i = X̃{i}.

To illustrate these notions, we provide a small introductory example. Consider the function

f(x) = 3x1x2x3 − 4x2x3x4. Taking after our notations, we have P = {{1, 2, 3}, {2, 3, 4}}. Fig-

ures 1a and 1b show the linearization patterns chosen for monomials {1, 2, 3} and {2, 3, 4} respec-

tively, while Figure 1c shows the linearization graph for P resulting from the concatenation of the

linearization patterns of each monomial.

2.2. Simple linearization patterns

In many cases, our study will focus on linearization patterns that we call simple. We define

them below, and give additional details in a corollary.

Definition 6 (Simple linearization pattern of a monomial). Let M be a monomial. A linearization
pattern GM = (VM , AM) is simple if and only if for any non-leaf vertex v ∈ VM , the set {s | s ∈
δ+(v)} forms a partition of v.

6

{1, 2, 3}

{2, 3}

{1} {2} {3}

(a) A linearization pattern for monomial {1, 2, 3}.

{2, 3, 4}

{2, 3} {3, 4}

{2} {3} {4}

(b) A linearization pattern for monomial {2, 3, 4}.

{1, 2, 3} {2, 3, 4}

{2, 3} {3, 4}

{1} {2} {3} {4}

(c) The resulting linearization graph for P = {{1, 2, 3}, {2, 3, 4}} after concatenation.

Figure 1: Example of linearization pattern and the resulting linearization graph after concatenation for P =
{{1, 2, 3}, {2, 3, 4}}.

Corollary 7. Simple linearization patterns Let M be a monomial, and let GM = (VM , AM) be a
linearization pattern. The following propositions are equivalent.

1. GM is a simple linearization pattern.

2. For any non-leaf vertex v ∈ VM , the set {s | s ∈ δ+(v)} forms a partition of v.

3. GM is a rooted directed tree i.e. the undirected variant of GM is acyclic.

The simple linearization patterns are the only patterns we consider in the remainder of this

paper. In order to fully describe them, we show how to count them for any degree d.

For a given degree d, we denote by Ns
d the number of simple linearization patterns that exist

for a monomial of degree d. To calculate Ns
d , we must count all partitions of a monomial M

of degree d into non-empty sets, and then, recursively account for the number of linearization

patterns for the different partitions of M . For any such partition I of M , we associate a vector

v of dimension d − 1 where vk denotes the number of subsets of cardinality k in I. It holds that
d−1∑
k=1

kvk = d. Let Vd be the set of (d − 1)-vectors v satisfying the last equation. For example,

V4 = {(4, 0, 0), (2, 1, 0), (1, 0, 1), (0, 2, 0)}. Of course, a vector v ∈ Vd may be associated to several

different partitions. For a vector v ∈ Vd, the number of different partitions can be counted as

follows : choose v1 elements among the d elements of M , then choose 2v2 elements among the

7

{i, j, k}

{i} {k} {j}

(a) The standard linearization.

{i, j, k}

{i, j}

{i} {j} {k}

(b) Pattern using {i, j}.

{i, j, k}

{i, k}

{i} {k} {j}

(c) Pattern using {i, k}.

{i, j, k}

{j, k}

{i} {j} {k}

(d) Pattern using {j, k}.

Figure 2: Simple linearization patterns for a monomial of degree three.

remaining elements and divide by the number of ways to assign these elements to v2 subsets of

cardinality 2, and so on until reaching d − 1. Finally, the pattern is determined not only by the

partition, but also by the pattern chosen by each subset of the partition. Therefore, we should

multiply by
d−1∏
k=1

(Nk)
vk , representing the number of possible pattern combinations for these subsets.

Moreover, as this number is the number of possibilities for a given v, we need to sum across all

possible v ∈ Vd. We set Ns
1 = 1, since monomials of degree one are already linear terms. This gives

the following expression.

Ns
d = d!

∑
v∈Vd

d−1∏
k=1

(Ns
k)

vk

(vk)!(k!)vk

In Figure 2 we show all simple linearization patterns for monomials of degree 3. In Figure 3, we

show all “types” of simple linearization patterns for monomials of degree 4.

8

{i} {j} {k} {l}

{i, j, k, l}

(a) Type 1: the standard linearization.

{i} {j} {k} {l}

{i, j, k, l}

{i, j}

(b) Type 2: use of a sub-monomial of degree two. Six
such patterns exist.

{i} {j} {k} {l}

{i, j, k, l}

{i, j} {k, l}

(c) Type 3: use of two sub-monomials of degree two.
Three such patterns exist.

{i} {j} {k} {l}

{i, j, k, l}

{i, j, k}

(d) Type 4: Use of a sub-monomial of degree three. Four
such patterns exist.

{i} {j} {k} {l}

{i, j, k, l}

{i, j, k}

{i, j}

(e) Type 5: Use of a sub-monomial of degree three and
of one of degree four. Twelve such patterns exist.

Figure 3: Types of simple linearization patterns for a monomial of degree four.

9

2.3. Revisiting known approaches

Within this setting for linear reformulation, we may redefine existing linearization-based ap-

proaches. One such approach is the standard linearization. Let M ∈ P be a monomial. Within

our setting, the standard linearization pattern of M is a star graph with center M and branches

{i} for i ∈ M . As previously shown, Figure 3a represents the standard linearization pattern for an

arbitrary monomial of degree four.

Let us introduce an example that will serve throughout the paper. The following problem is a

small instance of BPO.

(Ex)

{
min
x

f(x) = 5.35 x2x4 + 9.31 x1x2x3x5 − 6.54 x1x2x4x5 + 9.97 x1x3x4x5 − 1.99 x2x3x4x5 (3a)

s.t. x ∈ {0, 1}5 (3b)

Figure 4 shows two linearization graphs corresponding to (Ex). The first is the standard lin-

earization, the second is an arbitrarily created one. Vertices that correspond to monomials of the

objective function are represented by a rectangle, as well as base variables. Any additional sub-

monomials used are represented by ellipses.

The optimal value of (Ex) is −1.19. The standard linearization from Figure 4a gives a lower

bound of −4.265, while the linear reformulation depicted in the graph in Figure 4b yields a bound of

−2.385. This shows that extended linear reformulations can yield better bounds than the standard

linearization.

Pushing this idea further, Hojny, Pfetsch and Walter [20] develop a method to build an extended

linear reformulation of BPO in an as of yet unpublished paper. They give a direct definition of

linearization graphs that is not based on our linearization patterns. However, their linearization

graphs are very similar to graphs we may obtain by fusing linearization patterns together. Their

work focuses on finding integer linearizations i.e. linear reformulations such that the polyhedron

defined by the constraints, when projected onto the reduced space of variables (XM)M∈P has only

integer vertices. This property is desirable, since it ensures that no matter the coefficients (cM)M∈P

of BPO, solving the continuous relaxation of the linear reformulation yields an integer solution, thus

solving BPO. It is also worth reminding that their main result, a characterization of instances for

which an integer linear reformulation exists, is equivalent to a result about β-acyclic hypergraphs

10

{1} {2} {3} {4} {5}

{2, 4}

{1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

(a) Linearization graph of the standard linearization for (Ex).

{1} {2} {3} {4} {5}

{2, 4} {3, 5}

{2, 4, 5}

{1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

(b) Linearization graph of an arbitrary choice of linearization patterns for (Ex).

Figure 4: Two different linearization graphs for the polynomial in (Ex)

11

satisfying the running intersection property found in [12]. We show how some of their results

translate in our setting.

Theorem 8 (Integer linear reformulations. Hojny et al. [20]). Let P be a polynomial, and G
a linearization graph of P . Then, G provides an integer linear reformulation if and only if the
undirected version of G is acyclic.

Hojny et al. [20] also give a method to construct a linearization graph Ĝ such that an integer

linear reformulation exists if and only if Ĝ is acyclic. Graph Ĝ is built as follows: the vertices are

all monomials of P and all monomials that result from the intersection of any two monomials of

P . There is an arc from vertex M1 to vertex M2 if M2 ⊂ M1 and no other vertex M3 satisfies

M2 ⊂ M3 ⊂ M1. The resulting graph can be interpreted as a linearization graph, though it may

call on linearization patterns that are not simple. We call this method the HPW method, and the

resulting linear reformulation the HPW linear reformulation.

In Figure 5, we show what linearization graph this method yields for the polynomial in (Ex).

The linearization graph is not acyclic, hence there exists no integer extended linear reformulation for

(Ex). The LP bound of the corresponding linear reformulation is −2.544, better than the standard

linearization but slightly worse than that of Figure 4b.

12

{1} {2} {3} {4} {5}

{2, 4}

{1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

{1, 2, 5} {1, 3, 5} {2, 3, 5} {1, 4, 5} {2, 4, 5} {3, 4, 5}

Figure 5: HPW linearization graph for (Ex).

13

3. MaxBound: Building efficient linear reformulations

In this section, we focus on finding efficient linear reformulations. To that end, we look for linear

reformulation with a strong lower bound, in order to hasten the resolution process by cutting off

branches that are not promising more quickly.

3.1. Obtaining the best bound by continuous relaxation

There are multiple different linear reformulations for a given instance of BPO. The bound by

continuous relaxation is not the same across all possible linear reformulations. Hojny et al. [20]

show that this is especially true when an integer linear reformulation exists, but this is almost

never the case. However, it remains true that different linear reformulations can yield vastly dif-

ferent bounds. We can see this on problem (Ex), on which we have seen different extended linear

reformulations produce different bounds. However, we have not yet been able to find a reformula-

tion whose continuous relaxation closed the gap entirely. A question one may ask is that of finding

a linear reformulation that yields the best possible bound. We aim to provide an answer to this

question by developing a method named MaxBound, which selects one simple linearization pattern

per monomial in order to maximize the value of the bound.

The idea at the heart of the MaxBound method is to introduce binary variables to represent the

choice of a certain simple linearization pattern over the other possibilities. To do so, we arbitrarily

number the simple linearization patterns for each degree, and we introduce variables uα
M for all

M ∈ P and for all α ∈ {1, . . . , Ns
|M |}.

uα
M =

 1 if linearization pattern number α is chosen for monomial M

0 otherwise.

(4)

We also introduce variables Xα
M . For a given monomial M and a pattern number α, Xα

M is a

variable that represents
∏

i∈M

xi, but is subject to linearization constraints according to pattern α.

Using these new variables, we may linearize a monomial M by
N|M|∑
α=1

uα
MXα

M as long as we ensure

that
N|M|∑
α=1

uα
M = 1. In other words, we assign a unique simple linearization pattern to each monomial

M . We can then maximize the value of the LP bound over the u variables. This yields problem

(MB).

14

(MB)



max
u

min
X

∑
M∈P

cM (
Ns

|M|∑
α=1

uα
MXα

M) (5a)

s.t. Xα
v linearizes v according to pattern α, ∀v ⊆ M ∈ P, ∀α ∈ {1, . . . , Ns

|v|} (5b)

0 ⩽ Xα
v ⩽ 1 ∀v ⊆ M ∈ P, ∀α ∈ {1, . . . , Ns

|v|} (5c)

s.t.
Ns

|M|∑
α=1

uα
M = 1 ∀M ∈ P (5d)

uα
M ∈ {0, 1} ∀M ∈ P, ∀α ∈ {1, . . . , Ns

|M |} (5e)

Concerning linearization variables Xα
v : there is one linearization variable for each subset of a

monomial and every considered linearization of that subset. It is important to note that if a subset

v appears in two different monomials M1 and M2, then the variables Xα
v that appear in some of the

linearization patterns of M1 are the same variables as those that appear in some of the linearization

patterns of M2. An example is given in Figure 6, with M1 = {1, 2, 3, 4}, M2 = {2, 3, 4, 5} and

v = {2, 3, 4}. Both the patterns depicted use the same linearization pattern for subset v, therefore

in the resulting linear reformulation only one variable Xα
v is needed.

{1} {2} {3} {4}

{1, 2, 3, 4}

{2, 3, 4}

{2, 3}

(a) A chosen pattern for M1 = {1, 2, 3, 4}.

{2} {3} {4} {5}

{2, 3, 4, 5}

{2, 3, 4}

{2, 3}

(b) A chosen pattern for M2 = {2, 3, 4, 5}.

Figure 6: Chosen patterns for M1 and M2 both use the same pattern for subset v = {2, 3, 4}. In this case, only one
variable Xα

v exists in the reformulated problem.

A generic form for (MB) is as follows. We denote by c̃ the modified coefficient vector where for

every monomial M , coefficient cM appears Ns
|M | times, so that c̃ and u have the same dimension.

We denote by (c̃∗u) the product of c̃ and u component-wise. Constraints (6b)-(6c) provide (5b)-(5c)

in more compact notations. The number p is defined by p =
∑

M∈P

Ns
|M |, and 1p is the column vector

of length p where every component is equal to one.

15

(MB)



max
u

min
X

(c̃ ∗ u)TX (6a)

s.t. LX ⩾ l (6b)

X ⩾ 0 (6c)

s.t. Au = 1p (6d)

u ∈ {0, 1}p (6e)

We denote by Y the dual variable associated to (6b). After using LP duality on the minimization

problem embedded inside the maximization problem, we obtain a mixed-integer linear maximization

problem.

(M̃B)



max
u,Y

lTY (7a)

s.t. LTY ⩽ (c̃ ∗ u) (7b)

Au = 1p (7c)

Y ⩾ 0 (7d)

u ∈ {0, 1}p (7e)

3.2. Domination among simple linearization patterns

Problem (M̃B) contains binary variables u. For one monomial, there must be as many such

variables as simple linearization patterns. This number of patterns grows quickly with the degree

of the monomial, which means that solving problem (M̃B) may prove very difficult to solve for

instances of high size and/or degree, though it remains to see exactly where the limit may be.

Thus, it is of interest to find a way to reduce the size of the space of possible reformulations, if

possible without affecting the quality of the bound of the resulting reformulation.

The following result is a theorem first proven in [20]. Theorem 9 is a rewriting of this theorem,

along with a proof that fits our formal setting. Corollary 10 addresses the particular case of

the standard linearization, showing that the standard linearization is dominated by any other

linearization using only simple linearization patterns, in terms of LP bound. Theorem 9 and

16

Corollary 11 indicate that we may consider a subset of simple linearization patterns without lowering

the quality of the best bound found by MaxBound.

Theorem 9 (Domination among simple linearization patterns.). Let P be a polynomial, part of an
instance of BPO. Let G = (V,A) and G̃ = (Ṽ , Ã) be two linearization graphs of P , in which the
linearization pattern of every monomial is a simple linearization pattern.
Assume that there exists a unique monomial of P , denoted M0, such that G and G̃ are identical
except for their respective subgraphs originating in M0. More precisely, G̃M0

contains one more
vertex than GM0

, denoted by z. Its predecessor is denoted by v̂. In short, in G̃, z linearizes part of
the successors of v̂ in G, and v̂ represents the product of z and the rest of its successors in G.
Then, v(RLPG̃) ⩾ v(RLPG), where (RLPG) and (RLPG̃) are the continuous relaxations of (MILPG)
and (MILPG̃), and where v(RLPG) and v(RLPG̃) are their optimal values.

Proof. We begin by defining some notations needed throughout the proof. We denote by B and B̃
the feasible domains of problems (RLPG) and (RLPG̃) respectively.

Let X = (Xv)v∈Ṽ be a feasible solution to problem (RLPG̃), that is to say X ∈ B̃: X satisfies
the following constraints.

(B̃)


Xv ⩽ Xw ∀v ∈ Ṽ , ∀w ∈ δ+

G̃
(v)

Xv ⩾ 1 +
∑

w∈δ+
G̃
(v)

(Xw − 1) ∀v ∈ Ṽ , |v| ⩾ 2

0 ⩽ Xv ⩽ 1 ∀v ∈ Ṽ

We will now show that the restriction of X to (Xv)v∈V , that is to say the same set of variables
without Xz, is such that X ∈ B.
B and B̃ are the same except when it comes to monomial M0, where ṼM0

= VM0
∪ {z}. This

tells us, in particular, that |z| ⩾ 2, otherwise GM0 and G̃M0
would be linearizations of two distinct

monomials. We now focus on the constraints pertaining to monomial M0 and split them into
different parts to highlight the places in which z appears. X satisfies the following.

(B̃M0
)



Xv ⩽ Xw ∀v ∈ VM0 \ {v̂}, ∀w ∈ δ+
G̃
(v) (8a)

Xv̂ ⩽ Xw ∀w ∈ δ+
G̃
(v̂) \ {z} (8b)

Xv̂ ⩽ Xz (8c)

Xv ⩾ 1 +
∑

w∈δ+
G̃
(v)

(Xw − 1) ∀v ∈ VM0
\ {v̂}, |v| ⩾ 2 (8d)

Xv̂ ⩾ 1 +
∑

w∈δ+
G̃
(v)\{z}

(Xw − 1) + (Xz − 1) (8e)

Xz ⩽ Xw ∀w ∈ δ+
G̃
(z) (8f)

Xz ⩾ 1 +
∑

w∈δ+
G̃
(z)

(Xw − 1) (8g)

0 ⩽ Xv ⩽ 1 ∀v ∈ VM0 \ {z} (8h)

0 ⩽ Xz ⩽ 1 (8i)

17

We need to show that (Xv)v∈V also satisfies (BM0):

(BM0
)


Xv ⩽ Xw ∀v ∈ VM0

, ∀w ∈ δ+G(v) (9a)

Xv ⩾ 1 +
∑

w∈δ+G(v)

(Xw − 1) ∀v ∈ VM0
, |v| ⩾ 2 (9b)

0 ⩽ Xv ⩽ 1 ∀v ∈ VM0
(9c)

In order to do so, we can combine certain inequalities together and deduce new inequalities
satisfied by X. The ones of interest to us are specifically the ones in which z or a predecessor of z
in G̃ appears, since they are the only differences between (BM0

) and (B̃M0
). We first show that X

also satisfies (9a).

(8c) + (8f) =⇒ Xv̂ ⩽ Xw ∀w ∈ δ+
G̃
(z)

Together with (8b), we obtain Xv̂ ⩽ Xw for all w ∈ (δ+
G̃
(v̂) \ {z}) ∪ δ+

G̃
(z). However, the

definitions of z and v̂ imply that (δ+
G̃
(v̂) \ {z}) ∪ δ+

G̃
(z) = δ+G(v̂). We also consider that in (8a),

∀v ∈ VM0
\ {v̂}, we have δ+

G̃
(v) = δ+G(v). In this way we get (9a).

We now show that X also satisfies (9b).

(8e)+(8g) =⇒ Xv̂ ⩾ 1+
∑

w∈δ+
G̃
(v̂)\z

(Xw−1)+
∑

w∈δ+
G̃
(z)

(Xw−1) ∀v ∈ VM0
such that z ∈ δ+

G̃
(v) and |v| ⩾ 2

As before, realizing that (δ+
G̃
(v̂) \ {z}) ∪ δ+

G̃
(z) = δ+G(v̂) yields (9b) for v̂. For the rest of the

vertices of VM0
, simply consider (8d). Since δ+

G̃
(v) = δ+G(v) for all v ∈ VM0

\ {v̂}, we obtain (9b).

Finally, (9c) is trivially satisfied thanks to (8h).
Hence, the restriction of X to XV = (Xv)v∈V is such that XV ∈ BM0 . Since B and B̃ are

otherwise defined by identical inequalities, we have shown that for any solution X ∈ B̃, then the
restriction of X to the vertices of G belongs to B. In other words, we have found that for any
feasible solution to problem (L̃P), it is possible to construct a solution to problem (LP) of equal

value. Since BPO is a minimization problem, then (LP) and (L̃P) are also minimization problems:
this implies that v(RLPG̃) ⩾ v(RLPG).

Corollary 10 (Domination of the standard linearization by simple linearization patterns.). Let P
be the polynomial appearing in an instance of BPO. Let G = (V,A) be the standard linearization
of P , and G̃ = (Ṽ , Ã) be a linearization graph of P in which the linearization pattern of every
monomial is a simple linearization pattern. Then, v(RLPG̃) ⩾ v(RLPG).

Proof. Consider a polynomial P , the standard linearization graph G = C
M∈P

(GM), and a lineariza-

tion graph G̃ = C
M∈P

(G̃M), where for every monomial M ∈ P , G̃M = (ṼM , ÃM) is a simple

linearization pattern. Then, we can build a sequence of linearization graphs (Gk)1⩽k⩽K such that:

• G1 = G

18

• GK = G̃

• For all k ∈ {1, . . . ,K − 1}, Gk and Gk+1 respect the hypotheses of Theorem 9.

Building this sequence can be done algorithmically. Start at G1 = G. Then, given Gk =
C

M∈P
(Gk

M), find one monomial M0 such that Gk
M0

̸= G̃M0
.

Create Gk+1 = C
M∈P

(Gk+1
M) such that for all M ̸= M0, G

k+1
M = Gk

M , and Gk+1
M0

is Gk
M0

aug-

mented by one vertex that is in G̃M0
but not in Gk

M0
. This is possible by construction because for

every monomial M ∈ P , the standard linearization pattern GM has the fewest possible vertices.

Since the only vertices added using this procedure are vertices from G̃M , the procedure stops
once GK = G̃ is reached. The sequence resulting from this procedure satisfies all three requirements
by construction.

Therefore, using Theorem 9, we have

v(RLPG) = v(RLPG1) ⩽ v(RLPG2) ⩽ · · · ⩽ v(RLPGK−1) ⩽ v(RLPGK) = v(RLPG̃)

Corollary 11 (Reduction of the set of simple linearization patterns for maximizing the LP bound.).
Let P be the polynomial appearing in an instance of BPO. Then for any monomial M ∈ P , we may
consider only simple linearization patterns of the form GM = (VM , AM) such that the out-degree of
every non-leaf vertex v ∈ VM is equal to two, without affecting the quality of the bound obtained by
the MaxBound method.

Proof. Consider a polynomial P and a linearization G = C
M∈P

(GM) where GM = (VM , AM) is

a simple linearization of monomial M . Suppose that there exists M0 ∈ P such that ∃ v ∈ VM0

such that v is not a leaf and δ+(v) ̸= 2. First we remind that δ+(v) ̸= 1, as the contrary would
contradict Definition 6. Then, if δ+(v) ⩾ 3, then we may put forward a new simple linearization
G′

M0
for M0, and thus a new linearization of P , G′ = C(C

M∈P\{M0}
(GM), G′

M0
), by introducing a

new vertex corresponding to the union of the first two successors of v. We apply this procedure
recursively until δ+(v) = 2. According to Theorem 9, each new linearization provides a bound at
least as tight as the previous one. This proves the corollary.

We provide an example in Figure 7, where the reduction procedure described in Corollary 11 is

applied to the standard linearization of a monomial of degree four, M = {1, 2, 3, 4}. As the corol-

lary indicates, we may remove dominated simple linearization patterns from the available choices in

MaxBound. In the case of a monomial of degree three, this means removing the standard lineariza-

tion from the available patterns. For a monomial of degree four, this means removing linearization

patterns of types 1, 2 and 4 as indicated in Figure 3. This does not mean that a linear reformulation

that uses the dominated patterns cannot be tight. It means that replacing each dominated pattern

19

by one of the patterns that dominate it creates a reformulation that is at least as tight.

{1, 2, 3, 4}

{1} {2} {3} {4}
(a) Step 1: the standard linearization.

{1, 2, 3, 4}

{1} {2} {3} {4}

{1, 2}

(b) Step 2: add vertex {1, 2} to (a).

{1, 2, 3, 4}

{1} {2} {3} {4}

{1, 2}

{1, 2, 3}

(c) Step 3: add vertex {1, 2, 3} to (b). Every vertex has out-degree 2 or 0.

Figure 7: Successive linearizations for M = {1, 2, 3, 4}. (c) dominates (b), and (b) dominates (a).

20

Eliminating the dominated patterns leaves a number of non-dominated simple linearization pat-

terns. For a monomial of degree d, we denote this number by Nnd
d .

In order to calculate Nnd
d , we must count the number of ways to split this monomial into two

non-empty subsets, multiplied by the number of possibilities for these smaller subsets. We also set

Nnd
1 = 1, since monomials of degree one are already linear. Accounting for symmetry, we get the

following formula.

Nnd
d =

1

2

d−1∑
k=1

(
d

k

)
Nnd

k Nnd
d−k

These two sequences (Ns
d)d⩾1 and (Nnd

d)d⩾1 can be found on the Online Encyclopedia of Integer

Sequences, and are the solution to Schröder’s fourth problem and third problem, respectively [25].

Since every pattern is a binary variable in problem (MB), it is interesting to see how many

such variables we can eliminate by considering only non-dominated patterns. We give a few values

of Ns
d and Nnd

d for monomials of degree 3 to 8 in Table 1. We can see that both numbers quickly

increase with degree. Nevertheless, it allows us to quantify the impact of Theorem 9 on MaxBound.

Degree d Ns
d Nnd

d Reduction

3 4 3 25%

4 26 15 42%

5 236 105 55%

6 2 752 945 66%

7 39 208 10 395 73%

8 660 032 135 135 79%

Table 1: Values of Ns
d , N

nd
d for different values of d.

3.3. The compact MaxBound algorithm

As a conclusion to this section, we outline below the steps of the MaxBound method as an algo-

rithm.

21

Algorithm 1: The MaxBound method

Input: An instance of BPO: a polynomial P and a coefficient vector c.
Output: An optimal solution of BPO and its value.
Reformulation step:
Solve (M̃B), find an optimal or feasible solution (ũ, Ỹ).
Use ũ to deduce a linearization pattern GM for each M ∈ P accordingly.
Build G, a linearization graph of P , by concatenation: G = C

M∈P
(GM).

Resolution step:
Solve (MILPG) the linear reformulation of BPO, based on graph G.

{1} {2} {3} {4} {5}

{2, 4} {4, 5}{1, 5}{1, 3} {2, 3}

{1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

Figure 8: Linearization graph of (Ex) generated by MaxBound.

In applying this method to problem (Ex), by merging the linearization patterns chosen for each

monomial, we get the linearization graph depicted in Figure 8. The corresponding extended linear

reformulation has an LP bound of −1.723, and adds four new variables compared to the standard

linearization.

22

4. ND-MinVar: Building linear reformulations with a minimum number of additional
variables

In the previous section, we introduced a method to find an extended linear reformulation of

BPO so that the continuous relaxation of that reformulation yields the best possible lower bound.

It does so by picking one non-dominated simple linearization pattern per monomial. However,

these non-dominated patterns introduce d − 1 new variables, which is the most out of all simple

linearization patterns. Therefore, it is likely that MaxBound introduces many more variables than

simpler approaches such as the standard linearization. These additional variables may slow down

the resolution.

In search of a different tradeoff, we introduce ND-MinVar, a method which seeks an extended

linear reformulation of BPO that uses non-dominated simple linearization patterns, with the goal

of introducing as few new variables as possible.

4.1. The ND-MinVar method

In [26], the authors use a MILP to reformulate BPO into a quadratic problem with as few new

variables as possible, for polynomials of degrees three and four. Inspired by [26], we derive below

a MILP to find a linear reformulation with the fewest additional variables. Given a polynomial P ,

this MILP contains the same variables uα
M for all M ∈ P and α ∈ {1, . . . , Nnd

|M |} defined by (4) and

wβ
v for all v ⊆ M ∈ P and β ∈ {1, . . . , Nnd

|v| }, such that:

wβ
v =


1 if linearization pattern number β of v appears in the chosen

linearization pattern of one of the monomials of P

0 otherwise.

These definitions mean that wβ
v = 1 if and only if variable Xβ

v appears in the resulting extended

linear reformulation. Our goal is to minimize the number of variables needed, so we minimize the

sum of variables wβ
v .

23

(MV)



min
u,w

∑
v⊆M
M∈P

Nnd
|v|∑

β=1

wβ
v (10a)

s.t. uα
M ⩽ wβ

v ∀M ∈ P, ∀α ∈ {1, . . . , Nnd
|M |},∀ v such that pattern β (10b)

of v appears in linearization pattern α of M

Nnd
|M|∑

α=1

uα
M = 1 ∀M ∈ P (10c)

uα
M ∈ {0, 1} ∀M ∈ P, ∀ α ∈ {1, . . . , Nnd

|M |} (10d)

wβ
v ∈ {0, 1} ∀v ⊆ M ∈ P, ∀ β ∈ {1, . . . , Nnd

|v| } (10e)

Constraints (10b) ensure that if uα
M = 1, then for any vertices v = (s, β) appearing in this

chosen linearization, we must have wβ
s = 1.

In (MV), the w variables may be set to continuous non-negative instead of binary, as they will

always take the minimum value they are allowed to and are constrained only by the values of the

u variables, themselves binary.

The solution of problem (MV) provides us with a quadratization-based linear reformulation of

BPO, introducing as few additional variables as possible. As with MaxBound, we outline the various

steps of “the ND-MinVar method” in Algorithm 2.

Algorithm 2: The ND-MinVar method

Input: An instance of BPO: a polynomial P and a coefficient vector c.
Output: An optimal solution of BPO and its value.
Reformulation step:
Solve problem (MV), find an optimal or feasible solution (ũ, w̃).
Use ũ to deduce a linearization pattern GM for each M ∈ P accordingly.
Build G, a linearization graph of P , by concatenation: G = C

M∈P
(GM).

Resolution step:
Solve the linear reformulation (MILPG) of BPO.

Applying ND-MinVar to the problem (Ex) generates the linearization graph shown in Figure

9. The corresponding extended linear reformulation has an LP bound of −2.385, and adds three

variables compared to the standard linearization.

24

{1} {2} {3} {4} {5}

{2, 4} {3, 5}

{1, 3, 5} {2, 4, 5}

{1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

Figure 9: Linearization graph of (Ex) generated by ND-MinVar.

4.2. The bi-objective viewpoint

MaxBound and ND-MinVar both use the non-dominated simple linearization patterns. But as we

can see in Theorem 9 and its Corollary, these patterns are the simple linearization patterns that

introduce the most variables. It may happen that some of the picked patterns are not optimal,

in the sense that one of the variables it introduces may not have any impact on the bound. For

example, on problem (Ex), ND-MinVar generates an extended linearization with three new variables,

while the linearization graph from Figure 4b adds only two new variables and yields the same LP

bound.

Thus, it is interesting to reintegrate the dominated patterns and try to maximize the bound and

use as few variables as possible at the same time. Since problems (MB) and (MV) share the set

of variables u, which are the choice of linearization pattern for all monomials, we can merge these

problems into a bi-objective problem as follows.

25



Obj 1: min
u,w

∑
v⊆M
M∈P

wv (11a)

Obj 2: max
u

min
X

∑
M∈P

cM (
Ns

|M|∑
α=1

uα
MXα

M) (11b)

s.t. Xα
v linearizes s according to pattern α ∀v ⊆ M ∈ P, ∀α ∈ {1, . . . , Ns

v} (11c)

0 ⩽ Xα
v ⩽ 1 ∀v ⊆ M ∈ P, ∀α ∈ {1, . . . , Ns

v} (11d)

s.t. wt ⩾ uv ∀v, t such that st ⊆ sv and sv ∈ P (11e)

Ns
|v|∑

α=1

uα
M = 1 ∀M ∈ P (11f)

uα
M ∈ {0, 1} ∀α ∈ {1, . . . , Ns

|M | ∀M ∈ P (11g)

wv ∈ {0, 1} ∀v ⊆ M ∈ P (11h)

This problem can be solved via standard methods, since objective (11a) only takes integer values.

We can find all Pareto-optimal solutions by solving the problem with objective (11b) with a con-

straint on the number of variables that can be used. We then strengthen this constraint each step

until the problem becomes infeasible. This process may find better solutions than MaxBound or

ND-MinVar, but it can be very computationally expensive.

On (Ex), this method gives two non-dominated solutions. Figure 10 shows the two linearization

graphs corresponding to these solutions.

In the Table 2, we provide a summary of how all the different methods discussed so far work on

(Ex), detailing the LP bound and total number of variables for each of the corresponding extended

linear reformulations. “Non-dominated” 1 and 2 are the two solutions to the bi-objective problem

described in this section, and the line “OPT” is just a reminder of the optimal value of (Ex) in

binary variables.

26

{1} {2} {3} {4} {5}

{2, 4}

{1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

(a) Non-dominated solution 1: no new variables, LP bound equal to −2.385.

{1} {2} {3} {4} {5}

{2, 4}

{3, 4, 5}

{1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

(b) Non-dominated solution 2: one new variable, LP bound equal to −1.723.

Figure 10: Two linearization graphs corresponding to the non-dominated solutions of the bi-objective problem applied
to (Ex).

27

Method LP bound Number of variables

Standard linearization −4.265 10

HPW −2.54 16

Figure 4b −2.385 12

MaxBound −1.723 14

ND-MinVar −2.385 13

Non-dominated 1 −1.723 11

Non-dominated 2 −2.385 10

OPT −1.19 -

Table 2: Characteristics of various extended linear reformulations on (Ex).

28

5. Computational experiments and analysis

We compare the different linear reformulation schemes introduced or reviewed in this paper:

the standard linearization (SL), as well as MaxBound (MB) and ND-MinVar (MV) and described in

Algorithm 1 and Algorithm 2. The reformulation step of the last two methods requires solving a

MILP, which can take a long time to solve to optimality. We impose a time limit of thirty minutes

on the reformulation step, as thirty minutes is usually enough to solve the problem or get a feasible

solution of good quality for instances up to 40 variables and about 15,000 monomials. The time

limit on the solving step is three hours.

We compare the values of the continuous relaxations of each linear reformulation, the best value

and optimality gap obtained after the time limit of three hours, the number of explored nodes in

the branch-and-bound tree and the time it takes to solve an instance to optimality when possible.

We also give the total number of variables in the reformulated problem. In this way, we can try to

draw conclusions as to what type of reformulation favors the global resolution of the problem, most

notably whether our focus should be on designing reformulations that give the best lower bound,

or whether the size of the reformulation should be more important.

5.1. Test instances

We use instances already tackled via quadratic convex reformulations in [17], and more recently

in [14, 15] through linear reformulations and additional valid inequalities. These instances are

known as Bernasconi or LABS instances, taken from [22]. These instances can be found online at

either https://www.minlplib.org under the name autocorr bern, or at polip.zib.de under the

name bernasconi.

Furthermore, we generate instances with very diverse densities (different numbers of monomials

for a given number of variables). In this endeavor, the Bernasconi instances are quite well-adapted

as they have very varied densities. However, these instances have a rather specific structure, so we

generated our own random instances with no specific structure and similar variety in density. We

generate them in a similar way to [4]: the input is the number of variables n and the desired number

of monomials |P |. We generate the monomials one after the other, by generating four integers in

the set {0, . . . , n}. We then remove every zero and every number beyond its first appearance, in

order to build monomials of varying degrees up to four, and to keep our instances multilinear since

29

x2
i = xi. We associate a coefficient to every monomial, uniformly drawn as a real number from

the interval [−1, 1]. We generated 33 instances, with n ∈ {20, 30, 40}, and |P | = a × n where

a ∈ {2, 5, 10, 30, 50, 75, 100, 125, 150, 175, 200}. In our tables, these instances are given a generic

name such as R.n.a, where R stands for random and n and a are the parameters used to generate

them as previously explained.

To summarize, we have a total of 55 polynomials of degree 4, having up to 40 variables and

about 15000 monomials.

5.2. Numerical results

We solve all mixed integer linear problems with Gurobi 9.1.2 [23]. All code is written in Julia

1.7.1 [1], using package JuMP 0.21.10 [16] for modelling purposes. All computations are run on a

computer with a 256 GB RAM and Intel XEON W-2145 3.7 GHz processors.

5.2.1. Results of the reformulation step

We first compare results related to the reformulation step of the ND-MinVar and MaxBound meth-

ods, such as the time needed to compute the linear reformulation, the LP bound given by each

reformulation, and the number of variables in each reformulation.

Tables 3 and 4 contain the results on the Bernasconi instances and the randomly generated

instances, respectively. The first three columns give general information about the instance: Name,

number of monomials |P |, and best known value called BKN. The number of variables is con-

tained within the name of each instance (first number) and is therefore not repeated. The next

two columns are dedicated to the time needed to compute the reformulation step of Algorithm 2

ND-MinVar and of Algorithm 1 MaxBound. The next three columns give the root gap yielded by each

linear reformulation. The last two contain the number of variables present in each reformulation.

Throughout all tables, short notations are used as follows: SL stands for standard linearization,

MV stands for ND-MinVar, and MB for MaxBound.

From these results, we can observe that MaxBound and ND-MinVar produce far better bounds

than the standard linearization across all instances. On randomly generated instances, the average

gap given by the standard linearization is 518.9%, while the ND-MinVar and MaxBound methods

yield average gaps of respectively 331.6% and 282.0%. On the Bernasconi instances, the differences

between the methods is even clearer, with ND-MinVar cutting in half the standard linearization gap,

30

while MaxBound nearly divides it by three.

Let us now comment the number of variables in each linear reformulation (columns ’# of vari-

ables’ in Tables 3 and 4). As expected, the reformulation yielded by MaxBound always contains at

least as many variables as ND-MinVar. It appears once more that this depends on instance struc-

ture, as the difference between the average number of variables is greater on randomly generated

instances than on the Bernasconi instances. It is interesting to see that while gaps were more dis-

tant on the Bernasconi instances, the numbers of variables are closer on these instances and further

apart on the randomly generated ones.

Table 3 also lets us see, in a way, the power that comes from Theorem 9. Indeed, on the

Bernasconi instances, the structure is such that ND-MinVar yields a reformulation with exactly as

many variables as the standard linearization. However, the set of linearization patterns allows for

many more constraints linking these variables together, and the resulting gap is greatly reduced.

Instance CPU time (s) Root gap (%) # of variables

Name |P | BKN MV MB SL MV MB MV MB

B.20.5 207 −416 1.1 1800 884.6 473.1 312.8 207 209
B.20.10 833 −2936 1.1 9.1 1428.6 750.5 519.4 833 850
B.20.15 1494 −5960 1.2 5.4 1564 841.2 570.9 1 494 1 502

B.25.6 407 −960 1.1 4.5 1116.7 606.7 400 407 411
B.25.13 1782 −8148 1.3 9 1518.5 771.7 553.5 1 782 1 819
B.25.19 3040 −14644 1.4 18.7 1636.3 877.5 598.7 3 040 3 162
B.25.25 3677 −10664 1.5 72.2 1659.3 955.2 605.2 3 677 3 799

B.30.4 223 −324 1.1 1800 633.3 348.2 247.3 223 223
B.30.8 926 −2952 1.2 19 1308.7 670.7 473.4 926 933
B.30.15 2944 −15744 1.4 21 1570.3 800.2 573.4 2 944 3 031
B.30.23 5376 −30460 1.8 52 1680.8 898.4 615.7 5 376 5 613
B.30.30 6412 −22888 1.9 69.7 1688 974.7 616.2 6 412 6 519

B.35.4 263 −384 1.1 1800 633.3 347.6 247.2 263 263
B.35.9 1381 −5108 1.2 19.8 1371.6 698.2 497.7 1 381 1 404
B.35.18 5002 −31160 1.7 33.3 1635.8 831.4 598.8 5 002 5 104
B.35.26 8347 −55288 2.4 64.3 1708.4 907.3 626.4 8 347 8 552
B.35.35 10252 −41068 2.7 117.7 1701.4 983.5 621.3 10 252 10 753

B.40.5 447 −936 1.1 1800 884.6 473.8 311.9 447 448
B.40.10 2053 −8248 1.3 21.8 1433.5 694.7 521.4 2 053 2 086
B.40.20 7243 −50576 2 184.8 1658.9 833.9 607.5 7 243 7 586
B.40.30 12690 −94872 3.2 137.3 1734.1 919.5 636.3 12 690 13 347
B.40.40 15384 −67964 3.5 513.3 1719.9 998.7 628.6 15 384 16 210

Average 1.6 389.9 1416.9 757.6 517.5 4 108 4 265

31

Table 3: Reformulation step: CPU times, root gaps, numbers of variables of the different linear reformulations on
the Bernasconi instances, up to 40 variables. In SL, # of variables equals |P |.

Instance CPU time (s) Root gap (%) # of variables

Name |P | BKN MV MB SL MV MB MV MB

R.20.2 60 −6.05 1.1 1.3 24.3 18.1 14.1 94 103
R.20.5 120 −10.97 1.7 1800 66.5 40.5 24.0 175 208
R.20.10 220 −19.66 119.1 2.5 101.2 52.1 38.7 286 366
R.20.30 620 −27.56 1800 6.8 258.4 145.4 135.1 698 818
R.20.50 1018 −36.68 1800 12 366.8 208.3 179.9 1 087 1 314
R.20.75 1520 −36.21 1800 178.1 580 352.3 291.5 1 574 1 717
R.20.100 2018 −55.93 2.2 247.9 514.7 319.9 242.3 2 049 2 319
R.20.125 2516 −35.74 1.9 379.9 1026.5 687.5 492.8 2 535 2 728
R.20.150 3015 −34.63 1.9 1800 1287.7 888.4 609.4 3 029 3 449
R.20.175 3515 −54.97 2.5 1800 943.8 638.3 456.2 3 527 3 950
R.20.200 4010 −62.28 2.2 412.5 960 659.9 467.2 4 012 4 173

R.30.2 90 −6.67 1.1 1.3 4.2 0.8 0 155 179
R.30.5 180 −12.46 1.7 1800 108.4 74.8 55.3 293 337
R.30.10 330 −23.06 1800 22.8 147.3 98.1 78.4 481 593
R.30.30 929 −40.18 1800 22.8 302.8 185.5 177.3 1 142 1 487
R.30.50 1530 −58.44 1800 42 353.1 208.4 199.9 1 757 1 990
R.30.75 2279 −52.94 1800 64.9 591 372.7 352.0 2 514 2 806
R.30.100 3030 −59.54 1800 128.7 732.3 466.7 422.6 3 267 3 671
R.30.125 3780 −96.81 1800 867.8 587.6 349.4 322.6 3 986 4 340
R.30.150 4527 −84.92 1800 1164.2 800.4 508.6 446.0 4 724 5 599
R.30.175 5277 −115.81 1800 1800 686.7 423.5 366.7 5 466 6 041
R.30.200 6029 −106.88 1800 1800 869.7 563.1 462.2 6 193 6 605

R.40.2 120 −9.03 1.1 27.2 9.4 3.3 1.7 213 233
R.40.5 240 −22.92 1.4 1800 76.3 51.9 37.9 418 476
R.40.10 440 −30.59 1800 1800 138.1 89.5 68.2 707 841
R.40.30 1240 −46.88 1800 57.7 370.6 237.5 227.5 1 648 1 951
R.40.50 2038 −67.80 1800 77.9 420 261.2 254.8 2 500 2 810
R.40.75 3039 −88.82 1800 510 494.7 311.6 298.8 3 516 3 912
R.40.100 4040 −83.39 1800 190.8 713.6 454.3 436.3 4 548 4 988
R.40.125 5039 −106.36 1800 251.6 703.1 442.5 423.6 5 537 6 001
R.40.150 6037 −110.06 1800 456.2 826.4 525.8 496.7 6 527 7 100
R.40.175 7039 −107.21 1800 905.4 1020.2 648.6 614.2 7 631 8 209
R.40.200 8039 −119.75 1800 1054.1 1039.4 655.8 610.9 8 659 9 069

Average 1150.8 651.5 518.9 331.6 282.0 2 756 3 042

Table 4: Reformulation step: CPU times, root gaps, numbers of variables of the different linear reformulations on
randomly generated instances. In SL, the number of variables is equal to |P |.

We can see the influence of the polynomial density on the quality of the bounds: As shown in

Figure 11, for a given number of variables, the relative gap grows significantly with the number of

monomials, both in specially structured and non-structured instances. Striking examples can be

found in our randomly generated instances, which we purposefully generated with great density dif-

ferences in order to study this factor. On instance R.40.2, the gaps associated to the three methods

are smaller than 10 %, while on instance R.40.200, all gaps are greater than 600 %.

32

B.
30
.4

B.
30
.8

B.
30
.15

B.
30
.23

B.
30
.30

0

500

1,000

1,500

R
o
o
t
g
ap

s
(%

)

SL

MV

MB

R.
30
.50

R.
30
.75

R.
30
.10
0

R.
30
.12
5

R.
30
.15
0

R.
30
.17
5

R.
30
.20
0

0

500

1,000

1,500

R
o
o
t
ga
p
s
(%

)

SL

MV

MB

B.
40
.5

B.
40
.10

B.
40
.20

B.
40
.30

B.
40
.40

0

500

1,000

1,500

R
o
ot

ga
p
s
(%

)

SL

MV

MB

R.
40
.50

R.
40
.75

R.
40
.10
0

R.
40
.12
5

R.
40
.15
0

R.
40
.17
5

R.
40
.20
0

0

500

1,000

1,500

R
o
ot

ga
p
s
(%

)

SL

MV

MB

Figure 11: Root gaps (%) of all three methods on Bernasconi instances with 30 variables (top left) and 40 variables
(bottom left), and randomly generated instances with 30 variables (top right) and 40 variables (bottom right).

We can also notice the influence of the structure of the instances. There is a clear difference

in performance between randomly generated instances and the Bernasconi instances. We can find

instances with the same number of variables and a similar number of monomials, but with different

structure, and see that the performance of all three linear reformulations is greatly affected. As

mentioned above, instances B.20.15 and R.20.75 provide a good comparison. In the case of the

Bernasconi instances, this specific structure also has an effect on ND-MinVar. In fact, due to the

structure of these instances, any solution is optimal to ND-MinVar. As a result, the ND-MinVar re-

formulation contains exactly the same number of variables as the standard linearization does. They

only have different constraints.

33

Concerning the CPU time needed by the reformulation step: MaxBound and ND-MinVar require

solving MILPs (M̃B) and (MV). We can take a look at Tables 3 and 4 to better understand the

effort needed to solve these preliminary MILPs. For MaxBound, in Column 5 of Table 4, we can see

that it is not always easy to predict how easy it will be to solve (M̃B). Part of these tables are

represented in a more synthetic fashion in Figure 12. We do not include all the instances in these

figures for visual clarity. Though the global tendency shows that the difficulty increases with the

size of the problem, there are exceptions, most notably on instances such as B.30.4 and B.40.5 for

Bernasconi instances, and R.30.5 and R.40.5 for randomly generated ones.

B.
30
.4

B.
30
.8

B.
30
.15

B.
30
.23

B.
30
.30

0

500

1,000

1,500

C
P
U

ti
m
e
(s
)

MB

R.
30
.50

R.
30
.75

R.
30
.10
0

R.
30
.12
5

R.
30
.15
0

R.
30
.17
5

R.
30
.20
0

0

500

1,000

1,500

C
P
U

ti
m
e
(s
)

MB

B.
40
.5

B.
40
.10

B.
40
.20

B.
40
.30

B.
40
.40

0

500

1,000

1,500

C
P
U

ti
m
e
(s
)

MB

R.
40
.50

R.
40
.75

R.
40
.10
0

R.
40
.12
5

R.
40
.15
0

R.
40
.17
5

R.
40
.20
0

0

500

1,000

1,500

C
P
U

ti
m
e
(s
)

MB

Figure 12: Time (s) needed to solve problem (M̃B) on Bernasconi instances with 30 variables (top left) and 40
variables (bottom left), and randomly generated instances with 30 variables (top right) and 40 variables (bottom
right), with a time limit of 1800s.

34

For ND-MinVar, a trend can be observed on instances R.20.2 to R.20.200: problem (MV) is hard

to solve for a medium number of monomials, while being much easier to solve with either a lot of

monomials, or very few of them. It is rather easy to understand why this problem is easy to solve

on dense instances, as it is the same reason as for the Bernasconi instances: more monomials means

that most, if not all necessary monomials already exist within the problem, and it makes it rather

easy to find a reformulation that does not use any monomials that do not already exist. In the

opposite case, on very sparse instances, it is easy to solve because there are not many intersections

of size greater than or equal to two. Hence, we can generate all monomials corresponding to such

intersections plus additional monomials to round out the reformulation, and probably reach a near-

optimal solution quite easily. For instances with medium density, the problem becomes apparently

harder to solve. A possible interpretation is that more intersections exist than in the sparse case,

but not quite all of them, contrary to the dense case. In this case, for each monomial, the solver

has to precisely evaluate how useful each possible smaller monomial would be to other monomials

in the instance studied, and finding one of the best possible combinations is much more costly than

in the sparse and dense cases.

In our randomly generated instances, we see this behavior very well on instances with 20 vari-

ables, but not so well on instances with 30 and 40 variables. This is to be expected, since we create

instances where the number of monomials scales linearly with the number of variables, while the

total number of possible monomials of degree smaller than four increases in O(n4). More precisely,

for n variables, we can create up to
4∑

d=1

(
n
d

)
such monomials. This means that our largest instances

for each number of variables have very different densities. Instance R.20.200 is 64.6 % dense, while

R.30.200 is only 18.8 % dense, and R.40.200 only 7.8 % dense. We can confirm the behavior ob-

served on instances with 20 variables by generating a few instances of higher density for higher

numbers of variables. Figure 13 gives a visual representation of the results on instances with 30

variables. The only thing that remains difficult to precisely determine is where the limit stands

between so-called sparse, medium and dense instances.

It is also remarkable that it is generally for these instances of “medium” density that the

ND-MinVar method yields a reformulation with an LP bound significantly closer to the one given

by MaxBound. On these instances, with our chosen set of linearizations, finding the reformulation

35

R.
30
.2

R.
30
.5

R.
30
.10

R.
30
.30

R.
30
.50

R.
30
.75

R.
30
.10
0

R.
30
.12
5

R.
30
.15
0

R.
30
.17
5

R.
30
.20
0

R.
30
.40
0

R.
30
.50
0

R.
30
.60
0

R.
30
.70
0

R.
30
.80
0

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800
C
P
U

ti
m
e
(s
)

MV

Figure 13: Time (s) needed to solve problem (MV), the problem of finding a linear reformulation with the fewest
possible variables using non-dominated linearization patterns, on randomly generated instances with 30 variables
(time limit: 1800s).

with the fewest variables and the one with the best LP bound may be similar goals.

36

5.2.2. Results of the resolution step

In this subsection we discuss the performance of all three linear reformulations when given to

Gurobi 9.1.2 [23] with a time limit of three hours. Full results are given in Tables 5 and 6. We

below discuss these results and provide a different representation of some of the data for better

visualization.

A preliminary observation is that overall, given instances of similar sizes, all reformulations are

much more efficient on the randomly generated instances, thus it is fair to say that these instances

are easier to solve.

Concerning the resolution time and the number of nodes explored: on instances that were solved to

optimality, we can compare the time needed by the different reformulations, as well as the number of

explored nodes. The fastest method is the most efficient, but the number of nodes tell us additional

information on how the reformulation behaves when given to the solver. We also take a look at the

number of explored nodes per second. Bernasconi instances are hard to solve to optimality, so we

will mostly turn to randomly generated instances for this part.

For most instances of small size, the difference in time between the three methods is small.

Sometimes the standard linearization method remains the most efficient. However, when we turn

to larger instances, MaxBound and ND-MinVar tend to perform better. Figure 14 shows this growing

gap on a few randomly generated instances.

R.
30
.75

R.
30
.10
0

R.
30
.12
5

R.
30
.15
0

R.
30
.17
5

0

2,000

4,000

C
P
U

ti
m
e
(s
)

SL
MV
MB

Figure 14: Time needed for the resolution step of the three linear reformulations on randomly generated instances
with 30 variables.

37

Instance Final gap (%) CPU time (s) Nodes explored

Name SL MV MB SL MV MB SL MV MB

B.20.5 0 0 0 0.7 1.1 1.3 11 913 6 049 20 618
B.20.10 0 0 0 5.3 8.6 7.9 0.1×106 0.1×106 0.1×106

B.20.15 0 0 0 16.1 25.7 23.4 0.1×106 0.1×106 0.1×106

B.25.6 0 0 0 16.8 28.1 19.5 0.8×106 1.4×106 0.9×106

B.25.13 0 0 0 174.8 147.1 185.4 2.1×106 1.6×106 1.8×106

B.25.19 0 0 0 395.5 530.7 481 2.4×106 2.4×106 1.9×106

B.25.25 0 0 0 1672.3 1857.2 1960.8 6.1 5.9 5.2

B.30.4 0 0 0 4.9 2.4 2.7 78 252 15 318 21 636
B.30.8 0 0 0 859.1 1209.9 752.5 24.1×106 29.7×106 18.2×106

B.30.15 0 0 0 6736.2 5887 5693.6 52.4×106 35.6×106 33.2×106

B.30.23 25.7 17 13.4 10800 10800 10800 31.2×106 27.3×106 24.6×106

B.30.30 132.8 74.9 70.6 10800 10800 10800 13.3×106 11.1×106 9.3×106

B.35.4 0 0 0 27.4 4.8 3.8 0.2×106 44 055 26 604
B.35.9 62 35.3 22.9 10800 10800 10800 127.7×106 174.3×106 173.3×106

B.35.18 99 56.3 48.0 10800 10800 10800 22.9×106 27.8×106 27×106

B.35.26 162.4 113 88.5 10800 10800 10800 6.6×106 7.2×106 6.8×106

B.35.35 396.1 223 208.4 10800 10800 10800 2.8×106 1.8×106 0.9×106

B.40.5 0 0 0 2706.5 113.5 128.3 19.9×106 1.3×106 1.6×106

B.40.10 80 102.8 73.1 10800 10800 10800 3.6×106 92×106 93.4×106

B.40.20 217.6 119.3 95.0 10800 10800 10800 10.2×106 13×106 11.6×106

B.40.30 401.1 347 192.0 10800 10800 10800 1.7×106 0.3×106 1.2×106

B.40.40 615.5 409.4 321.3 10800 10800 10800 523 0.2×106 780

Average 99.6 68.1 51.5 5482.5 5355.6 5330.3 14.9×106 19.7×106 18.7×106

Table 5: Resolution step: final gaps, CPU times and nodes explored on the Bernasconi instances, up to 40 variables.
Time limit: 3 hours.

38

Instance Final gap (%) CPU time (s) Nodes explored

Name SL MV MB SL MV MB SL MV MB

R.20.2 0 0 0 1.4 0.6 0.6 1 1 1
R.20.5 0 0 0 1.5 0.6 0.6 9 1 1
R.20.10 0 0 0 1.5 0.7 0.7 45 17 1
R.20.30 0 0 0 2.7 2.3 2.3 1 066 212 152
R.20.50 0 0 0 6.4 4.5 4.6 3 532 391 476
R.20.75 0 0 0 16.5 18.9 13.3 10 579 1 867 1 387
R.20.100 0 0 0 26.5 28.9 24.2 9 229 1 247 1 423
R.20.125 0 0 0 58.6 80.3 66 45 076 6 174 4 411
R.20.150 0 0 0 109.4 102.4 87.5 56 189 11 788 6 562
R.20.175 0 0 0 96.0 141.8 109.2 39 564 5 460 4 620
R.20.200 0 0 0 137.6 209.9 110.1 39 322 8 256 3 257

R.30.2 0 0 0 1.4 0.6 0.6 1 1 0
R.30.5 0 0 0 1.6 0.9 0.9 359 360 228
R.30.10 0 0 0 2.7 2.6 1.6 761 480 455
R.30.30 0 0 0 28.8 39.2 47.4 56 037 3 220 5 917
R.30.50 0 0 0 84.4 108.4 85.1 0.1.0×106 9 825 11 442
R.30.75 0 0 0 586.5 409.7 243.4 0.7×106 0.2×106 0.1×106

R.30.100 0 0 0 1633 667.0 671.1 1.5×106 0.5×106 0.2×106

R.30.125 0 0 0 1932.9 1096.7 642.3 1.1×106 0.3×106 0.1×106

R.30.150 0 0 0 4627.2 2492 1781.7 2.7×106 0.9×106 0.2×106

R.30.175 0 0 0 4042.3 1964.9 1648.8 1.6×106 0.3×106 0.1×106

R.30.200 0 0 0 8028.1 3631.9 3230.7 3.4×106 1.3×106 0.2×106

R.40.2 0 0 0 1.4 0.6 0.6 1 1 1
R.40.5 0 0 0 1.8 1.0 1.1 144 269 249
R.40.10 0 0 0 10.7 6.7 7.3 2 657 1 944 1 389
R.40.30 0 0 0 1170.9 467.1 649.4 3.7×106 1.0×106 1.0×106

R.40.50 0 0 0 6698.5 4314.8 1798.1 11.4×106 3.4×106 1.0×106

R.40.75 61 0 0 10800 8408.1 4626.6 6.7×106 7.6×106 21.6×106

R.40.100 148.4 73.7 55.1 10800 10800 10800 4.3×106 6.3×106 4.5×106

R.40.125 171.4 85.2 75.0 10800 10800 10800 2.2×106 4.1×106 2.0×106

R.40.150 236.1 120.3 105.4 10800 10800 10800 1.5×106 2.8×106 1.1×106

R.40.175 369.8 210.4 153.4 10800 10800 10800 1.0×106 2.1×106 1.4×106

R.40.200 371.4 219.6 162.1 10800 10800 10800 0.7×106 1.0×106 0.7×106

Average 41.2 21.5 16.7 2851.8 2369.9 2116.9 1.3×106 1.0×106 0.4×106

Table 6: Resolution step: final gaps, CPU times and nodes explored on our randomly generated instances. Time
limit: 3 hours.

39

The number of explored nodes and the rate at which they are explored are shown across a few

instances in Figure 15. On randomly generated instances such as the ones shown in the figure,

the hierarchy is quite clear: the standard linearization needs the most nodes to reach optimality,

followed by ND-MinVar and MaxBound in that order. It is important to note that such a hierarchy

is not reflected by the Bernasconi instances, which showcase great irregularities in the number of

nodes needed to solve an instance.

In terms of nodes per second, the standard linearization reformulation yields the best node

throughput, which is also expected since the formulation contains fewer variables and constraints

than the others. The MaxBound reformulation takes the most time per node.

R.
30
.75

R.
30
.10
0

R.
30
.12
5

R.
30
.15
0

R.
30
.17
5

0

1

2

3
·106

N
o
d
es

ex
p
lo
re
d

SL
MV
MB

R.
30
.75

R.
30
.10
0

R.
30
.12
5

R.
30
.15
0

R.
30
.17
5

0

500

1,000

1,500

N
o
d
es

p
er

se
co
n
d
SL
MV
MB

Figure 15: Nodes explored (left) and nodes per second (right) by all four methods on randomly generated instances
with 30 variables.

Concerning final optimality gaps, Figure 16 shows the remaining gaps after 3 hours of com-

putation time on instances with 40 variables (Bernasconi on the left, randomly generated on the

right).

The general takeaway is that MaxBound outperforms the others on this criteria. ND-MinVar seems

generally weaker than MaxBound but still performs better than the standard linearization.

5.3. Results of the bi-objective approach

The method used to solve the bi-objective optimization problem is not efficient enough to tackle

the largest instances at our disposal. Indeed, while the method enables us to completely describe

40

B.
40
.10

B.
40
.20

B.
40
.30

B.
40
.40

0

200

400

600
F
in
a
l
o
p
ti
m
al
it
y
g
ap

(%
) SL

MV
MB

R.
40
.10
0

R.
40
.12
5

R.
40
.15
0

R.
40
.17
5

R.
40
.20
0

0

100

200

300

400

F
in
al

op
ti
m
al
it
y
ga
p
(%

) SL
MV
MB

Figure 16: Final optimality gaps on Bernasconi instanes (left) and randomly generated instances (right) with 40
variables.

the set of Pareto-optimal solutions, tightening the constraint on the number of variables by just

one each step is very slow. Therefore, in this section we focus on exploring the characteristics of

the Pareto-optimal solutions rather than overall performance.

With this approach, we once again use all simple linearization patterns. Therefore, the choice

of patterns corresponding to the standard linearization is a feasible solution of the bi-objective

problem, containing the fewest possible variables. On the other end of the spectrum, MaxBound gives

an extended linear reformulation with the best possible LP bound. Hence, the Pareto frontier exists

in a rectangle as depicted in Figure 17.

Number of variables

L
P

B
ou

n
d

SL

MB

Figure 17: Domain of non-dominated solutions to the bi-objective problem.

41

An interesting question is the shape of the Pareto frontier. On (Ex), we know that there are

two non-dominated solution points. In general, on randomly generated instances we seem to obtain

many non-dominated solutions. We show the Pareto frontier for instance R.20.30 in Figure 18.

620 622 624 626 628 630 632 634 636 638 640
−78

−76

−74

−72

−70

−68

−66

−64

−62

Number of variables

L
P

B
o
u
n
d

Figure 18: Set of non-dominated solutions to the bi-objective problem on instance R.20.30.

42

On the contrary, on the Bernasconi instances, in all cases where we were able to compute the set

of non-dominated solutions, there exists exactly one non-dominated solution corresponding to the

top left corner of the rectangle in Figure 17. An intuitive explanation for this fact is once again due

to the structure of the instances. Indeed, these instances are such that for any monomial M ∈ P ,

then any subset s ⊂ M also belongs to P . Hence, any linearization pattern uses only variables that

correspond to monomials of P . Therefore, the only way to obtain more variables than the number

of variables in the standard linearization is to decompose a monomial in multiple different ways.

For example, if we consider monomials {1, 2, 4, 5} and {2, 3, 4, 5} and choose to use the linearization

patterns as in Figure 19, then we obtain two different variables representing {2, 4, 5}. With this

in mind, the results on the Bernasconi instances suggest that there is no interest to introduce two

different variables in order to represent the same monomial.

{1} {2} {4} {5}

{2, 4, 5}

{4, 5}

{1, 2, 4, 5}

(a) A linearization pattern for monomial {1, 2, 4, 5}.

{3} {2} {4} {5}

{2, 3, 4, 5}

{2, 4, 5}

(b) A linearization pattern for monomial {2, 3, 4, 5}.

Figure 19: A choice of linearization patterns for two monomials of problem (Ex).

43

6. Conclusion

We present two new methods to build linear reformulations to polynomial binary optimization

problems. Our linear reformulations are based on a linearization graph, obtained by concatenation

of linearization patterns of the monomials. Method MaxBound focuses on the quality of the LP

bound of the linear reformulation. We show that obtaining a reformulation with the best possible

bound can be derived from the solution of a MILP. We also show a domination property between

linearization patterns that allows us to reduce the number of potential patterns, and therefore the

size of this MILP. Method ND-MinVar considers the reduced set of patterns and focuses on finding a

linear reformulation with as few additional variables as possible. It uses a different MILP to derive

this linear reformulation.

We evaluate the performances of MaxBound and ND-MinVar and compare them to the standard

linearization. We use two families of difficult instances, containing polynomials of degree 4: the

Bernasconi instances and randomly generated instances. We observe that MaxBound drastically

reduces the root gap compared to the standard linearization while adding a reasonable amount of

variables, especially for the structured Bernasconi instances. On the other hand, ND-MinVar uses

a smaller number of variables, and unexpectedly grants a significant improvement of the LP

bound over the standard linearization. Finally, the bi-objective problem hybridizing MaxBound and

ND-MinVar enables us to generate interesting linear reformulations, but is difficult to solve.

In theory, MaxBound and ND-MinVar can be applied to polynomials of higher degree, but the

explosion of the number of linearization patterns would give rise to MILPs of huge size. In the

future, we may look for ways to circumvent this issue, either by use of sophisticated mathematical

programming methods such as decomposition methods, or by use of heuristics. Moreover, reformu-

lations obtained using MaxBound or ND-MinVar may provide helpful information on the structure of

a given instance of BPO and on which links between monomials can be exploited.

References

[1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical

computing. SIAM review, 59(1):65–98, 2017.

[2] E. Boros, Y. Crama, and E. Rodŕıguez-Heck. Compact quadratizations for pseudo-boolean

functions. Journal of combinatorial optimization, 39(3):687–707, 2020.

44

[3] E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete applied mathematics,

123(1-3):155–225, 2002.

[4] C. Buchheim and C. D’Ambrosio. Monomial-wise optimal separable underestimators for mixed-

integer polynomial optimization. Journal of Global Optimization, 67(4):759–786, 2017.

[5] C. Buchheim and G. Rinaldi. Efficient reduction of polynomial zero-one optimization to the

quadratic case. SIAM Journal on Optimization, 18(4):1398–1413, 2008.

[6] Y. Crama, P. Hansen, and B. Jaumard. The basic algorithm for pseudo-boolean programming

revisited. Discrete Applied Mathematics, 29(2-3):171–185, 1990.

[7] Y. Crama and E. Rodŕıguez-Heck. A class of valid inequalities for multilinear 0–1 optimization

problems. Discrete Optimization, 25:28–47, 2017.

[8] E. Dalkiran and L. Ghalami. On linear programming relaxations for solving polynomial pro-

gramming problems. Computers & Operations Research, 99:67–77, 2018.

[9] E. Dalkiran and H. D. Sherali. Rlt-pos: Reformulation-linearization technique-based opti-

mization software for solving polynomial programming problems. Mathematical Programming

Computation, 8(3):337–375, 2016.

[10] A. Del Pia and S. Di Gregorio. Chvátal rank in binary polynomial optimization. INFORMS

Journal on Optimization, 3(4):315–349, 2021.

[11] A. Del Pia and S. Di Gregorio. On the complexity of binary polynomial optimization over

acyclic hypergraphs. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 2684–2699. SIAM, 2022.

[12] A. Del Pia and A. Khajavirad. The multilinear polytope for acyclic hypergraphs. SIAM

Journal on Optimization, 28(2):1049–1076, 2018.

[13] A. Del Pia and A. Khajavirad. The running intersection relaxation of the multilinear polytope.

Mathematics of Operations Research, 2021.

[14] A. Del Pia, A. Khajavirad, and N. V. Sahinidis. On the impact of running intersection in-

equalities for globally solving polynomial optimization problems. Mathematical programming

computation, 12(2):165–191, 2020.

45

[15] A. Del Pia and M. Walter. Simple odd-cycle inequalities for binary polynomial optimization.

In International Conference on Integer Programming and Combinatorial Optimization, pages

181–194. Springer, 2022.

[16] I. Dunning, J. Huchette, and M. Lubin. Jump: A modeling language for mathematical opti-

mization. SIAM review, 59(2):295–320, 2017.

[17] S. Elloumi, A. Lambert, and A. Lazare. Solving unconstrained 0-1 polynomial programs

through quadratic convex reformulation. Journal of Global Optimization, pages 1–18, 2021.

[18] R. Fortet. Applications de l’algebre de boole en recherche opérationnelle. Revue Française de

Recherche Opérationnelle, 4(14):17–26, 1960.

[19] B. González-Rodŕıguez, J. Ossorio-Castillo, J. González-Dı́az, Á. M. González-Rueda, D. R.

Penas, and D. Rodŕıguez-Mart́ınez. Computational advances in polynomial optimization: Ra-

posa, a freely available global solver. Journal of Global Optimization, pages 1–28, 2022.

[20] C. Hojny, M. E. Pfetsch, and M. Walter. Integrality of linearizations of polynomials over binary

variables using additional monomials. arXiv preprint arXiv:1911.06894, 2019.

[21] G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lü, H. Wang, and Y. Wang. The

unconstrained binary quadratic programming problem: a survey. Journal of Combinatorial

Optimization, 28(1):58–81, 2014.

[22] F. Liers, E. Marinari, U. Pagacz, F. Ricci-Tersenghi, and V. Schmitz. A non-disordered glassy

model with a tunable interaction range. Journal of Statistical Mechanics: Theory and Experi-

ment, 2010(05):L05003, 2010.

[23] G. Optimization. Llc.,“gurobi optimizer reference manual,” 2021, LLC.

[24] M. Padberg. The boolean quadric polytope: some characteristics, facets and relatives. Math-

ematical Programming, 45:139–172, 1989.

[25] E. Schröder. Vier kombinatorische probleme. Z. Math. Phys., 15:361–376, 1870.

[26] A. Verma and M. Lewis. Optimal quadratic reformulations of fourth degree pseudo-boolean

functions. Optimization Letters, 14(6):1557–1569, 2020.

46

