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STOKES PROBLEM WITH SLIP BOUNDARY CONDITIONS USING STABILIZED FINITE ELEMENTS COMBINED WITH NITSCHE

We discuss how slip conditions for the Stokes equation can be handled using Nitsche method, for a stabilized finite element discretization. Emphasis is made on the interplay between stabilization and Nitsche terms. Well-posedness of the discrete problem and optimal convergence rates are established, and illustrated with various numerical experiments.

Introduction

Slip boundary conditions arise naturally for Stokes or Navier-Stokes equations, for instance when modelling biological surfaces [START_REF] Bechert | Fluid mechanics of biological surfaces and their technological application[END_REF], in slide coating [START_REF] Christodoulou | The fluid mechanics of slide coating[END_REF] or in the context of turbulence modeling [START_REF] Mohammadi | Analysis of the k-epsilon turbulence model[END_REF]. These are essential boundary conditions, and can be in fact considered as generalized Dirichlet conditions. They are not straightforward to implement into standard finite element libraries, with standard techniques such as a discrete lifting or a partitioning of the global matrix. As a result, many works were devoted to study alternative approaches.

This work presents a simple approach based on Nitsche's technique combined with a stabilized equalorder finite element method. To simplify the presentation, we focus on the Stokes equation on a polygonal boundary and without any specific law that involve the tangential components of the velocity, such as a Navier law. We consider both symmetric and non-symmetric variants of Nitsche, since they have different advantages, particularly to enforce accurately the boundary condition, see, e.g. [START_REF] Chouly | A review on some discrete variational techniques for the approximation of essential boundary conditions[END_REF][START_REF] Hu | Skew-symmetric Nitsche's formulation in isogeometric analysis: Dirichlet and symmetry conditions, patch coupling and frictionless contact[END_REF] and references therein. We take advantage of the stabilization terms to carry out the analysis. Notably we are able to prove the stability with a constant independent of the fluid viscosity. The overall method is consistent, introduces no extra unknown and can be implemented easily. To assess the properties of the method, we propose an implementation in the FEniCS environment [START_REF] Alnaes | The FEniCS project version 1.5[END_REF] and present several numerical experiments.

Let us put our work in a general perspective. The first methods to enforce slip conditions were based on Lagrange multipliers: see, e.g., [START_REF] Layton | Weak imposition of "no-slip" conditions in finite element methods[END_REF][START_REF] Verfürth | Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition[END_REF][START_REF]Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition[END_REF]. In [START_REF] Bänsch | Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition[END_REF] the condition was enforced pointwise at nodal values of the velocity. Many studies have been devoted to the study of penalty methods, to enforce approximately the slip condition with a regularization term. These methods are not consistent, but remain popular and very easy to implement. Moreover, penalty can be interpreted as a penetration condition with a given resistance [START_REF] John | Slip with friction and penetration with resistance boundary conditions for the Navier-Stokes equations-numerical tests and aspects of the implementation[END_REF]. A first work has been focused on the Navier-Stokes equation [START_REF] Caglar | Weak imposition of boundary conditions for the Navier-Stokes equations by a penalty method[END_REF], and followed by [START_REF] Dione | Stokes equations with penalised slip boundary conditions[END_REF][START_REF] Dione | Penalty: finite element approximation of Stokes equations with slip boundary conditions[END_REF], with emphasis on the case of a curved boundary, where a Babuska-type paradox may appear. Other recent works have been devoted to the usage of penalty terms combined with Lagrange finite elements [START_REF] Kashiwabara | Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition[END_REF][START_REF] Zhou | Penalty method for the stationary Navier-Stokes problems under the slip boundary condition[END_REF][START_REF]A penalty method for the time-dependent Stokes problem with the slip boundary condition and its finite element approximation[END_REF] or Crouzeix-Raviart finite elements [START_REF]Penalty method with Crouzeix-Raviart approximation for the Stokes equations under slip boundary condition[END_REF][START_REF] Zhou | The Crouzeix-Raviart element for the Stokes equations with the slip boundary condition on a curved boundary[END_REF]. To our knowledge, Nitsche's method has been first considered in [START_REF] Freund | On weakly imposed boundary conditions for second order problems[END_REF], as a simple, consistent and primal technique to take into account the slip condition. Notably, it has been noticed that the skew-symmetric variant of Nitsche remains operational even when the Nitsche parameter vanishes (penalty-free variants), a result which opened the path to further research on this topic [START_REF] Blank | Analysis of a stabilized penalty-free Nitsche method for the Brinkman, Stokes, and Darcy problems[END_REF][START_REF] Boiveau | A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity[END_REF][START_REF] Burman | A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions[END_REF]. Later on, in [START_REF] Urquiza | Weak imposition of the slip boundary condition on curved boundaries for Stokes flow[END_REF], different variants of Nitsche have been proposed and linked, as usual, with stabilized mixed methods (following [START_REF] Stenberg | On some techniques for approximating boundary conditions in the finite element method[END_REF]). Emphasis has been once again made on the curved boundary and a possibly related Babuska-type paradox. More recently, a specific treatment of the Navier boundary condition has been studied in [START_REF] Winter | A Nitsche cut finite element method for the Oseen problem with general Navier boundary conditions[END_REF], building on the specific Nitsche-type method proposed by Juntunen & Stenberg [START_REF] Juntunen | Nitsche's method for general boundary conditions[END_REF] to discretize robustly Robin-type boundary conditions (see also [START_REF] Zorrilla | A discontinuous Nitsche-based finite element formulation for the imposition of the Navier-slip condition over embedded volumeless geometries[END_REF]), and a symmetric Nitsche method with specific, accurate, discretization of the curved boundary, has been designed and studied in [START_REF] Gjerde | Nitsche's method for Navier-Stokes equations with slip boundary conditions[END_REF].

In conclusion, we observe that almost all the aforementioned works have considered inf-sup stable pairs to discretize the Stokes equation, except [START_REF] Kashiwabara | Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition[END_REF] where the penalty method combined with a P 1 /P 1 finite element pair with pressure stabilization is taken into account.

This paper is structured as follows. Section 2 describes the model equations in strong form. The weak formulation and the corresponding functional setting is object of Section 3. Section 4 presents the discretization with finite elements, stabilization and Nitsche. Section 5 details the stability and convergence analysis. Numerical experiments are provided in Section 6.

Model problem

Let Ω ⊂ R d , d ∈ {2, 3}, be an open, bounded domain with Lipschitz continuous boundary ∂Ω. We use standard notation for Lebesgue spaces L q (Ω), with norm ∥ • ∥ 0,q,Ω , for q > 2, and ∥ • ∥ 0,Ω for q = 2 and inner product (•, •) Ω , and Sobolev spaces H m (Ω), with norm ∥ • ∥ m,Ω and semi-norm | • | m,Ω . The boundary ∂Ω is partitionned into a subset Γ D , where a Dirichlet boundary condition is imposed, with meas (Γ D ) > 0, and a subset Γ S , where the slip condition is enforced. Moreover, we denote with n the outer normal vector to Γ S , and with t i , 1 ≤ i ≤ d -1 are orthonormal vectors spanning the plane tangent to Γ S .

We consider the Stokes equations seeking for a velocity field u : Ω → R d and a pressure field

p : Ω → R solutions to            -∇ • σ(u, p) = f in Ω, ∇ • u = 0 in Ω, u = 0 on Γ D , u • n = 0 on Γ S σ(u, p)n • t i = s i , 1 ≤ i ≤ d -1 on Γ S .
(2.1) In (2.1), the stress tensor is expressed as σ(u, p) := 2νε(u) -pI, the parameter ν > 0 denotes the fluid viscosity, ε(u) := 1 2 (∇u + ∇u T ) stands for the symmetric part of the deformation tensor, f ∈ L 2 (Ω) d is a given source term and s i ∈ L 2 (Γ S ).

Continuous variational formulation

We define the Hilbert spaces

H := {v ∈ H 1 (Ω) d : v = 0 on Γ D , v • n = 0 on Γ S }, Q := L 2 0 (Ω)
and consider the product space H × Q equipped with the norm

∥(v, q)∥ 2 := ν∥ε(v)∥ 2 0,Ω + ∥q∥ 2 0,Ω , ∀(v, q) ∈ H × Q.
We then introduce the bilinear forms

a : H × H → R, a(u, v) := 2ν(ε(u), ε(v)) Ω ∀u, v ∈ H, and 
b : H × Q → R, b(v, q) := -(∇ • v, q) Ω ∀(v, q) ∈ H × Q,
and consider the following variational formulation associated with problem (2.1):

Problem 1. Find (u, p) ∈ H × Q such that B((u, p), (v, q)) = F (v, q), (3.1 
)

for all (v, q) ∈ H × Q, where B((u, p), (v, q)) := a(u, v) + b(v, p) -b(u, q) (3.2)
and

F (v, q) := (f , v) Ω + d-1 i=1 Γ S s i v • t i ds.
Theorem 3.1. The variational problem (3.1) has a unique solution (u, p) ∈ H × Q, and there exists a positive constant C such that

∥(u, p)∥ ≤ C ∥f ∥ 0,Ω + d-1 i=1 ∥s i ∥ 0,Γ S .
Proof. The proof is a direct consequence of the Babuska-Brezzi theory. See also [START_REF] Beirão | Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions[END_REF]. □

Discrete stabilized scheme

In what follows, we denote by {T h } h>0 a regular family of triangulations of Ω composed by simplexes. For a given triangulation T h , we will denote by E h the set of all faces (edges) of T h , with the partitioning

E h := E Ω ∪ E D ∪ E S ,
where E Ω stands for the faces (edges) lying in the interior of Ω, E S stands for the faces (edges) lying on the boundary Γ S , and E D stands for the edges (faces) lying on the boundary Γ D . Moreover, we will denote with K a generic element of a triangulation T h , with h K the diameter of K and define h := max

K∈T h h K .
As next, for a given l ≥ 1, we introduce the following finite element spaces:

H h := v ∈ C(Ω) d : v| K ∈ P l (K) d , ∀K ∈ T h , Q h := q ∈ C(Ω) : q| K ∈ P l (K), ∀K ∈ T h ∩ Q,
where P l stands for the space of polynomials of total degree less or equal than l.

Remark. Note that Q h is a subspace of Q, but H h is not a subspace of H. In that sense, imposing weakly the (slip or Dirichlet) boundary conditions using Nitsche, can be considered a non-conforming finite element method.

In the sequel we will need the following well known results:

Lemma 4.1. Let v h ∈ H h then for each K ∈ T h ; l, m ∈ N, with 0 ≤ m ≤ l, there exists a positive constant C in , independent of K, such that |v h | l,K ≤ C in h m-l K |v h | m,K . Proof. See [14, Lemma 12.1]. □ Lemma 4.2. Let v h ∈ H h then for each K ∈ T h , E ⊂ ∂K, there exists a positive constant C tr , independent of K, such that ∥v h ∥ 0,E ≤ C tr h -1 2 K ∥v h ∥ 0,K . Proof. See [14, Lemma 12.8]. □ Lemma 4.3. Let v ∈ H 1 (K), with K ∈ T h .
Then for any face (edge) E ⊂ ∂K, there exists a positive constant C, independent of K, such that

∥v∥ 0,E ≤ C h -1/2 K ∥v∥ 0,K + h 1/2 K ∥∇v∥ 0,K
Proof. Use [14, Lemma 12.15] and Young's inequality. □

To define our stabilized scheme, we start by defining the following notation

⟨γ 0 ϕ, ψ⟩ 1/2,h,Γi := E∈Ei γ 0 h E (ϕ, ψ) E ,
where i = D or S, and γ 0 > 0. Let θ = -1, 0, 1. For a given stabilization parameter β > 0, our stabilized discrete scheme is given by:

Problem 2. Find (u h , p h ) ∈ H h × Q h such that B S ((u h , p h ), (v h , q h )) = F S (v h , q h ) ∀(v h , q h ) ∈ H h × Q h , (4.1) 
where

B S ((u h , p h ), (v h , q h )) := B((u h , p h ), (v h , q h )) -2ν(ε(u h )n, v h ) Γ D -2θν(ε(v h )n, u h ) Γ D + ν⟨γ 0 u h , v h ⟩ 1/2,h,Γ D + θ(q h , u h • n) Γ D + (p h , v h • n) Γ D -2ν(ε(u h )n • n, v h • n) Γ S -2θν(ε(v h )n • n, u h • n) Γ S + ν⟨γ 0 u h • n, v h • n⟩ 1/2,h,Γ S + θ(q h , u h • n) Γ S + (p h , v h • n) Γ S + β ν K∈T h h 2 K (-2ν ∇ • ε(u h ) + ∇p h , ∇q h ) K (4.2)
and

F S (v h , q h ) := F (v h , q h ) -2νθ(h, ε(v h )n) Γ D + θ(h • n, q h ) Γ D + ν⟨γ 0 h, v h ⟩ 1/2,h,Γ D -2νθ(g, ε(v h )n • n) Γ S + θ(g, q h ) Γ S + ν⟨γ 0 g, v h • n⟩ 1/2,h,Γ S + β ν K∈T h h 2 K (f , ∇q h ) K . (4.3)
We state below a consistency result:

Lemma 4.4 (Consistency). Let (u, p) ∈ H × Q and (u h , p h ) ∈ H h × Q h be the solutions to Problem (3.1)
and Problem (4.1), respectively. Assume that (u, p)

∈ (H 2 (Ω) d ∩ H) × (H 1 (Ω) ∩ Q), then B S ((u -u h , p -p h ), (v h , q h )) = 0 ∀(v h , q h ) ∈ H h × Q h .
Proof. The proof is a direct consequence of the definition of B S , the problem (P), and the regularity assumption.

□

Over H h × Q h we consider the discrete norm |||(v h , q h )||| h := ν∥ε(v h )∥ 2 0,Ω + E∈E D ν h E ∥v h ∥ 2 0,E + E∈E S ν h E ∥v h • n∥ 2 0,E + K∈T h h 2 K ν ∥∇q h ∥ 2 0,K 1/2
.

We state below the continuity of the discrete bilinear form.

Theorem 4.5. For θ = -1, 0, 1, there exists a positive constant C a , independent of h, ν, and θ, such that

B S ((u h , p h ), (v h , q h )) ≤ C a |||(u h , p h )||| h |||(v h , q h )||| h ∀ (u h , p h ), (v h , q h ) ∈ H h × Q h .
Proof. This is as a direct consequence of lemmas 4.1, 4.2, Cauchy-Schwarz and Hölder inequalities. Moreover, it can be seen that

C a ∼ 2 + C tr + 2γ 0 + 2C in C tr + C in + 2β
i.e., C a can bounded by a constant that depends only on the trace and inverse inequality constants, and on the parameters γ 0 and β. □

The well-posedness of our discretization is established as follows.

Theorem 4.6 (Well-posedness). For θ = -1, 0, 1, for γ 0 large enough and for β small enough, there exists a positive constant C S = C S (θ, β, γ 0 ), independent on h and ν, such that,

B S ((u h , p h ), (u h , p h )) ≥ C S |||(u h , p h )||| 2 h ∀ (u h , p h ) ∈ H h × Q h .
The bounds on the parameters β and γ 0 depend only on the trace and inverse inequality constants. Moreover, in the case θ = ±1, well-posedness can be proven for any γ 0 > 0.

Proof. θ = -1. Take (u h , p h ) ∈ H h × Q h . Using Lemma 4.1, Hölder and Young inequalities, we get that

2βh 2 K (∇ • ε(u h ), ∇p h ) K ≤ 2βh 2 K ∥∇ • ε(u h )∥ 0,K ∥∇p h ∥ 0,K = 2β ν 1 2 ∥∇ • ε(u h )∥ 0,K h 2 K ν -1 2 ∥∇p h ∥ 0,K ≤ 2β δ 1 2 C 2 in ν∥ε(u h )∥ 2 0,K + 1 2δ 1 h 2 K ν ∥∇p h ∥ 2 0,K ≤ β C 2 in δ 1 ν∥ε(u h )∥ 2 0,K + β δ 1 h 2 K ν ∥∇p h ∥ 2 0,K , (4.4) 
with δ 1 a positive parameter to be chosen in a convenient way. Now, using (4.4) and the definition of B S , with θ = -1, we obtain

B S ((u h , p h ), (u h , p h )) = 2ν∥ε(u h )∥ 2 0,Ω + ν⟨γ 0 u h , u h ⟩ 1/2,h,Γ D + ν⟨γ 0 u h • n, u h • n⟩ 1/2,h,Γ S + β ν K∈T h h 2 K (-2ν ∇ • ε(u h ) + ∇p h , ∇p h ) K = 2ν∥ε(u h )∥ 2 0,Ω + ν E∈E D γ 0 h E ∥u h ∥ 2 0,E + ν E∈E S γ 0 h E ∥u h • n∥ 2 0,E + β ν K∈T h h 2 K ∥∇p h ∥ 2 0,K -2β K∈T h h 2 K (∇ • ε(u h ), ∇p h ) K ≥ (2 -β C 2 in δ 1 )ν∥ε(u h )∥ 2 0,Ω + ν E∈E D γ 0 h E ∥u h ∥ 2 0,E + ν E∈E S γ 0 h E ∥u h • n∥ 2 0,E + β 1 - 1 δ 1 K∈T h h 2 K ν ∥∇p h ∥ 2 0,K .
Now, choosing δ 1 = 2 and the stabilization parameter β such that β < C -2 in we obtain that there exists a positive constant

C S = min 2(1 -βC 2 in ), γ 0 , β 2 , (4.5) 
independent of h and ν, such that

B S ((u h , p h ), (u h , p h )) ≥ C S |||(u h , p h )||| 2
h , which proves that the problem is well posed. θ = 0. Using Lemma 4.2, Hölder and Young inequalities, we have that

2ν(ε(u h )n • n, u h • n) Γ S ≤ 2ν E∈E S ∥ε(u h )n∥ 0,E ∥u h • n∥ 0,E = 2ν E∈E S h 1/2 E ∥ε(u h )n∥ 0,E h -1/2 E ∥u h • n∥ 0,E ≤ 2ν E∈E S h E δ 2 2 ∥ε(u h )∥ 2 0,E + h -1 E 2δ 2 ∥u h • n∥ 2 0,E ≤ νδ 2 C 2 tr K∈T h ∥ε(u h )∥ 2 0,K + ν γ 0 δ 2 E∈E S γ 0 h E ∥u h • n∥ 2 0,E ≤ δ 2 C 2 tr ν∥ε(u h )∥ 2 0,Ω + ν δ 2 ⟨ u h • n, u h • n⟩ 1/2,h,Γ S . (4.6) 
Using again the same arguments it is easy to prove, for any

δ 3 > 0, that 2ν(ε(u h )n, u h ) Γ D ≤ δ 3 C 2 tr ν∥ε(u h )∥ 2 0,Ω + ν δ 3 ⟨ u h , u h ⟩ 1/2,h,Γ D . (4.7)
On the other hand, using lemmas 4.1 and 4.2, and Hölder's inequality, we have that

(p h , u h • n) Γ S ≤ E∈E S ∥p h ∥ 0,E ∥u h • n∥ 0,E = E∈E S ν -1 2 h 1/2 E ∥p h ∥ 0,E ν 1 2 h -1/2 E ∥u h • n∥ 0,E ≤ E∈E S h E δ 4 2ν ∥p h ∥ 2 0,E + E∈E S ν h -1 E 2δ 4 ∥u h • n∥ 2 0,E ≤ K∈T h C 2 tr δ 4 2ν ∥p h ∥ 2 0,K + 1 2δ 4 E∈E S ν h E ∥u h • n∥ 2 0,E ≤ C 2 in C 2 tr δ 4 2 K∈T h h 2 K ν ∥∇p h ∥ 2 0,K + ν 2δ 4 ⟨ u h • n, u h • n⟩ 1/2,h,Γ S . (4.8)
In the same way, we can prove that

(p h , u h • n) Γ D ≤ C 2 in C 2 tr δ 5 2 K∈T h h 2 K ν ∥∇p h ∥ 2 0,K + ν 2δ 5 ⟨u h , u h ⟩ 1/2,h,Γ D . (4.9)
Thus, using (4.4)-(4.9), and Young's inequality we get

B S ((u h , p h ), (u h , p h )) = 2ν∥ε(u)∥ 2 0,Ω -2ν(ε(u h )n, u h ) Γ D + ν⟨γ 0 u h , u h ⟩ 1/2,h,Γ D + (p h , u h • n) Γ D -2ν(ε(u h )n • n, u h • n) Γ S + ν⟨γ 0 u h • n, u h • n⟩ 1/2,h,Γ S + (p h , u h • n) Γ S + β ν K∈T h h 2 K (-2ν ∇ • ε(u h ) + ∇p h , ∇p h ) K ≥ (2 -δ 2 C 2 tr -δ 3 C 2 tr -βC 2 in δ 1 )ν∥ε(u)∥ 2 0,Ω + γ 0 - 1 δ 3 - 1 2δ 5 ν⟨ u h , u h ⟩ 1/2,h,Γ D + γ 0 - 1 δ 2 - 1 2δ 4 ν⟨ u h • n, u h • n⟩ 1/2,h,Γ S + β - β δ 1 - C 2 in C 2 tr δ 4 2 - C 2 in C 2 tr δ 5 2 K∈T h h 2 K ν ∥∇p h ∥ 2 0,K .
The positive parameters δ 1 , δ 2 , δ 3 , δ 4 , and δ 5 should be now chosen properly. We take

δ 1 = 2, δ 2 = δ 3 , δ 4 = δ 5 , obtaining B S ((u h , p h ), (u h , p h )) ≥ 2 1 -δ 2 C 2 tr -βC 2 in ν∥ε(u)∥ 2 0,Ω + γ 0 - 1 δ 2 - 1 2δ 4 ν⟨ u h , u h ⟩ 1/2,h,Γ D + γ 0 - 1 δ 2 - 1 2δ 4 ν⟨ u h • n, u h • n⟩ 1/2,h,Γ S + β 2 -δ 4 C 2 in C 2 tr K∈T h h 2 K ν ∥∇p h ∥ 2 0,K . Choosing δ 2 = β C 2 tr , δ 4 = β 4C 2 tr C 2 in one gets γ 0 - 1 δ 2 - 1 2δ 4 = γ 0 -C 2 tr 1 + 2C 2 in β , β 2 -δ 4 C 2 in C 2 tr = β 4 , 1 -δ 2 C 2 tr -βC 2 in = 1 -β(C 2 tr + C 2 in ). Hence, taking β < (C 2 tr + C 2 in ) -1 and γ 0 > C 2 tr 1+2C 2 in β yields B S ((u h , p h ), (u h , p h )) ≥ C S |||(u h , p h )||| 2 h , with C S := min 2 1 -β(C 2 tr + C 2 in ) , β 4 , γ 0 -C 2 tr 1 + 2C 2 in β . (4.10) 
The case θ = 1 is proved using the same arguments as for θ = 0. □

Error analysis

This section is devoted to a priori error analysis based on the arguments of [START_REF] Barrenechea | An unusual stabilized finite element method for a generalized Stokes problem[END_REF] and [START_REF] Boiveau | A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity[END_REF]. To this purpose, let I h : H → H h and J h : Q → Q h be the vectorial and scalar version of the Scott-Zhang interpolant, respectively. Then the following results concerning the approximation properties of these operators hold. Lemma 5.1. For each K ∈ T h and k ≥ 1, there exist two positive constants C and C, independent of h K , such that

∥u -I h u∥ 0,K + h K |u -I h u| 1,K + h 2 K |u -I h u| 2,K ≤ C h k+1 K |u| k+1,ω K ∀u ∈ H k+1 (ω K ) d , ∥q -J h q∥ 0,K + h K |q -J h q| 1,K ≤ C h k K |q| k,ω K ∀q ∈ H k (ω K ),
where

ω K := K∩K ′ ̸ =∅ K ′ .
Proof. See [START_REF] Scott | Finite element interpolation of nonsmooth functions satisfying boundary conditions[END_REF]. □

Remark. For a given element q ∈ Q, the Scott-Zhang interpolant J h q does not belong, in general, to Q = L 2 0 (Ω). However, we can consider its modified version given by

J h q - 1 |Ω| Ω J h q dx ∈ Q,
that, with a little abuse of notation, we will also denote as J h q, and that retains all the approximation properties of the original interpolator.

Let us introduce the following notation

e u h := I h u -u h , e p h := J h p -p h η u h := u -I h u, η p h := p -J h p.
Note that uu h = η u h + e u h and p -p h = η p h + e p h . The following theorem states the convergence of the method.

Theorem 5.2. Let (u, p) ∈ H × Q and (u h , p h ) ∈ H h × Q h be the solutions of problems (3.1) and (4.1), respectively. Assume that (u, p) ∈ (H k+1 (Ω) d ∩ H) × (H k (Ω) ∩ Q), with k ≥ 1, then |||(u -u h , p -p h )||| h ⪯ h k {|u| k+1,Ω + |p| k,Ω }.
Proof. For any K ∈ T h and E ⊂ ∂K, we have, as a direct consequence of lemmas 4.3 and 5.1, that

∥ε(η u h )∥ 0,K ≤ Ch k K |u| k+1,K , (5.1) 
h 1/2 E ∥ε(η u h )n∥ 0,E ≤ Ch k K |u| k+1,K , (5.2) 
h -1/2 E ∥η u h • n∥ 0,E ≤ Ch k K |u| k+1,K , (5.3) 
∥∇ • η u h ∥ 0,K ≤ Ch k K |u| k+1,K , (5.4) 
h K ∥∇ • ε(η u h )∥ 0,K ≤ Ch k K |u| k+1,K , (5.5) 
h K ∥∇η p h ∥ 0,K ≤ Ch k K |p| k,K . (5.6) 
Now, using Cauchy-Schwarz's inequality and (5.1)-(5.6), we obtain

B S ((η u h , η p h ), (v h , q h )) := 2ν(ε(η u h ), ε(v h )) Ω -(∇ • v h , η p h ) Ω + (∇ • η u h , q h ) Ω -2ν(ε(η u h )n, v h ) Γ D -2θν(ε(v h )n, η u h ) Γ D + ν⟨γ 0 η u h , v h ⟩ 1/2,h,Γ D + θ(q h , η u h • n) Γ D + (η p h , v h • n) Γ D -2ν(ε(η u h )n • n, v h • n) Γ S -2θν(ε(v h )n • n, η u h • n) Γ S + ν⟨γ 0 η u h • n, v h • n⟩ 1/2,h,Γ S + θ(q h , η u h • n) Γ S + (η p h , v h • n) Γ S + β ν K∈T h h 2 K (-2ν ∇ • ε(η u h ) + ∇η p h , ∇q h ) K ≤ C h k {|u| k+1,Ω + |p| k,Ω } |||(v h , q h )||| h . (5.7) 
On the other hand, using again (5.1)-(5.6), and the definition of ||| • ||| h , we have that (5.9)

|||(η u h , η p h )||| h ⪯ h k {|u| k+1,Ω + |p| k,Ω }. ( 5 
The result follows using triangle inequality and the bounds (5.8) and (5.9). □ 6. Numerical experiments 6.1. Example 1: 2D Cavity. In this example, taken from [START_REF] Urquiza | Weak imposition of the slip boundary condition on curved boundaries for Stokes flow[END_REF], we take Ω := (-1, 1) 2 and the slip boundary condition is imposed on y = -1, while a Dirichlet boundary condition is enforced on the rest of the boundary. The exact solution of this problem is given by u := (2y(1-x 2 ), -2x(1-y 2 )) and p := 0. For our computations we use P 1 for all the variables, while the viscosity is set to ν = 1. The corresponding computed velocity field is depicted Figure 1. Table 1 presents the approximation errors for pressure and velocity as well as the computed convergence rate, which are in good agreement with the theory, with a slight superconvergence for the pressure. Table 2 presents the error in L 2 norm on the slip condition on Γ S , that, for this situation, does not differ significantly between the symmetric and skew-symmetric variants. However, it shows that the larger the Nitsche parameter γ 0 is, the smaller is the error on the slip condition, for both variants. 
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Figure 1 .

 1 Figure 1. The computed velocity field for Example 1.

Figure 2 .

 2 Figure 2. Computational domain and corresponding mesh of the Naca problem.

Figure 3 .

 3 Figure 3. Isovalues of the pressure (top) and velocity magnitude (bottom).

Figure 4 .

 4 Figure 4. Zoom, close to the Naca wing, of the velocity field.

6. 3 .

 3 Example 3: 3D Cylinder. The last example is based on a standard three-dimensional CFD benchmark: the cylinder problem. The geometrical settings of the domain are given in Figure5.

Figure 5 .

 5 Figure 5. Cylinder problem. Domain and boundary conditions.

Figure 6 .

 6 Figure 6. Cylinder problem. Surface view of the computational mesh.

Figure 7 .

 7 Figure 7. Cylinder problem. Isovalues of the pressure.

Figure 8 .

 8 Figure 8. Cylinder problem. Velocity magnitude (top view).

Figure 9 .

 9 Figure 9. Cylinder problem. Velocity magnitude (side view).

Figure 10 .

 10 Figure 10. Cylinder problem. Zoom, close to the cylinder, of the velocity field.

  |||(e u h , e p h )|||2 h ≤ CB S ((e u h , e p h ), (e u h , e p h )) = -B S ((η u h , η p h ), (e u h , e p h )) ≤ Ch k {|u| k+1,Ω + |p| k,Ω } |||(e u h , e p h )||| h .

	.8)
	Thus, from Theorem 4.6, lemmas 4.4 and (5.7), we get

Table 1 .

 1 Approximation errors and convergence orders for each variable.

	1,Ω order

Table 2 .

 2 Computations of ∥u h • n∥ 0,Γ S for different values of θ and γ 0 .

	3
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