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Abstract

New approximations of the matrix ϕ functions are developed. These approx-
imations are rational functions of a specific form allowing simple and accurate
schemes for linear systems. Furthermore, these approximations are fully paralleliz-
able. Several tests show the efficiency of the method and its good parallelization
properties.
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1 Introduction
The main objectives in scientific computing are accuarcy and saving of computational
time. We are mostly interested here in the second objective. For a matrix A ∈ Md(C),
we propose to use rational approximations of its exponential exp(A) and some related
functions to design an accurate and parallelizable numerical scheme to solve linear dif-
ferential equations. In many problems, what is truly important is rather the action of
exp(A) on a vector than the computation of the exponential itself. For any v ∈ Rd,
exp(A)v is approximated by Rn,0(A)v =

∑n
k=1 akvk with Rn,0(A) the rational approx-

imation of exp(A) defined in [5]: each vector vk is the solution of the linear system
(A+ θkI)vk = v where ak and θk are fixed complex numbers depending only on n and
not on A, nor on v. It is key to note that each vector vk can be computed separately from
the others by assigning to each node a linear system to solve. This is the essential prop-
erty of the method. If we have at our disposal n processors, we could compute on each
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processor one vector vk independently from the others. Hence the cost of the computa-
tion of Rn,0(A)v is that of solving just one linear system (A+ θkI)x = v if we neglect
computational time to sum up the n vectors vk. We are mainly interested in negative
semidefinite symmetric matrices A ∈ Md(R) stemming from the spatial discretisation
of parabolic Partial Differential Equationsent and the associated evolution equations. It
is a question of computing an approximation of the solution u : I = [0, T ]→ Rd to the
linear differential equation

u′(t) = Au(t) + f(t) (1)

with a source term f : I → Rd and a square matrix A that do not depend on the variable
t. The initial condition is

u(0) = u0 ∈ Rd. (2)

This equation plays a key role in many physical problems. Its solution is given by
Duhamel’s formula

u(t) = exp(tA)u0 +

∫ t

0

exp((t− s)A)f(s)ds. (3)

For polynomials f , the last integral is a linear combination of generalized moments
of the exponential. In order to get a good approximation of u(t), it is necessary not
only to compute accurately the exponential, but also some of its moments. This is the
heart of the exponential integrators schemes. For example, if the source term is linear
f = f0 + tf1 , the solution of problem (1)-(2) is

u(t) = ϕ0(tA)u0 + tϕ1(tA)f0 + t2ϕ2(tA)f1, (4)

with the “ϕ functions“ defined for z ∈ C byϕ0(z) = exp(z) andϕ1(z) =
∫ 1

0
exp(θz) dθ =

(exp(z) − 1)/z, ϕ2(z) =
∫ 1

0
θ exp(θz) dθ = (exp(z) − 1 − z)/z2. The idea in expo-

nential time schemes is to compute u(t) using some approximations of the ϕ func-
tions. If ϕ̃` denotes an approximation of ϕ`, we define an approximation of the so-
lution by u(t) ' ϕ̃0(tA)u0 + tϕ̃1(tA)f0 + t2ϕ̃2(tA)f1. Therefore, we could com-
pute accurately the solution of the problem if accurate approximations of the ϕ func-
tions are available. For a constant source terme, relation (4) is sometimes written
u(t) = u0 + tϕ(tA)(f + Au0) with ϕ denoting ϕ1. This function ϕ has been fully
studied in a number of papers. More generally, the ϕ functions, denoted ϕ` and defined
in (5), play a major role in the design of numerical schemes for stiff problems. In [10],
ϕ(A) is computed as a bloc of the exponential of a larger matrix (twice the dimension
of A) that looses nice propreties of the matrix A such as symmetry. In many references,
the computation of exp(A)v with a unitary vector v ∈ Rd is approximated by pm−1(A)v
with pm−1 a polynomial of degree less or equal to m. Since such an approximation
belongs to the Krylov subspace Km(A, v) = span{v,Av, · · · , Am−1v}, the use of the
Arnoldi or Lanczos algorithm is necessary. Such algorithmes produce, at each iteration
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m, an upper Hessenberg matrix Hm of size m × m and a matrix Vm of size d × m
whose columns form an orthonoral basis of Km(A, v) such that Hm = V T

mAVm. At
the end of the iterations (according to a stopping criterion), exp(A)v is approximated
by αVmexp(Hm)e1, with e1 the first vector of the canonical basis of Rm (consult [10]).
The computation of exp(A) is then reduced to the computation of exp(Hm). Since
m is small (this is the case in many examples reported), the computation of exp(Hm)
could be done using the eigendecomposition of the matrix Hm. Other alternatives ex-
ist: exp(Hm) ' p(Hm) where p is the Hermite interpolant of the exponential function
on the spectrum of Hm (taking into account the multiplicities of the eigenvalues), or p
is the best uniform approximation of the exponential on an intervall that contains the
spectrum of Hm, . . . The method presented in [6] uses Krylov subspaces method com-
bined with a recursive scheme allowing the computation of ϕ1(kz) (k ∈ N, z ∈ C) in
terms of z and ϕ1(z), based on the observation that ϕ1(2z) = (exp(x) + 1)ϕ1(x)/2.
In [7], ϕ1(A) is computed, for a symmetric matrix A, via an orthonormal reduction of
A to a tridiagonal matrix T . Then, ϕ1(T ) is approximated by R(T ) with R the best
rational approximation of ϕ1 on ] −∞, 0]. Function R is written in its partial fraction
decomposition form. We also use the partial fraction decomposition in our approxi-
mation. In rational Krylov methods, exp(Hm)v is approximatex by q−1(Hm)p(Hm)v
wher p and q are polynomials. The poles of the approximation should not intersect
the spectrum of Hm. See the analysis in [4], [3] among other references. In [12], ra-
tional approximations and contours integrals are used to compute general ϕ`. Theses
approximations share a common property with the method developed in this paper: the
use of the same set of poles to compute all the ϕ functions. As mentionned in [12],
this enables to reduce the work dramatically. We refer to the survey papers [9] et [8]
to understand the need of an efficient computation of ϕ(A)v in the design of expo-
nential integrators. We define in this paper new approximations of functions ϕ` and
use theses approximations to define a parallel numerical scheme computing directly
the solution at time t using an accurate approximation of (4). As an illustration, con-
sider the linear source term case. We put forward the following approximation of the
solution (4): u(t) ' Rn,0(tA)u0 − tRn,0(tA)f0 − t2Rn,1(tA)f1 with Rn,` the approx-
imation of ϕ` defined by Rn,`(z) =

∑n
k=1

ak,`
z+θk

, and ak,` =
ak,0

(−θk)`
. In other words,

u(t) is aproximated by
∑n

k=1 ak,0ωk, with ωk the unique solution to the linear system
(tA+θkI)ωk = u0− t

θk
f0 + t2

θ2k
f1. The idea is to carry out the computation of each vk on

a different processor. Indeed, each vector vk could be computed independently from the
others by solving the linear complex system (A + θkI)vk = v. Then, the n vectors are
combined to form Rn,`(A)v. The total computing time cost is just the cost of solving
one linear system if we neglect the summation of scalars and vectors.

The paper is organized as follows. In section 2, we define rational approximations
of functions ϕ`. The resulting numerical scheme is the subject of section 4. We present
in section 5 several applications for both Ordinary Differential Equations (ODE) and
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Partial Differential Equations (PDE). Finally, the last section is devoted to conclusion
and possible extension of the numerical scheme followed by brief concluding remarks.

2 The ϕ functions
For polynomial f , the solution of (1)-(2) is explicitely known as a combination of the
so-called ϕ functions defined for z ∈ C by ϕ0(z) = exp(z) and for ` ≥ 1

ϕ`(z) =
exp(z)− exp`−1(z)

z`
(5)

with expk the finite Taylor series of the exponential of order k. The values at the origin
of these functions and their derivatives are

ϕ`(0) =
1

`!
, ϕ′`(0) =

1

(`+ 1)!
(` ≥ 0). (6)

The following definitions of the entire functions ϕ` are equivalent to definition (5).

• Recurrence relation : ϕ0(z) = exp(z) and for ` = 0,

ϕ`+1(z) =
ϕ`(z)− ϕ`(0)

z
. (7)

• Power series : for ` ≥ 0

ϕ`(z) =
∑
k≥0

zk

(k + `)!
. (8)

There are also several other equivalent definitions: in terms of special functions (hyper-
geometric functions, Mittal-Leffler functions, . . . ), definition by real integrals or com-
plex contours. For a square matrixA, we choose to define matrix ϕ`(A) using the power
series definition (8)

ϕ`(A) =
∑
k≥0

Ak

(k + `)!
.

Note that for any diagonal matrix A, ϕ`(A) is also diagonal and (ϕ`(A))p,p = ϕ`(Ap,p).
Note also that for all similar matricesB andA = PBP−1, we haveϕ`(A) = Pϕ`(B)P−1.
There is a matrix recurrence relation for ϕ functions similar to the scalar relation (7):

Aϕ`+1(A) = ϕ`(A)− ϕ`(0)I (` = 0). (9)

We conclude this section by giving the explicit expression of the solution of ODE (1) in
the case of polynomial source terms. It involves functions ϕ` as stated earlier.
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Lemma 1 If the right-hand side in (1) is polynomial f(t) =
∑J

j=0
tj

j!
fj , with constant

vectors f` ∈ Rd, then the solution of (1)-(2) is

u(t) = exp(tA)u0 +
J∑
j=0

tj+1ϕj+1(tA)fj. (10)

Proof. Indeed t 7−→ uj(t) = tj+1ϕj+1(tA)fj is a solution of the ODE with f(t) =
tj

j!
fj and a null initial condition. �

The idea now is to compute the solution using accurate approximations of functions
ϕ`. As stated in the Introduction section, several methods exist to compute these func-
tions using different mathematical tools. We recall in the next section some propreties
of the rational approximation of ϕ0 analysed in [5] and define new approximations of
ϕ`. In what follows n denotes an even number and (θ(n))ni=1 are the n zeros of expn, the
truncated Taylor series of exp(z), z ∈ C. These zeros are pairwise complex conjugate
and none of which is a real number.

3 Approximation of the ϕ functions
The following rational approximations of exp(z) is straightforward:

exp(z) = ϕ0(z) ' Rn,0(z) :=
1

expn(−z)
=

n∑
k=1

ak,0
z + θk

, (∀z ∈ C)

with complex numbers ak,0 evaluated from the θk’s. From now on, we consider only
matrices A ∈Md(C) such that

all matrices A− θkI are nonsingular, (H1)

meaning that their spectrum does not contain any root of any expn. This is the case for
Hermitian matrices and also for every matrix as long as n is large enough. We will make
use of the following approximation fully analysed in [5].

exp(A) = ϕ0(A) ' Rn,0(A) :=
n∑
k=1

ak,0(A+ θkI)−1. (11)

For diagonalisable matrices A = PDP−1, there is a naturel bound for the approxima-
tion error

‖exp(A)−Rn,0(A)‖2 ≤ κ2(P ) max
λ∈Sp(A)

|exp(λ)−Rn,0(λ)|,
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with κ2(P ) = ‖P‖2 ‖P−1‖2 the condition number of the change-of-basis matrix P . For
Hermitian matrices, the approximation error is precisely

‖exp(A)−Rn,0(A)‖2 = max
λ∈Sp(A)

|exp(λ)−Rn,0(λ)|.

Thus, if the spectrum of matrix A is included in a region Γ of the real line where the ap-
proximation of the exponential is very accurate, i.e. there exists a sequence (εn)n≥0 that
goes fastly to 0 such that maxz∈Γ |ϕ0(z)−Rn,0(z)| ≤ εn, then Rn,0(A) is a very accu-
rate approximation of exp(A) since for Hermitian matrices ‖exp(A)−Rn,0(A)‖2 ≤ εn.
Note that for non-Hermitian matrices, the condition number κ2(P ) may be too large
and destroys the accuracy. Convergence is indeed geometric for Hermitian matrices
with spectrum in the negative real axis. If a part of the spectrum is positive, a shift is
necessary to get a good approximation. See the end of this Section.

Scalar case. To define the approximations of ϕ`, we draw on definition (5) of the
exponentional integrators.

Definition 1 For integer ` (1 ≤ ` ≤ n+ 1), we define rational functions Rn,` by

Rn,`(z) =
Rn,0(z)− exp`−1(z)

z`
, z ∈ C. (12)

Indeed, Taylor series of Rn,`(z) shows that theses functions are defined on the whole
complex plane (see (15) below). The values of functions Rn,` and their derivatives at
the origin are (compare with (6))

Rn,`(0) =
1

`!
(0 ≤ ` ≤ n), (Rn,`)

′(0) =
1

(`+ 1)!
(0 ≤ ` ≤ n− 1). (13)

Hence Rn,` coincide with ϕ` at the origin for ` = 0, · · · , n. Their derivatives coincide
also for ` = 0, · · · , n − 1. The error ϕ1(z) − Rn,1(z) is displayed in Figure 1. The
shape of the curves are very similar to the case ` = 0 analysed in [5]. For x small
enough (|x| < 10−10 in this figure), we set ϕ`(x) = ϕ`(0) = 1/(`!) to eliminate the
instabilities, otherwise we use the following reccurence relation

zRn,`+1(z) = Rn,`(z)−Rn,`(0), (0 ≤ ` ≤ n). (14)

Rational functions Rn,` are indeed approximations of functions ϕ` as it is shown in next
Proposition.

Proposition 1 For 0 ≤ ` ≤ n+ 1, we have

Rn,`(z) = ϕ`(z) +
+∞∑

k=n+1−`

(λn,`+k − 1)
zk

(k + `)!
, (15)

with λn,k = ( 1
expn(−x)

)(k)(0).
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Figure 1: Approximation of ϕ1 by Rn,1 on [−200, 0]: pointwise error |Rn,1(x)−ϕ1(x)|
for n = 4, 8, 16.

Proof. For ` = 0, see [5]. For ` ≥ 1, use definitions (5) and (12) of ϕ` and Rn,`. �

Thus, Rn,` is an approximation of function ϕ` whose accuracy decreases as ` in-
creases: Rn,0 is a n-order approximation of ϕ0 in a neigherbohood of the origin in the
sense that Rn,0(z)− exp(z) = O(zn+1) while Rn,n is only a first-order approximation
of ϕn. Fortunately, it is not essential to insure high order approximation of all ϕ` since
the usual numerical schemes use only ϕ` with small values of `. For example, the forth-
order exponential Rosenbrock verifier scheme make use of ϕ` for ` ≤ 4 only. We should
keep in mind that only small values of ` are necessary for numerical applications. Let
us now present a key observation: it turns out that the partial fraction decomposition of
Rn,` and Rn,0 are very similar.

Proposition 2 The poles of Rn,` are those of Rn,0 and the following decomposition
holds

Rn,`(z) =
n∑
k=1

ak,`
z + θk

, ak,` =
ak,0

(−θk)`
.

Proof. Indeed, the relation is true for ` = 0 (see [5]). For 1 ≤ ` ≤ n, it results from
(14). �

As mentioned in [12], using a set of common poles for all ϕ` functions is an at-
tractive option, in particular for the computation of the action of a linear combination
of ϕ`(A) on a fixed vector. We illustrate this in Section 4. Our idea in the design of
exponential integrators is to replace ϕ`(z) by Rn,`(z) in the explicit expression of the
solution of the ODE. There are two situations where an approximation error can easily
be derived: for z near the origin or z in the negative real half-axis.

Proposition 3 (Approximation error, scalar case) Let 0 ≤ ` ≤ n. Near the origin,
we have |Rn,`(z) − ϕ`(z)| = O(zn+1−`) and for negative x ≤ −% < 0, |Rn,`(x) −
ϕ`(x)| ≤ 1

2n%`
.
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Proof. Combining (6), (7), (13), and (14), we get z`(Rn,`(z) − ϕ`(z)) = Rn,0(z) −
exp(z). The results derive then from the approximation of exp(z) by Rn,0(z) (see [5]
using results from [2]). Outside the disk |z| ≥ % > 0, we have |Rn,`(z) − ϕ`(z)| ≤
1
%`
|Rn,0(z)− exp(z)|. �

Matrix case. Partial fraction decomposition of Rn,` is the basis of the parallel com-
putation of Rn,`(A) and Rn,`(A)v for any vector v. For square matrix that satisfies the
hypothesis (H1), we use Proposition 2 to define the following approximation

ϕ`(A) ' Rn,`(A) :=
n∑
k=1

ak,`(A+ θkI)−1.

For diagonal matrixA, Rn,`(A) is a diagonal matrix too and (Rn,`(A))p,p = Rn,`(Ap,p).
For similar matrices A and B = PAP−1, we have Rn,`(B) = PRn,`(A)P−1. There is
a reccurence relation for (Rn,`(A))` similar to reccurence relation (9) for (ϕ`(A))`. It
follows from the decomposition in Proposition 2:

ARn,`+1(A) = Rn,`(A)−Rn,`(0)I, (0 ≤ ` ≤ n). (16)

We now see how to transfer the approximation error results from the scalar case in
Proposition 3 to the matrix case. For any diagonalisable matrix A = PDP−1, we have
Rn,`(A)− ϕ`(A) = P (Rn,`(D)− ϕ`(D))P−1. If in addition A is Hermitian, then

‖Rn,`(A)− ϕ`(A)‖2 = ‖Rn,`(D)− ϕ`(D)‖2 = max
λ∈Sp(A)

|Rn,`(λ)− ϕ`(λ)| .

On the other hand, using recurrence relations (9), (16) and formulas (6), (13), we obtain
for 0 ≤ ` ≤ n

D`(Rn,`(D)− ϕ`(D)) = Rn,0(D)− ϕ0(D).

From theses relations, we deduce the following approximation result.

Proposition 4 (Approximation error, matrix case) For nonsingular Hermitian matri-
ces, we have

‖Rn,`(A)− ϕ`(A)‖2 = max
λ∈Sp(A)

∣∣∣∣Rn,0(λ)− exp(λ)

λ`

∣∣∣∣
for 0 ≤ ` ≤ n.

We are mainly interested in matrices A with negative spectrum (arising from space-
discretization of parabolic equations). For nonsingular matrices with spectral abscissa
α(A) := max

λ∈Sp(A)
Re(λ) < 0, we have

‖Rn,`(A)− ϕ`(A)‖2 ≤
1

2n|α(A)|`
.
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For singular matrices, the spectrum is splitted into two parts Λ1 = {λ < −ε} and
Λ2 = {−ε ≤ λ ≤ 0} with ε > 0. On Λ2, the error behaves like Csteεn+1−2` (see
Proposition 3).

If a part of the spectrum of the Hermitian matrix A is positive, there is no guarantee
that Rn,0(A) is an suitable approximation of exp(A). However the shifted matrixA−cI
with c ≥ α(A) satisfies the hypothesis (H1) and should be well approximated. This
leads to the following approximation: exp(A) ' ec Rn,0(A− cI).

4 The numerical scheme
We suppose in this section that the symmetric matrix A has a negative spectrum. The
goal is to compute ϕ`(A)v for v ∈ Rd without explicitely forming the matrix ϕ`(A). ,
we propose the following approximation of ϕ`(A)v

ϕ`(A)v ' Rn,`(A)v =
n∑
k=1

ak,`vk, (17)

with vectors vk defined by (A + θkI)vk = v. The idea is to carry out the computation
of each vk on a different processor. Indeed, each vector vk could be computed indepen-
dently from the others by solving the linear complex system (A + θkI)vk = v. Then,
the n vectors are combined to form Rn,`(A)v. Computing Rn,`(A)v this way is as ex-
pensive as solving a single linear system if we neglect the cost of umming up in (17). In
practice However, the interconnections between processors are not always neglectible.
To compute the action of matrix ϕ`(A) on a linear combination of vectors, we use the
approximation

ϕ`(A)(
P∑
p=1

αpvp) '
P∑
p=1

αpRn,`(A)vp =
P∑
p=1

αp(
n∑
k=1

ak,`)vp,k.

Each vector vp,k is the solution to the linear system (A + θkI)vp,k = vp. The n × P
vectors are computed in parallel leading to a total computing time cost that is just the
cost of solving one linear system if we neglect the summation of scalars and vectors. To
compute the action of a linear combination of matrices ϕ`(A) on the same vector v, we
make following approximation: for X =

∑J
`=1 α`ϕ`(A) and vector v,

[ J∑
`=1

α`ϕ`(A)
]
v '

n∑
k=1

( J∑
`=1

α`ak,`
)
vk.

Here again, the total cost is essentially that of solving one linear system. Note that the
sum delimited by parenthesis could be precomputed if necessary.
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A parallel scheme. The aim is not to discretise the differential equation but to com-
pute directly an approximation of the solution at the prescribed final time without pass-
ing through intermediate times, unlike usual numerical time integration schemes. It
is not our purpose to study here the case of a general analytical source term f(t) =∑+∞

`=0
tj

j!
fj where the solution involves a infinite number of ϕ`. We only consider the

polynomial case. Following Lemma 1, we define the approximation

u(t) '
n∑
k=1

ak,0ωk (18)

with ωk the unique solution to the linear system

(tA+ θkI)ωk = u0 +
J∑
`=0

[
t

−θk

]`+1

fj. (19)

Note that matrices tA + θkI are always nonsingular for any symmetric matrix A. Of
course, each ωk will be computed separately from the others leading to savings in com-
putational time as illustrated by the numerical tests in the next section.

5 Applications
We consider only polynomial source terms. We are interested in the accuracy of the
approximation of the solution at time t given by (18)-(19). The vector norm used to
compute the errors is ‖w‖2 = 1

d

∑d
`=1 |wi|2. We also investigate the computing time.

We present three tests: the first one is an ODE with an affine source term. The two others
are differential equations obtained from the space discretisation of a Partial Differential
Equations (PDE). Namely, the heat equation. We consider firstly its one-dimensional
version, then the two-dimensional one. All computations are done using tools from
Python’s librairies and the parallelization is only simulated as we call “parallel com-
puting time” the time used to compute one vector ωk in (19) since each of these n vectors
could be computed separately. It is important to realize that inceasing n increases the
accuracy without increasing the computational time since the vectors ωk are computed
in parallel. This is true but only in exact arithmetic. A detailed analysis shows that it
is not recommended to use large values of n unless computations are done using more
than the usual double precision format. Hence we shall limit n ' 30. The problems
arising for larger values of n are due to the accuracy of the computations of the poles
θk, the partial fraction decomposition in floating-point arithmetic, . . . See [5].

Test 1. Ordinary Differential Equations. Consider (1) with an affine source term
f(t) = f0 + tf1(t) and a tridiagonal matrix A = − 1

h2
tridiag(−1, 2,−1) ∈ Md(R),
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with h = 1/(d+1). Note that the spectrum of matrix tA is negative for all t ≥ 0. The ini-
tial condition u0 as well as the vectors f0 and f1 are all constant equal to (1, · · · , 1)T ∈
Rd. The solution of this problem is u(t) = exp(tA)u0 + tϕ1(tA)f0 + t2ϕ2(tA)f1 =
exp(tA)(u0 − g0 − g2) + (g0 + g2 + tg1) whith vectors g0, g1, and g2 defined by
Ag0 = −f0, Ag1 = −f1, and Ag2 = −g1. For t large enough, the solution be-
haves like g0 + g2 + tg1. Hence, there is no steady state. For different times t cor-
responding to a transient state and the asymptotic one, we consider the approximation
u(t) ' Rn,0(tA)u0 − tRn,0(tA)f0 − t2Rn,1(tA)f1 and display on Figure 2 the norm
of the error as a function of the truncation level n and the dimension of the problem d.
The exact solution is computed using function expm of Python’s librairy Numpy. As
expected, accuracy increases with n. It is worth pointing out that the accuracy does not
depend on the dimension d. Indeed, when the dimension increases, the spectrum of the
matrix becomes more and more negative (containing large negative eigenvalues) which
makes the approximation more effective, see Figure 1. We note that n = 32 is more
than enough for pratical purposes.

Figure 2: Test 1. Accuracy of the approximation of the solution as a function of the
truncation level n and the dimension of the problem d.

Test 2. Space discretisation of a one-dimensional Partial Differential Equations.
The problem is now to seek v(t, x) solution of the one-dimensional heat equation

vt(t, x)− vxx(t, x) = f(x), t > 0, x ∈ Ω =]0, π[,

with zero Dirichlet boundary conditions. Let ψn(x) = sin(nx) be the eigenfunctions
and λn = n2 the associated eigenvalues of the problem. For initial condition v0 =
ψn and source term f = λmψm, the solution is v(t, x) = exp(−λnt)ψn(x) + (1 −
exp(−λmt))ψm(x). It goes from ψn to ψm (n 6= m) as t goes from 0 to +∞. Space
discretisation by the usual second order centered Finite Difference scheme leads to the
ODE

u′h(t) = Ahuh(t) + fh

11



where Ah is the matrix of the previous test, fh = (f(xj))
d
j=1 with xj = jh and h =

1/(d + 1). The entries of the vector uh(t) ∈ Rd are the unknowns of the problem:
the approximations of (u(t, x`))

d
`=1. We display on Figure 3 the error at different times

corresponding to transient and asymptotic states. The error is computed with respect to
the solution of the EDO. As expected again, accuracy increases with n. On the same
Figure, we plot also the accuracy of the solution given by the ODE solver solve ivp
from the Python’s module Scipy using its default parameters. In the transient case,
n = 4, 8 or 12 are not enough to supersede the solution given by solve ivp but
n ≥ 16 is clearly better. In the asymptotic case, even n = 4 is enough to get the
accuracy given by solve ivp. In the next example, we compare our scheme with
solve ivp using several options: implicit solvers, control of the local error, ...

Figure 3: Test 2. Accuracy of the approximation as a function of the truncation level n
and the dimension of the problem d. The accuracy of the solution obtained by the ODE
solver solve ivp is marked with filled squares.

Test 3. Space discretisation of a two-dimensional Partial Differential Equations.
We consider the two-dimensional heat equation on Ω =]0, π[×]0, π[ with zero Dirichlet
boundary conditions. The problem is now: find v(t, x, y) solution of

vt(t, x, y)−∆v(t, x, y) = f(x, y), t > 0, (x, y) ∈ Ω.

The eignenvalues and associated eigenfunctions are λn,m = n2 + m2, ψn,m(x, y) =
sin(nx) sin(my). With v0 = ψn,m and f = λm,nψm,n, the solution is

v(t, x, y) = exp(−λn,mt)ψn,m(x, y) + (1− exp(−λm,nt))ψm,n(x, y).

It goes from ψn,m to ψm,n as t goes from 0 to +∞. For the space discretisation, we use d
internal points in each direction. The unknown is a vector in Rd2 . The error is computed
with respect to the solution of the ODE.

We use again solve ivp for camparison, testing now different options. We com-
pare our scheme to two accurate implicit solvers: (i) BDF solver (an implicit multi-step
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variable-order method based on a backward differentiation formula), (ii) Radau solver
(an implicit Runge-Kutta method of order 5). See the documentation [11] for a precise
description of solve ivp. We also play with the parameters atol and rtol, the
absolute and relative tolerances. We fix in the simulation d = 80. We plot on Figure
4 work-precision diagrams (error in 2-norm as a function of the computational time)
for BDF and Radau solvers with different tolerences parameters atol=atol = 10−k,
k = 5, · · · , 9. As tolerences parameters decrease, the computing times for the solvers
increase obviously. We do compare the schemes at two different times: a transient one
t = 0.01 where the solution is moving from ψn,m to ψm,n and an asymptotic one where
the solution is very close to ψm,n. To measure the gain in computational time, we de-
fine the speedup relative to one of the solvers as the ratio between the computational
time for the solver and the computational time for our method. Let us recall again that
parallelization is only simulated as we call “parallel computing time” the time used to
compute one vector ωk in (19) since each of these n vectors could be computed sepa-
rately.

• t = 0.01. With truncation parameters n = 8, 16, · · · , we obtain a high precision
that is never achieved by the BDF solver. The speed up is almost the same for
every value of the tolerence parameters. Our method runs about 25 times faster
than BDF. The Radau solver is much accurate than the BDF solver but very time-
consuming. With n = 8, 16, · · · , we achieve its highest accuracy with a speedup
is ' 70.

• t = 1. Starting from n ≥ 16, we reach the accuracy of the BDF solver. The
accuracy of the Radau solver is reached for n ≥ 20. For the n = 16, the speedup
with the BDF solver is ' 30. For the highest accuracy achieved by the BDF
solver, the speedup is ' 197. Concerning the Radau solver, the speedup ' 40 for
n = 20. To get the highest accuracy obtained with the solver, n = 32 is necessary.
The speedup is then ' 145.

6 Conclusion
We have analysed a new method to compute the solution of linear Ordinary Differential
Equations of the form u′(t) = Au(t) + f(t) where the matrix A is hermitian and the
function f is polynomial. Instead of discretising the ODE as done in usual numerical
integration schemes, our method computes directly an approximation of the solution
at the prescribed final time without passing through intermediate times. The solution
at time t is approximated by

∑n
k=1 ak,0ωk where each vector ωk could be computed

separately from the others, by solving a linear system, leading to substantial savings in
computational time. We tested succesfully our method on matrices arising from Finite
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Figure 4: Test 3. Work-precision diagrams: the 2-norm as a function of the comput-
ing time. For BDF and Radau solvers, several tolerances are used. For the rational
approximation, several values of the truncation level are used.

Difference approximations of the heat equation in one and two dimensions. In each case,
our method has proved to be successful. We plan to apply now our method to nonlinear
ODE of the form u′(t) = Au(t) + f(u(t)) that may result from a local linearisation
around a state of interest. The symmetric matrix A is then a Jacobian matrix. In the
analysis of exponential integrators schemes, the ϕ-functions are supposed to be known
exactly which is not the case here. The analysis of our scheme is under unvestigation
with a special emphasis on stability taking into account the fact that ϕ- functions are not
computed exactly but only approximated with enough accuracy to define and efficient
scheme, both in terms of speed and accuracy.
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[3] T. Göckler, V. Grimm, Uniform approximation of ϕ-functions in exponential inte-
grators by a rational Krylov subspace method with simple poles. SIAM J. Matrix
Anal. Appl., vol. 35, No. 4, (2014).
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