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ANALYSIS OF A POSITIVITY-PRESERVING SPLITTING SCHEME FOR

SOME NONLINEAR STOCHASTIC HEAT EQUATIONS

CHARLES-EDOUARD BRÉHIER, DAVID COHEN, AND JOHAN ULANDER

Abstract. We construct a positivity-preserving Lie–Trotter splitting scheme with finite
difference discretization in space for approximating the solutions to a class of nonlinear
stochastic heat equations with multiplicative space-time white noise. We prove that this
explicit numerical scheme converges in the mean-square sense, with rate 1{4 in time and
rate 1{2 in space, under appropriate CFL conditions. Numerical experiments illustrate the
superiority of the proposed numerical scheme compared with standard numerical methods
which do not preserve positivity.

AMS Classification. 60H35. 60M15. 65J08.

Keywords. Stochastic partial differential equations. Stochastic heat equation. Splitting scheme.
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1. Introduction

Starting with the seminal work [38] on an implicit scheme for stochastic quasi-linear parabolic
partial differential equations in 1995, the field of numerical analysis of stochastic partial differential
equations (SPDEs) has gained a huge interest during the last decades. We refer the interested readers
to [79, 25, 46, 26, 53] for references on the theory of SPDEs and to [36, 73, 27, 69, 42, 84, 68, 80, 61,
85, 54, 66, 45, 44, 47, 28, 4, 5, 82, 22, 55, 53, 48, 43, 33, 83, 81, 65, 64, 56, 2, 78, 52, 37, 50, 29, 17, 6]
for references on the numerical analysis of SPDEs (with a particular focus on works related to strong
convergence for parabolic SPDEs).

In this work we propose and study a novel positivity-preserving numerical scheme for a fully discrete
approximation of the following nonlinear Stochastic Heat Equation (SHE) with multiplicative space-
time white noise

(1)

$

’

&

’

%

Btupt, xq “ B
2
xxupt, xq ` gpupt, xqq

9W pt, xq,

upt, 0q “ upt, 1q “ 0,

up0, xq “ u0pxq,

for pt, xq P r0, T sˆ r0, 1s and where u0 ě 0 is continuous, g : RÑ R is globally Lipschitz continuous, of

class C1 and satisfies gp0q “ 0, and 9W is a space-time white noise, see Section 2 for precise definitions
and assumptions. Taking gpxq “ x in equation (1) results in the celebrated parabolic Anderson model,
see for instance [18]. This equation is used to model (particle) branching processes, hydrodynamics
with random forcing, and serves as a model for turbulent diffusions.

The positivity-preserving property of the exact solutions to the SPDE (1) is the subject of extensive
research: two of the first results in this direction can be found in [63, 74], where this property is proven

to be true for noise of the form uγ 9W (where 1 ď γ ă 3{2) and for a nonlinearity that is of at most
linear growth. The case of a Lipschitz nonlinearity g is studied in, for example, [26, 70, 62]. For the
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sake of completeness, we mention the paper [8] on positivity of SHE with random initial conditions, the
paper [76] on problems with spatially homogeneous Wiener process, the paper [20] on the stochastic
fractional heat equation, the paper [19] on problems in Rn, as well as the paper [23] on systems of
SHEs with a spatially correlated noise. Note that these references are considering the space domain
to be R or Rn. To the best of our current knowledge, there are no corresponding results for the case
of compact domains with homogeneous Dirichlet boundary conditions.

While standard time integrators for SPDEs, such as the Euler–Maruyama scheme [27], the semi-
implicit Euler–Maruyama scheme [36], and the stochastic exponential Euler integrator [55] do converge
when applied to the problem (1), they do not preserve the positivity property of the exact solution.
Note that the semi-implicit Euler scheme and the exponential Euler integrator preserve positivity in
the deterministic case (g ” 0 in equation (1)).

In this work, we employ a splitting strategy for the time integration of the SPDE (1). This results
in an efficient and positivity-preserving explicit time integrator. In essence, a splitting integrator
decomposes the vector field of the original evolution equation in several parts, such that the arising
subsystems are exactly integrated (or easily). Splitting schemes have been extensively studied and
successfully applied to deterministic differential equations, see for instance [39, 10, 60] and references
therein. Splitting schemes are also very popular for an efficient time discretization of stochastic
(partial) differential equations. We refer the reader to the following non-exhaustive list of articles:
[58, 21, 34, 51, 7, 30, 3, 24, 67, 15, 16, 9, 59, 13, 12, 14].

The preservation of positivity by numerical methods have been investigated in several references in
both the deterministic and stochastic settings. Without being exhaustive, we mention the following
articles on positivity-preserving schemes for stochastic differential equations: [72, 75, 40, 57, 1, 71, 49,
41]. Finally, let us mention the recent reference [86] on a positivity-preserving numerical scheme for
the linear stochastic heat equation with finite dimensional noise. We are not aware of works on the
numerical analysis of positivity-preserving schemes for SPDEs driven by space-time white noise.

The fully-discrete Lie–Trotter splitting scheme, see equation (14), considered in this article combines
a finite difference approximation in space and the explicit recursion

uLT
m`1 “ exp

`

τN2DN
˘

ûLT
m`1,

where for n “ 1, . . . , N ´ 1 one has

ûLT
m`1,n “ exp

˜

?
NfpuLT

m,nq∆m,nW ´
NfpuLT

m,nq
2τ

2

¸

uLT
m,n,

where τ “ T {M ą 0 denotes the time step size, h “ 1{N is the mesh size, ∆m,nW denote space-
time Wiener increments, N2DN the pN ´ 1q ˆ pN ´ 1q matrix of the discrete Laplace operator, and
gpvq “ vfpvq. Observe that the diffusion part of (1) is solved exactly, while the noise part is solved
exactly in the case of the parabolic Anderson model (where one has gpvq “ v and fpvq “ 1 and thus
the subsystem is a geometric Brownian motion). This shares similarity with the works [31, 77] on
stochastic differential equations. For a general mapping g, we freeze the factor f at the previous time
point and obtain a geometric Brownian motion in the spirit of the exponential scheme proposed in
[11] for finite dimensional problems.

The main results of the paper are the following:

‚ We obtain a fully discrete explicit approximation of the stochastic heat equation (1) that is
positivity-preserving, see Proposition 4.

‚ We show bounds for the second moment of the numerical approximation under a CFL condi-
tion τ{h “ Op1q in Proposition 5.

‚ We prove strong convergence, with rate 1{4, for the temporal discretization under a CFL
condition τ{h2 “ Op1q, see Theorem 6. The strong convergence of the fully discrete scheme
is provided in Corollary 7.
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We leave the study of weak convergence of the proposed scheme to possible future works. On top
of that, we show positivity of the exact solution to the SPDE (1) on compact domains. This follows
naturally from the numerical analysis of the proposed approximation, see Proposition 2. Let us mention
that the CFL conditions above are not due to the discretization of the Laplace operator, since the
linear part is solved exactly. They are due to the discretization of the contribution of the space-time
white noise in the temporal evolution. Numerical experiments confirm that the CFL condition is
necessary when studying the mean-square convergence of the proposed scheme.

This paper is organized as follows. Section 2 presents the setting, assumptions, and useful results
on the considered SHE. We also recall results on the finite difference discretization from [35]. Section 3
contains the definition of the proposed Lie–Trotter splitting as well as the main results of the paper.
We postpone their proofs to Section 5. We dedicate Section 4 to numerical experiments illustrating
our qualitative and quantitative results on the proposed splitting scheme. The last section 6 briefly
presents an extension to systems of nonlinear stochastic heat equations. Appendix A contains a proof
of an auxiliary inequality used in the proofs of the main results.

2. Setting

This section provides the necessary setting for the description of the considered class of nonlinear
stochastic heat equations as well as of its solution. We recall the notion of a mild solution and a
standard well-posedness result for completeness. In addition, we recall the spatial discretization by
finite difference from [35].

For any real-valued continuous function v : r0, 1s Ñ R, let }v}8 “ max
xPr0,1s

|vpxq|.

Let pΩ,F ,Pq be a probability space, equipped with a filtration
`

Ft
˘

tě0
which satisfies the usual con-

ditions. The expectation operator is denoted by Er¨s. In the sequel, C denotes a generic constant that
may vary from line to line. We sometimes use subscripts on C to indicate dependence on parameters.

2.1. Description of the SPDE. Let us first introduce the main assumptions needed for the numerical
analysis of the proposed time integrator for the stochastic heat equation.

Assumption 1. The initial value u0 : r0, 1s Ñ R is a function of class C3, and satisfies the conditions
u0p0q “ u0p1q “ 0.

Note that the regularity assumption on the initial value above is for ease of presentation. For weaker
conditions, see [35] or [2].

When discussing positivity-preserving properties, a further condition is needed.

Assumption 2. The initial value u0 : r0, 1s Ñ R satisfies u0pxq ě 0 for all x P r0, 1s.

For the nonlinearity in the considered SPDE, we make use of the following.

Assumption 3. The mapping g : RÑ R is of class C1, is globally Lipschitz continuous, and satisfies
gp0q “ 0.

We denote by Lg the Lipschitz constant of g:

Lg “ sup
v1,v2PR,v2‰v1

|gpv2q ´ gpv1q|

|v2 ´ v1|
.

The moment bounds and the error estimates presented below depend on the value of the Lipschitz
constant Lg. This is not indicated in order to simplify the notation.

We then introduce the auxiliary mapping f : RÑ R defined for all v P Rzt0u by

(2) fpvq “
gpvq

v
“

ż 1

0

g1prvqdr
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and by fp0q “ g1p0q. Since g1 is continuous by Assumption 3, the mapping f is continuous and
bounded, and one has the upper bound sup

vPR
|fpvq| ď Lg.

For a fixed time horizon T ą 0, let W “ tW pt, xq : t P r0, T s, x P r0, 1su be an Ft-adapted Brownian
sheet. We recall that a Brownian sheet is a Gaussian random field with mean zero and covariance
ErW pt, xqW ps, yqs “ pt^sqpx^yq for all s, t P r0, T s and x, y P r0, 1s, see for instance [79]. We consider
the stochastic heat equation in the Itô sense

(3)

$

’

&

’

%

dupt, xq “ B2
xxupt, xqdt` gpupt, xqq dW pt, xq,

upt, 0q “ upt, 1q “ 0,

up0, xq “ u0pxq

for t P r0, T s and x P r0, 1s, where u0 and g satisfy Assumption 1 and Assumption 3, respectively.
In order to define a mild solution of the stochastic heat equation (3), we introduce the heat kernel

Gpt, x, yq “
8
ÿ

j“1

e´j
2π2t sinpjπxq sinpjπyq,

for t ě 0, x, y P r0, 1s, which is the fundamental solution of the (deterministic) heat equation with
homogeneous Dirichlet boundary conditions:

$

’

&

’

%

dvpt, xq “ B2
xxvpt, xqdt,

vpt, 0q “ vpt, 1q “ 0,

vp0, xq “ δpxq,

where the initial value is the Dirac delta function.
A mild solution to the SPDE (3) is a random field

`

upt, xq
˘

tPr0,T s,xPr0,1s
satisfying the following

integral equation almost surely: for all t P r0, T s and x P r0, 1s, one has

(4) upt, xq “

ż 1

0

Gpt, x, yqu0pyqdy `

ż t

0

ż 1

0

Gpt´ s, x, yqgpups, yqqdW ps, yq.

The stochastic integral in (4) is understood in the Itô–Walsh sense, see for instance [26, 46, 79].
We collect some properties of the mild solution upt, xq to the stochastic heat equation (3) in the

following statement, see for instance [35, Proposition 3.7].

Proposition 1. Consider the stochastic heat equation (3) under Assumptions 1 and 3. There exists
a unique mild solution pupt, xqqtPr0,T s,xPr0,1s to the SPDE (3). In addition, for all T P p0,8q, there

exists CT P p0,8q such that

sup
tPr0,T s

sup
xPr0,1s

Er|upt, xq|2s ď CT p1` }u0}
2
8q.

Finally, the solution satisfies the following mean-square regularity property: for all T P p0,8q, there
exists CT P p0,8q such that for all x1, x2 P r0, 1s and all t1, t2 P r0, T s one has

(5)
`

Er|upt2, x2q ´ upt1, x1q|
2s
˘

1
2 ď CT

`

|t2 ´ t1|
1
4 ` |x2 ´ x1|

1
2

˘

.

In this article, our objective is to propose and analyze consistent numerical schemes which preserve
the following property of the exact solution: if the initial value u0 is nonnegative, then the exact
solution to the stochastic heat equation, upt, ¨q, remains nonnegative for all t ą 0.

Proposition 2. Consider the stochastic heat equation (3) together with Assumptions 1, 2 and 3.
Then, for all t P p0,8q and all x P r0, 1s, almost surely, one has

upt, xq ě 0.
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The proof of Proposition 2 above is postponed to Section 5.5. It is a consequence of the analysis
of the fully-discrete numerical scheme and combines two arguments: on the one hand, the numerical
scheme satisfies a variant of Proposition 2, see Proposition 4 below, on the other hand, Theorem 6
gives a strong convergence result of the numerical approximation. Note that similar results are known
when considering the stochastic heat equation on the real line, see for instance the works [63, 74]
and the lecture notes [70]. We are not aware of positivity-preserving results for SPDEs on bounded
domains.

2.2. Spatial discretization. Let us recall the spatial discretization based on a finite difference ap-
proximation on a uniform grid from [35]. For any integer N P N, let h “ 1{N be the space mesh size,
and let xn “ nh for 0 ď n ď N be the grid points. Let κN : r0, 1s Ñ tx0, . . . , xNu, be the mapping
defined by κN pxq “ xn for x P rxn, xn`1q if n P t0, . . . , N ´ 1u, and κN p1q “ κN pxN q “ xN “ 1.

Throughout this article, we use the convention that for any vector v “
`

vn
˘

1ďnďN´1
P RN´1, we

append discrete homogeneous Dirichlet boundary conditions v0 “ 0 and vN “ 0 when needed.
We discretize the initial value u0 of the stochastic heat equation (3) by uN0,n “ uNn p0q “ up0, xnq

for 0 ď n ď N . Note that discrete homogeneous Dirichlet boundary conditions uN0,0 “ uN0,N “ 0 are

satisfied owing to Assumption 1. Let us then define a piecewise linear extension uN p0, ¨q : r0, 1s Ñ R
satisfying uN p0, xnq “ uN0,n for all n “ 0, . . . , N , meaning that for x P p0, 1q one has

uN p0, xq “ N
`

κN pxq ` h´ x
˘

up0, κN pxqq `N
`

x´ κN pxq
˘

up0, κN pxq ` hq.

Let DN “
`

DN
ij

˘

1ďi,jďN´1
denote the matrix coming from a standard finite difference discretization

of the Laplace operator at the grid points xn with homogeneous Dirichlet boundary conditions. The
matrix DN is thus given by

DN “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´2 1 0 . . . 0 0 0

1 ´2 1
. . . 0 0 0

0 1 ´2
. . . 0 0 0

...
. . .

. . .
. . .

. . .
. . .

...

0 0 0
. . . ´2 1 0

0 0 0
. . . 1 ´2 1

0 0 0 . . . 0 1 ´2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

We then introduce the discrete heat kernel GN ptq “
`

GNij ptq
˘

1ďi,jďN´1
“ etN

2DN , for t ě 0. By

convention, set GN00ptq “ GNNN ptq “ 1, GN0N ptq “ GNN0ptq “ 0 and GN0jptq “ GNNjptq “ 0 for all

j P t1, . . . , N ´ 1u, in order to satisfy homogeneous discrete Dirichlet boundary conditions. Finally,
we extend the definition of GN ptq “

`

GNij ptq
˘

1ďi,jďN´1
to

`

GN pt, x, yq
˘

tě0,x,yPr0,1s
by asking that

GN pt, xi, yjq “ NGNij ptq for 0 ď i, j ď N and for t ě 0 and y P r0, 1s

GN pt, x, yq “ N
`

κN pxq ` h´ x
˘

GN pt, κN pxq, κN pyqq `N
`

x´ κN pxq
˘

GN pt, κN pxq ` h, κN pyqq

for x P p0, 1q and GN pt, 0, yq “ GN pt, 1, yq “ 0. As a result, the mapping px, yq ÞÑ GN pt, x, yq is
piecewise linear in x and piecewise constant in y at all times t.

It is worth recalling the following well-known property of the discrete heat kernel: one has GNij ptq ě 0

for all i, j P t1, . . . , N ´ 1u and t ě 0. As a consequence, one has GN pt, x, yq ě 0 for x, y P r0, 1s and
t ě 0. This property follows from the fact that tN2DN is a Metzler matrix, see for instance [32] for a
definition, and the exponential of a Metzler matrix has only non-negative elements.
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We are now in position to define the spatial discretization uN , for N P N, by the following integral
equality

(6) uN pt, xq “

ż 1

0

GN pt, x, yquN p0, κN pyqqdy `

ż t

0

ż 1

0

GN pt´ s, x, yqgpuN ps, κN pyqqq dW ps, yq

for t ě 0 and x P r0, 1s. Note that the mapping x P r0, 1s ÞÑ uN pt, xq is linear on rxn, xn`1s, for every
n P t0, . . . , N ´ 1u, for every t ě 0. In addition, one has uN pt, 0q “ uN pt, 1q “ 0 for every t ě 0.
For a practical implementation of the scheme, it is sufficient to compute uNn ptq “ uN pt, xnq for all
1 ď n ď N ´ 1. This is performed as follows: for all t ě 0 and 1 ď n ď N ´ 1 one has

uNn ptq “
N´1
ÿ

j“1

GNnjptqu
N
0,j `

?
N

N´1
ÿ

j“1

ż t

0

GNnjpt´ sqgpu
N
j psqqdWN

j psq,

where
WN
n ptq “

?
N
`

W pt, xn`1q ´W pt, xnq
˘

.

By definition of a Wiener sheet, observe that the processes
`

WN
1 ptq

˘

tě0
, . . . ,

`

WN
N´1ptq

˘

tě0
are inde-

pendent standard real-valued Wiener processes, for any N P N.
Introduce the RN´1-valued process uN defined by uN ptq “

`

uNn ptq
˘

1ďnďN´1
for all t ě 0. This

process is solution of the following stochastic differential equation

(7) duN ptq “ N2DNuN ptqdt`
?
NgpuN ptqqdWN ptq

with initial value uN p0q “
`

uN0
˘

1ďnďN´1
, where the notation

`

gpuN ptqqdWN ptq
˘

n
“ gpuNn ptqq dWN

n ptq

is used.
Let us recall the following convergence result for the spatial discretization, see [35, Theorem 3.1].

Proposition 3. Consider the stochastic heat equation (3) with a nonlinearity g satisfying Assump-
tion 3. Denote by pupt, xqqtPr0,T s,xPr0,1s its exact solution and by

`

uN pt, xq
˘

tPr0,T s,xPr0,1s
the numerical

approximation by finite differences with mesh size h “ 1{N . For all T P p0,8q and any initial value
u0 satisfying Assumption 1, there exists CT pu0q P p0,8q such that for all h “ 1{N with N P N one
has

(8) sup
tPr0,T s

sup
xPr0,1s

`

Er|uN pt, xq ´ upt, xq|2s
˘

1
2 ď CT pu0qh

1
2 .

In the error analysis below, the following auxiliary result from [2] (see Proposition 2.4) on the
temporal regularity of uN is used: there exists CT pu0q P p0,8q such that for all t, s P r0, T s, one has

(9) sup
NPN

sup
xPr0,1s

Er|uN pt, xq ´ uN ps, xq|2s ď CT pu0q|t´ s|
1
2 .

3. The positivity-preserving splitting scheme

In the core part of this paper, we present and study the strong convergence of an efficient and
positivity-preserving time integrator for the stochastic heat equation (3).

Let T P p0,8q and divide the interval r0, T s into M P N subintervals rtm, tm`1s of length τ “ T {M ,
where tm “ mτ for m P t0, . . . ,Mu. Introduce the mapping `M : r0, T s Ñ tt0, . . . , tMu, defined by
`M ptq “ tm for all t P rtm, tm`1q, if m P t0, . . . ,M ´ 1u, and `M pT q “ `M ptM q “ tM “ T .

We propose a fully-discrete explicit scheme based on a Lie–Trotter splitting strategy producing ap-
proximations uLT

m “
`

uLT
m,n

˘

1ďnďN´1
of the finite difference approximation uN ptmq “

`

uNn ptmq
˘

1ďnďN´1

at the grid times tm, m “ 0, . . . ,M . We set the initial value to be uLT
0,n “ uNn p0q “ uN0,n for all

1 ď n ď N ´ 1. As above, one has uLT
m,0 “ 0 and uLT

m,N “ 0 for all m P t0, . . . ,Mu. In this way,
homogeneous Dirichlet boundary conditions are satisfied by the numerical scheme at all times.

We explain the construction of the scheme in Section 3.1. We then describe the main results of this
article: the positivity-preserving property of the splitting scheme (Proposition 4) and the mean-square
convergence in time with order 1{4 (Theorem 6 and Corollary 7).
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3.1. Description of the time integrator. Let us describe how the splitting scheme is constructed.
Given the numerical solution uLT

m “
`

uLT
m,n

˘

1ďnďN´1
at grid time tm “ mτ for 0 ď m ď M ´ 1,

the solution uLT
m`1 at the next grid time tm`1 “ tm ` τ is constructed by successively solving two

subsystems in RN´1:

‚ first, the linear Itô SDE system

(10) dvM,N,1
m,n ptq “

?
NvM,N,1

m,n ptqfpuLT
m,nqdWN

n ptq,

for n P t1, . . . , N ´ 1u and t P rtm, tm`1s, with initial value vM,N,1
m,n ptmq “ uLT

m,n, where we
recall (see equation (2) in Section 2) that the auxiliary function f is such that gpvq “ vfpvq
for all v P R;

‚ second, the linear ODE system

(11) dvM,N,2
m ptq “ N2DNvM,N,2

m ptqdt,

for t P rtm, tm`1s, with initial value vM,N,2
m,n ptmq “ vM,N,1

m,n ptm`1q.

Observe that the solutions of the two subsystems above are known: the solution of the SDE (10) is
given by

(12) vM,N,1
m,n ptq “ exp

˜

?
NfpuLT

m,nq
`

WN
n ptq ´W

N
n ptmq

˘

´
NfpuLT

m,nq
2pt´ tmq

2

¸

uLT
m,n,

for all t P rtm, tm`1s, and the solution of the ODE (11) is given by

(13) vM,N,2
m ptq “ ept´tmqN

2DN vM,N,1
m ptm`1q,

for all t P rtm, tm`1s.
Gathering the expressions above gives the following expression for the proposed Lie–Trotter splitting

scheme

(14) uLT
m`1 “ eτN

2DN

˜

exp
´?

NfpuLT
m,nq∆m,nW ´

NfpuLT
m,nq

2τ

2

¯

uLT
m,n

¸

1ďnďN´1

,

where ∆m,nW “WN
n ptm`1q´W

N
n ptmq. Observe that the random variables

`

∆Wm,n

˘

0ďmďM´1,1ďnďN´1

are independent standard real-valued Gaussian random variables.
The splitting scheme formula (14) can also be written as

uLT
m`1,n “

N´1
ÿ

k“1

GNnkpτq exp
´?

NfpuLT
m,kq∆m,nW ´

NfpuLT
m,kq

2τ

2

¯

uLT
m,k,

for all m P t0, . . . ,M ´ 1u and n P t1, . . . , N ´ 1u.
One of the key properties of the proposed splitting scheme is the following: if the initial value

uLT
0 “

`

uLT
0,n

˘

1ďnďN´1
only has nonnegative elements, then for all m P t1, . . . ,Mu the numerical

solution uLT
m “

`

uLT
m,n

˘

1ďnďN´1
at time tm “ mτ also only has nonnegative elements almost surely. In

other words, the proposed scheme is positivity-preserving. This is stated in the next proposition.

Proposition 4. Let M P N and N P N be arbitrary integers and let T P p0,8q. Let Assumptions 1, 2
and 3 be satisfied. Let the sequence uLT

0 , . . . , uLT
M be given by the splitting scheme (14), with h “ 1{N

and τ “ T {M , with initial value uLT
0,n “ u0pxnq ě 0 for all n P t1, . . . , Nu. Then, almost surely, one

has

uLT
m,n ě 0,

for all m P t1, . . . ,Mu and n P t1, . . . , N ´ 1u.

Proof of Proposition 4. The proof proceeds by recursion on the time index m.

‚ Note that uLT
0,n “ up0, xnq ě 0 for all n P t0, . . . , Nu.
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‚ Assume that the property uLT
m,n ě 0, for all n P t1, . . . , N ´ 1u, holds at time tm “ mτ . We

prove that under this assumption, it also holds at time tm`1 “ pm` 1qτ .
The argument is straightforward: the solutions of the subsystems (10) and (11) are non-

negative at all times when they have nonnegative initial values. More precisely, first one
has

vM,N,1
m,n ptm`1q “ e

?
NfpuLT

m,nq∆m,nW´N
fpuLTm,nq

2τ

2 uLT
m,n ě 0

for all n P t1, . . . , N ´ 1u. Second, using the inequality GNnkpτq ě 0 (see Section 2.2), one has

uLT
m`1,n “ vM,N,2

m,n ptm`1q “

N´1
ÿ

k“1

GNnkpτqv
M,N,1
m,k ptm`1q ě 0.

Thus the positivity property of the numerical solution holds at time tm`1 “ pm` 1qτ .

As a consequence, the property uLT
m,n ě 0, for all n P t1, . . . , N ´ 1u, holds for any m P t0, . . . ,Mu.

The proof of Proposition 4 is completed. �

3.2. Convergence results. Let us now prove that the proposed numerical scheme provides accurate
approximation of the exact solution. In this article, we show mean-square error estimates and give
orders of convergence with respect to τ “ T {M and h “ 1{N .

We impose a CFL stability condition in the sequel to ensure stability and convergence of the Lie–
Trotter splitting scheme (14) when applied to the stochastic heat equation (3); more precisely, we
introduce conditions of the type τ ď γh or τ ď γh2 in the statements below, for some (nonrandom)
arbitrary parameter γ P p0,8q. The conditions on τ and h above are equivalent to the conditions
γM ě TN and γM ě TN2 on M and N respectively.

Owing to Proposition 3, it is sufficient to focus on the error uLT
m,n ´ u

N
n ptmq to obtain estimates for

the total error uLT
m,n ´ uptm, xnq. Proposition 5 shows moment bounds of the numerical solution and

is used to prove our main result in Theorem 6. As a corollary we obtain convergence of uLT
m,n to the

exact solution uptm, xnq at the grid points using results from [35].
Note that Assumption 2 on the positivity of the initial value is not needed in the statements on the

moment bounds and on the convergence of the scheme below.

Proposition 5. Assume that Assumptions 1 and 3 are satisfied. Let the sequence uLT
0 , . . . , uLT

M be
given by the Lie–Trotter splitting scheme (14).

For all γ P p0,8q and all T P p0,8q, there exists Cγ,T P p0,8q such that for all τ “ T {M and
h “ 1{N satisfying the condition τ ď γh, one has

(15) sup
0ďmďM

sup
1ďnďN´1

E
“

|uLT
m,n|

2
‰

ď Cγ,T
`

1` }u0}
2
8

˘

.

The proof of this proposition also provides moment bounds for a space-time continuous version
uLTpt, xq, defined by equation (21), of the Lie–Trotter splitting scheme (14).

We are now in position to state the main convergence result of this article. For ease of presentation,
we only consider errors at space-time grid points.

Theorem 6. Assume that Assumptions 1 and 3 are satisfied. Let the sequence uLT
0 , . . . , uLT

M be given
by the Lie–Trotter scheme (14), and let

`

uN ptq
˘

tě0,0ďnďN
be given by the spatial semi-discretization

scheme (7).
For all γ P p0,8q and T P p0,8q, there exists Cγ,T pu0q P p0,8q such that for all τ “ T {M and

h “ 1{N satisfying the condition τ ď γh, one has

(16) sup
0ďmďM

sup
0ďnďN

`

Er|uLT
m,n ´ u

N
n ptmq|

2s
˘

1
2 ď Cγ,T pu0q

ˆ

τ
1
4 `

´ τ

h

¯
1
2

˙

.
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In addition, for all τ “ T {M and h “ 1{N satisfying the condition τ ď γh2, one has

(17) sup
0ďmďM

sup
0ďnďN

`

Er|uLT
m,n ´ u

N
n ptmq|

2s
˘

1
2 ď Cγ,T pu0qτ

1
4 .

Proving (17) from the error estimate (16) under the stronger condition τ ď γh2 is straightforward.
Combining Theorem 6 and Proposition 3, one directly obtains error estimates for the fully-discrete

scheme.

Corollary 7. Consider the setting and assumptions of Theorem 6. For all γ P p0,8q and T P p0,8q,
there exists Cγ,T pu0q P p0,8q such that for all τ “ T {M and h “ 1{N satisfying the condition τ ď γh2,
one has

(18) sup
0ďmďM

sup
0ďnďN

`

Er|uLT
m,n ´ uptm, xnq|

2s
˘

1
2 ď Cγ,T pu0qh

1
2 .

We postpone the proofs of the above results to Section 5.

4. Numerical experiments

In this section we provide numerical experiments to support and verify the above theoretical results.
Recall that τ “ T {M ą 0 is the time step size and h “ 1{N ą 0 is the space mesh size. We compare
the proposed Lie–Trotter splitting scheme (14), denoted LT below, to the following classical time
integrators when applied to the spatially discretized system (7):

‚ the Euler–Maruyama scheme (denoted EM below), see for instance [27]

uEM
m`1 “ uEM

m ` τN2DNuEM
m `

?
NgpuEM

m q∆mW,

‚ the semi-implicit Euler–Maruyama scheme (denoted SEM below), see for instance [36]

uSEM
m`1 “ uSEM

m ` τN2DNuSEM
m`1 `

?
NgpuSEM

m q∆mW,

‚ the stochastic exponential Euler integrator (denoted SEXP below), see for instance [55]

uSEXP
m`1 “ eτN

2DN
´

uSEXP
m `

?
NgpuSEXP

m q∆mW
¯

.

4.1. Preservation of the positivity. We start by illustrating the positivity-preserving property
of the Lie–Trotter scheme (LT) and show the lack of positivity-preserving behavior for the Euler–
Maruyama scheme (EM), the semi-implicit Euler–Maruyama scheme (SEM), and the stochastic ex-
ponential scheme (SEXP). To do this, we use the same noise samples for all time integrators when
applied to the space-discretization of the SPDE (3) as described in Section 2.2 with the initial condition
u0 “ sinpπxq and final time T “ 20. We consider this problem with the three choices of multiplicative
term given by gpvq “ λv, gpvq “ λ ln p1` vq, and gpvq “ λ pv ` sinpvqq. The real-valued parameter
λ ą 0 is introduced to avoid the need to run numerical experiments with very long time horizons
T in order to obtain negative values for the numerical schemes SEXP and SEM. We remark that
gpvq “ λ ln p1` vq is well-behaved for v ě 0 but problems may occur if v ď ´1. Since the proposed
LT scheme is guaranteed to preserve positivity, this is not problematic. However, this could happen
for the time integrators SEXP, SEM or EM. The numerical results are presented in Tables 1 and 2,
where the notation k{50 indicates that k out of 50 samples remain positive.

In Table 1, we let gpvq “ 2.5v and we consider 50 sample paths for each of the time integrators
for several choices of the discretization parameters τ and h. Table 1 confirms that the LT scheme
preserves positivity. This is not the case for SEXP, SEM and EM. We observe that fewer samples of
SEXP and SEM contain negative values for small time steps τ . This is expected as each of the time
integrators SEXP, SEM, and even EM, converges (for every fixed h) to the exact, everywhere positive,
solution of the space-discretized system of SDEs in equation (7).

In Table 2 we instead fix the discretization parameters τ “ 10´5 and h “ 10´3 and consider different
types of multiplicative terms gpvq. We again use 50 samples in each of the entries of Table 2. From
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pτ, hq LT SEXP SEM EM

p10´3, 10´2q 50{50 0{50 0{50 0{50
p10´4, 10´3q 50{50 50{50 50{50 0{50
p10´5, 10´3q 50{50 50{50 50{50 0{50

Table 1. Proportion of samples containing only positive values out of 50
simulated sample paths for the Lie–Trotter splitting scheme (LT), the stochas-
tic exponential Euler integrator (SEXP), the semi-implicit Euler–Maruyama
scheme (SEM), and Euler–Maruyama scheme (EM) for the diffusion coefficient
gpvq “ 2.5v and several choices of discretization parameters τ and h.

the results of Table 2, one can observe the poor performance of the EM scheme in all cases. This table
also illustrates the fact that increasing the size of the multiplicative term prevents SEM and SEXP to
remain positive. It should be clear that increasing the value of λ even more, or the length of the time
interval, would hinder the numerical solutions to stay positive for all time integrators except for the
proposed Lie–Trotter splitting scheme.

gpvq LT SEXP SEM EM

2.5 lnp1` vq 50{50 50{50 50{50 0{50
3.5 lnp1` vq 50{50 50{50 50{50 0{50
5 lnp1` vq 50{50 47{50 26{50 0{50

2.5v 50{50 50{50 50{50 0{50
3.5v 50{50 50{50 50{50 0{50
5v 50{50 4{50 50{50 0{50

2.5 pv ` sinpvqq 50{50 44{50 50{50 0{50
3.5 pv ` sinpvqq 50{50 0{50 0{50 0{50
5 pv ` sinpvqq 50{50 0{50 0{50 0{50

Table 2. Proportion of samples containing only positive values out of 50
simulated sample paths for the Lie–Trotter splitting scheme (LT), the stochas-
tic exponential Euler integrator (SEXP), the semi-implicit Euler–Maruyama
scheme (SEM), and the Euler–Maruyama scheme (EM) for several choices
of diffusion terms gpvq. The discretization parameters are τ “ 10´5 and
h “ 10´3.

4.2. Mean-square errors. For the next numerical experiment, we discretize the stochastic heat
equation (3) with initial value u0pxq “ sinpπxq by a finite-difference scheme in space with mesh size
h “ 2´8. The resulting system of stochastic differential equations (7) is then discretized by the time
integrators LT, SEXP, and SEM. The classical EM scheme is not appropriate in this setting and
numerical results are thus not presented. The following choices for the function g are considered:
gpvq “ v and gpvq “ v

1`v2 and gpvq “ lnp1` vq, for v ě 0, and gpvq “ v expp´v2q. Figure 1 displays,
in a loglog plot, the mean-square errors

sup
0ďmďM

sup
0ďnďN

`

Er|unum
m,n ´ u

refptm, xnq|
2s
˘

1
2

measured at the space-time grid points ptm, xnq for the time interval r0, 0.5s. The reference solution
uref is computed using the LT splitting scheme with time step size τref “ 2´16. Here, 200 samples have
been used to approximate the expectations. We have checked that the Monte Carlo error is negligible
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to observe mean-square convergence. In this figure, one can observe a rate of convergence 1{2 instead
of 1{4 in the mean-square error estimates (17) for the splitting scheme in Theorem 6. This is related
to the mean-square error estimates (16) and the role of the CFL condition τ ď γh2 to obtain (17).
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(d) gpvq “ v expp´v2q

Figure 1. Mean-square errors on the time interval r0, 0.5s of the splitting
scheme (LT), the stochastic exponential Euler integrator (SEXP), and the
semi-implicit Euler–Maruyama scheme (SEM). Mesh size h “ 2´8 and average
over 200 samples.

To illustrate this, we compute the mean-square errors of the Lie–Trotter splitting scheme when
applied to the finite difference discretization of the stochastic heat equation with different values
of the mesh size, namely h “ 2´4, 2´6, 2´8, 2´10. This is presented only for the two nonlinearities
gpvq “ 1.5v and gpvq “ 1.5 v

1`v2 . We have used 200 samples to approximate the expectations. The
other parameters are the same as in the previous numerical experiments. The results are presented in
Figure 2. In these experiments we observe upper bounds which are not uniform with respect to h, in
fact we observe the contribution of the error term τ

1
2h´

1
2 in the mean-square error estimates (16).

In the final numerical experiment, we consider the same parameters as above and the function
gpvq “ v1.25. Observe that this nonlinearity is not globally Lipschitz continuous and is thus not
covered by the the results from Section 3.2. A convergence plot for the splitting scheme (14) is
provided in Figure 3. As above, we observe a mean-square order of convergence 1{2, but which should
not be uniform with respect to h, similarly to what is observed in Figure 2. To prove such rate of
convergence is beyond the scope of this paper and will be the subject of a future work.

5. Proofs of the main results

The objective of this section is to provide the proof of the results stated in Section 3.2, namely the
moment bounds in Proposition 5 and the mean-square error estimates in Theorem 6 and in Corollary 7.
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Figure 2. Mean-square errors on the time interval r0, 0.5s of the splitting
scheme for several values of the spatial mesh h. Average over 200 samples.
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Figure 3. Mean-square errors on the time interval r0, 0.5s of the splitting
scheme (LT) when applied to the stochastic heat equation (3) with gpvq “ v1.25.
Mesh size h “ 2´8 and average over 200 samples.

We also prove Proposition 2, which ensures positivity of the exact solution. Preliminary auxiliary tools
are given in Sections 5.1 and 5.2, before proceeding with the detailed proofs.

5.1. Auxiliary process. In this section, for any M P N and N P N, we define an auxiliary sto-
chastic process

`

uLTpt, xq
˘

tPr0,T s,xPr0,1s
satisfying uLTptm, xnq “ uLT

m,n for all m P t0, . . . ,Mu and

n P t1, . . . , N ´ 1u. The auxiliary process uLT is piecewise continuous with respect to the spatial
variable x, while its temporal evolution on each interval ptm, tm`1q follows a stochastic differential
equation similar to (10).

Recall that the auxiliary mappings κN : r0, 1s Ñ tx0, . . . , xNu and `M : r0, T s Ñ tt0, . . . , tMu are
defined in Sections 2.2 and 4 respectively.

Let n P t1, . . . , N ´ 1u and m P t0, . . . ,M ´ 1u, then for all t P rtm, tm`1s set

(19) uLT
m,nptq “

N´1
ÿ

k“1

GNnkp`
M ptq ´ tmqv

M,N,1
m,k ptq,



13

where vM,N,1
m,n ptq “ exp

´?
NfpuLT

m,nq
`

WN
n ptq ´W

N
n ptmq

˘

´
NfpuLT

m,nq
2
pt´tmq

2

¯

uLT
m,n is the explicit ex-

pression (12) of the solution at time t P rtm, tm`1s of the auxiliary stochastic subsystem (10) used in
the construction of the splitting integrator. Observe that uLT

m,nptq “ vM,N,1
m,n ptq for all t P rtm, tm`1q,

and, in particular, that uLT
m,nptmq “ uLT

m,n. Moreover, by the construction of the splitting scheme,

see (14), it holds that uLT
m,nptm`1q “ uLT

m`1,n.

As a result, for any n P t1, . . . , N ´ 1u, the mapping uLT
n : t P r0, T s ÞÑ uLT

n ptq defined such that
uLT
n ptq “ uLT

m,nptq for t P rtm, tm`1s is well-defined. It is continuous on each interval rtm, tm`1q, and

one has uLT
n ptmq “ uLT

m,n for all m P t0, . . . ,Mu.
We claim that the following identity holds: for all M P N and N P N, for all n P t1, . . . , N ´ 1u and

t P r0, T s, one has

(20) uLT
n ptq “

N´1
ÿ

k“1

GNnkp`
M ptqquLT

k,0 `
?
N

ż t

0

N´1
ÿ

k“1

GNnkp`
M ptq ´ `M psqquLT

k psqfpu
LT
k p`

M psqqdWN
k psq.

The proof is based on a straightforward recursion argument.
Recall from Section 2.2 that one has the identities NGNnkptq “ GN pt, xn, xkq and

?
NdWN

n ptq “
N
`

W pt, xn`1q ´W pt, xnq
˘

. We are now in position to provide the definition of the auxiliary process

uLT: for t P r0, T s and x P r0, 1s, define

(21)

uLTpt, xq “

ż 1

0

GN pt, x, yqu0pκ
N pyqqdy

`

ż t

0

ż 1

0

GN p`M ptq ´ `M psq, x, yquLTps, κN pyqqfpuLTp`M psq, κN pyqqdW ps, yq.

In the identity (21) above, it is worth recalling that x P r0, 1s ÞÑ GN pt, x, yq is a piecewise linear
mapping, whereas y P r0, 1s ÞÑ GN pt, x, yq is a piecewise constant mapping, with GN pt, xn, xkq “
NGNnkptq for all 1 ď n, k ď N ´ 1 and t P r0, T s.

Combining (20) and (21), one obtains the identity uLTpt, xnq “ uLT
n ptq for all t P r0, T s and n P

t1, . . . , N ´ 1u, and therefore one obtains the required property uLTptm, xnq “ uLT
n ptmq “ uLT

m,n. Note

that, for any t P r0, T s, the mapping x P r0, 1s ÞÑ uLTpt, xq is piecewise linear, more precisely it is linear
on each subinterval rxn, xn`1s.

5.2. Auxiliary inequalities. In this subsection we state several inequalities used in the convergence
analysis of the splitting scheme.

‚ For any continuous function v : r0, 1s Ñ R, one has (see for instance [35, Eq. (3.5)])

(22) sup
NPN

sup
tě0

sup
xPr0,1s

ˇ

ˇ

ˇ

ż 1

0

GN pt, x, yqvpκN pyqq dy
ˇ

ˇ

ˇ
ď sup
xPr0,1s

|vpxq|.

‚ For all T P p0,8q, there exists CT P p0,8q such that for all t P p0,8q one has (see for instance
[2, Lemma 2.3])

(23) sup
NPN

sup
xPr0,1s

ż 1

0

|GN pt, x, yq|2 dy ď
CT
?
t
.

‚ For all T P p0,8q, there exists CT P p0,8q such that for all t P p0, T s and all M P N one has

(24) sup
NPN

sup
xPr0,1s

ż t

0

ż 1

0

ˇ

ˇGN pt´ s, x, yq ´GN pt´ `M psq, x, yq
ˇ

ˇ

2
dy ds ď CT

?
τ .

Since we are not aware of a detailed proof of the inequality (24) in the literature, we provide a proof
in Appendix A. Note that the proof is similar to the proof of [2, Lemma 2.3].
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Let us also recall the following discrete Grönwall inequality, see for instance [48, Lemma A.4]:
assume that a sequence

`

am
˘

0ďmďM
of nonnegative numbers satisfies the inequality

am ď A` Cτ
m´1
ÿ

k“0

ak
?
tm ´ tk

,

where we recall that tk “ kτ “ kT
M , for some A,C P p0,8q. Then, there exists CT P p0,8q, depending

only on C and on T , such that one has

(25) sup
0ďmďM

am ď CTA.

5.3. Moment bounds. The objective of this section is to prove Proposition 5. Recall that this
requires to impose the condition τ ď γh where we recall that τ “ T {M , h “ 1{N and where γ P p0,8q
is an arbitrary parameter.

Proof of Proposition 5. Using the definition (21) of the auxiliary process uLT, for all m P t1, . . . ,Mu
and n P t1, . . . , N ´ 1u, one has

uLT
m,n “ uLTptm, xnq

“

ż 1

0

GN ptm, xn, yqu0pκ
N pyqqdy

`

ż t

0

ż 1

0

GN ptm ´ `
M psq, xn, yqu

LTps, κN pyqqfpuLTp`M psq, κN pyqqdW ps, yq.

Using Itô’s isometry formula, one obtains

Er|uLT
m,n|

2s “ Er
ˇ

ˇ

ż 1

0

GN ptm, xn, yqu0pκ
N pyqqdy

ˇ

ˇ

2
s

`

ż t

0

ż 1

0

|GN ptm ´ `
M psq, xn, yq|

2Er|uLTps, κN pyqq|2|fpuLTp`M psq, κN pyqq|2sdy ds.

On the one hand, using the auxiliary inequality (22) and Assumption 1, one obtains

Er
ˇ

ˇ

ż 1

0

GN ptm, xn, yqu0pκ
N pyqqdy

ˇ

ˇ

2
s ď }u0}

2
8.

On the other hand, recall that Assumption 3 implies that f is bounded by Lg. In addition, for all
k P t0, . . . ,m´ 1u and all s P rtk, tk`1q, one has

Er|uLTps, κN pyqq|2s “ Er|vM,N,1
k,n psq|2s

where n P t1, . . . , N ´ 1u is such that κN pyq “ xn and
`

vM,N,1
k,n psq

˘

sPrtk,tk`1s
is the solution of the

auxiliary stochastic subsystem (10). Using the expression (12) for the solution of (10) and the tower
property of conditional expectation, one obtains the upper bound

Er|vM,N,1
k,n psq|2s “ Ere

NfpuLTk,nq
2ps´tkq

2 |uLT
k,n|

2s ď e
NτLg

2

2 Er|uLT
k,n|

2s ď e
Lg

2γ

2 Er|uLT
k,n|

2s,

using the boundedness of f and the condition Nτ ď γ.
Using the auxiliary inequality (23), gathering the upper bounds above yields the following inequality:

for all m P t1, . . . ,Mu one has

sup
1ďnďN´1

Er|uLT
m,n|

2s ď }u0}
2
8 ` Cγ,T τ

m´1
ÿ

k“0

1
?
tm ´ tk

sup
1ďnďN´1

Er|uLT
k,n|

2s.

Using the discrete Grnwall inequality (25) then gives

(26) sup
0ďmďM

sup
1ďnďN´1

Er|uLT
m,n|

2s ď Cγ,T }u0}
2
8,
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where Cγ,T P p0,8q is independent of M , N and }u0}
2
8. This shows moment bounds of the numerical

solution at the grid. It remains to extend this moment bound for uLTpt, xnq when t is no longer
assumed to be a grid point tm.

For all t P r0, T q and n P t0, . . . , N ´ 1u, let m P t0, . . . ,M ´ 1u be such that tm “ `M ptq, using the
same arguments as above one has

Er|uLTpt, xnq|
2s “ Er|vM,N,1

m,n ptq|2s ď e
Lg

2γ

2 Er|uLT
k,n|

2s ď Cγ,T }u0}
2
8,

where the inequality (26) is used in the last step. As a consequence, one has

(27) sup
tPr0,T s

sup
1ďnďN´1

Er|uLTpt, xnq|
2s ď Cγ,T }u0}

2
8.

Finally, since x ÞÑ uLTpt, xq is linear on each subinterval rxn, xn`1s, one obtains

(28) sup
tPr0,T s

sup
xPr0,1s

Er|uLTpt, xq|2s ď sup
tPr0,T s

sup
1ďnďN´1

Er|uLTpt, xnq|
2s ď Cγ,T }u0}

2
8.

The proof of Proposition 5 is thus completed. �

A straightforward consequence of Proposition 5 is the following result.

Lemma 8. Let Assumption 1 and Assumption 3 be satisfied. Let
`

uLTpt, xq
˘

tPr0,T s,xPr0,1s
be given by

the mild formula (21).
For all γ P p0,8q and all T P p0,8q, there exists Cγ,T P p0,8q such that for all τ “ T {M and

h “ 1{N satisfying the condition τ ď γh, for all m P t0, . . . ,M ´ 1u and all t P rtm, tm`1q, one has

(29) sup
1ďnďN´1

`

Er|uLTpt, xnq ´ u
LTptm, xnq|

2s
˘

1
2 ď Cγ,T p1` }u0}8q

´ τ

h

¯
1
2

.

Proof of Lemma 8. Let n P t1, . . . , N ´ 1u and m P t0, . . . ,M ´ 1u, then for all t P rtm, tm`1q one has

uLTpt, xnq ´ u
LTptm, xnq “ vM,N,1

m,n ptq ´ vM,N,1
m,n ptmq

“
?
N

ż t

tm

vM,N,1
m,n psqfpuLT

m,nqdWN
n psq

“
?
N

ż t

tm

uLTps, xnqfpu
LT
m,nqdWN

n psq,

where we recall that the auxiliary process
`

vM,N,1
m,n ptq

˘

tmďtďtm`1
is defined by the auxiliary subsys-

tem (10) which gives the first step of the splitting procedure, see Section 3.1.
Since the mapping f is bounded, using Itô’s isometry formula, the condition τN ď γ and the

moment bounds (15) from Proposition 5, one obtains

Er|uLTpt, xnq ´ u
LTptm, xnq|

2s ď Lg
2NτEr|uLT

m,n|
2s ď Lg

2Cγ,T
`

1` }u0}
2
8

˘

τh´1.

The proof of Lemma 8 is thus completed. �

5.4. Convergence analysis. This section is devoted to the proof of the mean-square convergence of
the splitting scheme given in Theorem 6.

Proof of Theorem 6. Recall that uLT
m,n “ uLTptm, xnq for all n P t1, . . . , N ´ 1u and m P t0, . . . ,Mu,

where
`

uLTpt, xq
˘

tPr0,1s,xPr0,1s
is the process defined by (19).

For all n P t1, . . . , N ´ 1u and m P t1, . . . ,Mu, let us define

Em,n “ uN ptm, xnq ´ u
LT
m,n and Em “ sup

1ďnďN´1
Er|Em,n|2s.
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Using the expression (6) for uN pt, xq and the expression (21) for uLTpt, xq, one obtains the following
decomposition of the error: for all n P t1, . . . , N ´ 1u and m P t1, . . . ,Mu, one has

Em,n “ uN ptm, xnq ´ u
LTptm, xnq

“

ż tm

0

ż 1

0

GN ptm ´ s, x, yqgpu
N ps, κN pyqqqdW ps, yq

´

ż tm

0

ż 1

0

GN ptm ´ `
M psq, x, yquLTps, κN pyqqfpuLTp`M psq, κN pyqqdW ps, yq

“ Ep1qm,n ` E
p2q
m,n,

where we set

Ep1qm,n “

ż tm

0

ż 1

0

GN ptm ´ s, x, yq
“

gpuN ps, κN pyqqq ´ uLTps, κN pyqqfpuLTp`M psq, κN pyqq
‰

dW ps, yq,

Ep2qm,n “

ż tm

0

ż 1

0

“

GN ptm ´ s, x, yq ´G
N ptm ´ `

M psq, x, yq
‰

uLTps, κN pyqqfpuLTp`M psq, κN pyqqdW ps, yq.

Let us first deal with the error term E
p1q
m,n. Recall that gpuq “ ufpuq, therefore one has the

decomposition E
p1q
m,n “ E

p1,1q
m,n ` E

p1,2q
m,n ` E

p1,3q
m,n , where

Ep1,1qm,n “

ż tm

0

ż 1

0

GN ptm ´ s, x, yq
“

gpuN ps, κN pyqqq ´ gpuN p`M psq, κN pyqqq
‰

dW ps, yq

Ep1,2qm,n “

ż tm

0

ż 1

0

GN ptm ´ s, x, yq
“

gpuN p`M psq, κN pyqqq ´ gpuLTp`M psq, κN pyqqq
‰

dW ps, yq

Ep1,3qm,n “

ż tm

0

ż 1

0

GN ptm ´ s, x, yq
“

uLTp`M psq, κN pyqq ´ uLTps, κN pyqq
‰

fpuLTp`M psq, κN pyqqq dW ps, yq.

Using Itô’s isometry formula, the global Lipschitz continuity assumption on g, one obtains

Er|Ep1,1qm,n |
2s ď Lg

2

ż tm

0

ż 1

0

GN ptm ´ s, x, yq
2Er|uN ps, κN pyqq ´ uN p`M psq, κN pyqq|2sdy ds

ď CT pu0qLg
2?τ

ż tm

0

ż 1

0

GN ptm ´ s, x, yq
2 dy ds

ď CT pu0q
?
τ ,

where we have used the temporal regularity estimate (9) for uN and the auxiliary inequality (23).
Similarly, using Itô’s isometry formula, the global Lipschitz continuity assumption on g, one obtains

Er|Ep1,2qm,n |
2s ď Lg

2

ż tm

0

ż 1

0

GN ptm ´ s, x, yq
2Er|uN p`M psq, κN pyqq ´ uLTp`M psq, κN pyqq|2sdy ds

ď C
m´1
ÿ

k“0

Ek

ż tk`1

tk

ż 1

0

GN ptm ´ s, x, yq
2 dy ds.

Using the inequality (23), for all k P t0, . . . ,m´ 1u, one has
ż tk`1

tk

ż 1

0

GN ptm ´ s, x, yq
2 dy ds ď

ż tk`1

tk

CT
?
tm ´ s

ds

“ 2CT
`?
tm ´ tk ´

a

tm ´ tk`1

˘

“ 2CT
?
tm ´ tk

´

1´

c

1´
τ

tm ´ tk

¯

ď
2CT τ

?
tm ´ tk

,
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where we have used the inequality 1´
?

1´ z ď z for all z P r0, 1s in the last step. Therefore one has

Er|Ep1,2qm,n |
2s ď CT τ

m´1
ÿ

k“0

Ek
?
tm ´ tk

.

Finally, for the third term, using Itô’s isometry formula and the boundedness of f , one obtains

Er|Ep1,3qm,n |
2s ď L2

g

ż tm

0

ż 1

0

GN ptm ´ s, x, yq
2Er|uLTp`M psq, κN pyqq ´ uLTps, κN pyqq|2sdy ds

ď Cγ,T pu0qτh
´1

ż tm

0

ż 1

0

GN ptm ´ s, x, yq
2 dy ds

ď Cγ,T pu0qτh
´1

using the temporal regularity estimate (29) from Lemma 8 for uLT and the auxiliary inequality (23).

Let us now deal with the error term E
p2q
m,n. Using Itô’s formula, the boundedness of f and the

moment bounds (15) from Proposition 5, one obtains

Er|Ep2qm,n|2s ď Lg
2

ż tm

0

ż 1

0

ˇ

ˇGN pt´ `M psq, x, yq ´GN ptm ´ `
M psq, x, yq

ˇ

ˇ

2Er|uLTps, κN pyqq|2sdy ds

ď Cγ,T pu0q

ż tm

0

ż 1

0

ˇ

ˇGN pt´ `M psq, x, yq ´GN ptm ´ `
M psq, x, yq

ˇ

ˇ

2
dy ds

ď Cγ,T pu0q
?
τ ,

owing to the auxiliary inequality (24) in the last step.
Gathering the estimates, for all m P t1, . . . ,Mu, one has

Em ď Cγ,T pu0q
`?
τ ` τh´1

˘

` CT τ
m´1
ÿ

k“0

Ek
?
tm ´ tk

.

Applying the discrete Grönwall inequality (25) (see Section 5.2) then yields

sup
0ďmďM

Em ď Cγ,T pu0q

´?
τ `

τ

h

¯

.

This gives the error estimate (16). When the condition τ ď γh2 is satisfied, one has τh´1 ď
?
γτ

1
2

and one has the error estimate (17). This concludes the proof of Theorem 6. �

Let us also provide the proof of Corollary 7.

Proof of Corollary 7. It suffices to combine the error estimate (8) from Proposition 3 for the spatial
discretization error, and the error estimate (16) from Theorem 6 for the temporal discretization error.
One then obtains the error estimate for the splitting scheme

`

Er|uLT
m,n ´ uptm, xnq|

2s
˘

1
2 ď

`

Er|uLT
m,n ´ u

N ptm, xnq|
2s
˘

1
2 `

`

Er|uN ptm, xnq ´ uptm, xnq|2s
˘

1
2

ď Cγ,T pu0qτ
1
4 ` CT pu0qh

1
2

ď Cγ,T pu0qγ
1
4h

1
2 ` CT pu0qh

1
2 ,

under the condition τ ď γh2. This gives the error estimate (18) and concludes the proof of Corollary 7.
�
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5.5. Proof of Proposition 2. We conclude this section with the proof of the positivity property of
the exact solution to the stochastic heat equation (3) on a bounded domain.

Proof of Proposition 2. Owing to Corollary 7 and to the temporal regularity estimate (5) satisfied by
the solution u of the SPDE in equation (3), one obtains the following result (recall that τ “ T {M and

h “ 1{N): there exists Cγ,T pu0q P p0,8q such that for all N P N and M P N, such that M ě TN2

γ , for

all t P r0, T s and x P r0, 1s, one has

(30)
`

Er|upt, xq ´ uLTp`M ptq, κN pxqq|2s
˘

1
2 ď Cγ,T pu0qN

´ 1
2 .

Let t P r0, T s and x P r0, 1s be fixed, then there exists a sequence
`

NkqkPN such that Nk Ñ 8 and

uLTp`Mkptq, κNkpxqq converges to upt, xq almost surely. Since uLTp`Mkptq, κNkpxqq ě 0 almost surely
owing to Proposition 4, one obtains upt, xq ě 0 almost surely. �

6. Generalization to systems

In this section, we briefly describe how to generalize the construction of the splitting scheme (14)
and the analysis above to stochastic systems of the type

(31)

$

’

’

’

’

&

’

’

’

’

%

du1pt, xq “ B
2
xxu1pt, xqdt` g1pu1pt, xq, u2pt, xqqdW1pt, xq,

du2pt, xq “ B
2
xxu2pt, xqdt` g2pu1pt, xq, u2pt, xqqdW2pt, xq,

u1pt, 0q “ u1pt, 1q “ 0, u2pt, 0q “ u2pt, 1q “ 0,

u1p0, xq “ u1,0pxq, u2p0, xq “ u2,0pxq,

for pt, xq P r0, T s ˆ r0, 1s, where g1, g2 : R2 Ñ R are globally Lipschitz continuous mappings, with
initial values u1,0, u2,0 satisfying Assumptions 1 and 2. The two evolution equations are driven by
space-time white noise. The Wiener sheets W1 and W2 can either be equal or independent. For ease
of presentation we only deal with systems of two equations, while considering systems of arbitrary size
would also be possible.

In this setting, to obtain solutions which only have nonnegative values, it is necessary to replace
Assumption 3 by the following.

Assumption 4. The mappings g1, g2 : R2 Ñ R are of class C1 and globally Lipschitz continuous. In
addition, they satisfy g1p0, v2q “ 0 and g2pv1, 0q “ 0 for all pv1, v2q P R2.

One then has the following generalization of Proposition 2.

Proposition 9. Consider the SPDE system (31). Let Assumption 4 be satisfied and assume that the
initial values u1,0, u2,0 satisfy Assumptions 1 and 2. Then, for all t P p0,8q and all x P r0, 1s, almost
surely, one has

u1pt, xq ě 0 , u2pt, xq ě 0.

As in Sections 2 and 3, the mesh size and the time-step sizes are denoted by h “ 1{N and τ “ T {M
respectively, and the space and time grid points are denoted by xn “ nh and tm “ mτ , with 0 ď n ď N
and 0 ď m ďM . In addition, introduce the mappings f1, f2 : R2 Ñ R defined by

f1pv1, v2q “
g1pv1, v2q

v1
“

ż 1

0

Bv1g1prv1, v2qdr , f2pv1, v2q “
g2pv1, v2q

v2
“

ż 1

0

Bv2g2pv1, rv2qdr.

Owing to Assumption 4, the mappings f1 and f2 are bounded and continuous mappings. Finally, for
all t ě 0 and n P t1, . . . , N ´ 1u define

WN
1,nptq “

?
N
`

W1pt, xn`1q ´W1pt, xnq
˘

, WN
2,nptq “

?
N
`

W2pt, xn`1q ´W2pt, xnq
˘

and define the noise increments

∆m,nW1 “WN
1,nptm`1q ´W

N
1,nptmq , ∆m,nW2 “WN

2,nptm`1q ´W
N
2,nptmq
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for all n P t1, . . . , N ´ 1u and m P t0, . . . ,M ´ 1u.
Using the finite difference method and the same notation as in Section 2.2, one obtains the spatial

semi-discretization scheme for the SPDE system (31) with mesh size h as follows:

(32)

#

duN1 ptq “ N2DNuN1 ptqdt`
?
Ng1pu

N
1 ptq, u

N
2 ptqq dWN

1 ptq

duN2 ptq “ N2DNuN2 ptqdt`
?
Ng2pu

N
1 ptq, u

N
2 ptqq dWN

2 ptq.

We are now in position to state the definition of the fully-discrete scheme based on a Lie–Trotter
splitting strategy and inspired by (14) for the approximation of solutions of (31): for all m P

t0, . . . ,M ´ 1u, set
(33)
$

’

’

’

’

’

&

’

’

’

’

’

%

uLT
1,m`1 “ eτN

2DN

˜

exp
´?

Nf1pu
LT
1,m,n, u

LT
2,m,nq∆m,nW1 ´

Nf1pu
LT
1,m,n, u

LT
2,m,nq

2τ

2

¯

uLT
1,m,n

¸

1ďnďN´1

uLT
2,m`1 “ eτN

2DN

˜

exp
´?

Nf2pu
LT
1,m,n, u

LT
2,m,nq∆m,nW2 ´

Nf2pu
LT
1,m,n, u

LT
2,m,nq

2τ

2

¯

uLT
2,m,n

¸

1ďnďN´1

,

with initial values uLT
1,0 “

`

u1,0pxnq
˘

1ďnďN´1
and uLT

1,0 “
`

u2,0pxnq
˘

1ďnďN´1
.

The scheme (33) is positivity-preserving in the following sense.

Proposition 10. Let M P N and N P N be arbitrary integers and let T P p0,8q. Let Assumption 4
be satisfied, and assume that the initial values u1,0, u2,0 satisfy Assumptions 1 and 2. Let the sequence
uLT

1,0, . . . , u
LT
1,M and uLT

2,0, . . . , u
LT
2,M be given by the splitting scheme (33), with h “ 1{N and τ “ T {M ,

with initial values uLT
1,0,n “ u1,0pxnq ě 0 and uLT

1,0,n “ u2,0pxnq ě 0 for all n P t1, . . . , Nu. Then, almost
surely, one has

uLT
1,m,n ě 0 , uLT

2,m,n ě 0,

for all m P t1, . . . ,Mu and n P t1, . . . , N ´ 1u.

The proof of Proposition 10 is a straightforward modification of the proof of Proposition 4. More-
over, one has the following variant of Proposition 5.

Proposition 11. Let Assumption 4 be satisfied and assume that the initial values u1,0, u2,0 satisfy
Assumptions 1 and 2. Let the sequences uLT

1,0, . . . , u
LT
1,M and uLT

2,0, . . . , u
LT
2,M be given by the Lie–Trotter

splitting scheme (33).
For all γ P p0,8q and all T P p0,8q, there exists Cγ,T P p0,8q such that for all τ “ T {M and

h “ 1{N satisfying the condition τ ď γh, one has

(34) sup
0ďmďM

sup
1ďnďN´1

E
“

|uLT
1,m,n|

2
‰

` sup
0ďmďM

sup
1ďnďN´1

E
“

|uLT
2,m,n|

2
‰

ď Cγ,T
`

1` }u1,0}
2
8 ` }u2,0}

2
8

˘

.

Finally, one has the following generalization of Theorem 6.

Theorem 12. Let Assumption 4 be satisfied and assume that the initial values u1,0, u2,0 satisfy As-
sumptions 1 and 2. Let the sequences uLT

1,0, . . . , u
LT
1,M and uLT

2,0, . . . , u
LT
2,M be given by the Lie–Trotter

splitting scheme (33), and let
`

uN1 ptq
˘

tě0,0ďnďN
and

`

uN2 ptq
˘

tě0,0ďnďN
be given by the spatial semi-

discretization scheme (32).
For all γ P p0,8q and T P p0,8q, there exists Cγ,T pu1,0, u2,0q P p0,8q such that for all τ “ T {M

and h “ 1{N satisfying the condition τ ď γh, one has

(35)

sup
0ďmďM

sup
0ďnďN

`

Er|uLT
1,m,n ´ u

N
1,nptmq|

2s
˘

1
2 ď Cγ,T pu1,0, u2,0q

ˆ

τ
1
4 `

´ τ

h

¯
1
2

˙

sup
0ďmďM

sup
0ďnďN

`

Er|uLT
2,m,n ´ u

N
2,nptmq|

2s
˘

1
2 ď Cγ,T pu1,0, u2,0q

ˆ

τ
1
4 `

´ τ

h

¯
1
2

˙

.
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In addition, for all τ “ T {M and h “ 1{N satisfying the condition τ ď γh2, one has

(36)

sup
0ďmďM

sup
0ďnďN

`

Er|uLT
1,m,n ´ u

N
1,nptmq|

2s
˘

1
2 ď Cγ,T pu1,0, u2,0qτ

1
4

sup
0ďmďM

sup
0ďnďN

`

Er|uLT
2,m,n ´ u

N
2,nptmq|

2s
˘

1
2 ď Cγ,T pu1,0, u2,0qτ

1
4 .

The proofs of Proposition 11 and of Theorem 12 are omitted since they follow from the same
arguments as those of Proposition 5 and of Theorem 6. Finally, one obtains the following variant of
Corollary 7

Corollary 13. Consider the setting and assumptions of Theorem 12. For all γ P p0,8q and T P p0,8q,
there exists Cγ,T pu1,0, u2,0q P p0,8q such that for all τ “ T {M and h “ 1{N satisfying the condition
τ ď γh2, one has

(37)

sup
0ďmďM

sup
0ďnďN

`

Er|uLT
1,m,n ´ u1ptm, xnq|

2s
˘

1
2 ď Cγ,T pu1,0, u2,0qh

1
2

sup
0ďmďM

sup
0ďnďN

`

Er|uLT
2,m,n ´ u2ptm, xnq|

2s
˘

1
2 ď Cγ,T pu1,0, u2,0qh

1
2 .

To conclude this presentation of the positivity-preserving Lie–Trotter splitting scheme (33) for the
approximation of solutions of the SPDE system (31), we report some numerical experiments.

The first numerical experiment illustrates the positivity-preserving property of the Lie–Trotter
splitting scheme (LT) when applied to the system of SPDEs (31) driven by two independent noise. The
initial values are taken to be u1,0 “ u2,0 “ sinpπxq, the final time is T “ 5 and the multiplicative terms
are g1pv1, v2q “ 7 sinpv1q cospv2q and g2pv1, v2q “ 7 cospv1q sinpv2q. The discretization parameters are
τ “ 2´2 and h “ 2´8. The proportion of samples containing only positive values out of 500 simulated
samples for all considered time integrators are presented in Table 3.

LT (first,second) SEXP (first,second) SEM (first,second) EM (first,second)

500{500, 500{500 500{500, 499{500 498{500, 496{500 0{500, 0{500

Table 3. Proportion of samples containing only positive values out of 500
simulated sample paths for the Lie–Trotter splitting scheme (LT), the stochas-
tic exponential Euler integrator (SEXP), the semi-implicit Euler–Maruyama
scheme (SEM), and the Euler–Maruyama scheme (EM). First and second
component. The multiplicative terms are g1pv1, v2q “ 7 sinpv1q cospv2q and
g2pv1, v2q “ 7 cospv1q sinpv2q. The discretization parameters are τ “ 2´2 and
h “ 2´8.

The second numerical experiment illustrates the mean-square convergence of the Lie–Trotter split-
ting scheme when applied to systems of nonlinear SHEs. Figure 4 presents, in a loglog plot, the
mean-square errors measured at the space-time grid for the time interval r0, 0.5s. The discretization
parameters are h “ 2´8 and τ “ 2´4, 2´5, . . . , 2´16 (the last one being used for the reference solution).
We have used 200 samples to approximate the expected values. The expected mean-square orders of
convergence is observed in this figure.

Appendix A. Proof of auxiliary inequalities

Proof of the auxiliary inequality (24). Let us recall some notation. For all N P N, all t ě 0 and
x, y P r0, 1s, one has

GN pt, x, yq “
N´1
ÿ

j“1

e´λ
N
j tϕNj pxqϕjpκ

N pyqq,
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Figure 4. Mean-square errors of the Lie–Trotter splitting scheme (first com-
ponent denoted by LT1, second by LT2) when applied to the system of sto-
chastic heat equations with multiplicative terms g1pv1, v2q “ sinpv1q cospv2q

and g2pv1, v2q “ cospv1q sinpv2q. Mesh size h “ 2´8 and average over 200
samples.

where λNj “ 4N2 sin
`

jπ
2N

˘2
, ϕjp¨q “

?
2 sinpjπ¨q and ϕNj is the linear interpolation of ϕj at the space

grid points xn “ nh for n “ 1, . . . , N ´ 1.
Using the orthogonality property

ż 1

0

ϕjpκ
N pyqqϕkpκ

N pyqq dy “ δjk,

one obtains
ż t

0

ż 1

0

ˇ

ˇGN pt´ s, x, yq ´GN pt´ `M psq, x, yq
ˇ

ˇ

2
dy ds

“

ż t

0

ż 1

0

ˇ

ˇ

N´1
ÿ

j“1

`

e´λ
N
j pt´sq ´ e´λ

N
j pt´`

M
psqq

˘

ϕNj pxqϕjpκ
N pyqq

ˇ

ˇ

2
dy ds

“

ż t

0

N´1
ÿ

j“1

`

e´λ
N
j pt´sq ´ e´λ

N
j pt´`

M
psqq

˘2
ϕNj pxq

2 ds

ď 2

ż t

0

N´1
ÿ

j“1

`

e´λ
N
j pt´sq ´ e´λ

N
j pt´`

M
psqq

˘2
ds

ď 2
N´1
ÿ

j“1

ż t

0

e´2λNj pt´sq
`

1´ e´λ
N
j ps´`

M
psqq

˘2
ds

ď C
N´1
ÿ

j“1

maxp1, λNj τq
2

λNj
.

One checks that there exists c P p1,8q such that for all N ě 1 and j P t1, . . . , N ´ 1u one has

c´1 ď
λNj
j2
ď c.
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Let L P N be an arbitrary positive integer. Owing to the inequalities above, one obtains

N´1
ÿ

j“1

maxp1, λNj τq
2

λNj
ď C

8
ÿ

j“1

maxp1, j2τq2

j2

ď C
L
ÿ

j“1

j2τ2 ` C
8
ÿ

j“L`1

j´2

ď Cτ2L3 ` CL´1,

using standard comparison of series and integrals arguments. Choosing L “ tτ´
1
2 u ě 1 (where t¨u

denotes the integer part), and recalling that τ P p0, 1q, one obtains
ż t

0

ż 1

0

ˇ

ˇGN pt´ s, x, yq ´GN pt´ `M psq, x, yq
ˇ

ˇ

2
dy ds ď Cτ

1
2 .

The value of C is independent of N P N, t P p0, T s and x P r0, 1s. The proof of the auxiliary
inequality (24) is thus completed. �
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