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Introduction

Starting with the seminal work [START_REF] Gyöngy | Implicit scheme for quasi-linear parabolic partial differential equations perturbed by space-time white noise[END_REF] on an implicit scheme for stochastic quasi-linear parabolic partial differential equations in 1995, the field of numerical analysis of stochastic partial differential equations (SPDEs) has gained a huge interest during the last decades. We refer the interested readers to [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF][START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF][START_REF] Khoshnevisan | Analysis of stochastic partial differential equations[END_REF][START_REF] Dalang | A minicourse on stochastic partial differential equations[END_REF][START_REF] Lord | An introduction to computational stochastic PDEs[END_REF] for references on the theory of SPDEs and to [START_REF] Gyöngy | Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise[END_REF][START_REF] Shardlow | Numerical methods for stochastic parabolic PDEs[END_REF][START_REF] Davie | Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations[END_REF][START_REF] Printems | On the discretization in time of parabolic stochastic partial differential equations[END_REF][START_REF] Hausenblas | Approximation for semilinear stochastic evolution equations[END_REF][START_REF] Yan | Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise[END_REF][START_REF] Pettersson | Numerical approximation for a white noise driven SPDE with locally bounded drift[END_REF][START_REF] Walsh | Finite element methods for parabolic stochastic PDE's[END_REF][START_REF] Millet | On implicit and explicit discretization schemes for parabolic SPDEs in any dimension[END_REF][START_REF] Yan | Galerkin finite element methods for stochastic parabolic partial differential equations[END_REF][START_REF] Lord | Postprocessing for stochastic parabolic partial differential equations[END_REF][START_REF] Müller-Gronbach | An implicit Euler scheme with non-uniform time discretization for heat equations with multiplicative noise[END_REF][START_REF] Jentzen | Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise[END_REF][START_REF] Jentzen | The numerical approximation of stochastic partial differential equations[END_REF][START_REF] Kovács | Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise[END_REF][START_REF] Deya | Numerical schemes for rough parabolic equations[END_REF][START_REF] Barth | Simulation of stochastic partial differential equations using finite element methods[END_REF][START_REF] Barth | L p and almost sure convergence of a Milstein scheme for stochastic partial differential equations[END_REF][START_REF] Wang | A Runge-Kutta type scheme for nonlinear stochastic partial differential equations with multiplicative trace class noise[END_REF][START_REF] Cox | Pathwise Hölder convergence of the implicit-linear Euler scheme for semi-linear SPDEs with multiplicative noise[END_REF][START_REF] Lord | Stochastic exponential integrators for the finite element discretization of SPDEs for multiplicative and additive noise[END_REF][START_REF] Lord | An introduction to computational stochastic PDEs[END_REF][START_REF] Kruse | Strong and weak approximation of semilinear stochastic evolution equations[END_REF][START_REF] Hutzenthaler | Numerical approximations of stochastic differential equations with nonglobally Lipschitz continuous coefficients[END_REF][START_REF] Gerencsér | Finite difference schemes for stochastic partial differential equations in Sobolev spaces[END_REF][START_REF] Wang | A note on an accelerated exponential Euler method for parabolic SPDEs with additive noise[END_REF][START_REF] Wang | Strong convergence rates of the linear implicit Euler method for the finite element discretization of SPDEs with additive noise[END_REF][START_REF] Mukam | Strong convergence analysis of the stochastic exponential Rosenbrock scheme for the finite element discretization of semilinear SPDEs driven by multiplicative and additive noise[END_REF][START_REF] Mukam | A note on exponential Rosenbrock-Euler method for the finite element discretization of a semilinear parabolic partial differential equation[END_REF][START_REF] Lord | Stochastic exponential integrators for a finite element discretisation of SPDEs with additive noise[END_REF][START_REF] Anton | A fully discrete approximation of the one-dimensional stochastic heat equation[END_REF][START_REF] Hallern | An analysis of the Milstein scheme for SPDEs without a commutative noise condition[END_REF][START_REF] Liu | Strong approximation of monotone stochastic partial differential equations driven by white noise[END_REF][START_REF] Gyöngy | Accelerated finite elements schemes for parabolic stochastic partial differential equations[END_REF][START_REF] Li | A local discontinuous Galerkin method for nonlinear parabolic SPDEs[END_REF][START_REF] Deya | A full discretization of the rough fractional linear heat equation[END_REF][START_REF] Butkovsky | Optimal rate of convergence for approximations of spdes with non-regular drift[END_REF][START_REF] Bauzet | Convergence of a finite-volume scheme for a heat equation with a multiplicative lipschitz noise[END_REF] for references on the numerical analysis of SPDEs (with a particular focus on works related to strong convergence for parabolic SPDEs).

In this work we propose and study a novel positivity-preserving numerical scheme for a fully discrete approximation of the following nonlinear Stochastic Heat Equation (SHE) with multiplicative spacetime white noise (1)

$ ' & ' % B t upt, xq " B 2
xx upt, xq `gpupt, xqq 9 W pt, xq, upt, 0q " upt, 1q " 0, up0, xq " u 0 pxq, for pt, xq P r0, T s ˆr0, 1s and where u 0 ě 0 is continuous, g : R Ñ R is globally Lipschitz continuous, of class C 1 and satisfies gp0q " 0, and 9 W is a space-time white noise, see Section 2 for precise definitions and assumptions. Taking gpxq " x in equation [START_REF] Abiko | Positivity-preserving numerical schemes for stochastic differential equations[END_REF] results in the celebrated parabolic Anderson model, see for instance [START_REF] Carmona | Parabolic Anderson problem and intermittency[END_REF]. This equation is used to model (particle) branching processes, hydrodynamics with random forcing, and serves as a model for turbulent diffusions.

The positivity-preserving property of the exact solutions to the SPDE (1) is the subject of extensive research: two of the first results in this direction can be found in [START_REF] Mueller | On the support of solutions to the heat equation with noise[END_REF][START_REF] Shiga | Two contrasting properties of solutions for one-dimensional stochastic partial differential equations[END_REF], where this property is proven to be true for noise of the form u γ 9 W (where 1 ď γ ă 3{2) and for a nonlinearity that is of at most linear growth. The case of a Lipschitz nonlinearity g is studied in, for example, [START_REF] Dalang | A minicourse on stochastic partial differential equations[END_REF][START_REF] Ryzhik | Lecture notes for Introduction to Spde[END_REF][START_REF] Moreno Flores | On the (strict) positivity of solutions of the stochastic heat equation[END_REF]. For the sake of completeness, we mention the paper [START_REF] Benth | On the positivity of the stochastic heat equation[END_REF] on positivity of SHE with random initial conditions, the paper [START_REF] Tessitore | Strict positivity for stochastic heat equations[END_REF] on problems with spatially homogeneous Wiener process, the paper [START_REF] Chen | On comparison principle and strict positivity of solutions to the nonlinear stochastic fractional heat equations[END_REF] on the stochastic fractional heat equation, the paper [START_REF] Chen | Comparison principle for stochastic heat equation on R d[END_REF] on problems in R n , as well as the paper [START_REF] Cresson | On the positivity of solutions of systems of stochastic PDEs[END_REF] on systems of SHEs with a spatially correlated noise. Note that these references are considering the space domain to be R or R n . To the best of our current knowledge, there are no corresponding results for the case of compact domains with homogeneous Dirichlet boundary conditions.

While standard time integrators for SPDEs, such as the Euler-Maruyama scheme [START_REF] Davie | Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations[END_REF], the semiimplicit Euler-Maruyama scheme [START_REF] Gyöngy | Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise[END_REF], and the stochastic exponential Euler integrator [START_REF] Lord | Stochastic exponential integrators for the finite element discretization of SPDEs for multiplicative and additive noise[END_REF] do converge when applied to the problem (1), they do not preserve the positivity property of the exact solution. Note that the semi-implicit Euler scheme and the exponential Euler integrator preserve positivity in the deterministic case (g " 0 in equation ( 1)).

In this work, we employ a splitting strategy for the time integration of the SPDE [START_REF] Abiko | Positivity-preserving numerical schemes for stochastic differential equations[END_REF]. This results in an efficient and positivity-preserving explicit time integrator. In essence, a splitting integrator decomposes the vector field of the original evolution equation in several parts, such that the arising subsystems are exactly integrated (or easily). Splitting schemes have been extensively studied and successfully applied to deterministic differential equations, see for instance [START_REF] Hairer | Geometric numerical integration[END_REF][START_REF] Blanes | A concise introduction to geometric numerical integration[END_REF][START_REF] Mclachlan | Splitting methods[END_REF] and references therein. Splitting schemes are also very popular for an efficient time discretization of stochastic (partial) differential equations. We refer the reader to the following non-exhaustive list of articles: [START_REF] Marty | On a splitting scheme for the nonlinear Schrödinger equation in a random medium[END_REF][START_REF] Cox | Convergence rates of the splitting scheme for parabolic linear stochastic Cauchy problems[END_REF][START_REF] Grecksch | Approximation of stochastic nonlinear equations of Schrödinger type by the splitting method[END_REF][START_REF] Liu | A mass-preserving splitting scheme for the stochastic Schrödinger equation with multiplicative noise[END_REF][START_REF] Bayer | Splitting methods for SPDEs: from robustness to financial engineering, optimal control, and nonlinear filtering[END_REF][START_REF] Duboscq | Analysis of a splitting scheme for a class of random nonlinear partial differential equations[END_REF][START_REF] Barbu | A splitting algorithm for stochastic partial differential equations driven by linear multiplicative noise[END_REF][START_REF] Cui | Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations[END_REF][START_REF] Padgett | Convergence of an operator splitting scheme for abstract stochastic evolution equations[END_REF][START_REF] Bréhier | Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen-Cahn equation[END_REF][START_REF] Bréhier | Weak convergence rates of splitting schemes for the stochastic Allen-Cahn equation[END_REF][START_REF] Berg | Lie-Trotter splitting for the nonlinear stochastic Manakov system[END_REF][START_REF] Marty | Local error of a splitting scheme for a nonlinear Schrödinger-type equation with random dispersion[END_REF][START_REF] Bréhier | Analysis of a splitting scheme for a class of nonlinear stochastic Schrödinger equations[END_REF][START_REF] Bréhier | Strong rates of convergence of a splitting scheme for Schrödinger equations with nonlocal interaction cubic nonlinearity and white noise dispersion[END_REF][START_REF] Bréhier | Splitting schemes for FitzHugh-Nagumo stochastic partial differential equations[END_REF].

The preservation of positivity by numerical methods have been investigated in several references in both the deterministic and stochastic settings. Without being exhaustive, we mention the following articles on positivity-preserving schemes for stochastic differential equations: [START_REF] Schurz | Basic concepts of numerical analysis of stochastic differential equations explained by balanced implicit theta methods[END_REF][START_REF] Szpruch | Numerical simulation of a strongly nonlinear Ait-Sahaliatype interest rate model[END_REF][START_REF] Halidias | Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations[END_REF][START_REF] Mao | Positivity preserving truncated Euler-Maruyama method for stochastic Lotka-Volterra competition model[END_REF][START_REF] Abiko | Positivity-preserving numerical schemes for stochastic differential equations[END_REF][START_REF] Scalone | Positivity preserving stochastic θ-methods for selected SDEs[END_REF][START_REF] Lei | Strong and weak convergence rates of logarithmic transformed truncated EM methods for SDEs with positive solutions[END_REF][START_REF] Halidias | Boundary preserving explicit scheme for the Aït-Sahalia model[END_REF]. Finally, let us mention the recent reference [START_REF] Yang | Stochastic heat equation: numerical positivity and almost surely exponential stability[END_REF] on a positivity-preserving numerical scheme for the linear stochastic heat equation with finite dimensional noise. We are not aware of works on the numerical analysis of positivity-preserving schemes for SPDEs driven by space-time white noise.

The fully-discrete Lie-Trotter splitting scheme, see equation [START_REF] Bréhier | Splitting schemes for FitzHugh-Nagumo stochastic partial differential equations[END_REF], considered in this article combines a finite difference approximation in space and the explicit recursion

u LT m`1 " exp `τ N 2 D N ˘û LT m`1 ,
where for n " 1, . . . , N ´1 one has

ûLT m`1,n " exp ˜?N f pu LT m,n q∆ m,n W ´N f pu LT m,n q 2 τ 2 ¸uLT m,n ,
where τ " T {M ą 0 denotes the time step size, h " 1{N is the mesh size, ∆ m,n W denote spacetime Wiener increments, N 2 D N the pN ´1q ˆpN ´1q matrix of the discrete Laplace operator, and gpvq " vf pvq. Observe that the diffusion part of ( 1) is solved exactly, while the noise part is solved exactly in the case of the parabolic Anderson model (where one has gpvq " v and f pvq " 1 and thus the subsystem is a geometric Brownian motion). This shares similarity with the works [START_REF] Erdogan | A new class of exponential integrators for sdes with multiplicative noise[END_REF][START_REF] Tubikanec | Qualitative properties of different numerical methods for the inhomogeneous geometric Brownian motion[END_REF] on stochastic differential equations. For a general mapping g, we freeze the factor f at the previous time point and obtain a geometric Brownian motion in the spirit of the exponential scheme proposed in [START_REF] Bossy | On the weak convergence rate of an exponential Euler scheme for SDEs governed by coefficients with superlinear growth[END_REF] for finite dimensional problems.

The main results of the paper are the following:

' We obtain a fully discrete explicit approximation of the stochastic heat equation ( 1) that is positivity-preserving, see Proposition 4. ' We show bounds for the second moment of the numerical approximation under a CFL condition τ {h " Op1q in Proposition 5. ' We prove strong convergence, with rate 1{4, for the temporal discretization under a CFL condition τ {h 2 " Op1q, see Theorem 6. The strong convergence of the fully discrete scheme is provided in Corollary 7.

We leave the study of weak convergence of the proposed scheme to possible future works. On top of that, we show positivity of the exact solution to the SPDE (1) on compact domains. This follows naturally from the numerical analysis of the proposed approximation, see Proposition 2. Let us mention that the CFL conditions above are not due to the discretization of the Laplace operator, since the linear part is solved exactly. They are due to the discretization of the contribution of the space-time white noise in the temporal evolution. Numerical experiments confirm that the CFL condition is necessary when studying the mean-square convergence of the proposed scheme. This paper is organized as follows. Section 2 presents the setting, assumptions, and useful results on the considered SHE. We also recall results on the finite difference discretization from [START_REF] Gyöngy | Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise[END_REF]. Section 3 contains the definition of the proposed Lie-Trotter splitting as well as the main results of the paper. We postpone their proofs to Section 5. We dedicate Section 4 to numerical experiments illustrating our qualitative and quantitative results on the proposed splitting scheme. The last section 6 briefly presents an extension to systems of nonlinear stochastic heat equations. Appendix A contains a proof of an auxiliary inequality used in the proofs of the main results.

Setting

This section provides the necessary setting for the description of the considered class of nonlinear stochastic heat equations as well as of its solution. We recall the notion of a mild solution and a standard well-posedness result for completeness. In addition, we recall the spatial discretization by finite difference from [START_REF] Gyöngy | Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise[END_REF].

For any real-valued continuous function v : r0, 1s Ñ R, let }v} 8 " max xPr0,1s

|vpxq|.

Let pΩ, F, Pq be a probability space, equipped with a filtration `Ft ˘tě0 which satisfies the usual conditions. The expectation operator is denoted by Er¨s. In the sequel, C denotes a generic constant that may vary from line to line. We sometimes use subscripts on C to indicate dependence on parameters.

Description of the SPDE.

Let us first introduce the main assumptions needed for the numerical analysis of the proposed time integrator for the stochastic heat equation.

Assumption 1. The initial value u 0 : r0, 1s Ñ R is a function of class C 3 , and satisfies the conditions u 0 p0q " u 0 p1q " 0.

Note that the regularity assumption on the initial value above is for ease of presentation. For weaker conditions, see [START_REF] Gyöngy | Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise[END_REF] or [START_REF] Anton | A fully discrete approximation of the one-dimensional stochastic heat equation[END_REF].

When discussing positivity-preserving properties, a further condition is needed.

Assumption 2. The initial value u 0 : r0, 1s Ñ R satisfies u 0 pxq ě 0 for all x P r0, 1s.

For the nonlinearity in the considered SPDE, we make use of the following.

Assumption 3. The mapping g : R Ñ R is of class C 1 , is globally Lipschitz continuous, and satisfies gp0q " 0.

We denote by L g the Lipschitz constant of g:

L g " sup v1,v2PR,v2‰v1 |gpv 2 q ´gpv 1 q| |v 2 ´v1 | .
The moment bounds and the error estimates presented below depend on the value of the Lipschitz constant L g . This is not indicated in order to simplify the notation.

We then introduce the auxiliary mapping f : R Ñ R defined for all v P Rzt0u by

(2) f pvq " gpvq v " ż 1 0 g 1 prvq dr
and by f p0q " g 1 p0q. Since g 1 is continuous by Assumption 3, the mapping f is continuous and bounded, and one has the upper bound sup vPR |f pvq| ď L g .

For a fixed time horizon T ą 0, let W " tW pt, xq : t P r0, T s, x P r0, 1su be an F t -adapted Brownian sheet. We recall that a Brownian sheet is a Gaussian random field with mean zero and covariance ErW pt, xqW ps, yqs " pt ^sqpx ^yq for all s, t P r0, T s and x, y P r0, 1s, see for instance [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF]. We consider the stochastic heat equation in the Itô sense

(3) $ ' & ' % dupt, xq " B 2
xx upt, xq dt `gpupt, xqq dW pt, xq, upt, 0q " upt, 1q " 0, up0, xq " u 0 pxq for t P r0, T s and x P r0, 1s, where u 0 and g satisfy Assumption 1 and Assumption 3, respectively.

In order to define a mild solution of the stochastic heat equation (3), we introduce the heat kernel Gpt ´s, x, yqgpups, yqq dW ps, yq.

The stochastic integral in (4) is understood in the Itô-Walsh sense, see for instance [START_REF] Dalang | A minicourse on stochastic partial differential equations[END_REF][START_REF] Khoshnevisan | Analysis of stochastic partial differential equations[END_REF][START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF].

We collect some properties of the mild solution upt, xq to the stochastic heat equation (3) in the following statement, see for instance [START_REF] Gyöngy | Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise[END_REF]Proposition 3.7].

Proposition 1. Consider the stochastic heat equation (3) under Assumptions 1 and 3. There exists a unique mild solution pupt, xqq tPr0,T s,xPr0,1s to the SPDE (3). In addition, for all T P p0, 8q, there exists C T P p0, 8q such that

sup tPr0,T s sup xPr0,1s Er|upt, xq| 2 s ď C T p1 `}u 0 } 2 8 q.
Finally, the solution satisfies the following mean-square regularity property: for all T P p0, 8q, there exists C T P p0, 8q such that for all x 1 , x 2 P r0, 1s and all t 1 , t 2 P r0, T s one has

(5) `Er|upt 2 , x 2 q ´upt 1 , x 1 q| 2 s ˘1 2 ď C T `|t 2 ´t1 | 1 4 `|x 2 ´x1 | 1 2

˘.

In this article, our objective is to propose and analyze consistent numerical schemes which preserve the following property of the exact solution: if the initial value u 0 is nonnegative, then the exact solution to the stochastic heat equation, upt, ¨q, remains nonnegative for all t ą 0. Proposition 2. Consider the stochastic heat equation (3) together with Assumptions 1, 2 and 3. Then, for all t P p0, 8q and all x P r0, 1s, almost surely, one has upt, xq ě 0.

The proof of Proposition 2 above is postponed to Section 5.5. It is a consequence of the analysis of the fully-discrete numerical scheme and combines two arguments: on the one hand, the numerical scheme satisfies a variant of Proposition 2, see Proposition 4 below, on the other hand, Theorem 6 gives a strong convergence result of the numerical approximation. Note that similar results are known when considering the stochastic heat equation on the real line, see for instance the works [START_REF] Mueller | On the support of solutions to the heat equation with noise[END_REF][START_REF] Shiga | Two contrasting properties of solutions for one-dimensional stochastic partial differential equations[END_REF] and the lecture notes [START_REF] Ryzhik | Lecture notes for Introduction to Spde[END_REF]. We are not aware of positivity-preserving results for SPDEs on bounded domains.

Spatial discretization.

Let us recall the spatial discretization based on a finite difference approximation on a uniform grid from [START_REF] Gyöngy | Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise[END_REF]. For any integer N P N, let h " 1{N be the space mesh size, and let x n " nh for 0 ď n ď N be the grid points. Let κ N : r0, 1s Ñ tx 0 , . . . , x N u, be the mapping defined by κ N pxq " x n for x P rx n , x n`1 q if n P t0, . . . , N ´1u, and κ N p1q " κ N px N q " x N " 1.

Throughout this article, we use the convention that for any vector v " `vn ˘1ďnďN´1 P R N ´1, we append discrete homogeneous Dirichlet boundary conditions v 0 " 0 and v N " 0 when needed.

We discretize the initial value u 0 of the stochastic heat equation ( 3) by u N 0,n " u N n p0q " up0, x n q for 0 ď n ď N . Note that discrete homogeneous Dirichlet boundary conditions u N 0,0 " u N 0,N " 0 are satisfied owing to Assumption 1. Let us then define a piecewise linear extension u N p0, ¨q : r0, 1s Ñ R satisfying u N p0, x n q " u N 0,n for all n " 0, . . . , N , meaning that for x P p0, 1q one has

u N p0, xq " N `κN pxq `h ´x˘u p0, κ N pxqq `N `x ´κN pxq ˘up0, κ N pxq `hq.
Let D N " `DN ij ˘1ďi,jďN´1 denote the matrix coming from a standard finite difference discretization of the Laplace operator at the grid points x n with homogeneous Dirichlet boundary conditions. The matrix D N is thus given by

D N " ¨´2 1 0 . . . 0 0 0 1 ´2 1 . . . 0 0 0 0 1 ´2 . . . 0 0 0 . . . . . . . . . . . . . . . . . . . . . 0 0 0 . . . ´2 1 0 0 0 0 . . . 1 ´2 1 0 0 0 . . . 0 1 ´2‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' .
We then introduce the discrete heat kernel

G N ptq " `GN ij ptq ˘1ďi,jďN´1 " e tN 2 D N , for t ě 0. By convention, set G N 00 ptq " G N N N ptq " 1, G N 0N ptq " G N N 0 ptq " 0 and G N 0j ptq " G N N j
ptq " 0 for all j P t1, . . . , N ´1u, in order to satisfy homogeneous discrete Dirichlet boundary conditions. Finally, we extend the definition of G N ptq " `GN ij ptq ˘1ďi,jďN´1 to `GN pt, x, yq ˘tě0,x,yPr0,1s by asking that G N pt, x i , y j q " N G N ij ptq for 0 ď i, j ď N and for t ě 0 and y P r0, 1s

G N pt, x, yq " N `κN pxq `h ´x˘G N pt, κ N pxq, κ N pyqq `N `x ´κN pxq ˘GN pt, κ N pxq `h, κ N pyqq
for x P p0, 1q and G N pt, 0, yq " G N pt, 1, yq " 0. As a result, the mapping px, yq Þ Ñ G N pt, x, yq is piecewise linear in x and piecewise constant in y at all times t. It is worth recalling the following well-known property of the discrete heat kernel: one has G N ij ptq ě 0 for all i, j P t1, . . . , N ´1u and t ě 0. As a consequence, one has G N pt, x, yq ě 0 for x, y P r0, 1s and t ě 0. This property follows from the fact that tN 2 D N is a Metzler matrix, see for instance [START_REF] Farina | Positive Linear Systems: Theory and Applications[END_REF] for a definition, and the exponential of a Metzler matrix has only non-negative elements.

We are now in position to define the spatial discretization u N , for N P N, by the following integral equality

(6) u N pt, xq " ż 1 0 G N pt, x, yqu N p0, κ N pyqq dy `ż t 0 ż 1 0 G N pt ´s, x, yqgpu N ps, κ N pyqqq dW ps, yq
for t ě 0 and x P r0, 1s. Note that the mapping x P r0, 1s Þ Ñ u N pt, xq is linear on rx n , x n`1 s, for every n P t0, . . . , N ´1u, for every t ě 0. In addition, one has u N pt, 0q " u N pt, 1q " 0 for every t ě 0. For a practical implementation of the scheme, it is sufficient to compute u N n ptq " u N pt, x n q for all 1 ď n ď N ´1. This is performed as follows: for all t ě 0 and 1 ď n ď N ´1 one has

u N n ptq " N ´1 ÿ j"1 G N nj ptqu N 0,j `?N N ´1 ÿ j"1 ż t 0 G N nj pt ´sqgpu N j psqq dW N j psq, where W N n ptq " ? N `W pt, x n`1 q ´W pt, x n q ˘.
By definition of a Wiener sheet, observe that the processes `W N 1 ptq ˘tě0 , . . . , `W N N ´1ptq ˘tě0 are independent standard real-valued Wiener processes, for any N P N.

Introduce the R N ´1-valued process u N defined by u N ptq " `uN n ptq ˘1ďnďN´1 for all t ě 0. This process is solution of the following stochastic differential equation [START_REF] Bayer | Splitting methods for SPDEs: from robustness to financial engineering, optimal control, and nonlinear filtering[END_REF] du N ptq " N 2 D N u N ptq dt `?N gpu N ptqq dW N ptq with initial value u N p0q " `uN 0 ˘1ďnďN´1 , where the notation `gpu N ptqq dW N ptq ˘n " gpu N n ptqq dW N n ptq is used.

Let us recall the following convergence result for the spatial discretization, see [START_REF] Gyöngy | Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise[END_REF]Theorem 3.1].

Proposition 3. Consider the stochastic heat equation (3) with a nonlinearity g satisfying Assumption 3. Denote by pupt, xqq tPr0,T s,xPr0,1s its exact solution and by `uN pt, xq ˘tPr0,T s,xPr0,1s the numerical approximation by finite differences with mesh size h " 1{N . For all T P p0, 8q and any initial value u 0 satisfying Assumption 1, there exists C T pu 0 q P p0, 8q such that for all h " 1{N with N P N one has

(8) sup tPr0,T s sup xPr0,1s `Er|u N pt, xq ´upt, xq| 2 s ˘1 2 ď C T pu 0 qh 1 2 .
In the error analysis below, the following auxiliary result from [START_REF] Anton | A fully discrete approximation of the one-dimensional stochastic heat equation[END_REF] (see Proposition 2.4) on the temporal regularity of u N is used: there exists C T pu 0 q P p0, 8q such that for all t, s P r0, T s, one has [START_REF] Berg | Lie-Trotter splitting for the nonlinear stochastic Manakov system[END_REF] sup

N PN sup xPr0,1s
Er|u N pt, xq ´uN ps, xq| 2 s ď C T pu 0 q|t ´s| 1 2 .

The positivity-preserving splitting scheme

In the core part of this paper, we present and study the strong convergence of an efficient and positivity-preserving time integrator for the stochastic heat equation (3).

Let T P p0, 8q and divide the interval r0, T s into M P N subintervals rt m , t m`1 s of length τ " T {M , where t m " mτ for m P t0, . . . , M u. Introduce the mapping M : r0, T s Ñ tt 0 , . . . , t M u, defined by M ptq " t m for all t P rt m , t m`1 q, if m P t0, . . . , M ´1u, and M pT q " M pt M q " t M " T .

We propose a fully-discrete explicit scheme based on a Lie-Trotter splitting strategy producing approximations u LT m " `uLT m,n ˘1ďnďN´1 of the finite difference approximation u N pt m q " `uN n pt m q ˘1ďnďN´1 at the grid times t m , m " 0, . . . , M . We set the initial value to be u LT 0,n " u N n p0q " u N 0,n for all 1 ď n ď N ´1. As above, one has u LT m,0 " 0 and u LT m,N " 0 for all m P t0, . . . , M u. In this way, homogeneous Dirichlet boundary conditions are satisfied by the numerical scheme at all times.

We explain the construction of the scheme in Section 3.1. We then describe the main results of this article: the positivity-preserving property of the splitting scheme (Proposition 4) and the mean-square convergence in time with order 1{4 (Theorem 6 and Corollary 7).

3.1. Description of the time integrator. Let us describe how the splitting scheme is constructed. Given the numerical solution u LT m " `uLT m,n ˘1ďnďN´1 at grid time t m " mτ for 0 ď m ď M ´1, the solution u LT m`1 at the next grid time t m`1 " t m `τ is constructed by successively solving two subsystems in R N ´1:

' first, the linear Itô SDE system [START_REF] Blanes | A concise introduction to geometric numerical integration[END_REF] dv M,N,1 m,n ptq " ? N v M,N,1 m,n ptqf pu LT m,n q dW N n ptq, for n P t1, . . . , N ´1u and t P rt m , t m`1 s, with initial value v M,N,1 m,n pt m q " u LT m,n , where we recall (see equation ( 2) in Section 2) that the auxiliary function f is such that gpvq " vf pvq for all v P R; ' second, the linear ODE system [START_REF] Bossy | On the weak convergence rate of an exponential Euler scheme for SDEs governed by coefficients with superlinear growth[END_REF] dv

M,N,2 m ptq " N 2 D N v M,N,2 m ptq dt, for t P rt m , t m`1 s, with initial value v M,N,2 m,n pt m q " v M,N,1 m,n pt m`1 q.
Observe that the solutions of the two subsystems above are known: the solution of the SDE ( 10) is given by

(12) v M,N,1 m,n ptq " exp ˜?N f pu LT m,n q `W N n ptq ´W N n pt m q ˘´N f pu LT m,n q 2 pt ´tm q 2 ¸uLT m,n ,
for all t P rt m , t m`1 s, and the solution of the ODE ( 11) is given by

(13) v M,N,2 m ptq " e pt´tmqN 2 D N v M,N,1 m pt m`1 q,
for all t P rt m , t m`1 s. Gathering the expressions above gives the following expression for the proposed Lie-Trotter splitting scheme ( 14)

u LT m`1 " e τ N 2 D N ˜exp ´?N f pu LT m,n q∆ m,n W ´N f pu LT m,n q 2 τ 2 ¯uLT m,n ¸1ďnďN´1 ,
where ∆ m,n W " W N n pt m`1 q´W N n pt m q. Observe that the random variables `∆W m,n ˘0ďmďM´1,1ďnďN´1 are independent standard real-valued Gaussian random variables.

The splitting scheme formula [START_REF] Bréhier | Splitting schemes for FitzHugh-Nagumo stochastic partial differential equations[END_REF] can also be written as

u LT m`1,n " N ´1 ÿ k"1 G N nk pτ q exp ´?N f pu LT m,k q∆ m,n W ´N f pu LT m,k q 2 τ 2 ¯uLT m,k ,
for all m P t0, . . . , M ´1u and n P t1, . . . , N ´1u.

One of the key properties of the proposed splitting scheme is the following: if the initial value u LT 0 " `uLT 0,n ˘1ďnďN´1 only has nonnegative elements, then for all m P t1, . . . , M u the numerical solution u LT m " `uLT m,n ˘1ďnďN´1 at time t m " mτ also only has nonnegative elements almost surely. In other words, the proposed scheme is positivity-preserving. This is stated in the next proposition. Proposition 4. Let M P N and N P N be arbitrary integers and let T P p0, 8q. Let Assumptions 1, 2 and 3 be satisfied. Let the sequence u LT 0 , . . . , u LT M be given by the splitting scheme [START_REF] Bréhier | Splitting schemes for FitzHugh-Nagumo stochastic partial differential equations[END_REF], with h " 1{N and τ " T {M , with initial value u LT 0,n " u 0 px n q ě 0 for all n P t1, . . . , N u. Then, almost surely, one has u LT m,n ě 0, for all m P t1, . . . , M u and n P t1, . . . , N ´1u.

Proof of Proposition 4. The proof proceeds by recursion on the time index m. ' Note that u LT 0,n " up0, x n q ě 0 for all n P t0, . . . , N u.

' Assume that the property u LT m,n ě 0, for all n P t1, . . . , N ´1u, holds at time t m " mτ . We prove that under this assumption, it also holds at time t m`1 " pm `1qτ .

The argument is straightforward: the solutions of the subsystems ( 10) and ( 11) are nonnegative at all times when they have nonnegative initial values. More precisely, first one has

v M,N,1 m,n pt m`1 q " e ? N f pu LT m,n q∆m,nW ´N f pu LT m,n q 2 τ 2
u LT m,n ě 0 for all n P t1, . . . , N ´1u. Second, using the inequality G N nk pτ q ě 0 (see Section 2.2), one has

u LT m`1,n " v M,N,2 m,n pt m`1 q " N ´1 ÿ k"1 G N nk pτ qv M,N,1 m,k pt m`1 q ě 0.
Thus the positivity property of the numerical solution holds at time t m`1 " pm `1qτ .

As a consequence, the property u LT m,n ě 0, for all n P t1, . . . , N ´1u, holds for any m P t0, . . . , M u. The proof of Proposition 4 is completed.

Convergence results.

Let us now prove that the proposed numerical scheme provides accurate approximation of the exact solution. In this article, we show mean-square error estimates and give orders of convergence with respect to τ " T {M and h " 1{N .

We impose a CFL stability condition in the sequel to ensure stability and convergence of the Lie-Trotter splitting scheme [START_REF] Bréhier | Splitting schemes for FitzHugh-Nagumo stochastic partial differential equations[END_REF] when applied to the stochastic heat equation (3); more precisely, we introduce conditions of the type τ ď γh or τ ď γh 2 in the statements below, for some (nonrandom) arbitrary parameter γ P p0, 8q. The conditions on τ and h above are equivalent to the conditions γM ě T N and γM ě T N 2 on M and N respectively.

Owing to Proposition 3, it is sufficient to focus on the error u LT m,n ´uN n pt m q to obtain estimates for the total error u LT m,n ´upt m , x n q. Proposition 5 shows moment bounds of the numerical solution and is used to prove our main result in Theorem 6. As a corollary we obtain convergence of u LT m,n to the exact solution upt m , x n q at the grid points using results from [START_REF] Gyöngy | Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise[END_REF].

Note that Assumption 2 on the positivity of the initial value is not needed in the statements on the moment bounds and on the convergence of the scheme below.

Proposition 5. Assume that Assumptions 1 and 3 are satisfied. Let the sequence u LT 0 , . . . , u LT M be given by the Lie-Trotter splitting scheme [START_REF] Bréhier | Splitting schemes for FitzHugh-Nagumo stochastic partial differential equations[END_REF].

For all γ P p0, 8q and all T P p0, 8q, there exists C γ,T P p0, 8q such that for all τ " T {M and h " 1{N satisfying the condition τ ď γh, one has [START_REF] Bréhier | Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen-Cahn equation[END_REF] sup

0ďmďM sup 1ďnďN ´1 E " |u LT m,n | 2 ‰ ď C γ,T `1 `}u 0 } 2 8 ˘.
The proof of this proposition also provides moment bounds for a space-time continuous version u LT pt, xq, defined by equation ( 21), of the Lie-Trotter splitting scheme [START_REF] Bréhier | Splitting schemes for FitzHugh-Nagumo stochastic partial differential equations[END_REF].

We are now in position to state the main convergence result of this article. For ease of presentation, we only consider errors at space-time grid points. Theorem 6. Assume that Assumptions 1 and 3 are satisfied. Let the sequence u LT 0 , . . . , u LT M be given by the Lie-Trotter scheme [START_REF] Bréhier | Splitting schemes for FitzHugh-Nagumo stochastic partial differential equations[END_REF], and let `uN ptq ˘tě0,0ďnďN be given by the spatial semi-discretization scheme [START_REF] Bayer | Splitting methods for SPDEs: from robustness to financial engineering, optimal control, and nonlinear filtering[END_REF].

For all γ P p0, 8q and T P p0, 8q, there exists C γ,T pu 0 q P p0, 8q such that for all τ " T {M and h " 1{N satisfying the condition τ ď γh, one has [START_REF] Bréhier | Weak convergence rates of splitting schemes for the stochastic Allen-Cahn equation[END_REF] sup

0ďmďM sup 0ďnďN `Er|u LT m,n ´uN n pt m q| 2 s ˘1 2 ď C γ,T pu 0 q ˆτ 1 4 `´τ h ¯1 2 ˙.
In addition, for all τ " T {M and h " 1{N satisfying the condition τ ď γh 2 , one has

(17) sup 0ďmďM sup 0ďnďN `Er|u LT m,n ´uN n pt m q| 2 s ˘1 2 ď C γ,T pu 0 qτ 1 4 .
Proving [START_REF] Butkovsky | Optimal rate of convergence for approximations of spdes with non-regular drift[END_REF] from the error estimate ( 16) under the stronger condition τ ď γh 2 is straightforward.

Combining Theorem 6 and Proposition 3, one directly obtains error estimates for the fully-discrete scheme.

Corollary 7. Consider the setting and assumptions of Theorem 6. For all γ P p0, 8q and T P p0, 8q, there exists C γ,T pu 0 q P p0, 8q such that for all τ " T {M and h " 1{N satisfying the condition τ ď γh 2 , one has [START_REF] Carmona | Parabolic Anderson problem and intermittency[END_REF] sup

0ďmďM sup 0ďnďN `Er|u LT m,n ´upt m , x n q| 2 s ˘1 2 ď C γ,T pu 0 qh 1 2 .
We postpone the proofs of the above results to Section 5.

Numerical experiments

In this section we provide numerical experiments to support and verify the above theoretical results. Recall that τ " T {M ą 0 is the time step size and h " 1{N ą 0 is the space mesh size. We compare the proposed Lie-Trotter splitting scheme [START_REF] Bréhier | Splitting schemes for FitzHugh-Nagumo stochastic partial differential equations[END_REF], denoted LT below, to the following classical time integrators when applied to the spatially discretized system (7):

' the Euler-Maruyama scheme (denoted EM below), see for instance [START_REF] Davie | Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations[END_REF] 

u EM m`1 " u EM m `τ N 2 D N u EM m `?N gpu EM m q∆ m W, ' the 
semi-implicit Euler-Maruyama scheme (denoted SEM below), see for instance [START_REF] Gyöngy | Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise[END_REF] 

u SEM m`1 " u SEM m `τ N 2 D N u SEM
m`1 `?N gpu SEM m q∆ m W, ' the stochastic exponential Euler integrator (denoted SEXP below), see for instance [START_REF] Lord | Stochastic exponential integrators for the finite element discretization of SPDEs for multiplicative and additive noise[END_REF] 

u SEXP m`1 " e τ N 2 D N ´uSEXP m `?N gpu SEXP m q∆ m W ¯.
4.1. Preservation of the positivity. We start by illustrating the positivity-preserving property of the Lie-Trotter scheme (LT) and show the lack of positivity-preserving behavior for the Euler-Maruyama scheme (EM), the semi-implicit Euler-Maruyama scheme (SEM), and the stochastic exponential scheme (SEXP). To do this, we use the same noise samples for all time integrators when applied to the space-discretization of the SPDE (3) as described in Section 2.2 with the initial condition u 0 " sinpπxq and final time T " 20. We consider this problem with the three choices of multiplicative term given by gpvq " λv, gpvq " λ ln p1 `vq, and gpvq " λ pv `sinpvqq. The real-valued parameter λ ą 0 is introduced to avoid the need to run numerical experiments with very long time horizons T in order to obtain negative values for the numerical schemes SEXP and SEM. We remark that gpvq " λ ln p1 `vq is well-behaved for v ě 0 but problems may occur if v ď ´1. Since the proposed LT scheme is guaranteed to preserve positivity, this is not problematic. However, this could happen for the time integrators SEXP, SEM or EM. The numerical results are presented in Tables 1 and2, where the notation k{50 indicates that k out of 50 samples remain positive.

In Table 1, we let gpvq " 2.5v and we consider 50 sample paths for each of the time integrators for several choices of the discretization parameters τ and h. Table 1 confirms that the LT scheme preserves positivity. This is not the case for SEXP, SEM and EM. We observe that fewer samples of SEXP and SEM contain negative values for small time steps τ . This is expected as each of the time integrators SEXP, SEM, and even EM, converges (for every fixed h) to the exact, everywhere positive, solution of the space-discretized system of SDEs in equation [START_REF] Bayer | Splitting methods for SPDEs: from robustness to financial engineering, optimal control, and nonlinear filtering[END_REF].

In Table 2 we instead fix the discretization parameters τ " 10 ´5 and h " 10 ´3 and consider different types of multiplicative terms gpvq. We again use 50 samples in each of the entries of Table 2. From pτ, hq LT SEXP SEM EM p10 ´3, 10 ´2q 50{50 0{50 0{50 0{50 p10 ´4, 10 ´3q 50{50 50{50 50{50 0{50 p10 ´5, 10 ´3q 50{50 50{50 50{50 0{50 Table 1. Proportion of samples containing only positive values out of 50 simulated sample paths for the Lie-Trotter splitting scheme (LT), the stochastic exponential Euler integrator (SEXP), the semi-implicit Euler-Maruyama scheme (SEM), and Euler-Maruyama scheme (EM) for the diffusion coefficient gpvq " 2.5v and several choices of discretization parameters τ and h.

the results of Table 2, one can observe the poor performance of the EM scheme in all cases. This table also illustrates the fact that increasing the size of the multiplicative term prevents SEM and SEXP to remain positive. It should be clear that increasing the value of λ even more, or the length of the time interval, would hinder the numerical solutions to stay positive for all time integrators except for the proposed Lie-Trotter splitting scheme.

gpvq LT SEXP SEM EM 2.5 lnp1 `vq 50{50 50{50 50{50 0{50 3.5 lnp1 `vq 50{50 50{50 50{50 0{50 5 lnp1 `vq 50{50 47{50 26{50 0{50 2.5v 50{50 50{50 50{50 0{50 3.5v 50{50 50{50 50{50 0{50 5v
50{50 4{50 50{50 0{50 2.5 pv `sinpvqq 50{50 44{50 50{50 0{50 3.5 pv `sinpvqq 50{50 0{50 0{50 0{50 5 pv `sinpvqq 50{50 0{50 0{50 0{50

Table 2. Proportion of samples containing only positive values out of 50 simulated sample paths for the Lie-Trotter splitting scheme (LT), the stochastic exponential Euler integrator (SEXP), the semi-implicit Euler-Maruyama scheme (SEM), and the Euler-Maruyama scheme (EM) for several choices of diffusion terms gpvq. The discretization parameters are τ " 10 ´5 and h " 10 ´3.

4.2.

Mean-square errors. For the next numerical experiment, we discretize the stochastic heat equation ( 3) with initial value u 0 pxq " sinpπxq by a finite-difference scheme in space with mesh size h " 2 ´8. The resulting system of stochastic differential equations ( 7) is then discretized by the time integrators LT, SEXP, and SEM. The classical EM scheme is not appropriate in this setting and numerical results are thus not presented. The following choices for the function g are considered:

gpvq " v and gpvq " v 1`v 2 and gpvq " lnp1 `vq, for v ě 0, and gpvq " v expp´v 2 q. ´uref pt m , x n q| 2 s ˘1 2 measured at the space-time grid points pt m , x n q for the time interval r0, 0.5s. The reference solution u ref is computed using the LT splitting scheme with time step size τ ref " 2 ´16 . Here, 200 samples have been used to approximate the expectations. We have checked that the Monte Carlo error is negligible to observe mean-square convergence. In this figure, one can observe a rate of convergence 1{2 instead of 1{4 in the mean-square error estimates [START_REF] Butkovsky | Optimal rate of convergence for approximations of spdes with non-regular drift[END_REF] for the splitting scheme in Theorem 6. This is related to the mean-square error estimates [START_REF] Bréhier | Weak convergence rates of splitting schemes for the stochastic Allen-Cahn equation[END_REF] and the role of the CFL condition τ ď γh 2 to obtain [START_REF] Butkovsky | Optimal rate of convergence for approximations of spdes with non-regular drift[END_REF]. To illustrate this, we compute the mean-square errors of the Lie-Trotter splitting scheme when applied to the finite difference discretization of the stochastic heat equation with different values of the mesh size, namely h " 2 ´4, 2 ´6, 2 ´8, 2 ´10 . This is presented only for the two nonlinearities gpvq " 1.5v and gpvq " 1.5 v 1`v 2 . We have used 200 samples to approximate the expectations. The other parameters are the same as in the previous numerical experiments. The results are presented in Figure 2. In these experiments we observe upper bounds which are not uniform with respect to h, in fact we observe the contribution of the error term τ 1 2 h ´1 2 in the mean-square error estimates ( 16). In the final numerical experiment, we consider the same parameters as above and the function gpvq " v 1.25 . Observe that this nonlinearity is not globally Lipschitz continuous and is thus not covered by the the results from Section 3.2. A convergence plot for the splitting scheme ( 14) is provided in Figure 3. As above, we observe a mean-square order of convergence 1{2, but which should not be uniform with respect to h, similarly to what is observed in Figure 2. To prove such rate of convergence is beyond the scope of this paper and will be the subject of a future work.

Proofs of the main results

The objective of this section is to provide the proof of the results stated in Section 3.2, namely the moment bounds in Proposition 5 and the mean-square error estimates in Theorem 6 and in Corollary 7. We also prove Proposition 2, which ensures positivity of the exact solution. Preliminary auxiliary tools are given in Sections 5.1 and 5.2, before proceeding with the detailed proofs. 5.1. Auxiliary process. In this section, for any M P N and N P N, we define an auxiliary stochastic process `uLT pt, xq ˘tPr0,T s,xPr0,1s satisfying u LT pt m , x n q " u LT m,n for all m P t0, . . . , M u and n P t1, . . . , N ´1u. The auxiliary process u LT is piecewise continuous with respect to the spatial variable x, while its temporal evolution on each interval pt m , t m`1 q follows a stochastic differential equation similar to [START_REF] Blanes | A concise introduction to geometric numerical integration[END_REF].

Recall that the auxiliary mappings κ N : r0, 1s Ñ tx 0 , . . . , x N u and M : r0, T s Ñ tt 0 , . . . , t M u are defined in Sections 2.2 and 4 respectively.

Let n P t1, . . . , N ´1u and m P t0, . . . , M ´1u, then for all t P rt m , t m`1 s set

(19) u LT m,n ptq " N ´1 ÿ k"1 G N nk p M ptq ´tm qv M,N,1 m,k ptq, where v M,N,1 m,n ptq " exp ´?N f pu LT m,n q `W N n ptq ´W N n pt m q ˘´Nfpu LT m,n q 2 pt´tmq 2
¯uLT m,n is the explicit expression [START_REF] Bréhier | Strong rates of convergence of a splitting scheme for Schrödinger equations with nonlocal interaction cubic nonlinearity and white noise dispersion[END_REF] of the solution at time t P rt m , t m`1 s of the auxiliary stochastic subsystem [START_REF] Blanes | A concise introduction to geometric numerical integration[END_REF] used in the construction of the splitting integrator. Observe that u LT m,n ptq " v M,N,1 m,n ptq for all t P rt m , t m`1 q, and, in particular, that u LT m,n pt m q " u LT m,n . Moreover, by the construction of the splitting scheme, see [START_REF] Bréhier | Splitting schemes for FitzHugh-Nagumo stochastic partial differential equations[END_REF], it holds that u LT m,n pt m`1 q " u LT m`1,n . As a result, for any n P t1, . . . , N ´1u, the mapping u LT n : t P r0, T s Þ Ñ u LT n ptq defined such that u LT n ptq " u LT m,n ptq for t P rt m , t m`1 s is well-defined. It is continuous on each interval rt m , t m`1 q, and one has u LT n pt m q " u LT m,n for all m P t0, . . . , M u. We claim that the following identity holds: for all M P N and N P N, for all n P t1, . . . , N ´1u and t P r0, T s, one has

(20) u LT n ptq " N ´1 ÿ k"1 G N nk p M ptqqu LT k,0 `?N ż t 0 N ´1 ÿ k"1 G N nk p M ptq ´ M psqqu LT k psqf pu LT k p M psqq dW N k psq.
The proof is based on a straightforward recursion argument. Recall from Section 2.2 that one has the identities N G N nk ptq " G N pt, x n , x k q and ? N dW N n ptq " N `W pt, x n`1 q ´W pt, x n q ˘. We are now in position to provide the definition of the auxiliary process u LT : for t P r0, T s and x P r0, 1s, define

u LT pt, xq " ż 1 0 G N pt, x, yqu 0 pκ N pyqq dy `ż t 0 ż 1 0 G N p M ptq ´ M psq, x, yqu LT ps, κ N pyqqf pu LT p M psq, κ N pyqq dW ps, yq. (21) 
In the identity (21) above, it is worth recalling that x P r0, 1s Þ Ñ G N pt, x, yq is a piecewise linear mapping, whereas y P r0, 1s Þ Ñ G N pt, x, yq is a piecewise constant mapping, with G N pt, x n , x k q " N G N nk ptq for all 1 ď n, k ď N ´1 and t P r0, T s. Combining ( 20) and ( 21), one obtains the identity u LT pt, x n q " u LT n ptq for all t P r0, T s and n P t1, . . . , N ´1u, and therefore one obtains the required property u LT pt m , x n q " u LT n pt m q " u LT m,n . Note that, for any t P r0, T s, the mapping x P r0, 1s Þ Ñ u LT pt, xq is piecewise linear, more precisely it is linear on each subinterval rx n , x n`1 s.

Auxiliary inequalities.

In this subsection we state several inequalities used in the convergence analysis of the splitting scheme.

' For any continuous function v : r0, 1s Ñ R, one has (see for instance [35, Eq. (3.5)]) [START_REF] Cox | Pathwise Hölder convergence of the implicit-linear Euler scheme for semi-linear SPDEs with multiplicative noise[END_REF] sup

N PN sup tě0 sup xPr0,1s ˇˇż 1 0 G N pt, x, yqvpκ N pyqq dy ˇˇď sup xPr0,1s
|vpxq|.

' For all T P p0, 8q, there exists C T P p0, 8q such that for all t P p0, 8q one has (see for instance [2, Lemma 2.3]) [START_REF] Cresson | On the positivity of solutions of systems of stochastic PDEs[END_REF] sup

N PN sup xPr0,1s ż 1 0 |G N pt, x, yq| 2 dy ď C T ? t .
' For all T P p0, 8q, there exists C T P p0, 8q such that for all t P p0, T s and all M P N one has [START_REF] Cui | Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations[END_REF] sup

N PN sup xPr0,1s ż t 0 ż 1 0 ˇˇG N pt ´s, x, yq ´GN pt ´ M psq, x, yq ˇˇ2 dy ds ď C T ? τ .
Since we are not aware of a detailed proof of the inequality [START_REF] Cui | Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations[END_REF] in the literature, we provide a proof in Appendix A. Note that the proof is similar to the proof of [2, Lemma 2.3].

Let us also recall the following discrete Grönwall inequality, see for instance [START_REF] Kruse | Strong and weak approximation of semilinear stochastic evolution equations[END_REF]Lemma A.4]: assume that a sequence `am ˘0ďmďM of nonnegative numbers satisfies the inequality

a m ď A `Cτ m´1 ÿ k"0 a k ? t m ´tk ,
where we recall that t k " kτ " kT M , for some A, C P p0, 8q. Then, there exists C T P p0, 8q, depending only on C and on T , such that one has [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF] sup 0ďmďM a m ď C T A.

Moment bounds.

The objective of this section is to prove Proposition 5. Recall that this requires to impose the condition τ ď γh where we recall that τ " T {M , h " 1{N and where γ P p0, 8q is an arbitrary parameter.

Proof of Proposition 5. Using the definition (21) of the auxiliary process u LT , for all m P t1, . . . , M u and n P t1, . . . , N ´1u, one has

u LT m,n " u LT pt m , x n q " ż 1 0 G N pt m , x n , yqu 0 pκ N pyqq dy `ż t 0 ż 1 0 G N pt m ´ M psq, x n , yqu LT ps, κ N pyqqf pu LT p M psq, κ N pyqq dW ps, yq.
Using Itô's isometry formula, one obtains

Er|u LT m,n | 2 s " Er ˇˇż 1 0 G N pt m , x n , yqu 0 pκ N pyqq dy ˇˇ2 s `ż t 0 ż 1 0 |G N pt m ´ M psq,
x n , yq| 2 Er|u LT ps, κ N pyqq| 2 |f pu LT p M psq, κ N pyqq| 2 s dy ds.

On the one hand, using the auxiliary inequality [START_REF] Cox | Pathwise Hölder convergence of the implicit-linear Euler scheme for semi-linear SPDEs with multiplicative noise[END_REF] and Assumption 1, one obtains

Er

ˇˇż 1 0 G N pt m , x n , yqu 0 pκ N pyqq dy ˇˇ2 s ď }u 0 } 2 8 .
On the other hand, recall that Assumption 3 implies that f is bounded by L g . In addition, for all k P t0, . . . , m ´1u and all s P rt k , t k`1 q, one has

Er|u LT ps, κ N pyqq| 2 s " Er|v M,N,1 k,n psq| 2 s
where n P t1, . . . , N ´1u is such that κ N pyq " x n and `vM,N,1 k,n psq ˘sPrt k ,t k`1 s is the solution of the auxiliary stochastic subsystem [START_REF] Blanes | A concise introduction to geometric numerical integration[END_REF]. Using the expression [START_REF] Bréhier | Strong rates of convergence of a splitting scheme for Schrödinger equations with nonlocal interaction cubic nonlinearity and white noise dispersion[END_REF] for the solution of [START_REF] Blanes | A concise introduction to geometric numerical integration[END_REF] and the tower property of conditional expectation, one obtains the upper bound

Er|v M,N,1 k,n psq| 2 s " Ere N f pu LT k,n q 2 ps´t k q 2 |u LT k,n | 2 s ď e N τ Lg 2 2 Er|u LT k,n | 2 s ď e Lg 2 γ 2
Er|u LT k,n | 2 s, using the boundedness of f and the condition N τ ď γ.

Using the auxiliary inequality [START_REF] Cresson | On the positivity of solutions of systems of stochastic PDEs[END_REF], gathering the upper bounds above yields the following inequality: for all m P t1, . . . , M u one has

sup 1ďnďN ´1 Er|u LT m,n | 2 s ď }u 0 } 2 8 `Cγ,T τ m´1 ÿ k"0 1 ? t m ´tk sup 1ďnďN ´1 Er|u LT k,n | 2 s.
Using the discrete Grnwall inequality [START_REF] Da Prato | Stochastic equations in infinite dimensions[END_REF] then gives [START_REF] Dalang | A minicourse on stochastic partial differential equations[END_REF] sup

0ďmďM sup 1ďnďN ´1 Er|u LT m,n | 2 s ď C γ,T }u 0 } 2 8 ,
where C γ,T P p0, 8q is independent of M , N and }u 0 } 2 8 . This shows moment bounds of the numerical solution at the grid. It remains to extend this moment bound for u LT pt, x n q when t is no longer assumed to be a grid point t m .

For all t P r0, T q and n P t0, . . . , N ´1u, let m P t0, . . . , M ´1u be such that t m " M ptq, using the same arguments as above one has

Er|u LT pt, x n q| 2 s " Er|v M,N,1 m,n ptq| 2 s ď e Lg 2 γ 2 Er|u LT k,n | 2 s ď C γ,T }u 0 } 2 8
, where the inequality [START_REF] Dalang | A minicourse on stochastic partial differential equations[END_REF] is used in the last step. As a consequence, one has [START_REF] Davie | Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations[END_REF] sup

tPr0,T s sup 1ďnďN ´1 Er|u LT pt, x n q| 2 s ď C γ,T }u 0 } 2 8 .
Finally 

sup 1ďnďN ´1 Er|u LT pt, x n q| 2 s ď C γ,T }u 0 } 2 8 .
The proof of Proposition 5 is thus completed.

A straightforward consequence of Proposition 5 is the following result.

Lemma 8. Let Assumption 1 and Assumption 3 be satisfied. Let `uLT pt, xq ˘tPr0,T s,xPr0,1s be given by the mild formula [START_REF] Cox | Convergence rates of the splitting scheme for parabolic linear stochastic Cauchy problems[END_REF]. For all γ P p0, 8q and all T P p0, 8q, there exists C γ,T P p0, 8q such that for all τ " T {M and h " 1{N satisfying the condition τ ď γh, for all m P t0, . . . , M ´1u and all t P rt m , t m`1 q, one has

(29) sup 1ďnďN ´1 `Er|u LT pt, x n q ´uLT pt m , x n q| 2 s ˘1 2 ď C γ,T p1 `}u 0 } 8 q ´τ h ¯1 2 .
Proof of Lemma 8. Let n P t1, . . . , N ´1u and m P t0, . . . , M ´1u, then for all t P rt m , t m`1 q one has u LT pt, x n q ´uLT pt m , x n q " v M,N,1 m,n ptq ´vM,N,1 m,n pt m q " ? N

ż t tm v M,N,1 m,n psqf pu LT m,n q dW N n psq " ? N ż t tm u LT ps, x n qf pu LT m,n q dW N n psq,
where we recall that the auxiliary process `vM,N,1 m,n ptq ˘tmďtďtm`1 is defined by the auxiliary subsystem [START_REF] Blanes | A concise introduction to geometric numerical integration[END_REF] which gives the first step of the splitting procedure, see Section 3.1.

Since the mapping f is bounded, using Itô's isometry formula, the condition τ N ď γ and the moment bounds [START_REF] Bréhier | Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen-Cahn equation[END_REF] from Proposition 5, one obtains

Er|u LT pt, x n q ´uLT pt m , x n q| 2 s ď L g 2 N τ Er|u LT m,n | 2 s ď L g 2 C γ,T `1 `}u 0 } 2 8 ˘τ h ´1.
The proof of Lemma 8 is thus completed. 5.4. Convergence analysis. This section is devoted to the proof of the mean-square convergence of the splitting scheme given in Theorem 6.

Proof of Theorem 6. Recall that u LT m,n " u LT pt m , x n q for all n P t1, . . . , N ´1u and m P t0, . . . , M u, where `uLT pt, xq ˘tPr0,1s,xPr0,1s is the process defined by [START_REF] Chen | Comparison principle for stochastic heat equation on R d[END_REF].

For all n P t1, . . . , N ´1u and m P t1, . . . , M u, let us define

E m,n " u N pt m , x n q ´uLT m,n and E m " sup 1ďnďN ´1 Er|E m,n | 2 s.
Using the expression (6) for u N pt, xq and the expression (21) for u LT pt, xq, one obtains the following decomposition of the error: for all n P t1, . . . , N ´1u and m P t1, . . . , M u, one has where we have used the temporal regularity estimate (9) for u N and the auxiliary inequality [START_REF] Cresson | On the positivity of solutions of systems of stochastic PDEs[END_REF]. Similarly, using Itô's isometry formula, the global Lipschitz continuity assumption on g, one obtains

E m,n " u N pt m , x n q ´uLT pt m , x n q " ż tm 0 ż 1 0 G N pt m ´s, x, yqgpu N ps, κ N pyqqq dW ps, yq ´ż tm 0 ż 1 0 G N pt m ´ M psq, x, yqu LT ps, κ N pyqqf pu LT p M psq, κ N pyqq
ż tm 0 ż 1 0 G N pt m ´s, x, yq " gpu N ps, κ N pyqqq ´gpu N p M psq, κ N pyqqq ‰ dW ps, yq E p1,2q m,n " ż tm 0 ż 1 0 G N pt m ´s, x, yq " gpu N p M psq, κ N pyqqq ´gpu LT p M psq, κ N pyqqq ‰ dW ps, yq E p1,3q m,n " ż tm 0 ż 1 0 G N pt m ´s, x, yq " u LT p M psq, κ N pyqq ´uLT ps, κ N pyqq ‰ f pu LT p M psq, κ N pyqqq
Er|E p1,2q m,n | 2 s ď L g 2 ż tm 0 ż 1 0 G N pt m ´s, x, yq 2 Er|u N p M psq, κ N pyqq ´uLT p M psq, κ N pyqq| 2 s dy ds ď C m´1 ÿ k"0 E k ż t k`1 t k ż 1 0 G N pt m ´s, x, yq 2 dy ds.
Using the inequality [START_REF] Cresson | On the positivity of solutions of systems of stochastic PDEs[END_REF], for all k P t0, . . . , m ´1u, one has 

ż t k`1 t k ż 1 0 G N pt m ´s, x,
Er|E p2q m,n | 2 s ď L g 2 ż tm 0 ż 1 0 ˇˇG N pt ´ M psq, x, yq ´GN pt m ´ M psq, x, yq ˇˇ2 Er|u LT ps, κ N pyqq| 2 s dy ds ď C γ,T pu 0 q ż tm 0 ż 1 0 ˇˇG N pt ´ M psq, x, yq ´GN pt m ´ M psq, x, yq ˇˇ2 dy ds ď C γ,T pu 0 q ? τ ,
owing to the auxiliary inequality [START_REF] Cui | Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations[END_REF] in the last step. Gathering the estimates, for all m P t1, . . . , M u, one has

E m ď C γ,T pu 0 q `?τ `τ h ´1˘`C T τ m´1 ÿ k"0 E k ? t m ´tk .
Applying the discrete Grönwall inequality (25) (see Section 5.2) then yields

sup 0ďmďM E m ď C γ,T pu 0 q ´?τ `τ h ¯.
This gives the error estimate [START_REF] Bréhier | Weak convergence rates of splitting schemes for the stochastic Allen-Cahn equation[END_REF]. When the condition τ ď γh 2 is satisfied, one has τ h ´1 ď ? γτ

1 2
and one has the error estimate [START_REF] Butkovsky | Optimal rate of convergence for approximations of spdes with non-regular drift[END_REF]. This concludes the proof of Theorem 6.

Let us also provide the proof of Corollary 7.

Proof of Corollary 7. It suffices to combine the error estimate (8) from Proposition 3 for the spatial discretization error, and the error estimate ( 16) from Theorem 6 for the temporal discretization error. One then obtains the error estimate for the splitting scheme

`Er|u LT m,n ´upt m , x n q| 2 s ˘1 2 ď `Er|u LT m,n ´uN pt m , x n q| 2 s ˘1 2 ``Er|u N pt m , x n q ´upt m , x n q| 2 s ˘1 2 ď C γ,T pu 0 qτ 1 4 `CT pu 0 qh 1 2 ď C γ,T pu 0 qγ 1 4 h 1 2 `CT pu 0 qh 1 2 ,
under the condition τ ď γh 2 . This gives the error estimate [START_REF] Carmona | Parabolic Anderson problem and intermittency[END_REF] and concludes the proof of Corollary 7.

for all n P t1, . . . , N ´1u and m P t0, . . . , M ´1u.

Using the finite difference method and the same notation as in Section 2.2, one obtains the spatial semi-discretization scheme for the SPDE system [START_REF] Erdogan | A new class of exponential integrators for sdes with multiplicative noise[END_REF] with mesh size h as follows:

(32)

#

du N 1 ptq " N 2 D N u N 1 ptq dt `?N g 1 pu N 1 ptq, u N 2 ptqq dW N 1 ptq du N 2 ptq " N 2 D N u N 2 ptq dt `?N g 2 pu N 1 ptq, u N 2 ptqq dW N 2 ptq. We are now in position to state the definition of the fully-discrete scheme based on a Lie-Trotter splitting strategy and inspired by [START_REF] Bréhier | Splitting schemes for FitzHugh-Nagumo stochastic partial differential equations[END_REF] for the approximation of solutions of [START_REF] Erdogan | A new class of exponential integrators for sdes with multiplicative noise[END_REF] , with initial values u LT 1,0 " `u1,0 px n q ˘1ďnďN´1 and u LT 1,0 " `u2,0 px n q ˘1ďnďN´1 . The scheme ( 33) is positivity-preserving in the following sense. Proposition 10. Let M P N and N P N be arbitrary integers and let T P p0, 8q. Let Assumption 4 be satisfied, and assume that the initial values u 1,0 , u 2,0 satisfy Assumptions 1 and 2. Let the sequence u LT 1,0 , . . . , u LT 1,M and u LT 2,0 , . . . , u LT 2,M be given by the splitting scheme [START_REF] Gerencsér | Finite difference schemes for stochastic partial differential equations in Sobolev spaces[END_REF], with h " 1{N and τ " T {M , with initial values u LT 1,0,n " u 1,0 px n q ě 0 and u LT 1,0,n " u 2,0 px n q ě 0 for all n P t1, . . . , N u. Then, almost surely, one has u LT 1,m,n ě 0 , u LT 2,m,n ě 0, for all m P t1, . . . , M u and n P t1, . . . , N ´1u.

The proof of Proposition 10 is a straightforward modification of the proof of Proposition 4. Moreover, one has the following variant of Proposition 5. Proposition 11. Let Assumption 4 be satisfied and assume that the initial values u 1,0 , u 2,0 satisfy Assumptions 1 and 2. Let the sequences u LT 1,0 , . . . , u LT 1,M and u LT 2,0 , . . . , u LT 2,M be given by the Lie-Trotter splitting scheme [START_REF] Gerencsér | Finite difference schemes for stochastic partial differential equations in Sobolev spaces[END_REF].

For all γ P p0, 8q and all T P p0, 8q, there exists C γ,T P p0, 8q such that for all τ " T {M and h " 1{N satisfying the condition τ ď γh, one has [START_REF] Grecksch | Approximation of stochastic nonlinear equations of Schrödinger type by the splitting method[END_REF] ˘.

Finally, one has the following generalization of Theorem 6.

Theorem 12. Let Assumption 4 be satisfied and assume that the initial values u 1,0 , u 2,0 satisfy Assumptions 1 and 2. Let the sequences u LT 1,0 , . . . , u LT 1,M and u LT 2,0 , . . . , u LT 2,M be given by the Lie-Trotter splitting scheme [START_REF] Gerencsér | Finite difference schemes for stochastic partial differential equations in Sobolev spaces[END_REF], and let `uN 1 ptq ˘tě0,0ďnďN and `uN 2 ptq ˘tě0,0ďnďN be given by the spatial semidiscretization scheme [START_REF] Farina | Positive Linear Systems: Theory and Applications[END_REF].

For all γ P p0, 8q and T P p0, 8q, there exists C γ,T pu 1,0 , u 2,0 q P p0, 8q such that for all τ " T {M and h " 1{N satisfying the condition τ ď γh, one has ) when applied to the system of stochastic heat equations with multiplicative terms g 1 pv 1 , v 2 q " sinpv 1 q cospv 2 q and g 2 pv 1 , v 2 q " cospv 1 q sinpv 2 q. Mesh size h " 2 ´8 and average over 200 samples.

where λ N j " 4N 2 sin `jπ 2N ˘2, ϕ j p¨q " ? 2 sinpjπ¨q and ϕ N j is the linear interpolation of ϕ j at the space grid points x n " nh for n " 1, . . . , N ´1.

Using the orthogonality property maxp1, λ N j τ q 2 λ N j .

One checks that there exists c P p1, 8q such that for all N ě 1 and j P t1, . . . , N ´1u one has c ´1 ď λ N j j 2 ď c.
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2 (d) gpvq " v expp´v 2 qFigure 1 .

 221 Figure1. Mean-square errors on the time interval r0, 0.5s of the splitting scheme (LT), the stochastic exponential Euler integrator (SEXP), and the semi-implicit Euler-Maruyama scheme (SEM). Mesh size h " 2 ´8 and average over 200 samples.

Figure 2 .

 2 Figure 2. Mean-square errors on the time interval r0, 0.5s of the splitting scheme for several values of the spatial mesh Average over 200 samples.

Figure 3 .

 3 Figure 3. Mean-square errors on the time interval r0, 0.5s of the splitting scheme (LT) when applied to the stochastic heat equation (3) with gpvq " v 1.25 . Mesh size h " 2 ´8 and average over 200 samples.

2 ż tm 0 ż 1 0G? τ ż tm 0 ż 1 0G

 211 dW ps, yq. Using Itô's isometry formula, the global Lipschitz continuity assumption on g, one obtains Er|E p1,1q m,n | 2 s ď L g N pt m ´s, x, yq 2 Er|u N ps, κ N pyqq ´uN p M psq, κ N pyqq| 2 s dy ds ď C T pu 0 qL g 2 N pt m ´s, x, yq 2 dy ds ď C T pu 0 q ? τ ,

2 ,

 2 pt m q| 2 s ˘1 2 ď C γ,T pu 1,0 , u 2,0 q n pt m q| 2 s ˘1 2 ď C γ,T pu 1,0 , u 2,0 q ˆτ 1 4 `´τ h ¯1 2 ˙.

2 Figure 4 .

 24 Figure 4. Mean-square errors of the Lie-Trotter splitting scheme (first component denoted by LT1, second by LT2) when applied to the system of stochastic heat equations with multiplicative terms g 1 pv 1 , v 2 q " sinpv 1 q cospv 2 q and g 2 pv 1 , v 2 q " cospv 1 q sinpv 2 q. Mesh size h " 2 ´8 and average over 200 samples.

ż 1 0 1 0

 11 ϕ j pκ N pyqqϕ k pκ N pyqq dy " δ jk , ˇˇG N pt ´s, x, yq ´GN pt ´ M psq, x, yq ˇˇ2 dy ds " j pt´sq ´e´λ N j pt´ M psqq ˘ϕN j pxqϕ j pκ N pyqq ˇˇ2 dy ds " j pt´sq ´e´λ N j pt´ M psqq ˘2ϕ N j pxq 2 ds

  , since x Þ Ñ u LT pt, xq is linear on each subinterval rx n , x n`1 s, one obtains

	(28)	sup	sup	Er|u LT pt, xq| 2 s ď sup
		tPr0,T s	xPr0,1s	tPr0,T s

  dW ps, yq G N pt m ´s, x, yq " gpu N ps, κ N pyqqq ´uLT ps, κ N pyqqf pu LT p M psq, κ N pyqq N pt m ´s, x, yq ´GN pt m ´ M psq, x, yq ‰ u LT ps, κ N pyqqf pu LT p M psq, κ N pyqq dW ps, yq.

		" E p1q m,n	`Ep2q m,n ,
	where we set	
	ż tm	ż 1	
	E p1q m,n "			‰	dW ps, yq,
	0	0	
	ż tm	ż 1	
	E p2q m,n " G Let us first deal with the error term E 0 0 "	p1q m,n . Recall that gpuq " uf puq, therefore one has the
	decomposition E m,n " E p1q m,n p1,1q	`Ep1,2q m,n	`Ep1,3q m,n , where
	E p1,1q m,n "		

  yq 2 dy ds ď where we have used the inequality 1 ´?1 ´z ď z for all z P r0, 1s in the last step. Therefore one has G N pt m ´s, x, yq 2 Er|u LT p M psq, κ N pyqq ´uLT ps, κ N pyqq| 2 s dy ds ď C γ,T pu 0 qτ h

			Er|E p1,2q m,n | 2 s ď C T τ	m´1 ÿ k"0	?	E k t m ´tk	.
	Finally, for the third term, using Itô's isometry formula and the boundedness of f , one obtains
	ż tm	ż 1			
	Er|E p1,3q m,n | 2 s ď L 2 g				
	0	0			
			´1 ż tm	ż 1	G N pt m ´s, x, yq 2 dy ds
			0	0	
	ď C γ,T pu 0 qτ h	´1		
	using the temporal regularity estimate (29) from Lemma 8 for u LT and the auxiliary inequality (23).
	Let us now deal with the error term E m,n . Using Itô's formula, the boundedness of f and the p2q
	moment bounds (15) from Proposition 5, one obtains
					ż t k`1 t k	?	C T t m ´s ds
					" 2C T `?t m ´tk ´at m ´tk`1	"
					2C T	?	t m ´tk ´1 ´c1	´τ t m ´tk	ď
					2C T τ ? t m ´tk	,

  " e τ N 2 D N ˜exp ´?N f 1 pu LT 1,m,n , u LT 2,m,n q∆ m,n W 1 ´N f 1 pu LT 1,m,n , u LT 2,m,n q 2 τ 2 " e τ N 2 D N ˜exp ´?N f 2 pu LT 1,m,n , u LT 2,m,n q∆ m,n W 2 ´N f 2 pu LT 1,m,n , u LT 2,m,n q 2 τ 2

		: for all m P
	t0, . . . , M ´1u, set
	(33)
	$	¸1ďnďN´1
	' ' ' ' '	u LT 1,m`1 ¯uLT 1,m,n
	&	
		¸1ďnďN´1
	' ' ' ' '	u LT 2,m`1 ¯uLT 2,m,n
	%	

  sup | 2 ‰ ď C γ,T `1 `}u 1,0 } 2 8 `}u 2,0 } 2

	0ďmďM	sup 1ďnďN ´1 E	"	|u LT 1,m,n | 2 ‰	`sup 0ďmďM	sup 1ďnďN ´1 E	"	|u LT 2,m,n 8

Acknowledgements

The work of CEB is partially supported by the project SIMALIN (ANR-19-CE40-0016) operated by the French National Research Agency. The work of DC and JU is partially supported by the Swedish Research Council (VR) (projects nr. 2018 ´04443). The computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at HPC2N, Umeå University and at UPPMAX, Uppsala University.

5.5. Proof of Proposition 2. We conclude this section with the proof of the positivity property of the exact solution to the stochastic heat equation (3) on a bounded domain.

Proof of Proposition 2. Owing to Corollary 7 and to the temporal regularity estimate [START_REF] Barth | L p and almost sure convergence of a Milstein scheme for stochastic partial differential equations[END_REF] satisfied by the solution u of the SPDE in equation [START_REF] Barbu | A splitting algorithm for stochastic partial differential equations driven by linear multiplicative noise[END_REF], one obtains the following result (recall that τ " T {M and h " 1{N ): there exists C γ,T pu 0 q P p0, 8q such that for all N P N and M P N, such that M ě T N 2 γ , for all t P r0, T s and x P r0, 1s, one has [START_REF] Duboscq | Analysis of a splitting scheme for a class of random nonlinear partial differential equations[END_REF] `Er|upt, xq ´uLT p M ptq, κ N pxqq| 2 s ˘1 2 ď C γ,T pu 0 qN ´1 2 .

Let t P r0, T s and x P r0, 1s be fixed, then there exists a sequence `Nk q kPN such that N k Ñ 8 and u LT p M k ptq, κ N k pxqq converges to upt, xq almost surely. Since u LT p M k ptq, κ N k pxqq ě 0 almost surely owing to Proposition 4, one obtains upt, xq ě 0 almost surely.

Generalization to systems

In this section, we briefly describe how to generalize the construction of the splitting scheme ( 14) and the analysis above to stochastic systems of the type 

for pt, xq P r0, T s ˆr0, 1s, where g 1 , g 2 : R 2 Ñ R are globally Lipschitz continuous mappings, with initial values u 1,0 , u 2,0 satisfying Assumptions 1 and 2. The two evolution equations are driven by space-time white noise. The Wiener sheets W 1 and W 2 can either be equal or independent. For ease of presentation we only deal with systems of two equations, while considering systems of arbitrary size would also be possible.

In this setting, to obtain solutions which only have nonnegative values, it is necessary to replace Assumption 3 by the following. Assumption 4. The mappings g 1 , g 2 : R 2 Ñ R are of class C 1 and globally Lipschitz continuous. In addition, they satisfy g 1 p0, v 2 q " 0 and g 2 pv 1 , 0q " 0 for all pv 1 , v 2 q P R 2 .

One then has the following generalization of Proposition 2. Proposition 9. Consider the SPDE system [START_REF] Erdogan | A new class of exponential integrators for sdes with multiplicative noise[END_REF]. Let Assumption 4 be satisfied and assume that the initial values u 1,0 , u 2,0 satisfy Assumptions 1 and 2. Then, for all t P p0, 8q and all x P r0, 1s, almost surely, one has

As in Sections 2 and 3, the mesh size and the time-step sizes are denoted by h " 1{N and τ " T {M respectively, and the space and time grid points are denoted by x n " nh and t m " mτ , with 0 ď n ď N and 0 ď m ď M . In addition, introduce the mappings f 1 , f 2 : R 2 Ñ R defined by

Owing to Assumption 4, the mappings f 1 and f 2 are bounded and continuous mappings. Finally, for all t ě 0 and n P t1, . . . , N ´1u define

In addition, for all τ " T {M and h " 1{N satisfying the condition τ ď γh 2 , one has

The proofs of Proposition 11 and of Theorem 12 are omitted since they follow from the same arguments as those of Proposition 5 and of Theorem 6. Finally, one obtains the following variant of Corollary 7

Corollary 13. Consider the setting and assumptions of Theorem 12. For all γ P p0, 8q and T P p0, 8q, there exists C γ,T pu 1,0 , u 2,0 q P p0, 8q such that for all τ " T {M and h " 1{N satisfying the condition τ ď γh 2 , one has

To conclude this presentation of the positivity-preserving Lie-Trotter splitting scheme [START_REF] Gerencsér | Finite difference schemes for stochastic partial differential equations in Sobolev spaces[END_REF] for the approximation of solutions of the SPDE system (31), we report some numerical experiments.

The first numerical experiment illustrates the positivity-preserving property of the Lie-Trotter splitting scheme (LT) when applied to the system of SPDEs [START_REF] Erdogan | A new class of exponential integrators for sdes with multiplicative noise[END_REF] driven by two independent noise. The initial values are taken to be u 1,0 " u 2,0 " sinpπxq, the final time is T " 5 and the multiplicative terms are g 1 pv 1 , v 2 q " 7 sinpv 1 q cospv 2 q and g 2 pv 1 , v 2 q " 7 cospv 1 q sinpv 2 q. The discretization parameters are τ " 2 ´2 and h " 2 ´8. The proportion of samples containing only positive values out of 500 simulated samples for all considered time integrators are presented in Table 3.

LT (first,second) SEXP (first,second) SEM (first,second) EM (first,second) 500{500, 500{500 500{500, 499{500 498{500, 496{500 0{500, 0{500

Table 3. Proportion of samples containing only positive values out of 500 simulated sample paths for the Lie-Trotter splitting scheme (LT), the stochastic exponential Euler integrator (SEXP), the semi-implicit Euler-Maruyama scheme (SEM), and the Euler-Maruyama scheme (EM). First and second component. The multiplicative terms are g 1 pv 1 , v 2 q " 7 sinpv 1 q cospv 2 q and g 2 pv 1 , v 2 q " 7 cospv 1 q sinpv 2 q. The discretization parameters are τ " 2 ´2 and h " 2 ´8.

The second numerical experiment illustrates the mean-square convergence of the Lie-Trotter splitting scheme when applied to systems of nonlinear SHEs. Figure 4 presents, in a loglog plot, the mean-square errors measured at the space-time grid for the time interval r0, 0.5s. The discretization parameters are h " 2 ´8 and τ " 2 ´4, 2 ´5, . . . , 2 ´16 (the last one being used for the reference solution). We have used 200 samples to approximate the expected values. The expected mean-square orders of convergence is observed in this figure .   Appendix A. Proof of auxiliary inequalities Proof of the auxiliary inequality [START_REF] Cui | Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations[END_REF]. Let us recall some notation. For all N P N, all t ě 0 and x, y P r0, 1s, one has The value of C is independent of N P N, t P p0, T s and x P r0, 1s. The proof of the auxiliary inequality ( 24) is thus completed.